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 Preface

A national network television newscast aired the following fi ve stories in 20061:

 ■ A report on the use of nontraditional, nonmainstream medicine, such as tradi-
tional Chinese medicine (TCM), to help people who have type 1 diabetes

 ■ A neighborhood’s concern about a sharp rise in the number of children with 
asthma and autism living in a western U.S. state

 ■ A report on the latest Centers for Disease Control and Prevention (CDC) rec-
ommendations regarding who should receive the fl u vaccine and when

 ■ A discussion of the extensive infectious disease monitoring strategy being im-
plemented in a coastal city in the southern United States that was recently hit 
by a massive hurricane

 ■ A report on a study, published in a leading medical journal, of a likely associa-
tion between an increased risk of cancer and workers’ exposure to a particular 
chemical

Each of these news stories included interviews with public health offi cials or 
investigators who called themselves epidemiologists.

Who are these epidemiologists, and what do they do? What is epidemiology? This 
book is intended to answer these questions. In doing so, it describes what epidemi-
ology is, how it has evolved, how it is used today, and what some of its key methods 
and concepts are. The focus is on epidemiology in public health practice—that is, the 
kind of epidemiology that is done at local, state, and national health departments.

Data analysis—the processing of information collected by observation or exper-
imentation—is a very important part of epidemiologic investigations. Hence, the 
state of the art in epidemiologic studies is being steadily advanced as the capabili-
ties and capacity of computing facilities and the computing environment in general 
move ahead. Today, epidemiologists around the world can choose from many com-
mercially available and widely used biostatistical software packages.

A relatively new software package called R, developed in 1993 and freely available 
via the Internet, is the most promising. R has many advanced regression modeling 
functions, such as multilinear regression, logistic regression, survival analysis, and 
multilevel modeling. Supported as it is by leading biostatistical experts worldwide, R 
is now ubiquitous and provides everything that an epidemiologic data analyst needs.

The purpose of this book is to make R readily accessible, on a hands-on level, to 
all future epidemiologists for research, data processing, and presentation. This book 
is essentially about learning R with an emphasis on applications to epidemiology, 
public health, and preventive medicine. To make the best use of this text, readers 

1U.S. Department of Health and Human Services, Centers for Disease Control and Prevention (CDC), 
Offi ce of Workforce and Career Development. (2006). Principles of epidemiology in public health practice: 
An introduction to applied epidemiology and biostatistics (Self-Study Course SS1000, 3rd ed.). Atlanta, GA: 
Author.
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should have some background in basic computer usage. With R and the supplied 
datasets, users should be able to work through each section, learning the techniques 
of data management, related biostatistical theories, and the practice of data analysis 
and graphical presentations. The book is systematically organized into seven chap-
ters, each with a number of main sections covering the spectrum of applicable R 
codes for biostatistical applications in epidemiology and public health.

Chapters 1 and 2 introduce interactional relationships among medicine, preven-
tive medicine, public health, epidemiology, and biostatistics in general, as well as 
special concepts that have been (and are being) developed to address quantitative 
problems in epidemiology and public health in particular. A review of the basic 
elements in the theory of probability is presented to introduce or reinforce readers’ 
ability to handle this important basic concept.

Chapter 3 covers simple data handling using R programming, while Chapter 4 
presents the graphics capabilities available in R. Following these initial forays into 
R, Chapter 5 gives an overview of the theory of probability and mathematical sta-
tistics, which is necessary because both of these areas have become integral parts of 
biostatistical applications in epidemiology.

Chapter 6 shows how R may be effectively used to handle classical problems in 
case–control studies and cohort investigations in epidemiology. Similarly, survival 
analysis, the backbone of much epidemiologic research, fi nds excellent support in 
the R environment, as outlined in Chapter 7.

To assist and challenge readers, a set of “review questions” appears at the end of 
each main section. These will help readers to recall and note the salient concepts dis-
cussed in the body of the text. Because it is primarily a quantitative subject, biosta-
tistics may best be appreciated by undertaking appropriate, specifi c, and hands-on 
exercises involving the concepts introduced in the text. The exercises that appear at 
the end of most sections will guide readers through applications of these ideas to the 
world of real epidemiology and public health in the course of practicing their skills 
in computation using R. The online Student Study Guide leads students through 
solutions to the exercises in the book and is available at www. springerpub.com/
chan-biostatistics. Also on www.springerpub.com/chan- biostatistics is a Supple-
mental Chapter entitled Research-Level Applications of R. An Instructor’s Man-
ual is also available by emailing textbook@springerpub.com.

On November 6, 2011, Professor Tomás Aragon, MD, DrPH, of the University of 
California-Berkeley, in the preface to his online manual Applied Epidemiology Using 
R, made the following comment:

We like to think of R as a set of extensible tools to implement one’s analysis 
plan, regardless of simplicity or complexity. . . . Our hope is that more and more 
epidemiologists will embrace R for epidemiological applications, or at least 
include it in their toolbox.

The author hopes that this book will meet this need by helping to introduce R, 
a high-level computing language and an environment for biostatistical computing 
and graphical presentations, to epidemiologists and data analysts in public health 
and preventive medicine who are actively conducting epidemiologic  investigations.

Bertram K. C. Chan, PhD, PE

http://www.springerpub.com/chan-biostatistics.
http://www.springerpub.com/chan-biostatistics
mailto:textbook@springerpub.com
http://www.springerpub.com/chan-biostatistics.
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 Introduction

 1.1  MEDICINE, PREVENTIVE MEDICINE, PUBLIC HEALTH, AND 
EPIDEMIOLOGY

 Medicine

The word medicine is derived from the Latin phrase ars medicina, meaning “the heal-
ing art.” Thus, medicine refers to the art and science of healing, which uses a variety 
of practices evolved or developed to maintain and restore health by the treatment 
and prevention of diseases and injuries.

Today’s medicine applies health sciences, biomedical research, and technol-
ogy to diagnose and treat injury and diseases, typically through drug/medication 
or surgical interventions, but also through therapies as diverse as psychotherapy, 
prostheses (e.g., artifi cial limbs), and physical therapy, to name a few. Given this 
vast array of possible approaches and techniques, it is only natural that various 
specialties would arise within the medical profession as practitioners concentrated 
their talents and efforts on certain problems and therapies. The development of a 
specialty, including the specialty of preventive medicine, is often driven by new 
technology.

 Preventive Medicine and Public Health

In the United States (as well as in the United Kingdom and many other parts of 
the world), preventive medicine is one of 24 medical specialties recognized by the 
American Board of Medical Specialties (ABMS). It comprises three areas of subspe-
cialization:

1. General preventive medicine and public health (PH)
2. Aerospace medicine
3. Occupational medicine

To become board-certifi ed in one of the preventive medicine areas of specializa-
tion, a licensed U.S. physician must successfully complete a preventive medicine 
medical residency program following a 1-year internship. Thereafter, the physi-
cian must complete a year of practice in that specialty area and pass the preventive 
medicine board examination. The residency program, which is at least 2 years in 

ONE



2 1. INTRODUCTION

duration, includes completion of a master of public health (MPH) degree or the 
equivalent. (The present text is primarily directed toward the achievement of this 
last milestone.)

For example, in the United States, the Loma Linda University (LLU),  California, 
offers a Family and Preventive Medicine Residency program that combines training 
in family medicine and preventive medicine, thus helping to fulfi ll LLU’s mission: 
“To Make Man Whole.” This special program includes primary care training through 
the LLU Family Medicine Residency program, as well as work in population-based 
care and health care systems through the LLU Preventive Medicine Residency pro-
gram. During their 4 years in the program, all successful residents earn an MPH 
degree through the LLU School of Public Health and have an opportunity for unique 
exposure to LLU’s two areas of strength: lifestyle medicine and global health.

 Public Health and Epidemiology

In a major study conducted by the U.S. National Academy of Science’s Institute 
of Medicine, the Committee for the Study of the Future of Public Health defi ned 
the mission of public health as “the fulfi llment of society’s interest in assuring the 
conditions in which people can be healthy” (see Centers for Disease Control and 
Prevention [CDC] 2006). That same study defi ned the substance of public health as 
“organized community efforts aimed at the prevention of disease and the promo-
tion of health. [Public health] links many disciplines and rests upon the scientifi c 
core of epidemiology.”

Epidemiology (EPDM), basically, is the study of the demographics of disease 
processes, including but not limited to the study of epidemics. The U.S. Department 
of Health and Human Services (DHHS), through the CDC, provides the following 
defi nition of epidemiology:

The word epidemiology comes from the Greek words epi, meaning on or upon, 
demos, meaning people, and logos, meaning the study of. Thus, the word epide-
miology has its roots in the study of what befalls a population. Many defi nitions 
have been proposed, but the following defi nition captures the underlying prin-
ciples and public health spirit of epidemiology:

Epidemiology is the study of the distribution and determinants of health- 
related states or events in specifi ed populations, and the application of this 
study to the control of health problems. (CDC, 2006)

 Review Questions for Section 1.1

1. Using Internet sources, name five medical specialties (besides preventive medi-
cine) in the United States that are officially recognized by the ABMS.

2. (a) Do you know of any physicians practicing only preventive medicine?
(b) If you were a physician, would you choose to practice only preventive medi-

cine? Why or why not?
3. Health research and policy (HRP): The Stanford University School of Medicine 

(Stanford, California) teaches preventive medicine within its department of HRP. 
This program has four areas: biostatistics (BIOS), data coordination, EPDM, and 
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health services research (HSR). The last area, HSR, focuses on analyzing and 
comparing the costs, risks, and benefits of strategies for medical care, especially 
medical interventions. Discuss the possible benefits to preventive medicine of work 
in the areas of HRP.

4. Fluoridation of drinking water: In the United States, fluoridation of drinking water 
has been the subject of many court cases in which political activists have sued local 
governments, alleging that their rights to informed consent for medical treatment 
and to due process are violated by compulsory fluoridation. Individuals have sued 
municipalities for sicknesses that they thought were caused by the fluoridation of a 
town’s water supply. In most of these cases, the courts have held in favor of the de-
fendant cities or governmental entities, finding no or only a tenuous connection be-
tween health problems and widespread water fluoridation. To date, no federal court 
or state supreme court has found water fluoridation to be unlawful. If you were a PH 
provider, would you support the fluoridation of drinking water? Why or why not?

 1.2 PERSONAL HEALTH AND PUBLIC HEALTH (PH)

Today, mainstream medicine is moving toward a standard of evidence-based prac-
tice, using data gathered mostly from PH research and especially from epidemio-
logic surveys. These data reveal trends, identify issues, and allow the evaluation of 
the effectiveness of various approaches for certain populations. The advantages of 
evidence-based health care seem obvious, in that it increases health care providers’ 
ability to offer effective and safe treatments for any given condition.

PH data also underlie recommendations regarding personal health. According 
to experts, all personal health plans may be summarized simply as follows:

 ■ Eat well and rest adequately.
 ■ Exercise vigorously and regularly.

However, serious challenges may arise when PH generalizations are applied to 
an individual’s personal situation.

Here is an example. Observational PH epidemiology of lifestyle has shown that 
eating whole-grain foods is better than eating processed foods from which many 
naturally occurring nutrients, vitamins, and fi ber have been removed. Knowing 
this, one might apply these fi ndings to one’s own personal situation. A person 
might launch a campaign of eating only 100% whole-wheat bread, pastas, and even 
pizzas. This could benefi t the person’s nutritional status, as he or she would con-
sume a lot more fi ber and B vitamins, which are generally good for health.

But what if this person is intolerant of wheat and related products?
What if this person has the problem of gluten intolerance (gluten is found in 

foods containing wheat, rye, and barley)?
What if this person has an allergy to wheat?
If a person has any of these conditions, eating whole-wheat foods will make 

that individual ill in several possible ways. Allergic reactions can be life-threaten-
ing; celiac disease would cause serious gastrointestinal problems; wheat  intolerance 
could cause poor absorption and assimilation of the very nutrients that were 



4 1. INTRODUCTION

intended to be benefi cial. In the latter cases, eating whole-grain rice, for example, 
might be the best way to get the health benefi ts of a “whole-grain” approach with-
out stirring up food intolerances or allergies.

This is a simple but common example in which general PH recommendations 
that may benefi t the population at large may not necessarily benefi t certain indi-
viduals personally and specifi cally. Each individual should decide what is right for 
him or her when creating an effective individualized program of health care.

Such personal health conditions and issues must be considered whenever a PH 
policy is being proposed or accepted. Thus, legislators considering PH care poli-
cies often face the diffi cult task of deciding what to do with “expert” advice based 
on observations and conclusions drawn from epidemiologic research and surveys. 
They must decide what weight to give the research fi ndings and conclusions, the 
appropriateness of basing general public policy on those fi ndings, and the utility 
and safety of any wide-scale PH mandates.

What happens if the evidence indicates that people generally (or even a sub-
group of people who have a specifi c diagnosis such as diabetes) fare better or worse 
on a particular therapy? One may fi nd it diffi cult and confusing to decide the best 
program: selecting a more familiar or accessible treatment for a specifi c health prob-
lem, rather than treatments that are less familiar and more diffi cult to accomplish, 
could keep a person from maximizing the benefi ts. For many people with chronic 
illnesses, for example, adding supplements of vitamins, minerals, and herbs to food 
is a way to start, but it is usually not enough. Achieving true health and healing is a 
complex but rewarding undertaking. A larger perspective may well clarify the path 
by which to reach one’s objectives.

 Personal Health Versus Public Health

As discussed earlier in this section, there are times when personal health and PH 
may confl ict. In many instances, this merely means that individuals will make per-
sonal choices that deviate from general recommendations. Unfortunately, it is also 
quite possible for PH to be used (either as a reason or a camoufl age) to enforce the 
will and policy of the state and override citizens’ rights. PH initiatives and man-
dates are, in many instances, determined and administered by or under a branch of 
government with an objective that promotes both governmental policies and politi-
cal agendas.1 Personal interests, aspirations, individual choices, freedom, and ideals 
can be severely restricted by government “public health” laws and policies. Some of 
the numerous examples of this include:

 ■ The one-child-only-per-married-couple policy in the People’s Republic of China
 ■ Prohibition in the United States between 1920 and 1933, which attempted 

(unsuccessfully) to ban alcohol, a powerful psychoactive drug that today is 
cheaply and widely available. Although PH data clearly show that the damage 
done by this drug is huge, the government legislation making its use illegal 
was eventually overturned.

1 https://en.wikipedia.org/wiki/Public_health

https://en.wikipedia.org/wiki/Public_health
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 ■ The mandatory quarantining of a person suffering from a potentially fatal 
infectious disease.

 ■ Mandatory immunizations that involve pain, inconvenience, and risk of side 
effects for the entire population so that a disease may be prevented in a mi-
nority. This may be justifi able—for example, the vaccinations that led to the 
eradication of smallpox and polio in the United States—but there is a large, 
ethically gray area surrounding vaccines for which there is considerable uncer-
tainty as to the balance of benefi ts versus harms.

 ■ An ongoing issue in the United States today is the concerns of many parents 
that vaccination may cause autism in children. Should these citizens have 
the right to refuse vaccination on behalf of their children? Similar issues 
exist where a person’s religious beliefs forbid blood transfusions; such 
persons have refused blood transfusions for themselves and their depen-
dent children, even in life-threatening medical emergencies. Although the 
constitutional right to freedom of religion and religious exercise has usually 
overridden the government’s contentions in these cases, in some instances 
governmental authorities may declare a person a “ward of the court” and 
thereby take complete responsibility for both personal and public health 
issues.

 Review Questions for Section 1.2

1. Where does personal health end and PH begin?
2. Does the Venn diagram in Figure 1.1 accurately represent personal health and 

PH?
List some issues that are:
(a) Exclusively personal health matters
(b) Exclusively PH matters
(c) Both personal and public health matters
Give reasons supporting your identifications.

Personal
health

Public
health

FIGURE 1.1 Personal health and PH.
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 1.3 RESEARCH AND MEASUREMENTS IN EPDM AND PH

As discussed in Section 1.1, the word epidemiology literally means “the study of what 
happens to a population.” Over the years, many defi nitions have been proposed, 
but the following defi nition captures the underlying principles and PH spirit of 
EPDM:

Epidemiology is the study of the distribution and determinants of health- 
related states or events in specifi ed populations, and the application of this 
study to the control of health problems (Broadbent, 2009).

The critical terms in this defi nition (in bold type here) refl ect some of the import-
ant principles of EPDM:

1. Study. EPDM is a scientifi c discipline that employs established methods of 
scientifi c inquiry. It is data driven and depends on a systematic and unbiased 
approach to the collection, analysis, and interpretation of data. Epidemiologic 
methods depend on observation and use of valid comparison groups to assess 
whether what was observed (such as the number of cases of a disease in a cer-
tain area during a particular time period or the frequency of exposure among 
persons with disease) differs from what might be expected. EPDM also uses 
methods from other scientifi c fi elds, including BIOS and informatics, and other 
biologic, economic, social, and behavioral sciences. This book deals mainly with 
the special contribution of BIOS to EPDM.

2. Distribution. EPDM relates the frequency and pattern of health events and out-
comes in a population of interest:

 ■ Frequency refers to the number of health events, such as the number of 
cases of cholera or diabetes in a population, and to the relationship of that 
number to the size of the population. The resulting rate allows epidemiolo-
gists to compare disease occurrence across different populations.

 ■ Pattern refers to the occurrence of health-related events by person, time, 
and place. Time patterns are those found in particular periods of time 
infl uencing the occurrences of injury or disease, such as annual, seasonal, 
weekly, daily, hourly, weekday versus weekend, and so on. Place patterns 
include geographic variations, urban versus rural differences, and location 
of work sites or schools. Personal characteristic patterns include demo-
graphic factors that are or may be related to the risk of illness, injury, or 
disability, such as age, gender, marital status, and socioeconomic status, as 
well as behaviors and environmental exposures.

3. Determinants. Determinants are factors—whether events, characteristics, or 
other things—that bring about a change in health conditions or other defi ned 
characteristics. In this area of investigation, the causes of diseases are closely 
studied, identifi ed, and correlated with expected and measured health out-
comes. This critical aspect of EPDM is discussed in more detail later in this sec-
tion.

4. Health-related states or events. Originally, EPDM was concerned only with 
epidemics of communicable diseases (such as cholera). Subsequently, however, 
the fi eld of inquiry was expanded to address endemic (restricted or peculiar 
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to a locality or region) communicable diseases and noncommunicable infec-
tious diseases. By the middle of the 20th century, additional epidemiologic 
methods had been developed and applied to injuries, chronic diseases, mater-
nal–child health and birth defects, environmental health, and occupational 
health. Now epidemiologists also investigate behaviors related to health and 
well-being, such as lifestyle issues like the amount of exercise undertaken, and 
safety issues like car seat-belt use. Furthermore, with the development of bio-
molecular methods and the sequencing of the human genome, epidemiologists 
have begun examining genetic markers of diseases and disease risk factors. As 
a result, the term health-related events or states may be used generally to refer 
to any issue that affects the well-being of a population. However, in modern 
EPDM, the term disease represents the wide range of health-related states and 
events that are studied.

5. Specifi ed populations. Even though both physicians and epidemiologists are 
concerned with the occurrence and control of diseases, they differ in how they 
view the “patient.” The physician and other health care providers are primarily 
concerned about the health of an individual; the epidemiologist is concerned 
about the collective health of the people who make up a community or popula-
tion. Thus, the physician and the epidemiologist have different responsibilities 
regarding a person who has an illness. For example, when a patient presents 
with diarrheal disease, both medical professionals are interested in establishing 
the correct diagnosis. However, the physician focuses on treating the disease and 
caring for the patient as an individual; the epidemiologist focuses on identifying 
the source or the type of exposure that caused the disease, the number of other 
persons who may have been similarly exposed, the potential for further spread 
in the community, and interventions to prevent additional cases or recurrences.

6. Application. EPDM is involved both in studying health in a population and in 
applying the knowledge gained from those studies to community-based prac-
tice. Like the practice of medicine, the practice of EPDM is both a science and 
an art. To make the proper diagnosis and prescribe appropriate treatment for a 
patient, the physician combines evidence-based scientifi c medical knowledge 
with experience, clinical judgment, and understanding of the patient. Simi-
larly, the epidemiologist uses the scientifi c methods of descriptive and analytic 
EPDM, as well as experience, epidemiologic judgment, and understanding of 
local conditions, to “diagnose” the health of a community and propose appro-
priate, practical, and acceptable PH interventions to control and prevent disease 
in the community.

 EPDM: The Basic Science of PH

EPDM is the basic science of PH for the following reasons:

1. EPDM is a quantitative study relying on a working knowledge of probability, 
BIOS, and scientifi c research methods.

2. EPDM is a discipline of causal reasoning in which hypotheses from various sci-
entifi c fi elds, such as biological sciences, behavioral sciences, physical sciences, 
and ergonomics, are developed and tested to yield health-related results.



8 1. INTRODUCTION

Moreover, EPDM is not only a research discipline in itself, but also a com-
ponent of PH, providing the foundation for and directing appropriate, practical 
PH action based on scientifi c, cause-and-effect reasoning. Thus, the discipline of 
EPDM may be described in terms of two approaches: descriptive EPDM and ana-
lytical EPDM.

DESCRIPTIVE EPDM

Descriptive EPDM covers time, place, and person. This approach is critically 
important because:

 ■ Upon scrutinizing the data, the epidemiologist becomes familiar with its lim-
itations based on the known variables. For example, epidemiologists often deal 
with large numbers of records that are missing data for each important vari-
able. This led to the development and application of the theory of missing-data 
analysis, which allows researchers to deal with data eccentricities (for example, 
all cases range in age from 3 months to 4 years, plus one 19-year-old).

 ■ The epidemiologist learns the extent and pattern of the PH problem being 
studied; for example, which months/neighborhoods/groups of people have 
the most and least cases of the phenomenon of interest.

 ■ The epidemiologist creates a detailed description of the health of a population 
that can be readily communicated with graphs, tables, and maps.

 ■ The epidemiologist can identify patterns (a diffi cult task, even with comput-
ers), such as areas or groups within the population that have abnormally high 
rates of disease. This information in turn provides clues to the causes of the 
disease, which inform the development of verifi able hypotheses and applica-
ble theories.

Descriptive EPDM may be summarized in terms of the “fi ve Ws”:

 ■ What = health issue of concern
 ■ Who = person
 ■ Where = place
 ■ When = time
 ■ Why/how = causes, risk factors, and transmission modes

ANALYTIC EPDM

Descriptive EPDM observes and identifi es patterns among cases and in populations 
according to time, location, and person. From these observations, researchers may 
develop hypotheses about the causes of these patterns and about the factors that 
increase the risk of disease. Thus, epidemiologists use descriptive EPDM to generate 
hypotheses—but only rarely to test their hypotheses. For the latter, epidemiologists 
turn to analytic EPDM, which is characterized by the use of comparison groups.

As an illustration (White, Armstrong, & Saracci, 2008), consider the large out-
break of hepatitis A that occurred in the state of Pennsylvania in 2003. The epidemi-
ologists found that almost all of the case patients had eaten at a particular restaurant 
during the previous 2 to 6 weeks (the typical incubation period for hepatitis A) 
before the onset of their illness.
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Although the researchers were able to narrow their focus to the one restaurant 
and were able to exclude the food preparers and servers as the source, they did not 
know which particular food had been contaminated. They asked the case patients 
which of the restaurant’s foods they had eaten, but that only indicated which foods 
were popular. The researchers then also enrolled and interviewed a control group: a 
group of persons who had eaten at the restaurant during the same period but who 
had not gotten sick. Of 133 items on the restaurant’s menu, the most striking differ-
ence between the case and control groups was the proportion that ate salsa (94% of 
case patients ate salsa, compared with only 39% of the controls).

Further investigation of the ingredients in the salsa implicated green onions 
as the source of infection. Shortly thereafter, the Food and Drug Administration 
(FDA) issued a warning to the public about green onions and the risk of hepatitis A. 
This action was in direct response to the convincing results of the analytic EPDM, 
generated by comparison of the exposure history of case patients with that of an 
appropriate comparison group.

When it is discovered that case patients with a particular characteristic are more 
likely than those without the characteristic to contract a disease, that particular 
characteristic is said to be associated with the disease. The characteristic may be a:

 ■ Demographic factor, such as place of residence, age, race, or gender
 ■ Constitutional factor, such as blood type or immune status
 ■ Behavior or action, such as smoking or having eaten salsa
 ■ Circumstance, such as living near contaminated soils or a toxic waste site or 

using contaminated water

Identifying the factors associated with a disease can help health offi cials to 
focus on PH control and prevention, as well as furthering research into the causes 
of the disease.

 Main Epidemiologic Functions

Six major tasks of EPDM in PH practice have been identifi ed:

1. PH surveillance
2. Field investigation
3. Analytic studies
4. Evaluation
5. Linkages
6. Policy development

Some of these tasks are refl ected in the discussion, in Section 1.1, of the Stanford 
University School of Medicine’s HRP departmental concentration on BIOS, data 
coordination, EPDM, and HSR.

Analytic EPDM concentrates on PH prevention and control activities. It also 
guides additional research into the causes of disease. Thus, analytic EPDM is con-
cerned with the search for causes and effects, or the why and the how. It seeks to 
quantify the association between exposures and outcomes and to test hypotheses 
about causal relationships. Perhaps EPDM by itself can never prove that a particular 
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exposure caused a particular outcome, but EPDM nevertheless provides suffi cient 
evidence for the development and implementation of appropriate control and pre-
vention measures.

Epidemiologic studies may be classifi ed into two categories: experimental and 
observational.

EXPERIMENTAL EPDM STUDIES

In an experimental study, the investigator determines through a controlled process 
the exposure for each individual (in a clinical trial) or community (in a community 
trial), and then tracks the individuals or communities over time to detect the con-
tinuing effects of the exposure. The following are examples of typical experimental 
studies:

1. In a clinical trial of a new vaccine, the researcher usually randomly assigns 
some of the participants to receive the new vaccine, while others receive a pla-
cebo. (A placebo is an inert or innocuous substance, used especially in con-
trolled experiments testing the effi cacy of another substance as a treatment.) 
The researcher then tracks all participants, observing who develops the disease 
that the new vaccine is intended to prevent, and compares the two groups (new 
vaccine versus placebo) to see whether the vaccine group has a lower rate of 
disease.

2. In a trial to prevent the onset of diabetes among high-risk individuals, the 
researchers randomly assign subjects to one of three groups:

 ■ An antidiabetes drug
 ■ A placebo
 ■ Lifestyle intervention

At the end of the trial period, the researchers look for the lowest incidence of 
diabetes and fi nd that the lowest incidence occurred in the lifestyle intervention 
group, the next-lowest incidence was in the antidiabetic drug group, and the 
highest incidence occurred in the placebo group

OBSERVATIONAL EPDM STUDIES

In observational EPDM studies, the researcher just observes the exposure and dis-
ease status of each study participant. The classic example of an observational study 
is Dr. John Snow’s investigation of an 1854 cholera epidemic in London.

THE CHOLERA STORY.2 A waterborne disease known as cholera has proven to be one 
of the most virulent killers in history. It was through the investigation of cholera 
epidemics that epidemiologists discovered the link between sanitation and PH—a 
discovery that led to the development of the world’s modern water and sewage 
systems.

It is now known that cholera is caused by ingesting water, food, or other material 
contaminated by the feces of a cholera patient or host. For example, casual contact 

2 Biographical information on Dr. John Snow, the “father” of fi eld EPDM, and his work is available at 
http://www.ph.ucla.edu/epi/snow.html

http://www.ph.ucla.edu/epi/snow.html
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with a contaminated chamber pot, soiled clothing or bedding, or even an unwashed 
hand might be all that is required to contract cholera. The disease can be transmitted 
easily and acts quickly. It strikes so suddenly that a person can be in good health in 
the morning and be dead by the evening. From the onset of symptoms—diarrhea, 
muscle cramps, vomiting, and fever—death may occur within 48 hours or less. So 
much fl uid is lost that the blood appears thick, and about 50% of patients will die, 
mainly of dehydration. In various parts of the world (including Europe and Asia), 
tens of thousands have died of this epidemic disease.

THE FATHER OF FIELD EPDM. In the mid-1800s, an anesthesiologist named Dr. John 
Snow conducted a series of studies in London that led to him being called the 
“father of fi eld epidemiology.” Dr. Snow investigated cholera outbreaks, both to 
discover the cause of the disease and to prevent its recurrence. His work illustrates 
the classic sequence from descriptive EPDM to hypothesis generation to hypothesis 
testing (analytic EPDM) to application:

 ■ In 1854, Dr. Snow conducted one of his studies when an epidemic of cholera 
suddenly started in the Golden Square of London. He began by determining 
where, in this particular area, persons with cholera lived and worked. He 
marked each residence on a map of the area, as shown in Figure 1.2. This 
type of map, showing the geographic distribution of cases, is called a spot 
map.

 ■ Because Dr. Snow believed that water was a carrier source of infection for chol-
era, he also marked the location of water pumps on the spot map, and then 
looked for a relationship between the distribution of households with cases of 
cholera and the location of the water pumps. He noticed that more case house-
holds clustered around Pump A, the Broad Street pump, than around Pump B or 
C. When he questioned residents who lived in the Golden Square area, he was 
told that they avoided Pump B because it was grossly contaminated, and that 
Pump C was located too inconveniently for most of them.

 ■ From this information, Dr. Snow concluded that the Broad Street pump (Pump 
A) was the primary source of water and the most likely source of infection for 
most persons with cholera in the Golden Square area.

 ■ He also noted that no cases of cholera had occurred in a two-block area just to 
the east of the Broad Street pump. Upon investigating, Snow found a brewery 
located there, with a deep well on the premises. Brewery workers obtained 
their water from this well, and also received a daily portion of malt liquor. 
Access to these uncontaminated rations (water and liquor) could explain why 
none of the brewery’s employees contracted cholera.

 ■ To confi rm that the Broad Street pump was the source of the epidemic, Dr. 
Snow gathered information on where persons with cholera had obtained their 
supply of water. Consumption of water from the Broad Street pump was the one 
common factor among the cholera patients.

 ■ After Dr. Snow presented his fi ndings to municipal offi cials, the handle of the 
pump was removed—and the outbreak ended! (The site of the pump is now 
marked by a plaque mounted on the wall outside the appropriately named 
John Snow Pub.)
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FIGURE 1.2 Spot map of deaths from cholera in the Golden Square area, London, 1854 
(redrawn from original).
Source: Humphrey Milford, Dr. John Snow on Cholera. London: Oxford University Press, 1936.

TYPES OF OBSERVATIONAL EPDM STUDIES

The two most common types of observational studies are cohort studies and case–
control studies; the third type is cross-sectional studies.

COHORT STUDIES. In a cohort study, whether each study participant is exposed or not:

1. The epidemiologist records and then tracks each participant to see if he or 
she develops the disease of interest. (This differs from an experimental study 
because, in a cohort study, the epidemiologist observes rather than determines 
the participant’s exposure status.)

2. After a period of time, the epidemiologist compares the disease rate in the 
exposed group with the disease rate in the unexposed group.

3. The unexposed group serves as the comparison group, providing an estimate of 
the baseline or expected amount of disease occurrence in the community.

4. If the disease rate is substantively different in the exposed group compared to 
the unexposed group, the exposure is said to be associated with illness.
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The length of follow-up varies considerably. To respond quickly to a PH con-
cern, such as an outbreak of cholera or bird fl u, PH departments tend to conduct 
relatively brief studies. Research and academic organizations are more likely to con-
duct studies of cancer, cardiovascular disease, and other chronic diseases, in efforts 
that may last for years and even decades. For example:

 ■ The Framingham Health Study is a cohort study that has followed more than 
5,000 residents of Framingham, Massachusetts, since the early 1950s to estab-
lish the risk factors for cardiovascular diseases.

 ■ The Nurses Health Study and the Nurses Health Study II are cohort stud-
ies established in 1976 and 1989, respectively, that have followed more than 
100,000 nurses each and have provided useful information on oral contracep-
tives, diet, and lifestyle risk factors.

The Adventist Health Studies: Study 1. The Adventist Health Study 1 (AHS-1),3 a 
cohort investigation that began in 1974, had some very basic differences from ear-
lier mortality studies. It was designed to elucidate which components of the Sev-
enth-Day Adventist (SDA) lifestyle give protection against diseases. This study 
compared the rates of disease or mortality between SDAs and non-SDAs. Also, data 
were collected on nonfatal, as well as fatal, disease events. This study also added 
a more detailed investigation of diet. In the beginning, the AHS-1 was primarily 
a cancer investigation. In 1981, a cardiovascular component was added. The rate 
of return for the annual follow-up SDA questionnaires, which asked about hos-
pitalizations and were critical to the entire research process, was in excess of 90% 
and usually above 95%. The fi nal and most critical mailing saw an incredible 99.5% 
response.

The Adventist Health Studies: Study 2.3 The current study, which began in 2002 and 
set a goal of 125,000 SDAs participating, continues to explore the links between life-
style, diet, and disease among the broader base of Adventists in the United States 
and Canada. As of May 2006, Adventist Health Study-2 (AHS-2) had an enrollment 
of 96,741 persons. Dr. Gary E. Fraser, with a team of researchers from the School of 
Public Health at LLU, is conducting the study, which is funded by the U.S. National 
Cancer Institute. In July 2011, the National Institutes of Health (NIH) awarded 
AHS-2 a substantial 5-year grant to continue the study.

Cohort Study Types. The AHS-1 and AHS-2 studies are sometimes called follow-up 
or prospective cohort studies, because participants are enrolled when the study 
begins and are then followed prospectively over time to identify occurrence of the 
outcomes of interest.

An alternative type is a retrospective cohort study. In this kind of study, 
both the exposure and the outcomes have already occurred. Just as in a prospec-
tive cohort study, the investigator calculates and compares rates of disease in the 
exposed and unexposed groups. Retrospective cohort studies are commonly used 

3 AHS-1 and AHS-2 are available at http://publichealth.llu.edu and http://www.llu.edu/public-
health/health/index.page

http://publichealth.llu.edu
http://www.llu.edu/publichealth/health/index.page
http://www.llu.edu/publichealth/health/index.page
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in  investigations of disease in groups of easily identifi ed people, such as workers at 
a particular factory or attendees at a wedding. For example, a retrospective cohort 
study was used to determine the source of infection of cyclosporiasis, a parasitic 
disease that broke out among members of a residential facility in Pennsylvania in 
2004. The investigation implicated consumption of snow peas as the vehicle of the 
cyclosporiasis outbreak.

Other types of studies include case–control studies and cross-sectional studies.

CASE–CONTROL STUDIES. In a case–control study, investigators start by enrolling 
a group of people with disease (sometimes called case patients rather than cases, 
because case refers to an occurrence of disease, not a person). As a comparison 
group, the investigator then enrolls a group of people without disease (controls).

Investigators then compare previous exposures between the two groups. The 
control group provides an estimate of the baseline or expected amount of exposure 
in that population. If the amount of exposure among the case group is substantially 
higher than the amount that one would expect based on the control group, then 
illness is said to be associated with that exposure.

The key in a case–control study is to identify an appropriate control group—one 
that is comparable to the case group in most respects—to provide a reasonable esti-
mate of the baseline or expected exposure.

CROSS-SECTIONAL STUDIES. In the cross-sectional type of observational study, a 
sample of persons from a population is enrolled and their exposures and health 
outcomes are measured simultaneously. The cross-sectional study tends to assess 
the presence of the health outcome at a particular point in time without regard to 
duration.

For example, in a cross-sectional study of diabetes, some of the enrollees with 
diabetes may have lived with their diabetes for many years, while others may have 
been recently diagnosed. From an analytic viewpoint, the cross-sectional study is 
weaker than either a cohort or a case–control study because a cross-sectional study 
usually cannot separate risk factors for occurrence of disease (incidence) from risk 
factors for survival with the disease.

 The Cause of Diseases

“What is the cause of this disease?” is not an easy question to answer. On the cause 
of diseases, epidemiologists generally are of the opinion that “Nature loads the 
gun, but nurture pulls the trigger!” (Nurture is the sum of the environmental factors 
infl uencing the traits and behavior expressed by an organism.)

At this time in mainstream medicine, EPDM is facing at least two critical ques-
tions about disease causation (Broadbent, 2009):

1. How should EPDM handle certain diseases that appear to be etiologically more 
complex than the infections and defi ciencies that EPDM has traditionally handled?

Currently, chronic noncommunicable diseases (CNCDs) account for a larger 
proportion of deaths, at least in the industrialized world, than they did 100 
years ago, and they attract more epidemiologic attention. Yet these diseases do 
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not seem susceptible to defi nition in terms of any one causative agent. In other 
words, their etiology is complex. (Etiology is a branch of medical science con-
cerned with the causes and origins of diseases.)

2. How should EPDM respond to newly identifi ed causes of disease?
Although EPDM continues to discover increasingly complex and surprising 

environmental causes of disease, the fi eld must now deal with the new category 
of causes: genetics. The depth and complexity of knowledge required to deal 
with both genetic and environmental determinants of health places pressure on 
aspects of the conceptual framework of EPDM with regard to disease causation.

MODELS OF CAUSATION

A good scientifi c causal model may be summarized as follows:
The requisite cause of disease D is the event E if, and only if:

(i) An E-event is a cause of every case of D;
(ii) Given certain circumstances, an E-event is not a cause of any non-D-event (i.e., 

other diseases or good health).

Historically, several models of disease have been proposed and used: the mono-
causal model, the multifactorial model, and the contrastive model are the primary 
ones.

The Monocausal Model. This model says that every disease has a single cause 
that is necessary, and sometimes suffi cient. This model is well suited to infectious 
diseases such as tuberculosis (TB) and cholera, along with parasitic infestations and 
diseases of defi ciency.

However, it is unfi t for CNCDs such as lung cancer or diabetes. It is possible 
that diabetes does have a single necessary and, in some circumstances, suffi cient 
cause, which has not yet been discovered. But it is also a theoretical possibility that 
there is no cause for diabetes satisfying that description. And even if there is, it is 
not clear how insisting that there must be such a cause helps to achieve PH or any 
clinical goals, if one does not know what that cause is. What we have been able to 
identify so far are merely causal risk factors, and these are neither necessary nor suf-
fi cient. Thus, important objections may be raised regarding the monocausal model.

The Multifactorial Model. This model now dominates EPDM, but this is 
also not an entirely satisfactory situation because the multifactorial model fails to 
acknowledge what looks like a real etiological difference between diseases like chol-
era and conditions like lung cancer. The monocausal model has had some striking 
successes in the history of EPDM, and these successes are left unexplained by the 
mere assertion that disease causation is multifactorial. Unless one can explain the 
successes of the monocausal model in terms of modern multifactorial thinking, this 
approach is equally unsatisfactory.

The Contrastive Model. This model is defensible on the ground that it links 
the notions of disease and of general explanation, while avoiding the philosophical 
naiveties and practical diffi culties of the monocausal model. For person p to have 
disease D, it is necessary that:

SYMPTOMS: p suffers from some of a set of symptoms of ill health S, which are 
differences between p and a contrast class X.
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CAUSES: Among the causes of p’s symptoms are events of kinds C1, …, Cn, 
at least some of which are not causes of the absence of the symptoms S from each 
member of X.

The assumptions of the contrastive model are as follows:

1. To have a disease, p must have some symptoms of poor health. These symp-
toms are considered part of the defi nition of the disease. Not all the symptoms 
associated with that particular disease need be present, but p must have at 
least one.

A symptom of ill health is an observable difference between the case subject 
and a contrast class, which is a just a certain set of people, some of whom may 
be merely hypothetical. The contrast class need not be unique (i.e., the same for 
everyone). The contrast class for a 59-year-old man might include some bald 
members, whereas the relevant contrast class for a 6-year-old child might not. 
This allows the analysis to cover diseases that are specifi c to age, gender, and 
other characteristics (including having another disease).

2. Having a disease requires that p’s symptoms be caused by a certain cause or 
causes, which must not be causes of the absence of symptoms from the contrast 
class. These causes are also part of the defi nition of the disease. For example, to 
have cholera, one must exhibit some symptoms of poor health that a certain con-
trast class does not have (e.g., diarrhea); and those symptoms must be caused by 
a certain specifi ed cause [viz., the active presence of Vibrio cholerae (V. cholerae) 
in p’s small intestine].

NOTE: Having causes is not an epistemological requirement: One does not have 
to know about V. cholerae in order to count cholera as a disease. Rather, by count-
ing cholera as a disease, one commits to the existence of something satisfying the 
CAUSES defi nition/requirements.

The next step is to fi nd out what that cause is, thus making the model method-
ologically useful.

Some investigators also consider the concept of illness, or mere ill health or poor 
health that falls short of qualifying as a disease. For a disease, a cause or causes of 
certain symptoms are specifi ed, whereas for an illness, they are not specifi ed.

AN EXAMPLE FOR THE CONTRASTIVE MODEL

A recent example in which the contrastive model might have been useful is the dis-
covery of the role of the bacterium Helicobacter pylori (H. pylori) in duodenal ulcers. 
This discovery brought tensions between the monocausal and multifactorial ways 
of thinking into high contrast.

Many discussions of ulcer assume that, since the discovery and implication 
of H. pylori in ulcer formation, both acid and stress or psychosomatic factors have 
been made etiologically irrelevant. Some simply considered H. pylori “the cause of 
ulcers,” although epidemiologically better-informed treatments, such as a report 
by the NIH maintained a different stance. Critics argued that “the NIH’s emphasis 
on multiple factors in pathogenesis refl ects the extent to which multicausality is a 
staple of biomedical and epidemiological discourse.”
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However, the etiological reality clearly favors the multifactorial treat-
ment. H. pylori is neither necessary nor suffi cient for duodenal ulcer, nor is its 
 elimination from a patient either necessary or suffi cient for the curing of an ulcer. 
In effect, monocausal model thinking becomes wishful thinking, a consequence 
of the desire for treatments that work on each and every case of disease. Unfor-
tunately, desire is not a good guide to reality. In this case, multifactorialism does 
not have the resources to express what the etiological reality might be, and the 
monocausal model is simply incorrect. In contrast, the contrastive model is help-
ful here.

Within the contrastive model, duodenal ulcers satisfy symptoms, and H. pylori 
can be made to satisfy causes. Cases in which duodenal ulcer is present without 
H. pylori can be handled in one of two ways: Either they are cases of a different 
disease with the same symptoms, or one can defi ne the disease in terms of H. pylori 
and another cause, such as excessive hydrochloric acid in the stomach. Note that 
H. pylori infection occurs without symptoms in many cases. In the contrastive 
model, these instances are an invitation to further investigation. One can thus add 
precision to the claim that H. pylori causes stomach ulcers and acknowledge the 
importance of the discovery by reclassifying some cases of stomach ulcer as a dis-
tinct disease.

One should note that the contrastive model leaves a crucial component unspec-
ifi ed: It does not directly indicate anything about the contrast class, and especially 
about the concept of health.

THE BLACK SWAN STORY

We will put the discussion of the concept and defi nition of causation of diseases 
aside for a moment to consider an interesting historical incident regarding biologi-
cal defi nitions.

“Black swan” was an expression in 16th-century England as a common state-
ment of impossibility. It derives from the Old World presumption that all swans 
must be white because all historical records of swans reported that they had white 
feathers; hence, all swans are, by defi nition, white! Given that context, a black swan 
was impossible, or at least nonexistent.

In 1697, Dutch explorer Willem de Vlamingh discovered black swans (Figure 1.3) 
on the Swan River in Western Australia. Thereafter, the term has come to refer to 
a perceived impossibility that might later be disproven. The 19th-century philoso-
pher John Stuart Mill used the black swan logical fallacy as a new term to identify 
falsifi cation. In EPDM investigations, a “black swan” is an event with the following 
three attributes:

1. First, it is an outlier (see the discussion of probability in Section 2.3 of Chapter 2), 
as it lies outside the realm of regular expectations, because nothing in the past 
indicates its possibility.

2. It carries an extreme impact.
3. In spite of its initial outlier status, one can give plausible reasons for its occur-

rence after the fact.
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NATURE VERSUS NURTURE IN EPDM: REVERSING TYPE 1 DIABETES? 
(EDELMAN, OLSEN, DUDLEY, HARRIS, & ODDONE, 2004)

THE HEMOGLOBIN A1c (HBA1c) TEST FOR DIABETES MELLITUS.4 Hemoglobin is a sub-
stance within red blood cells that carries oxygen throughout the body. In a person 
with poorly controlled diabetes, sugar builds up in the blood, either because the 
person’s body does not produce suffi cient insulin to transfer the sugar into the cells, 
or because insulin resistance hampers that transfer. The sugar in the blood, there-
fore, combines with hemoglobin: the hemoglobin becomes “glycated.” HbA1c, or 
simply A1c, is the main fraction of glycosylated hemoglobin (glycohemoglobin; i.e., 
hemoglobin) to which glucose is bound. The glucose stays bound to hemoglobin for 
the life of the red blood cell (normally about 120 days), so the level of HbA1c refl ects 
the average blood glucose level over the past 4 months. Thus, HbA1c is tested to monitor 
the long-term control of diabetes mellitus.

 ■ The normal level for HbA1c is less than 7%. Diabetics rarely achieve such lev-
els, but tight control aims to come close to it.

 ■ Levels above 9% show poor control.
 ■ Levels above 12% show very poor control.

It is commonly recommended that HbA1c be measured every 3 to 6 months in 
diabetics.

The Diabetes Control and Complications Trial (DCCT; Nathan, 2014) showed 
that diabetics who keep their HbA1c levels close to 7% have a much better chance 
of delaying or preventing diabetes complications that affect the eyes, kidneys, and 
nerves than people with levels at 8% or higher. A change in treatment is almost 
always needed if the level is over 8%. Lowering the level of HbA1c by any amount 
improves a person’s chances of staying healthy.

4 The HbA1c test for diabetes; retrieved from http://diabetes.webmd.com/guide/glycated-
hemoglobin-test-hba1c

FIGURE 1.3 A black swan (Cygnus atratus), which remained 
undocumented in the West until the 18th century.

http://diabetes.webmd.com/guide/glycatedhemoglobin-test-hba1c
http://diabetes.webmd.com/guide/glycatedhemoglobin-test-hba1c
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TYPE 1 DIABETES. In type 1 diabetes, the patient’s pancreas no longer produces the 
insulin that the person needs to survive, so the patient must replace the missing 
insulin from other (external) sources. This is why type 1 diabetes is also known as 
insulin-dependent diabetes; because the condition occurs primarily in children, it also 
used to be known as juvenile diabetes (actually a misnomer, as adult-onset cases are 
not unheard of).

A diagnosis of type 1 diabetes in a child can be overwhelming at fi rst. Sud-
denly, the parents and the affected child must learn how to give insulin injections, 
count carbohydrates, and monitor blood sugar—and the child must do so for life. 
Although diabetes in children requires consistent care, advances in blood sugar 
monitoring and insulin delivery have improved the daily management of this 
condition.

CASE SUBJECT: A CHILD WITH TYPE 1 DIABETES. The case subject was a 14-year-old 
child who was clinically diagnosed as suffering from type 1 diabetes some 2 years 
previously. The subject was enrolled in a test in which the child orally took a pre-
scribed medication for a period of 3 months. Interestingly, the medication was a 
traditional Chinese medicine (TCM; Liu et al., 2014) formulation of herbal origin.

During this period, A1c blood tests were taken to monitor the subject’s progress. 
The progressive A1c test results were as follows:

9+ → 8.4 → 7.8 → 7.45 → 6.7 (%)

Question: Did the TCM treatment infl uence the subject’s pancreas to restart the 
 production of the beta cells that make insulin? (Insulin processes and controls the 
blood glucose level.)

The following tests may be considered:

 ■ Perhaps concomitant changes in the beta-cell level of the case subject should be 
measured; such a test might shed further light on the subject.

 ■ Perhaps the case subject could be taken off the prescribed TCM medication, 
and the A1c levels closely checked thereafter to see if the trend is reversed or 
reversible.

How does this result affect the accepted medical position that type 1 diabetes is 
permanently irreversible? Can EPDM research help? Clearly, much EPDM investi-
gation is called for in this situation.

Actually, a clinical trial in which the same TCM treatment was given to more 
than 10,000 case subjects resulted in a positive response (namely, improved stability 
of blood glucose control without insulin) in about 30% of the test population. Such 
results are strong justifi cation for further EPDM investigations in this area!

 Exposure Measurement in Epidemiology

Epidemiologic studies in PH research relate exposure to causal agents to the occur-
rence of a particular disease. A study may not fully explain how the disease occurred, 
but, by and large, it records under what circumstances one may expect the disease to 
occur. The accurate measurement of exposure to putative causes of a disease (that is, 
the commonly accepted causes of the disease) is essential to the validity of  epidemiologic 
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research. There are theories, principles, and techniques that may be applied to mea-
suring a wide range of exposures, including scientifi c, medical, genetic, demographic, 
behavioral, psychological, sociological, and environmental factors.

Techniques in epidemiologic research include:

 ■ Use of questionnaires (often designed by the researcher)
 ■ Personal interviews
 ■ Abstracting information from medical records
 ■ Use of proxy respondents
 ■ Making biological and environmental measurements

The research may include one or more of the following:

1. A comprehensive account of measurement error and the estimation of its effects
2. The design, analysis, and interpretation of the validity and reliability of the 

studies
3. The ways in which validity of the measurements can be improved
4. Techniques to maximize the participation of subjects in future studies
5. Revelation of ethical issues relevant to exposure measurement
6. Some more-or-less comprehensive guidance on minimizing measurement error

Exposure measurement thus employs the methods and quality control 
approaches for the most commonly used data collection methods in EPDM.

 Additional Issues

To achieve maximum participation of relevant subjects in an epidemiologic research, 
special techniques should be used. Also, consideration should be given to the eth-
ical issues inherent in exposure measurement; in this regard, the following issues 
are important:

1. In reliability and validity studies that record the degree of measurement error 
for a specifi c exposure, one must establish the methods to design, interpret, and 
analyze the collected data. This is critical because such supporting studies are 
needed to understand the effects of exposure measurements on the overall epi-
demiologic study.

2. Methods should be chosen to maximize response rates. In this way, selection 
bias may be reduced. Such an approach is essential to the success of the data 
collection phase of the study.

3. Ethical issues in conducting the epidemiologic research overall should be con-
sidered; the benefi ts will be similar to those described in items 1 and 2.

 Review Questions for Section 1.3

1. What are the “five Ws” of descriptive EPDM?
2. In Dr. John Snow’s successful observational EPDM investigation of cholera,

(a) What underlying assumptions did he make that led him to reach the correct 
conclusion regarding the cause of cholera?

(b) Did Dr. John Snow rely on a model for diseases? Which model?
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3. From the black swan story, is it reasonable to suggest that there might be red/ 
orange/yellow/green/blue/indigo/violet swans too? Why or why not?

4. (a)  Given the three models for diseases, can there be overlapping areas where 
any two, or all three, models may fit?

(b) Draw a Venn diagram to show the possibility (if any) of overlapping of these 
three models. Suggest some examples.

5. (a) What is a case-cohort health study in EPDM?
(b) Name two U.S. health studies that enrolled more than 50,000 case subjects.
(c) Why is such a large pool of subjects needed?

6. (a)  Which factor is more important in the cause of diseases: nature or nurture? 
Why?

(b) Of these two factors, which one is more readily treatable/manageable? Why?
7. (a)  How can differences in genetic factors, and environmental factors be taken into 

account in EPDM investigations?
(b) Of these two factors—genetic and environmental—which is more important? 

Why?
8. If a certain alternative or unorthodox disease management approach (such as 

TCM, ayurveda, acupuncture, etc.) appears to be effective in the management of 
certain diseases (e.g., type 1 diabetes, chronic headaches), can EPDM investiga-
tions be used to relate the “unorthodox” approach to mainstream, evidence-based 
medicine? Why or why not?

 1.4 BIOS AND EPDM

Biostatistics—a combination word derived from biology and statistics, and also 
sometimes called biometry or biometrics—is the application of statistics to a topic in 
biology. BIOS includes the design of biological experiments, especially in medicine 
and health sciences; the collection and analysis of data from those experiments; and 
the interpretation of the results.

To understand the application of BIOS, let us use the example of a hypo-
thetical community in the United States, in which an epidemiologist attempts 
to quantify the effect of a specifi c disease, such as swine fl u (the common name 
used for the H1N1 virus, a new strain of infl uenza A, to distinguish it from the 
seasonal fl u), to study the distribution of the disease among various regions. The 
goals are:

1. To determine the magnitude of the population affected by the disease
2. To ascertain potential causes

One should fi rst determine the prevalence of the disease, defi ned as the frac-
tion of subjects affected by that disease. First, one may consider the estimate of 
the population’s prevalence under the commonly assumed condition: sampling 
in which one considers a randomized sample of N subjects, obtaining X cases. 
Also, to understand the randomness of the disease occurrence in the population, 
a research biostatistician often starts analyzing the data in terms of a probabilistic 
model. A good example of an elementary probabilistic model is the binomial model, 
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which is  characterized by trials that end in one of two ways: either success or fail-
ure. (Bi = two; hence the “binomial” name referring to the two possible outcomes of 
success or failure.)

Thus, to determine the prevalence of disease-infected subjects, one may take a 
random sample of

N = 500 subjects in a specifi c community, and obtain
X = 4 subjects with positive results from an antibody test

With these results, the biostatistician has in hand the following model:

1. A binomial model of distribution of the disease
2. A sample mean of p = (X/N) = (4/500) = 1/125 = 0.008, from which biostatistical 

predictions may be made using the well-known binomial distribution model.

(More is discussed about different probabilistic models in Chapter 5 on probability 
theory and inferential biostatistics.)

Thus, for a large population (under the same condition of distribution) of 
n = 1,000,000, one would use the same model (assumed to be reasonably applicable) 
to get the expected number of disease cases. In this example, this is given by the 
expected value E[X] of the binomial distribution model:

E[X] = np = (1,000,000) (0.008) = 8,000.

Clearly, major assumptions have been made. For example, it was assumed that 
(a) the binomial distribution model was applicable; and (b) only one sampling pop-
ulation was used.

In the foregoing simple example, the epidemiologic approach consisted of:

First—Hypothesizing a probability distribution for the population; in this case, the 
simple binomial distribution

Next—Conducting a sampling of the population and obtaining sampling parame-
ter(s) for the population

Finally—Using the assumed probabilistic model to make predictions regarding 
the whole population.

These are the classic “1–2–3” steps in the application of inferential biostatistics, 
to draw conclusions by the inference approach. Of course, more appropriate biosta-
tistical models may be used and additional sampling may have to be done, leading 
to more representational models and more refi ned biostatistical models. It is clear 
that concomitant to the development and use of better models are more involved 
computational procedures.

To support such computations, the open-source, free software R will be used 
in this journey of medicine, preventive medicine, public health, EPDM, and BIOS.

In addition to inferential biostatistics, an alternate and simpler approach, called 
descriptive biostatistics, is often used in epidemiologic research. The objective of 
descriptive biostatistics is simply to describe a dataset by summarizing all its perti-
nent characteristics. Both methods are fully described in Chapter 2.
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 Review Questions for Section 1.4

1. In EPDM investigations, quantitative sampling is taken from a target population. 
Does this approach call for methodologies taken from BIOS? Why or why not?

2. (a) What is the binomial distribution model in BIOS?
(b) How does this model help in analysis of data collected in an EPDM investigation?

3. (a) Is the expected value same as the average value?
(b) Why or why not?

4. What are the “1–2–3” steps in the application of inferential biostatistics?
5. (a) What is descriptive biostatistics?

(b) How does descriptive biostatistics help in EPDM investigations?
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 Research and Design 
in Epidemiology and 
Public Health

 INTRODUCTION

Within a public health (PH) program, research and design in epidemiology (EPDM) 
should focus on the following aspects of the discipline (Loma Linda University, 
School of Public Health, 2012):

1. Conducting quality epidemiologic research, including appropriate design, bio-
statistical analysis of data, and interpretation and reporting of results

2. Conducting and evaluating clinical trials
3. Conducting disease surveillance as practiced in local governmental health 

departments
4. Critically reviewing the professional literature and identifying the strengths and 

weaknesses of designs, analyses, and conclusions
5. Evaluating the effects of potential confounding and interaction in a research 

design
6. Applying knowledge of disease mechanisms and information from the biologi-

cal disciplines to interpretation of statistical fi ndings in biomedical research
7. Collaborating with health professionals by providing technical expertise with 

regard to literature review, study design, data analysis, and interpretation and 
reporting of results

8. Maintaining a cost-effective biostatistical computation environment that can 
support the ever-increasing demand for and complexity of scientifi c computa-
tion

This book focuses on the programming language R, in support of the last of these 
aspects of epidemiologic research, and promotes the latest resources to encourage 
a computational environment built around the use of R. Several work examples 
are shown, using real-life research data obtained from cutting-edge epidemiologic 
investigations, and highlighting R programs and packages that are being developed 
specifi cally to process these datasets. Additional work examples, selected from 
other practical biomedical applications, are provided to illustrate the wider use of 
R programming in association with other high-level scientifi c programming lan-
guages such as FORTRAN.

The author intends for readers fi rst to repeat the R computations shown herein. 
This is a way to gain valuable practice and develop confi dence in an advanced bio-
statistical research computational environment.

TWO
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 2.1  CAUSATION AND ASSOCIATION IN EPIDEMIOLOGY 
AND PUBLIC HEALTH

EPDM aims to assess the cause of disease. However, because most epidemiologic 
studies are primarily descriptive or observational rather than experimental or ana-
lytical, a number of possible explanations for an observed association must be con-
sidered before one can validly infer that a cause–effect relationship exists. That is, 
an observed association may in fact be due to the effects of one or more of the fol-
lowing (Rothman, 1998, 2002):

 ■ Chance (random error)
 ■ Bias (systematic error)
 ■ Confounding

Hence, an observed statistical association between a risk factor and a disease does not 
necessarily allow one to infer a causal relationship. Conversely, the absence of an associ-
ation does not conclusively indicate the absence of a causal relationship. The judgment 
as to whether an observed statistical association represents a cause–effect relationship 
between exposure and disease requires investigations and inferences far beyond the 
data from a single study; it involves consideration of criteria that include the magni-
tude of the association, the consistency of fi ndings from other studies, and biologic 
credibility (Loma Linda University, School of Public Health, 2012; Steiger, 2015).

In EPDM, the Bradford-Hill criteria are widely used to provide a framework 
within which to assess whether an observed association is likely to be causal.

 The Bradford-Hill Criteria for Causation and Association in 
Epidemiology (Hill, 1965)1

The Bradford-Hill set of criteria of causation outlines the minimal conditions needed 
to establish a causal relationship between two items. These criteria were originally 
presented by Austin Bradford Hill (1897–1991), a British medical statistician, as a 
way of determining the causal link between a specifi c factor (e.g., cigarette smok-
ing) and a disease (such as emphysema or lung cancer). While it is easy to claim 
that agent “A” (e.g., smoking) causes disease “B” (lung cancer), it is quite another 
matter to establish a meaningful, biostatistically valid connection between the two 
phenomena. Thus, this criterion set has formed the basis of modern epidemiologic 
research that establishes scientifi cally valid causal connections between potential 
disease agents and the many diseases that affl ict humankind. In fact, these princi-
ples form the basis of evaluation used in all modern scientifi c research.

The Bradford-Hill criteria are presented here as they have been applied in epi-
demiologic research:

1. Temporal relationship. Exposure always precedes the outcome. If factor A is 
believed to cause a disease, then that factor A must necessarily always precede 
the occurrence of the disease. This is the only absolutely essential criterion.

1 www.drabruzzi.com/hills_criteria_of_causation.htm

http://www.drabruzzi.com/hills_criteria_of_causation.htm
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2. Strength of association. This criterion is defi ned by the size of the association 
as measured by appropriate biostatistical tests. The stronger the association, the 
more likely it is that the relation of A to B is causal. For example, the more highly 
correlated hypertension (high blood pressure) is with a high-sodium diet, the 
stronger the relation between hypertension and sodium intake.

3. Dose–response relationship. As the amount of exposure increases, so does the 
risk. If a dose–response relationship is present, it is strong evidence of a causal 
relationship. However, as with specifi city (see item 8 in this list), the absence of 
a dose–response relationship does not necessarily rule out a causal relationship; 
a threshold may exist above which certain specifi c relationships develop. At the 
same time, if a specifi c factor is the cause of a disease, the incidence of the disease 
should decline when exposure to the factor is reduced or eliminated. For exam-
ple, in environmental epidemiology, if increasing levels of carbon dioxide in the 
atmosphere cause an increase in global temperatures, then—other things being 
equal—one should expect both a commensurate increase and a corresponding 
decrease in global temperatures following an increase or decrease, respectively, 
in carbon dioxide levels in the atmosphere.

4. Consistency. An association is consistent when results are replicated in studies in 
different populations using different methods. Thus, if a relationship is causal, 
one would expect it to appear consistently in different studies and among dif-
ferent populations. Hence, numerous experiments have to be undertaken before 
meaningful statements can be made about the causal relationship between two 
or more factors. For example, it required many rigorous scientifi c studies of the 
relationship between cigarette smoking and cancer before a defi nitive conclu-
sion could be made that cigarette smoking increases the risk of cancer—but note 
that we still cannot state that “smoking causes cancer.”

5. Plausibility. This criterion requires that the association agree with the currently 
accepted understanding of pathological processes. That is, there must be some 
theoretical basis for positing an association between a lifestyle behavior and a 
given disease. At the same time, research that disagrees with established theory 
is not necessarily false or erroneous. Rather, it may indicate that a reconsider-
ation of currently accepted principles is warranted.

6. Consideration of alternate explanations. In deciding whether a reported asso-
ciation is causal, it is necessary to determine the extent to which investigators 
have taken other possible explanations into account and have effectively ruled 
out those alternate explanations. In other words, it is always necessary to con-
sider multiple hypotheses before making conclusions about the causal relation-
ship between any two items under investigation.

7. Experiment. The condition can be changed, weakened, or prevented by an 
appropriate experimental approach.

8. Specifi city. This is established when a single commonly accepted cause pro-
duces a specifi c effect. This is considered by some to be the weakest of all the 
criteria. For example, the diseases attributed to cigarette smoking do not meet 
this criterion. When specifi city of an association is found, it provides additional 
support for a causal relationship. However, the absence of specifi city in no way 
negates a causal relationship because certain outcomes, such as the spread of a 
disease, are likely to have multiple causal factors and infl uences, and it is highly 
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unlikely that one will fi nd a one-to-one cause–effect relationship between two 
phenomena. Causality is most often multiple; therefore, it is necessary to exam-
ine specifi c causal relationships within a wider perspective.

9. Coherence. The association should be compatible with existing theories and 
knowledge. That is, it is necessary to evaluate claims of causality within the con-
text of the current state of knowledge, both within a given fi eld and in related 
fi elds. Stated another way, what does one have to sacrifi ce about what one cur-
rently knows in order to accept a particular claim of causality? For example, 
what currently accepted theories and principles in anthropology, biology, chem-
istry, and physics must one reject in order to accept the creationist claim that the 
world was created exactly and literally as described in the Bible? Nevertheless, 
as with the issue of plausibility, research results that disagree or confl ict with estab-
lished theory and knowledge are not automatically wrong or false. They may force a 
reconsideration of accepted beliefs and principles. All currently accepted the-
ories, including evolutionary theory, the theory of relativity, and the theory of 
population ecology, were at one time new ideas that challenged orthodoxy. Such 
changes in accepted theories are also known as paradigm shifts.

ROTHMAN’S COMMENTS ON BRADFIELD-HILL CRITERIA 
(ROTHMAN, 1998, 2002)

Critics have argued that the Bradford-Hill criteria fail to deliver on the hope of clearly 
distinguishing causal from noncausal relationships. For example, the second crite-
rion, strength of association, does not take into account that not every component 
cause will have a strong association with the disease that it produces, nor does it rec-
ognize that strength of association often depends on the prevalence of other factors.

The third criterion, dose–response relationship, suggests that a causal associa-
tion is more likely if a biological gradient or dose–response curve can be demon-
strated. However, such relationships may result from confounding or other 
biases. According to Rothman, the only criterion that is truly a causal criterion is 
 temporality—that is, a determination that the cause preceded the effect. (It may be 
diffi cult, however, to ascertain the time sequence of cause and effect.)

The eighth criterion, specifi city, which suggests that a relationship is more likely 
to be causal if the exposure is related to a single outcome, may be misleading, as 
a cause may have many effects. For example, cigarette smoking is associated with 
many unpleasant effects, ranging from stained fi ngers and bad breath to lung cancer.

In general, the process of causal inference is complex, and arriving at a tentative 
identifi cation of the causal or noncausal nature of an association is a surprisingly 
subjective process.

 Legal Interpretation Using Epidemiology2

EPDM can only establish that an agent could have caused an effect in any particular 
case; it cannot prove that the agent did in fact cause the effect. This important axiom 
underlies all epidemiologic and biostatistical research.

2 http://en.wikipedia.org/wiki/Epidemiology

http://en.wikipedia.org/wiki/Epidemiology
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EPDM is concerned with the incidence of disease in populations; it does not 
address the question of what caused a particular individual’s disease. This ques-
tion, sometimes referred to as specifi c causation, is beyond the domain of the science 
of epidemiology. EPDM has limits at the point where an inference or claim is made 
that the relationship between an agent and a disease is causal and where the mag-
nitude of excess risk attributed to the agent has been determined. That is, EPDM 
addresses whether an agent can cause a disease, not whether an agent did cause a 
specifi c instance of a disease.

Nevertheless, the subdiscipline of forensic epidemiology is directed at the 
investigation of specifi c causation of disease or injury in an individual or a group of 
individuals in instances in which causation is disputed or unclear, for presentation 
in legal settings. Under U.S. law, EPDM alone cannot prove that a causal association 
does not exist in general. Conversely, a U.S. court in a specifi c, individual case can 
accept epidemiologic evidence to support or justify an inference that a causal asso-
ciation does exist, based upon a balance of probability.

 Disease Occurrence (CDC, 2006)

A critical position taken in EPDM is that diseases do not occur randomly in a popu-
lation, but are more likely to occur in some members of the population than others 
because of risk factors that are not distributed randomly in the population. EPDM is 
used to identify the factors that place some members of a population at greater risk 
than others.

CAUSATION

A number of models of disease causation have been proposed. Among the simplest 
is the epidemiologic triangle, the traditional model for infectious disease. The trian-
gle consists of:

 ■ An external agent
 ■ A susceptible host
 ■ An environment that brings the host and agent together

In this model, disease results from the interaction between the agent and the host in 
an environment that supports transmission of the agent from a source to that host.

Agent, host, and environmental factors may interrelate in many complex ways 
to produce diseases. Different diseases require different balances and interactions 
of these three components. Development of appropriate, practical, and effective PH 
measures to control or prevent disease usually requires assessment of all three com-
ponents and their interactions.

The agent may be an infectious microorganism or pathogen: a virus, bacte-
rium, parasite, or other microbes. The agent must be present for disease to occur; 
however, the presence of that agent alone is not always suffi cient to cause disease. 
A variety of factors infl uence whether exposure to an organism will result in dis-
ease, including the organism’s ability to cause disease (known as its pathogenicity) 
and the dose level.
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The concept of the agent has been broadened to include chemical and physical 
causes of disease or injury, such as chemical contaminants. For example, contamina-
tion of poor-quality nutritional supplements containing L-tryptophan was deemed 
responsible for occurrences of eosinophilia–myalgia syndrome, an incurable and 
sometimes fatal fl ulike neurological condition. (Tryptophan is an essential amino 
acid in the human diet. Only the L-stereoisomer of tryptophan is used in structural 
or enzyme proteins, but the D-stereoisomer is occasionally found in naturally pro-
duced peptides.)

Although the epidemiologic triangle (or triad) serves as a useful model for 
many diseases, it has proven inadequate for cardiovascular disease, cancer, and 
other diseases that appear to have multiple contributing causes without a single 
necessary one.

A variety of factors intrinsic to the individual host (the human who can get 
the disease), sometimes called risk factors, can infl uence that individual’s exposure, 
susceptibility, and response to a causative agent. Opportunities for exposure are 
often infl uenced by behaviors such as hygiene, sexual practices, and other per-
sonal choices, as well as by age and gender. Susceptibility and response to an agent 
are infl uenced by factors such as genetics, nutritional and immunologic status, 
anatomic structure, presence of other diseases or medications, and psychological 
makeup.

Environment refers to extrinsic factors that affect both the agent and the 
opportunity for exposure. Environmental factors include physical factors such as 
geology and climate, biologic factors such as insects that transmit the agent, and 
socioeconomic factors such as crowding, sanitation, and the availability of health 
services.

COMPONENT CAUSES AND CAUSAL PIES

Because the agent–host–environment model does not work well for many nonin-
fectious diseases, several other models that attempt to account for the multifactorial 
nature of causation have been proposed. One such model, proposed by Rothman in 
1976, has come to be known as the “causal pies” (Rothman, 1976).

This model is illustrated in Figure 2.1. An individual factor that contributes to 
causing disease is shown as a piece of a pie. After all the pieces of a pie are assem-
bled, the pie is complete—and disease occurs. The individual factors (pieces of the 
pie) are called component causes. The complete pie, which might be considered 
a causal pathway, is called a suffi cient cause. A disease may have more than one 
suffi cient cause, with each suffi cient cause being composed of several component 
causes that may or may not overlap. A component that appears in every pie or path-
way is called a necessary cause because without it, disease does not occur.

The component causes may include intrinsic host factors, as well as the agent 
and the environmental factors in the agent–host–environment triangle. A single 
component cause is rarely a suffi cient cause by itself. Host susceptibility and other 
host factors may also play a role. For example, even exposure to a highly infectious 
agent such as the measles virus does not invariably result in measles disease. In con-
trast, an agent that is usually harmless in healthy persons may cause devastating 
disease under different conditions.
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For example, Pneumocystis carinii (P. carinii) is an organism that may colonize 
the respiratory tract of some healthy persons without causing any harm, but it can 
cause potentially lethal pneumonia in persons whose immune systems have been 
compromised by HIV. The presence of P. carinii organisms is therefore a necessary but 
not suffi cient cause of pneumocystis pneumonia. In Figure 2.1, this situation is rep-
resented by component cause A. As the model indicates, a particular disease may 
result from a variety of different suffi cient causes or pathways.

As another example, lung cancer may result from a suffi cient cause that 
includes smoking as a component cause. However, because not all smokers develop 
lung cancer, smoking by itself cannot be identifi ed as a suffi cient cause. Moreover, 
because a small number of lung cancer patients have never smoked, smoking is also 
not a necessary cause.

Suppose that component cause B is smoking and component cause C is asbestos 
exposure:

 ■ Suffi cient cause I includes both smoking (B) and asbestos exposure (C).
 ■ Suffi cient cause II includes asbestos exposure but not smoking.
 ■ Suffi cient cause III includes smoking without asbestos exposure.

Because lung cancer can develop in persons who have never been exposed to either 
smoke or asbestos, a proper model for lung cancer would have to show at least one 
more suffi cient cause pie that does not include either component B or component C.

PH action does not depend on the identifi cation of every component cause, 
though. Disease prevention can be accomplished by blocking any single component 
of a suffi cient cause, at least through that pathway. For example, elimination of smok-
ing (component B) would prevent lung cancer arising from suffi cient causes I and II, 
although some lung cancer cases would still occur through suffi cient cause III.

STRENGTH OF A CAUSE

In EPDM, the strength of a factor may be measured by the change in disease fre-
quency produced by introducing the factor into a population. This change may be 
measured in absolute or relative terms. In both cases, the strength of an effect may 
have important concomitant PH signifi cance but little biological signifi cance; this is 
because, given a specifi c causal mechanism, any of the component causes can have 
strong or weak effects. The actual identity of the constituent components of the 
causal mechanism amounts to the biology of causation.
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FIGURE 2.1 Rothman’s causal pies.
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Furthermore, the strength of a factor’s effect depends on the time-specifi c distri-
bution of its causal complements in the population. Over a time period, the strength 
of the effect of a given factor with respect to the occurrence of a given disease may 
change because the prevalence of its causal complements in various causal mecha-
nisms may also change. This may occur even when the causal mechanisms through 
which the factor and its complements act remain unchanged.

INTERACTION AMONG CAUSES

The causal pie model recognizes that several causal components may act in concert 
to produce an effect. However, “acting in concert” does not necessarily imply that 
all the factors must act at the same time.

Consider the example of a person who sustains an injury to the head that 
results in an equilibrium disturbance; years later, this person falls on a slippery 
footpath and breaks his hip. The earlier head injury and equilibrium problem 
played a causal role in the resulting hip fracture, but so did the weather conditions 
on the day of the fracture. If both of these factors played a causal role in the hip 
fracture, then they did interact with each other to cause the fracture, despite the 
fact that their times of action were many years apart. This allows one to conclude 
that any and all of the factors in the same causal mechanism for disease interact with one 
another to cause disease.

One can view each causal pie as a set of interacting causal components. In the 
preceding example, the earlier head injury interacted with the weather conditions, 
as well as with other component causes such as the type of shoes worn, the absence 
of a handhold, and any other conditions that were necessary to the causal mecha-
nism of the fall and the broken hip that resulted. Thus, this model provides a bio-
logical basis for a concept of interaction among causes.

 Review Questions for Section 2.1

1. Suggest aspects of the disciplines within EPDM that should be the focus for a PH 
program.

2. When an investigator assesses the causes of diseases, what effects might lead 
to a mistaken observed association that the investigator considers to indicate the 
existence of a cause–effect relationship?

3. (a) What are the Bradford-Hill criteria for causation and association in EPDM?
(b) In what way are the Rothman objections to the Bradford-Hill criteria realistic 

regarding the following?
 ■ Strength of association
 ■ Dose–response relationship
 ■ Specificity

4. The legal view is that “epidemiology can only establish that an agent could have 
caused, but not that it did cause, an effect in any particular case.” Is this a reason-
able interpretation? Why or why not?

5. (a) What is the epidemiologic triangle?
(b) Diagrammatically illustrate this concept using two different models.
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6. In the context of causation of diseases, what is
(a) a necessary cause?
(b) a sufficient cause?
Give an example of each.

7. Discuss the concept of Rothman’s causal pies, and give some examples.
8. Within the context of disease causation, discuss the notion of a “necessary but not 

sufficient” cause of a disease. Give some examples.

 2.2  CAUSATION AND INFERENCE IN EPIDEMIOLOGY 
AND PUBLIC HEALTH

In EPDM and PH (Rothman & Greenland, 2005), a cause of a disease is defi ned as 
an event, condition, or characteristic that preceded the disease, without which the 
disease either would not have occurred or would not have occurred until some later 
time. Notably, according to this defi nition, it may be that no specifi c event, condi-
tion, or characteristic is suffi cient in and of itself to produce (cause) disease.

A suffi cient cause is a complete causal mechanism that can be defi ned as a set 
of minimal conditions and events that inevitably produce disease. Here, minimal 
implies that all of the conditions or events are necessary to that occurrence. In the 
study of disease causation, the completion or existence of a suffi cient cause may be 
considered equivalent to the onset of disease. (Onset refers to the earliest stage of the 
disease process rather than the actual appearance of symptoms.)

Sometimes all of the components of a suffi cient cause for a given biological 
effect are unknown. For example, tobacco smoking is a cause of lung cancer, but by 
itself it is not a suffi cient cause. First, the term smoking is too imprecise to be used in 
a causal description. Thus, one must specify:

 ■ The type of smoke (e.g., cigarette, cigar, pipe)
 ■ Whether the smoke is fi ltered or unfi ltered
 ■ The manner and frequency of inhalation
 ■ The onset and duration of smoking

These susceptibility factors refer to and interact with other components in the various 
causal mechanisms through which smoking causes lung cancer.

Note also that tobacco smoking will not cause cancer in everyone who smokes. 
Apparently, there are some people who, by virtue of their genetic makeup or previous 
experience, are susceptible to the ill effects of smoking, and others who are not (they 
sometimes are known as the tough rats, in reference to laboratory-animal experiments).

 Rothman’s Diagrams for Suffi cient Causation of 
Diseases (Broadbent, 2011)

A schematic diagram of suffi cient causes in a disease is shown in Figure 2.2 ( Rothman 
& Greenland, 2005). In this diagram:

 ■ Each set of component causes represented is minimally suffi cient to produce 
the disease.
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 ■ Each component cause is a necessary part of that specifi c causal mechanism.
 ■ A specifi c component cause may play a role in one, two, or all three of the 

causal mechanisms shown.
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FIGURE 2.2 Rothman’s diagrams for suffi cient causes of diseases.

The diagram of causation shown in Figure 2.2 highlights several important princi-
ples with respect to inference and causation in human diseases. The fi rst, and per-
haps the most important, of these principles is obvious from the diagram: A given 
disease can have more than one cause, and every causal mechanism involves the 
joint action of a multitude of component causes.

■ Example: This harkens back to our previous example of the cause of a broken hip. 
John experiences a serious head injury that leads to a permanent disturbance in equi-
librium. Years later, that faulty equilibrium plays a causal role in a fall that occurs while 
John is walking on a slippery footpath. That fall results in John breaking his hip. Other 
factors playing a causal role in the broken hip could include:

1. The type of shoe John was wearing
2. The lack of a handrail along the footpath
3. An unexpectedly strong gust of wind
4. Excessive body weight (John is somewhat obese)

All of these, in addition to many other factors, could play causal roles.
Thus, the complete causal mechanism involves many factors. Some factors, such 

as John’s weight and the prior injury that resulted in his equilibrium disturbance, repre-
sent earlier events or conditions that have had lingering effects. Some genetic causal 
components might have affected John’s weight, his way of walking, his behavior, his 
recovery from the earlier head injury, and so on. Other factors, such as the force of the 
sudden wind gust, are environmental. We can reasonably assert that there are some 
genetic and some environmental component causes in every causal mechanism. Thus, 
even an event such as a fall on a slippery footpath that results in a broken hip is part of 
a complicated causal mechanism that involves many component causes.

The important point about multicausality is that most identifi ed causes are neither 
necessary nor suffi cient to produce disease. Nevertheless, a cause need not be either 
necessary or suffi cient for its removal to result in disease prevention. PH workers 
know that if a component cause that is neither necessary nor suffi cient is eliminated, 
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a substantial amount of disease may still be prevented. That a cause is not neces-
sary implies that some disease may still occur after that cause is eliminated, but that 
component cause will nevertheless be a necessary cause for some of the cases that 
occur. That the component cause is not suffi cient implies that (a) other component 
causes must interact with it to produce the disease and (b) blocking any of them will 
result in prevention of some cases of disease. Thus, one need not identify every com-
ponent cause to prevent some cases of disease. PH efforts that address only a few 
of the most apparently important component causes can have signifi cant success in 
reducing the incidence of a disease; it is part of the job of EPDM to help identify those 
important causes.

SUMMING ATTRIBUTABLE FRACTIONS OF CAUSES FOR DISEASES

One can thus view each causal pie as a set of interacting causal components. This 
model provides a biological basis for a concept of interaction that is distinct from 
the usual biostatistical view of interaction (Ephron, 1984). Consider the hypothetical 
dataset in Table 2.1.

In the smoking-and-head/neck-cancer situation, the differences in the rates all 
refl ect causal effects. Among those people who are cigarette smokers and also alco-
hol drinkers, what proportion of the cases is attributable to the effect of cigarette 
smoking?

In this example, it is given that the rate for these people is 15 cases per 100,000 
person-years. If these same people were not cigarette smokers, we can infer that 
their rate of head and neck cancer would be 4 cases per 100,000 person-years. If 
this difference refl ects the causal role of cigarette smoking, then we might infer that 
(15 − 4) = 11 of every 15 cases, or 73.3%, are attributable to cigarette smoking among 
those who both smoke cigarettes and drink alcohol.

If the question is what proportion of disease among these same people is attrib-
utable to alcohol drinking, we would be able to attribute (15 – 5) = 10 of every 15 
cases, or 66.7%, to the causal role of alcohol drinking.

Now, can one attribute 73.3% of the cases to cigarette smoking and 66.7% to 
alcohol drinking among those who are exposed to both? Yes—because some cases 
are counted more than once.

Also, smoking and alcohol interact in some cases of head/neck cancer, and 
these cases are attributable both to cigarette smoking and to alcohol drinking. One 
consequence of interaction is that the proportions of disease attributable to various 
component causes seldom sum to exactly 100%.

TABLE 2.1 Hypothetical Rates of Head/Neck Cancer According to 
Cigarette Smoking Status and Alcohol Drinking

ALCOHOL DRINKING NO YES

CIGARETTE SMOKING STATUS

Nonsmoker 1 4

Smoker 5 15

Note: Cases per 100,000 person-years
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In the 1970s (Ephron, 1984), scientists at the U.S. National Institutes of Health 
(NIH) proposed that as much as 40% of cancer is attributable to occupational expo-
sures. Many thought that this fraction was an overestimate. One of the arguments 
used in rebuttal was as follows: x% of cancer is caused by smoking, y% by diet, z% 
by alcohol, and so on. When all these percentages are added up, only a small per-
centage (much less than 40%) is left for occupational causes. However, this rebuttal 
is fallacious because it is based on the incorrect premise that every case of disease 
has a single cause and that two or more causes cannot both contribute to the same 
case of cancer. Today, it is accepted that because lifestyle (diet, exercise, smoking, 
alcohol consumption, etc.), environment (air pollution, asbestos exposure, etc.), and 
various occupational exposures, along with other factors, interact with one another 
and with genetic (hereditary) factors to cause cancer, each case of cancer can be 
attributed repeatedly to many separate component causes.

The sum of disease attributable to various component causes thus has no upper 
limit. A single cause or category of causes that is present in every suffi cient cause of 
disease will have an attributable fraction of 100%.

Much research has been undertaken to develop “heritability indexes,” which 
are supposed to measure the fraction of disease that is inherited. However, these 
indexes only assess the relative role of environmental and genetic causes of disease 
in a particular setting. For example, some genetic causes may be necessary compo-
nents of every causal mechanism. If everyone in a population has an identical set of 
the genes that cause disease, then their effect is not included or refl ected in herita-
bility indexes, even though this gene set is a cause of the disease. If all genetic fac-
tors that determine disease are taken into account, whether or not they vary within 
populations, then 100% of disease can be said to be inherited. Analogously, 100% of 
any disease is environmentally caused, even those diseases that we often consider 
purely genetic.

 ■ Example 1: Phenylketonuria is considered by many to be purely genetic. Neverthe-
less, the mental retardation that it may cause can be prevented by appropriate dietary 
intervention. The treatment for phenylketonuria illustrates the interaction of genes and 
environment to cause a disease commonly thought to be purely genetic.

 ■ Example 2: What about an apparently purely environmental cause of death, such 
as death from a car accident? It is easy to conceive of genetic traits that lead to psychi-
atric problems, such as alcoholism, that in turn lead to drunk driving and consequent 
fatal car accidents. In this example, the interaction of genes and environment causes a 
disease commonly thought to be purely environmental.

 ■ Example 3: Consider the extreme environmental example of being killed by light-
ning. Partially heritable psychiatric conditions can infl uence whether someone will take 
shelter during a lightning storm; genetic traits such as athletic ability may infl uence 
the likelihood of being outdoors when a lightning storm strikes; and having an outdoor 
occupation or pastime that is more frequent among men (and in that sense is genetic)
would also infl uence the probability of getting killed by a lightning strike. Furthermore, 
some individuals’ body chemistry—a genetic factor—may actually render them more 
susceptible to lightning strikes.
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These examples clearly show that every case of disease has both genetic and 
environmental causes. This mode of thinking is defensible and has important impli-
cations for research.

 Causal Inferences

Causal inference is a special case of the more general process of scientifi c reasoning, 
about which there is substantial debate among scientists and philosophers.

IMPOSSIBILITY OF PROOF

The philosopher David Hume observed in the 18th century that proof is impossible 
in empirical science, and his observation still holds true. Epidemiologists often face 
the criticism that proof is impossible in EPDM—with the implication that it is possible 
in other scientifi c disciplines! Some experimental scientists hold that epidemiologic 
relations can only be suggestive, and that detailed laboratory study of mechanisms 
within a few single individuals can reveal cause–effect relations with certainty.

Unfortunately, this view overlooks the fact that all relations are suggestive in 
exactly the way described by Hume: Even the most careful and detailed analysis of 
individual events cannot provide more than associations, albeit at very detailed lev-
els. Laboratory studies involve a degree of observer control that cannot be matched 
in EPDM; it is only this control, not the level of observation, that allegedly underlies 
the derivation of “proof” from laboratory studies.

However, such control is no guarantee against error. All the scientifi c work, in 
EPDM or any other discipline, is at best only a tentative description of nature and 
reality.

TESTING COMPETING EPIDEMIOLOGIC THEORIES

Biological knowledge about epidemiologic hypotheses is often scarce, and this fact 
occasionally results in hypotheses that appear to be little more than vague state-
ments of causal association between exposure and disease (e.g., “smoking causes 
cardiovascular disease”). Though these vague hypotheses often seem intuitively 
correct, they can be diffi cult to verify empirically. To cope with this challenge, epi-
demiologists often focus on testing the negation of the causal hypothesis; in proba-
bilistic terms, this is equivalent to the null hypothesis (H0) that the exposure does 
not have a causal relation to disease. In such tests, any observed association can 
potentially refute the hypothesis, assuming that biases are absent.

If the causal mechanism is stated specifi cally enough, epidemiologic observa-
tions may suggest crucial tests of competing non-null causal hypotheses. However, 
many epidemiologic studies are not designed to test a causal hypothesis.

 ■ Example: Horwitz and Feinstein (1978) examined early epidemiologic data that 
appeared to indicate that women who took replacement estrogen therapy were at higher 
risk for endometrial cancer. These researchers then hypothesized an association that 
women taking estrogen will experience symptoms such as bleeding, which would then 
lead them to seek medical attention. The subsequent effort resulted in an  important 
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diagnostic procedure that enabled the detection of endometrial cancer at an earlier 
stage in these women, as compared with women not taking estrogens in the fi rst place.

Epidemiologic observations have been used to evaluate likely competing hypotheses:

 ■ The causal theory predicted that the risk of endometrial cancer would tend to 
increase with increased use of estrogens.

 ■ The detection bias theory predicted that women who had used estrogens for 
only a short while would have the greatest risk because the symptoms related to 
estrogen use, which led to the early medical consultation, tended to appear soon 
after use began.

Because the association of recent estrogen use and endometrial cancer was the same 
in both long-term and short-term estrogen users, the detection bias theory was refuted 
as an explanation for all but a small fraction of endometrial cancer cases occurring after 
estrogen use.

This example illustrates a critical point in understanding the process of causal 
inference in EPDM. Many of the hypotheses being evaluated through the interpretation 
of epidemiologic research are noncausal hypotheses; that is, they involve no causal 
connection between the study exposure and the disease. Thus, hypotheses explaining 
how specifi c types of bias could have led to an association between exposure and dis-
ease are the usual alternatives to the primary study hypothesis that the epidemiologist 
needs to consider in reaching inferences. Much of the interpretation of epidemiologic 
studies amounts to the testing of such noncausal explanations. The Bradford-Hill crite-
ria, discussed in Section 2.1, are widely used in such interpretations.

 Using the Causal Criteria

From the outset, the standards of epidemiologic evidence, according to the Bradford-
Hill criteria, have to deal with many reservations and exceptions. Hill himself asked, 
“In what circumstances can we pass from this observed association to a verdict of 
causation?” In fact, he disagreed that there are “hard-and-fast rules of evidence” by 
which to judge causation (Rothman & Greenland, 2005). This conclusion accords 
with many others that causal inferences cannot attain the certainty of logical deductions.

Although some scientists continue to promote causal criteria as aids to infer-
ence, others argue that it is actually detrimental to confuse the inferential process by 
considering a checklist of criteria. Perhaps an intermediate approach may be found 
that transforms the criteria into deductive tests of causal hypotheses. If this were 
so, one could avoid using causal criteria to support unprovable hypotheses and 
theories while allowing epidemiologists to focus on evaluating competing causal 
theories using critical observational evidence.

 Judging Scientifi c Evidence

Because causal criteria cannot be used to establish the validity of an inference, no 
criteria can be used to evaluate the validity of data as evidence. However, methods 
do exist by which validity may be assessed. In this spirit, one could view scientifi c 
evidence as a form of measurement.
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 ■ Example: If an epidemiologic study proposes to determine the relation between 
exposure to cigarette smoking and lung cancer risks, the results should be viewed as 
a measure of causal effect, such as the ratio of the risk of lung cancer among smokers 
to the risk among nonsmokers:

Risk Ratio = (Risk of lung cancer among cigarette smokers)/(Risk among nonsmokers)

The measurement of a causal effect is subject to measurement errors, just like any 
experiment. In addition to statistical error, measurement error may include problems 
relating to study design, such as subject selection and retention, information col-
lection, uncontrolled confounding, and other sources of bias. It is not suffi cient to 
characterize a study as having or not having any of these sources of error, as nearly 
every study will be subject to nearly every type of error. Nevertheless, validity of a 
study must be assessed. One must therefore quantify the errors. As there is no pre-
cise standard as to how much error can be tolerated before a study must be consid-
ered invalid, there is no alternative to the quantifi cation of study errors to the extent 
possible.

What is required is much more than the application of a list of criteria. One must 
apply critical assessment to obtain a quantifi ed evaluation of the total error inherent 
in the study. This type of assessment requires quantitative skill in consonance with 
scientifi c rigor. The expectation is that epidemiologic investigations will be approached 
through, and supported by, the application of mathematically vigorous biostatistical 
approaches, as described in the next section and in the remainder of this book.

 Review Questions for Section 2.2

1. In EPDM investigations, whenever a disease is noted, what assumptions are 
usually made regarding the origin of that disease? What are the bases for those 
assumptions?

2. (a) What constitutes a sufficient cause of a disease? Give an example.
(b) Given a disease, how does an epidemiologic investigation determine its suffi-

cient cause?
3. (a) Describe Rothman’s diagrams for sufficient causes of diseases.

(b) How do these diagrams illustrate the principles with respect to inference and 
causation in human diseases?

4. (a)  Can it be true that “one need not identify every component cause to prevent 
some cases of disease”? Why or why not?

(b) Give an example of this assertion.
5. In epidemiologic investigations, what is meant by the following?

(a) Strength of a cause
(b) Interaction among causes
(c) Summing attributable fractions of causes for diseases
Give an example of each of these concepts.

6. (a) In the EPDM of disease studies, what are causal inferences?
(b) Within the context of seeking the cause of a disease, explain the dilemma in 

view of the impossibility of proof.
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7. How does an epidemiologist confront the task of testing competing epidemiologic 
theories? Explain using an example.

8. In epidemiologic disease investigations, what is meant by the process of causal 
inference?

9. In epidemiologic investigations, do the Bradford-Hill criteria help in confronting the 
problems of causal inference? Why or why not?

10. In epidemiologic research, if the causal criteria cannot be used to establish the 
validity of an inference, on what basis should one judge scientific evidence? Why?

 2.3 BIOSTATISTICAL BASIS OF INFERENCE

The epidemiologic approach to understanding the causation of diseases follows a 
causation and inference path, as discussed in Section 2.2. To support this approach, 
we must now delve further into the logic of inference, for which a biostatistical basis 
is the obvious and logical choice.

 Modes of Inference

Different schools of biostatistical inference have emerged and become established. 
These schools, or paradigms, are not mutually exclusive; methods that work sat-
isfactorily under one paradigm often yield attractive interpretations under other 
paradigms. The two main paradigms in use today are Bayesian biostatistics (BIOS) 
and frequentist BIOS.

In Bayesian inference, Bayes’s theorem is used to calculate how the degree of 
support for (or belief in) a proposition changes according to the evidence. Bayes-
ian inference is based on the philosophy of Bayesian probability, which asserts that 
degrees of belief (support) can be represented by probabilities. A typical application 
of Bayesian BIOS is the testing of a hypothesis.

Frequentist inference is an alternative biostatistical method in which one uses a 
signifi cance test to arrive at a conclusion that a proposition is either true or false, or 
draws a conclusion that a given sample-derived confi dence interval (CI) covers the 
true value. In this framework, either of these conclusions has a given probability of 
being correct, and this probability has either a frequency probability interpretation or a 
pre-experiment interpretation. A typical example of the application of frequentist BIOS 
is signifi cance testing of a measured value in terms of its level within a computed CI.

 Levels of Measurement

Biostatistical investigations use four levels of measurement: ratio, interval, ordinal, 
and nominal. Each has different degrees of usefulness in research.

 ■ Ratio measurements have a specifi c zero value. In addition, the differences 
between measurements are defi ned, allowing fl exibility in the biostatistical 
methods that can be used for analysis of the data.
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 ■ Interval measurements show meaningful distances between measurements, 
with the zero value being arbitrary (as with temperature measurements using 
the Celsius or Fahrenheit scale).

 ■ Ordinal measurements have imprecise or uneven differences between consec-
utive values but have a meaningful order to those values.

 ■ Nominal measurements have no meaningful rank order among values.

Because variables applicable only to nominal or ordinal measurements cannot 
be measured numerically, they are sometimes grouped together as categories or 
categorical variables. In contrast, owing to their numerical characteristics, ratio and 
interval measurements are grouped together as quantitative variables, which can be 
either discrete or continuous.

 Frequentist BIOS in EPDM

INTERVAL ESTIMATION

In most epidemiologic investigations, the sample is only a part of a population; 
thus, the results may not be fully representative of the whole population, and esti-
mates obtained from the sample may only approximate the population value. CIs 
enable biostatisticians to express how closely the sample estimate matches the true 
value in the whole population.

Often this parameter is set at 95% CI. Formally, a 95% CI for a value is a range 
in which, if the sampling and analysis were repeated under the same conditions 
(yielding a different dataset), the interval would include the true (population) value 
95% of the time. This does not mean that the probability that the true value is in the 
CI is 95%. From the frequentist viewpoint, such a claim does not even make sense, 
as the true value is not a random variable. Either the true value is or is not within 
the given interval. However, it is true that before any data are sampled, and given 
a plan for how the CI will be constructed, the probability is 95% that the yet-to-be- 
calculated interval will cover the true value. At this point, the limits of the interval 
are yet-to-be-observed random variables. One approach that yields an interval that 
can be interpreted as having a given probability of containing the true value is to 
use a credible interval from Bayesian statistics. This approach depends on a dif-
ferent way of interpreting what is meant by “probability”; that is, as a Bayesian 
probability.

Note that in Bayesian BIOS, a credible interval is an interval in the domain of a 
posterior probability distribution used for interval estimation (Paoli, Haggard, & 
Shah, 2002). The generalization to multivariate problems is the credible region. Bayes-
ian credible intervals are analogous to CIs in frequentist BIOS.

For example, in an epidemiologic investigation that determines the uncertainty 
distribution of a clinical parameter l, if the probability that l lies between 67 and 
103 is 95%, then 67 ≤ l ≤ 103 is a 95% Bayesian credible interval of l. Some writers 
call this the “Bayesian CI,” but in this book, the use of the term CI is restricted to the 
frequentist confi dence interval only, to avoid confusion.
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THE CONCEPT OF BIOSTATISTICAL SIGNIFICANCE

Biostatistics (BIOS) seldom gives a simple yes/no answer to the question posed. 
Interpretation often comes down to the level of statistical signifi cance applied to 
the numbers and often refers to the probability (the p-value) of a value accurately 
rejecting the null hypothesis.

A fi nding of statistical signifi cance does not necessarily mean that the overall 
result is signifi cant in real-world terms. For instance, a large drug study may show 
that the drug has a biostatistically signifi cant but very small benefi cial effect, such 
that the drug will be unlikely to help patients in a noticeable way.

 Confi dence Intervals in Epidemiology and Public Health3

When epidemiologists and PH practitioners use health BIOS, they may be interested 
in the actual number of health events, but more often they use BIOS to assess the 
true underlying risk of a health problem in the community. Observed-health BIOS 
(those percentages, rates, or counts that are calculated or estimated from health sur-
veys, vital BIOS registries, or other health surveillance systems) are not always an 
accurate refl ection of the true underlying risk in the population. Observed rates 
may vary from sample to sample, or year to year, even when the true underlying 
risk remains the same.

BIOS based on samples of a population are subject to sampling error. Sampling 
error refers to random variation that occurs because only specifi c subsets of the entire 
population are sampled and used to estimate a fi nding for the entire population. It 
is often mistakenly called “margin of error.” Even health events that are based on 
a complete count of an entire population, such as deaths, are subject to random 
variation because the number of events that actually occurred may be considered 
as one of a large series of possible results that could have occurred under the same 
circumstances. In general, sampling error or random variation increases when the 
sample, population, or number of events is small.

Statistical sampling theory may be used to calculate a CI to provide an estimate 
of the potential discrepancy between the true population parameters and observed 
rates. Understanding the potential size of that discrepancy can provide information 
about how to interpret the observed statistic.

A 95% CI indicates the range of values within which a biostatistic would fall 
95% of the time if the investigator were to calculate the biostatistic (e.g., a percent-
age or rate) from an infi nite number of samples of the same size, drawn from the 
same population. In other words, the CI is a range of values within which the “true” 
value of the rate is expected to occur (with 95% probability).

Now, let us consider the most common methods for calculation of 95% CIs for 
some rates and estimates commonly used in EPDM and PH.

3 Bayesian credible interval and frequentist CI (available at http://en.wikipedia.org/wiki/Credible_
interval). 

http://en.wikipedia.org/wiki/Credible_interval).
http://en.wikipedia.org/wiki/Credible_interval).
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95% CI FOR A PERCENTAGE FROM A SURVEY SAMPLE

To calculate a CI for a percentage from a survey sample, one must fi rst calculate the 
standard error of the percentage. A percentage is also known as the mean of a bino-
mial distribution. The standard error of the mean is a measure of dispersion for the 
hypothetical distribution of means called the sampling distribution of the mean. This is 
a distribution of means calculated from an infi nite number of samples of the same 
size drawn from the same population as the original sample. The sampling distribu-
tion of the mean has a shape that is almost identical to the normal distribution (see 
Figure 2.3).

0

95%

2.5% 2.5%

−1.96 +1.96

Z

FIGURE 2.3 The sampling distribution of the mean.

After the standard error of the percentage has been calculated, one then decides 
how large the CI should be. The most common choice is a 95% CI. This is the width 
of the interval that includes the mean (the sampling distribution of the mean) 95% of 
the time. In other words, a 95% CI for a percentage is the range of values within 
which the percentage would be found at least 95% of the time if one were to obtain 
a different sample of the same size from the same population. Transforming the 
standard error into a 95% CI is straightforward.

A distribution is a tool used in BIOS to associate a biostatistic (e.g., a percentage, 
average, or other statistic) with its probability. When epidemiologic investigators 
refer to a measure as being “biostatistically signifi cant,” they have used a distri-
bution to evaluate the probability of the biostatistic and found that it would be 
improbable under ordinary conditions. In most cases, one can rely on measures 
such as rates, averages, and proportions to have an underlying normal distribution, 
at least when the sample size is large enough.

One need only multiply the standard error by the z-score of the points in the 
normal distribution that exclude 2.5% of the distribution on either end (two-tailed): 
That z-score is 1.96.

 ■ A z-score of 1.96 defi nes the 95% CI.
 ■ A z-score of 1.65 defi nes the 90% CI.
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For a simple random sample, the

 standard error = √ (pq/n) (2.3-1)

where:
p is the rate,
q = 1 – p, and
n is the sample size.

 ■ Example A: In a survey, 15% of the respondents indicated that they smoked ciga-
rettes. The sample consisted of 1,000 persons in a simple random sample.

The standard error = √ [0.15 × (1 – 0.15)/1000] = .0113
The 95% CI is thus:
0.15 ± 1.96 × standard error = 0.15 ± 1.96 × .0113
= 0.13 ± 0.0221
= 0.1079 0.1521,

which is often stated as (0.1079, 0.1521). Thus, the 95% CI has a lower limit of 10.79% 
and an upper limit of 15.21%.

The formula used in the preceding example applies to a binomial distribution, 
which is the distribution of two complementary values (e.g., + and −, 0 and 1, heads 
and tails, for and against, etc.). To calculate a CI for a different biostatistic, such as 
an average, one must modify Equation (2.3-1). The quantity pq is the variance of a 
binomial distribution.

If the measure is not a proportion, but, say, an average, one must modify the 
formula, substituting the variance for the pq quantity.

The standard error can also be calculated as the standard deviation divided by 
the square root of the sample size:

 Standard error = s/√n (2.3-2)

SMALL SAMPLES

If the sample from which the percentage was calculated was small [according to the 
central limit theorem (CLT), one may defi ne small as 29 or fewer; see Section 2.4], 
then the shape of the sampling distribution of the mean will not be the same as the 
shape of the normal distribution. For this case, one can use another distribution, 
known as the t distribution, that has a slightly different shape than the normal dis-
tribution; see Figure 2.4.

The procedures in this case are similar to those discussed for the CI, but the 
t-score comes from a family of distributions that depend on the degrees of freedom 
(DFs). The number of DFs is defi ned as n − 1, where n is the size of the sample. For 
a sample size of 30, the DF is equal to (30 – 1 = 29). So, for a 95% CI, one must use 
the t-score associated with 29 DFs. That particular t-score is 2.045. Therefore, one 
would multiply the standard error by 2.045 (instead of 1.96) to generate the 95% CI.

If the sample were a different size, say 20, then the DF would be (20 – 1 = 19), 
which is associated with a t-score of 2.093 for a 95% CI. The interval will widen as 



2.3 Biostatistical Basis of Inference 45

the sample size is reduced. This refl ects the uncertainty in the estimate of the vari-
ance in the population. For a 95% CI with 9 DFs, the t-score is 2.262.

THE STUDENT’S T DISTRIBUTION AT VARYING DFs K

For a 95% CI, one would use the t-score that defi nes the points on the distribution so 
as to exclude the most extreme 5% of the distribution, which is 0.025 on either end 
of the symmetric distribution.

FINITE POPULATIONS

When the survey samples all or most of the population, using the fi nite population 
correction factor F will improve (decrease) the width of the CI. Now,

 F = 1 – f (2.3-3)

where f is the sampling fraction, and

 f = n/N (2.3-4)

where n is the size of the sample and N is the size of the population.
The sampling fraction f is the proportion of the population that was included 

in the sample. The standard error (SE) of the mean for a binomial distribution of a 
fi nite sample is

 SE percentage = √{(pq/n) (1 – f)} (2.3-5)

−5 −4 −3 −2 −1 0

t
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The t distribution approximates
the normal distribution (in pink)
as the sample size increases.
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FIGURE 2.4 The Student’s t distribution at varying DFs (k). The t distribution approximates the normal 
distribution (pink) as the sample size increases.
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Those techniques may be conveniently accomplished using standard biostatis-
tical software. Section 2.4 introduces the use of the R programming environment for 
these computations. Programs in SAS, SPSS, Stata, and other areas are also available 
(though not discussed in this text).

WHEN THE RATE EQUALS ZERO

When the percentage or rate equals zero, using the conventional formulas will yield 
an incorrect CI of 0. To estimate the CI when the percentage or rate is 0, just assume 
that the number on the numerator of the rate is 2, and then calculate the CI using the 
population size in the original calculation.

95% CIs FOR RARE EVENTS

For rare events that occur randomly across a time span, the normal distribution no 
longer applies. In such cases, the Poisson distribution is used to model the events, 
such as a 100-year fl ood. The Poisson distribution is also used to calculate CIs for 
health events such as infant mortality or cancer deaths. This distribution is not sym-
metric about its mean, and so the associated CIs will not be symmetric (the upper 
limit is farther from the estimate than the lower limit IS).

The Poisson distribution assumes the shape of a normal distribution when there 
are 20 or more events in the numerator. Hence, use a Poisson distribution for rare 
events (i.e., when the number of events is less than 20), but use the normal distribu-
tion when the number of events is 20 or more.

POISSON DISTRIBUTION

To calculate the CI using a Poisson distribution, multiply the estimated rate by the 
confi dence factor associated with the number of events on which the rate is based.

 ■ Example B: In a given geographic area, there were 853 births in a single year and 
8 infant deaths in that same year. The infant mortality rate was therefore 9.4 per 1,000 
live births, calculated as [(8/853) × 1,000]. The lower and upper confi dence limits are 
calculated using the confi dence factors found in Appendix B of the online ancillary. The 
factors for seven events are 0.4317 and 1.9704 for the lower and upper limits of the CI, 
respectively.

Hence,
the lower limit of the CI = 9.4 × 0.4317 = 4.05, and
the upper limit of the CI = 9.4 × 1.9704 = 18.52

for an infant mortality rate of 9.7 per 1,000 live births, with a 95% CI from 4.05 to 18.52.

DIRECTLY AGE-ADJUSTED DEATH RATE (DAADR)

When comparing across geographic areas, some method of age adjustment is 
typically used to control for area-to-area differences in health events that can be 
explained by differing ages of the area populations. For example, an area that has 
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an older population will have higher crude (not age-adjusted) rates for cancer, even 
though its exposure levels and cancer rates for specifi c age groups are the same as 
those of other areas. One might incorrectly attribute the high cancer rates to some 
characteristic of the area other than age. Age-adjusted rates control for age effects, 
allowing better comparability of rates across areas. Direct standardization adjusts 
the age-specifi c rates observed in the small area to the age distribution of a standard 
population. The directly age-adjusted death rate (DAADR) is a weighted average 
of the age-specifi c death rates, where the age-specifi c weights represent the relative 
age distribution of the standard population:

Directly age-adjusted death rate (DAADR) = ΣWsi × Di/Pi = ΣWsi × Ri

where Wsi = the weight for the ith age group in the standard population (the propor-
tion of the standard population in the ith age group):

= Psi/ΣPsi

Psi = the population in age group i in the standard population
Di = number of deaths (or other event) in age group i of the study population
Pi = the population in age group i in the study population
Ri = the age-specifi c rate in the ith age group.

Using the properties of the Poisson distribution, the variance of the age-specifi c 
death rate is given by

var(Ri) = var(Di/Pi) = 1/Pi 
2 var(Di) = Di/Pi 

2 = Ri 
2/Di

The variance of a DAADR can then be computed as follows:

var(DAADR) = ∑Wsi 
2 ¥ var(Ri) = ΣWsi 

2 ¥ Ri 
2/Di

SE(DAADR) = √{var(DAADR)}

where:

var(DAADR) = the variance of the directly standardized rate
Wsi = the weight for the ith age group in the standard population
Ri = the age-specifi c rate in the ith age group
var(Ri) = the variance of the age-specifi c death rate in the ith age group of the 

study population

= Ri 
2/Di

Di = number of deaths (or other events) in age group i of the study population
SE(DAADR) = standard error of the directly standardized rate.

The age-adjusted death rate is a linear combination of independent Poisson 
random variables and therefore is not itself a Poisson random variable. It can be 
placed in the more general family of gamma distributions of which the Poisson is 
a member.

Most biostatistical software packages have a function to calculate factors that 
may be applied to age-adjusted death rates to calculate 95% CIs. These factors are 
derived from a standard gamma distribution.
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INDIRECTLY AGE-ADJUSTED RATES

The direct method can present problems when population sizes are particularly 
small. Direct calculation of standardized rates requires calculating age-specifi c 
rates, and for small areas, these age-specifi c rates may be based on only one or two 
events. The general rule of thumb is that if there are fewer than 20 to 25 cases in the 
index population, indirect standardization of rates should be used.

Indirectly standardized rates are based on the standardized mortality ratio 
(SMR) and the crude rate for a standard population. Indirect standardization adjusts 
the overall standard population rate to the age distribution of the small area. It is 
valid to compare indirectly standardized rates only with the rate in the standard 
population; they cannot be compared with each other.

An indirectly standardized death or disease rate (ISR) can be computed as

ISR = SMR*Rs

 SMR =  observed deaths/disease in the small area = D/e = D/Σ (Rsi × ni) expected 
deaths/disease in the small area, where:

 SMR = observed deaths in the small area/expected deaths in the small area
 D = observed number of deaths in the small area
 e = Σ(Rsi × ni) = expected number of deaths in the small area
 Rs = the crude death rate in the standard population
 Rsi = the age-specifi c death rate in age group i of the standard population
 = # deaths/population count, before applying the constant
 ni = the population count in age group i of the small area.

When the ratio of events to total population is small (<0.3) and the sample size is 
large, the following two methods can be used to calculate the CI.

 (1) When the number of events ≥ 20:

CIISR = ±1.96 √(SMR/e) × Rs × K

where:

 SMR = observed deaths in the small area/expected deaths in the small area
 e = expected deaths in the small area = Σ(Rsi × ni)
 Rs = the crude death rate in the standard population
 Rsi =  the age-specifi c death rate in age group i of the standard population 

( # deaths/population count)
 ni = the population count in age group i of the small area
 K = a constant (e.g., 100,000) that is being used to communicate the rate.

 (2) When the number of events ≤ 20:

 LLISR = (lower limit for parameter estimate from Poisson table/e) × Rs × K
 ULISR = (upper limit for parameter estimate from Poisson table/e) × Rs × K

where LL is the lower CI limit, and UL is the upper CI limit.

 Bayesian Credible Interval3

In Bayesian statistics, a credible interval (or Bayesian credible interval) is an 
interval in the domain of a posterior probability distribution used for estimating 
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the size of an interval. The generalization to multivariate problems is the credible 
region. Credible intervals are analogous to CIs in frequentist BIOS. For example, 
in an experiment that determines the uncertainty distribution of parameter t, if 
the probability that t lies between 35 and 45 is 90%, then 34 ≤ t ≤ 45 is a 90% cred-
ible interval.

A BAYESIAN CREDIBLE INTERVAL VERSUS A FREQUENTIST CI

A frequentist 90% CI of 35 to 45 means that with a large number of repeated sam-
ples, 90% of the calculated CIs would include the true value of the parameter. The 
probability that the parameter is inside the given interval (say, 35–45) is either 0 
or 1 (the nonrandom unknown parameter is either there or not). In frequentist 
terms, the parameter is fi xed (cannot be considered to have a distribution of pos-
sible values) and the CI is random (as it depends on the random sample). Thus, a 
CI is an interval generated by a procedure that will give correct intervals 90% of 
the time.

In general, Bayesian credible intervals do not coincide with frequentist CIs, for 
two reasons:

1. Credible intervals incorporate problem-specifi c contextual information from the 
prior distribution, whereas CIs are based only on the data.

2. Credible intervals and CIs treat nuisance parameters in radically different ways.

Many professional biostatisticians and decision scientists, as well as nonstat-
isticians, intuitively interpret CIs in the Bayesian credible interval sense, and thus 
credible intervals are sometimes also called CIs. It is widely accepted, especially in 
the decision sciences, that credible interval is merely the subjective subset of CIs. In 
fact, much research in calibrated probability assessments never uses the term credi-
ble interval; it is common to simply use CI.

 Review Questions for Section 2.3

1. (a) What are the two main modes of statistical inferences used in BIOS?
(b) What are their similarities and differences? Give examples.

2. (a) In BIOS data analysis, what is a CI?
(b) What is meant by a statement such as “I am 95% confident that X is between 

(this) and (that)”?
3. As an epidemiologic investigator, how should one respond to the following 

 questions?
(a) If the smoking rate among teens decreases from 12% to 10%, should we 

 celebrate that as a significant decrease? Why or why not?
(b) If the state infant death rate of 6.75 increases to 7.05 in a 1-year interval, 

should we be concerned about that increase? Why or why not?
4. (a) What is the normal distribution?

(b) What is the Student’s t distribution?
(c) How are these two related?

5. Explain what is meant by “confidence intervals in epidemiology and public health” 
and how BIOS applies CIs in epidemiologic analysis.
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 2.4 BIOS IN EPDM AND PH

By defi nition, biostatistics (BIOS) is the application of statistics to a topic in biology. 
In medicine and health sciences, these applications include the design of biolog-
ical experiments, the collection and analysis of data from those experiments, and 
the interpretation of the results. Biostatisticians who professionally communicate 
concerning their activities, work, and results can help build a wider appreciation 
of BIOS.

 Applications of BIOS4

BIOS typically fi nds application in:

 ■ PH, including EPDM, health services research, nutrition, and environmental 
health.

 ■ Design and analysis of clinical trials in medicine.
 ■ Population genetics and statistical genetics, often in order to link a variation 

in genotype with a variation in phenotype. This has been done in agricul-
ture to improve crops and farm animals (through selective animal breed-
ing). In biomedical research, this work can assist in fi nding candidates for 
gene alleles that can cause or infl uence predisposition to disease in human 
 genetics.

 ■ Analysis of genomics data (for example, from microarray or proteomics exper-
iments, which often concern diseases or disease stages).

 ■ Ecology and ecological forecasting.
 ■ Biological sequence analysis.
 ■ Systems biology, for gene network inference or pathway analysis.

Statistical methods are beginning to be integrated into medical informatics, PH 
informatics, bioinformatics, and computational biology. Professional work in these 
areas is often published in BIOS journals such as the following:

Biometrics
Biometrika
Biostatistics
Canadian Journal of Epidemiology and Biostatistics
International Journal of Biostatistics
Journal of Agricultural, Biological, and Environmental Statistics
Journal of Biometrics & Biostatistics
Journal of Biopharmaceutical Statistics
Pharmaceutical Statistics
Statistical Applications in Genetics and Molecular Biology
Statistics in Biopharmaceutical Research
Statistics in Medicine
Turkiye Klinikleri Journal of Biostatistics

4 Biostatistics (retrieved from http://en.wikipedia.org/wiki/Biostatistics).

http://en.wikipedia.org/wiki/Biostatistics
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BIOS shares several methods with quantitative fi elds, including:

 ■ Computational biology
 ■ Computer science
 ■ Operations research
 ■ Psychometrics
 ■ Statistics
 ■ Econometrics
 ■ Mathematical demography

 BIOS in EPDM and PH

Within the fi elds of EPDM and PH, BIOS takes a pivotal position in data analysis to 
provide useful and meaningful inferences and conclusions upon which critical and 
useful PH decisions and policies can be based. These activities include:

 ■ Generating descriptive analyses to display and summarize data
 ■ Applying concepts underlying statistical inference
 ■ Using biostatistical methods for the analysis of continuous and binary data
 ■ Applying biostatistical aspects of study design, such as sampling, probability 

distributions, and sampling distribution of the mean; CI and signifi cance tests 
for one sample, two paired samples, and two independent samples for contin-
uous data as well as binary data

 ■ Seeking correlation and simple linear regression
 ■ Considering distribution-free methods for two paired samples, two inde-

pendent samples and correlation, and power and sample size estimation for 
simple studies

 ■ Introducing statistical aspects of study design and analysis

LEARNING OBJECTIVES (UNIVERSITY OF SYDNEY, 2012)

The student who successfully reads and learns from this book will be able to:

1. Summarize biostatistical data using tables, graphs, and appropriate summary 
BIOS.

2. Interpret signifi cance tests and CIs.
3. Compare two samples using the Student’s t-test for continuous variables and the 

chi-squared test for categorical data, in both paired and unpaired cases; calcu-
late CIs for the main results; and summarize the conclusions from such analyses.

4. Compare two samples using nonparametric tests, in both paired and unpaired 
cases, and summarize the conclusions from such analyses.

5. Analyze the association between two variables using scatter plots, parametric 
and nonparametric measures of correlation, and simple linear regression.

6. Calculate the sample size required for simple studies.
7. Create a statistical analysis plan, detailing the major steps in the statistical design 

and analysis of a study.
8. Use the statistical software R to process, analyze, and present data.

Students will be required to perform analyses using a calculator and will also be 
required to conduct analyses using the statistical software R.
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APPLYING BIOS IN EPDM (CDC, 2006; VIRASAKDI, 2011; 
ARAGON, 2011)

Many variables used by epidemiologists are categorical variables. Some of these 
have only two categories:

 ■ Exposed: YES or NO
 ■ Tested: + or −, case or control, and so on

These variables have to be summarized with frequency measures such as rates, 
ratios, and proportions. Three frequency measures that are used to characterize the 
occurrence of health events in a population are incidence, prevalence, and mortality 
rates.

To begin, we consider these concepts by calculating and interpreting the follow-
ing epidemiologic measures:

 ■ Ratio
 ■ Proportion
 ■ Incidence proportion (attack rate)
 ■ Incidence rate
 ■ Prevalence
 ■ Mortality rate

 Processing and Analyzing Basic Epidemiologic Data

Basic data in epidemiologic investigations may be analyzed in terms of the follow-
ing parameters and approaches.

FREQUENCY MEASURES

A measure of central location provides a single value that summarizes an entire 
distribution of data. In contrast, a frequency measure characterizes only part of the 
distribution. Frequency measures compare one part of the distribution to another 
part of the distribution or to the entire distribution. Common frequency measures 
are ratios, proportions, and rates. All three frequency measures have the same 
basic form:

(Numerator/Denominator) × 10n

where n = …, 3, 2, 1, 0, 1, 2, 3, ….

RATIO

A ratio is the relative magnitude of two quantities or a comparison of any two val-
ues. It is calculated by dividing one interval- or ratio-scale variable by the other. 
The numerator and denominator need not be related. Therefore, one could compare 
apples with oranges (or apples with the number of clinical visits).

The method for calculating a ratio uses the number or rate of events, items, per-
sons, and so on in one group divided by the number or rate of events, items, persons, 
and so on in another group. After the numerator is divided by the  denominator, 
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the result is expressed in the form “[number] to [number]” (e.g., “3 to 1”) or as 
“[ number]:[number]” (e.g., “3:1”).

Tables 2.2 and 2.3 display the measures of occurrence and measures of associa-
tion commonly used in EPDM. Among these parameters, researchers focus fi rst on 
incidence, prevalence, rate, risk, odds, and the ratio of rates (rate ratio), risks (risk 
ratio [RR]), and odds (odds ratio [OR]). The incidence and rates are determined by 
the numbers of new cases occurring over a time period. These processes may be 
represented by Poisson probability models.

TABLE 2.2 Epidemiologic Measures of Occurrence and Association

TYPE MEASURESa DESCRIPTION

Measures of occurrence Time incidenceb Average time in a state (“survival”)
Number of new cases

Prevalencec Number of existing cases

Rate New cases per person-time at risk

Riskd Probability of becoming a case

Odds Odds of becoming a case

Measures of association Rate ratio Comparison of two rates

Risk ratio (RR) Comparison of two risks

Odds ratio (OR) Comparison of two odds

a All measures have a time element that must be specifi ed.

b Sometimes expressed as a proportion by dividing by “total population.”

c Commonly expressed as a proportion by dividing by “total population.”

d Sometimes estimated using a proportion (binomial model).

TABLE 2.3 Epidemiologic Measures: Ratios, Proportions, and Rates

CONDITION RATIO PROPORTION RATE

Morbidity (disease) Risk ratio (RR; relative 
risk)

Rate ratio
Odds ratio (OR)
Period prevalence

Attack rate (incidence 
proportion)

Secondary attack rate
Point prevalence
Attributable proportion

Person-time incidence 
rate

Mortality (death) Death-to-case ratio Proportionate mortality Crude mortality rate
Case-fatality rate
Cause-specifi c mortality 

rate
Age-specifi c mortality rate
Maternal mortality rate
Infant mortality rate

Natality (birth) Crude birth rate
Crude fertility rate
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Prevalence and risk may be estimated using proportions, represented by bino-
mial probability models. The choice of the point estimation method depends on 
whether one estimates a one- or two-sample measure, on the sample size, and on 
the choice of methods (summarized in Table 2.4).

The odds ratio from a 2 × 2 table provides an example of unconditional maxi-
mum likelihood estimation (UMLE), conditional maximum likelihood estimation 
(CMLE), median unbiased estimation (MUE), and small-sample adjustment estima-
tion (SSAE). Using the notation for a 2 × 2 table (Table 2.5), the UMLE odds ratio is 
the ratio of the disease odds for a cohort study, or the ratio of the exposure odds for 
a case–control study:

 Disease odds ratio ≡ DOR = (A1/B1)/(A0/B0) = A1B0/A0B1 (2.4-1)

 Exposure odds ratio ≡ EOR = (A1/A0)/(B1/B0) = A1B0/A0B1 (2.4-2)

 Hence, DOR = EOR (2.4-3)

Table 2.6 shows data from a cohort study of diarrhea in breast-fed infants infected 
with a strand of cholera bacteria. The occurrence of diarrhea was assessed by com-
paring infants whose conditions are indicated by lows versus highs of the sample 
dilutions of the antibody detected.

The UMLE disease odds ratio may then be calculated as follows:

ORUMLE = (12/2)/(7/9) = (12)(9)/(7)(2) = 108/14 = 7.7143

This reveals that the odds of developing diarrhea were 7.7 times higher in infants 
with low-antibody titers compared to infants with high-antibody titers.

TABLE 2.4 Estimation Methods Commonly Used for Epidemiologic 
Measures

MEASURE LARGE SAMPLE SMALL SAMPLE

One-sample UMLE MUE

Two-sample UMLE MUE, CMLE, SSAE

Abbreviations: CMLE = conditional maximum likelihood estimation; MUE = median 

unbiased estimation; SSAE = small-sample adjustment estimation; UMLE = uncon-

ditional maximum likelihood estimation.

TABLE 2.5 Notations for a Crude 2 ¥ 2 Table

EXPOSED UNEXPOSED TOTAL

Cases A
1

A
0

M
1

Noncases B
1

B
0

M
0

Total N
1

N
0

N
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The CMLE OR calculation is obtained using the hypergeometric distribution for 
tables with small numbers, such as Table 2.5. In this case, one may treat the margins 
as fi xed and model the distribution of A1. The hypergeometric equation (Equation 
2.4-4) is the basis of Fisher’s exact test:
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 (2.4-4)

where k ranges over all possible values of A1. The solution to the OR in Equation 
(2.4-4) is the CMLE OR.

In the R computation environment, one may use the special function fisher.test 
to calculate the CMLE OR with the result: ORCMLE = 7.17.

The MUE OR is based on calculating exact lower and upper p-values. Using this 
hypergeometric example, the MUE OR satisfi es Equation (2.4-4) when:

Plower = Pupper = 0.5

or

 0 = Plower – Pupper (2.4-5)

With Equation (2.4-5), one can use the uniroot and fi sher.test functions in R to 
compute the MUE OR, with the result: ORMUE = 6.88.

Moreover, for both small and large samples, one may use simple functions in R 
to calculate an OR for a crude 2 × 2 table (Table 2.7).

TABLE 2.6 Comparison of Diarrhea in 30 Breast-Fed 
Infants Colonized With Vibrio cholerae, by Antibody 
Titers in Mother’s Breast Milk

ANTIBODY LEVEL

LOW HIGH TOTAL

Diarrhea 12 7 19

No diarrhea 2 9 11

Total 14 16 30

TABLE 2.7 Summary of Odds Ratio Estimation Using Data From Table 2.5

METHOD ODDS RATIO COMMENT

Unconditional MLE 7.7 Large sample

Conditional MLE 7.2 Small sample

Median Unbiased Estimate 6.9 Small sample

Small Sample Adjusted 4.5 Small sample; zero in denominator
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NOTE:

 (1) If the observed or expected number in any cell < 5, then use one of the small-sam-
ple methods for estimation (Rothman, 1976).

 (2) If there is a zero in the denominator of a UMLE, then use Jewell’s small-sample 
adjustment or similar mathematical treatments since division by zero is impos-
sible (Rothman, 1976).

 Analyzing Epidemiologic Data

An evening newscast reported a series of health-related items:

1. The increasing level of smog in an inner-city neighborhood was blamed for the 
increase in asthma attacks among the child and elderly populations.

2. A youth who had previously been diagnosed with type I diabetes (the 
 insulin-dependent kind) had a signifi cantly improved level of blood glucose 
control after undergoing a course of nonstandard medical treatment using tra-
ditional Chinese medicine.

3. The revised Federal Health Department recommendations for who should 
receive the fl u vaccine this year.

4. A report on the extensive disease-monitoring strategies being implemented in a 
southern city recently affected by a massive hurricane.

5. A description of a fi nding recently published in a leading medical journal of an 
association between exposure to certain chemicals and an increased risk of cancer.

Each of these news stories included interviews with PH offi cials called epidemi-
ologists. Their work, and the way EPDM is applied, are the main subjects of this 
book.

To begin with, epidemiologic investigations consider various health-related 
events, and take various measurements with the objectives of quantitatively relat-
ing causes and effects. To study any such cause–effect relations, one may begin by 
analyzing:

 ■ One-sample measurements (measuring occurrence: rate, risk, and prevalence)
 ■ Two-sample measurements (measuring associations: rate ratio, RR, and OR)

To analyze the events, one may consider:

1. The point estimate:
 ■ Measures of occurrence are one-sample measures.
 ■ Measures of association are two-sample measures.

2. The variability and precision of this estimate, using CIs
3. The reference value, calculating p-values and Type I errors
4. The differences from the references (effect size, power, and Type II errors)
5. The effective sample sizes:

 ■ To achieve a desired confi dence interval width
 ■ To detect whether a one-sample measure differs from a reference value
 ■ To detect whether a two-sample measure differs from a reference value
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The point estimate enables epidemiologic inferences, such as:

 ■ The risk of disease occurrence or the prevalence of a condition
 ■ The RR for development of disease among exposed persons compared to 

unexposed persons

The CI provides information on:

 ■ The variance of the estimate; the variance depends on the natural variability of 
the measure (e.g., weight and height in various populations)

 ■ Measurement random error (e.g., instrument, technician)
 ■ Sample size (increasing the sample size improves estimation precision and 

reduces the CI)

Often BIOS is used to determine whether a point estimate is consistent with 
a reference value. Assuming that the estimate comes from a distribution with the 
mean equal to the reference value (the null hypothesis), we can calculate the proba-
bility (two-sided p-value) of getting the test biostatistic value or more extreme val-
ues. If the null hypothesis is true, but it is incorrectly rejected because the p-value is 
lower than the arbitrarily chosen .05, then one has a Type I error.

If the point estimate is “consistent” (p > α), one must then ask whether the sam-
ple size was suffi cient to detect a meaningful difference, if one existed. One should 
avoid the mistake of inferring that there was no difference when the sample size 
was too small to support such a conclusion.

This requires defi ning what we mean by meaningful difference, and then calcu-
lating the probability of detecting the effective size (or larger), if it exists. This prob-
ability is the biostatistical power (1 – b). An effective size implies an alternative 
hypothesis. The probability of failing to detect the effective size under the alterna-
tive hypothesis is designated as b. It is a Type II error.

If one decides to sample a population to estimate epidemiologic measures, the 
required sample size depends on whether the biostatistic is a one-sample measure 
(measures of occurrence) or a two-sample measure (measures of association). For a 
one-sample measure, one may use the following:

 ■ A sample size to achieve a desired CI width (used for descriptive studies).
 ■ A sample size for hypothesis testing (meaningful difference from some refer-

ence value). This requires setting Type I errors (α) and Type II errors (b).

ESTIMATION

This procedure was discussed earlier in this section. Additional features and meth-
odologies are presented in the discussion of the R computational environment.

CONFIDENCE INTERVALS

The very useful concept of CIs was discussed in Section 2.3. Additional features 
and methodologies are presented in the discussion of the R computational envi-
ronment.
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HYPOTHESIS TESTING AND P-VALUES

A reasonable question in evaluating an epidemiologic measure is: “How compatible 
is the estimate r compared to some reference value?”

 ■ Example: If r proportion of patients suffered a serious relapse last year, and the 
future goal is to have not more than r

0
 proportion experiencing a similar complication, 

how compatible is the experience r with a reference value of r
0
?

To answer this, one may specify the null hypothesis:

r = r
0

For a given sample population, one may calculate the probability p of observing a value 
of r or greater under the null hypothesis:

p = P(r ≥ r | r = r
0
)

Because one is interested only in an increase in complications, a one-sided p-value 
is appropriate and adequate. If this p-value is high, then the estimate (r) is more com-
patible with the null hypothesis. This result means that values of r or more extreme are 
likely to occur by chance alone (a random error). However, if this p-value is low, then the 
 estimate is less compatible with the null hypothesis; that is, values of r or more extreme 
are unlikely to occur by chance alone. High p-values (p-values more compatible with 
the null hypothesis) can occur because the null hypothesis is true, or because the 
sample size is too small to detect an alternative hypothesis (i.e., insuffi cient statistical 
power).

As with CIs, to calculate the p-value, one must either know or make assump-
tions about the relevant distribution. For example, suppose that 5% of hospital 
admissions resulted in serious relapses and the goal was to stay at or below a refer-
ence value of 2%. One should make certain that the observed 5% is compatible with 
the reference goal of 2% or lower. The one-sided p-value depends on the magnitude 
of the difference (5% vs. 2%) and number of hospitalizations:

(a) Calculate the binomial probability of the reference goal of 2%.
(b) Say that 5 out of 100 hospital admissions (5%) resulted in a serious relapse. Are 

5 relapses compatible with the reference goal of 2% or less?

k = 5

n = 100

r = k/n = 5/100 = 0.05

r0 = 2% = 0.02

The required binomial probability is given by

 p = P(r ≥ r | r0) = P (r ≥ 0.05 | r0 = 0.02) (2.4-6)

To fi nd probabilities from a binomial distribution, one may calculate them directly 
or use a binomial distribution calculator. To assess the compatibility, one may use a 
computer with the appropriate software—in this case, the R environment. Here, all 
three methods will be used for illustration.



2.4 BIOS in EPDM and PH 59

DIRECT CALCULATION. In general, if the random variable K follows the binomial dis-
tribution B(n, p) with parameters n and p, one may write K ~ B(n, p). The probability 
of getting exactly k successes in n trials is given by the probability mass function

 f k n p K k
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 =nCk (2.4-9)

Hence, using a handheld calculator and working to four decimal places,

Pr(k = 2) = f(2; 100, 0.05) = nCk p
k (1 – p)n − k

 = 100C2 (0.05)2 (1 – 0.05)100 – 2

 = {(100)(99)/(2)(1)}(0.05)2(0.95)98

 = (4,950) (0.0025) (0.0066)

 = 0.0812

USING A BINOMIAL DISTRIBUTION CALCULATOR. The online binomial distribution 
calculator (available at http://stattrek.com/tables/binomial.aspx) may be used to 
compute individual and cumulative binomial probabilities:

 ■ Enter a value in each of the fi rst three text boxes.
 ■ Click the Calculate button.
 ■ The calculator will compute binomial and cumulative probabilities. 

Probability of success on a single trial 0.05

Number of trials 100

Number of successes (x) 2

Binomial probability: P(X = 2) 0.08118177185776542

Cumulative probability: P(X < 2) 0.0370812093273546

Cumulative probability: P(X ≤ 2) 0.11826298118512

Cumulative probability: P(X > 2) 0.88173701881488

Cumulative probability: P(X ≥ 2) 0.88173701881488

Binomial probability Pr(k = 2) = 0.081181771….

http://stattrek.com/tables/binomial.aspx
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When you reach Chapter 3 of this book, you may enter the R computing envi-
ronment and use the R function binom.test() to obtain the following results:
> binom.test(5, 100, p = 0.02, alternative = “greater”,
+ conf.level=0.05) # Outputting:

EXACT BINOMIAL TEST
data: 5 and 100,
number of successes = 5,
number of trials = 100,
p-value = .05083,
alternative hypothesis: true probability of success is greater than .02,
5% CIs [0.08919625, 1.00000000],
sample estimates: probability of success .05.

Also, the computer output shows that there is a 5.083% probability of observing 
fi ve or more severe complications with 100 admissions. Is this compatible with 2%? 
There is no defi nitive answer, but if one had selected a signifi cance level α = 0.05, 
then one would conclude that “yes, it is compatible,” because p > .05, and one does 
not reject the null hypothesis.

With the approach of merely increasing the sample size (i.e., the number of hos-
pitalizations), the p-value becomes signifi cant (less than .05), even if the magnitude 
of the difference remains the same (5% vs. 2%).

Later, by explicitly specifying what differences matter, one may handle this type 
of problem differently.

POWER

If b = the probability of failing to reject a false null hypothesis (i.e., a Type II error), 
then (1 – b) is the probability of rejecting a false null hypothesis. Biostatisticians call 
this probability, (1 – b), the power of the test. It is used to indicate the effectiveness 
of a test, refl ecting that the null hypothesis is falsifi ed.

In epidemiologic research design, it is common to plan experiments such that 
the expected power is 80% or greater, or the power 0.80 or greater, so that the inves-
tigation will be effective in rejecting a false null hypothesis.

SAMPLE SIZE CALCULATIONS FOR ANALYTIC STUDIES (TRIOLA & 
TRIOLA, 2006)

In hypothesis testing with sample data consisting of only a few observations, the 
power will be low. The power can be increased by: 

 ■ Increasing the sample size, with other factors remaining unchanged
 ■ Increasing the signifi cance level
 ■ Increasing the standard deviation
 ■ Using extreme values for the population parameters

Here are some examples on sample size calculations.

 ■ Example 1: In a given population, a sample is to be taken to allow accurate estima-
tion of the sample mean μ. Determine the sample size n required.
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Solution:
The required sample size n may be estimated from

 n = (zα/2 s/E)2 (2.4-10)

where:

zα/2 = critical z-score based on the desired confi dence level,
s = population standard deviation,
E = desired margin of error.

Remarks:
To arrive at the result given by Equation (2.4-10), the steps shown in the following 
subsections were taken.

STEP 1: STARTING WITH THE CLT5

In probability theory, the CLT states conditions under which the mean of a suffi -
ciently large number of independent random variables, each with fi nite mean and 
variance, will be approximately normally distributed.

A simple example of the CLT is rolling a large number of identical, biased dice. 
The distribution of the sum (or average) of the rolled numbers will be well approx-
imated by a normal distribution. Because real-world quantities are often the bal-
anced sum of many unobserved random events, the CLT also provides a partial 
explanation for the prevalence of the normal probability distribution. It also justifi es 
the approximation of large-sample BIOS to the normal distribution in controlled 
experiments.

The CLT has a number of variants. In its common form, the random variables 
must be identically distributed. In variants, convergence of the mean to the normal 
distribution also occurs for nonidentical distributions, given that they comply with 
conditions.

The CLT may be expressed in various forms, depending on the applicable situ-
ation. Two common forms are the classical CLT and the Lyapunov CLT.

CLASSICAL CLT. Let X1, X2, X3, …, Xn be a random sample of size n—that is, a sequence 
of independent and identically distributed random variables with expected values 
m and variances s2. Suppose that one is interested in the behavior of the sample 
average of these random variables: Sn = (X1 + X2 + X3, …, + Xn)/n. In this instance, 
the CLT says that as n gets larger, the distribution of Sn approaches the normal with 
mean μ and variance s2/n. The true strength of the theorem is its recognition that Sn 
approaches normality regardless of the shapes of the distributions of individual Xis.

LYAPUNOV CLT.6 Let Xn, n ∈ N = the set of natural numbers {1, 2, 3, …}, be a sequence 
of independent random variables. Suppose that each Xn has a fi nite expected value

 E[Xn] = mn (2.4-11)

5 The CLT (retrieved from http://en.wikipedia.org/wiki/Central_limit_theorem).
6 Lyapunov’s CLT (retrieved from http://www.enotes.com/topic/Lyapunov’s_central_limit_
theorem).

http://en.wikipedia.org/wiki/Central_limit_theorem
http://www.enotes.com/topic/Lyapunov%E2%80%99s_central_limit_theorem).
http://www.enotes.com/topic/Lyapunov%E2%80%99s_central_limit_theorem).
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and fi nite variance

 Var [Xn] = sn
2 (2.4-12)

Also, let
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If for some δ > 0, the expected values E[|Xk|2 + δ] are fi nite for every k ∈ N, and the 
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is satisfi ed, then the CLT holds. That is, the random variable
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converges in distribution to a standard normal random variable as N → ∞ [i.e., 
ZN → N(0, 1)].

A useful special case of Lyapunov’s condition is when d = 1.
Note: A vigorous proof of the CLT may be found in many classical texts on the 

theory of mathematical statistics. It is believed that the earliest discovery of CLT 
dates back to the scientist Laplace in 1776.

STEP 2: ESTIMATING A PROPORTION (LARGE SAMPLE)7

This method aims to construct a CI for a sample proportion p. The approach 
described here is valid under the following conditions:

 ■ The sampling method is simple random sampling.
 ■ The sample includes at least 5 to 10 successes and 5 to 10 failures.

THE VARIABILITY OF THE SAMPLE PROPORTION. To construct a CI for a sample propor-
tion, one needs to know the variability of the sample proportion. This allows one 
to compute the standard deviation and/or the standard error of the sampling distribution.

Suppose that k possible samples of size n can be selected from the population. 
The standard deviation of the sampling distribution is the “average” deviation 
between the k sample proportions and the true population proportion, P. The stan-
dard deviation of the sample proportion sp is

 sp = [√{P(1 − P)/n}] ¥ [√{(N − n)/(N − 1)}] (2.4-16)

where P is the population proportion, n is the sample size, and N is the population 
size. When the population size is much larger (at least 10 times larger) than the 
sample size:

[√{(N − n)/(N − 1)}] ≈ 1

7 Standard deviation of sample proportions (retrieved from http://stattrek.com/lesson4/proportion
.aspx).
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the standard deviation can be approximated by

 sp = √{P(1 − P)/n} (2.4-17)

When the true population proportion P is not known, the standard deviation of 
the sampling distribution cannot be calculated. Under these circumstances, use the 
standard error. The standard error (SE) provides an unbiased estimate of the stan-
dard deviation. It can be calculated from Equation 2.4-18:

 SEp = [√{p(1 − p)/n}] × [√{(N − n)/(N − 1)}] (2.4-18)

where p is the sample proportion, n is the sample size, and N is the population size.
When the population size is at least 10 times larger than the sample size, again 

[√{(N − n)/(N − 1)}] ≈ 1, and the standard error can be approximated by

 SEp = √{ p(1 − p)/n} = √(pq/n) (2.4-19)

where q = 1 − p.

STEP 3: THE CONCEPT OF THE CRITICAL VALUE 
(TRIOLA & TRIOLA, 2006)

Consider the use of a standard z-score that can be used to distinguish between 
sample BIOS that are likely to occur and those that are less likely or unlikely. This 
z-score is called a critical value, and is based on the following assumptions:

(a) Under certain conditions, the sampling distribution of sample proportions can 
be approximated by a normal distribution (whenever the CLT applies).

(b) Sample proportions have a relatively equal chance, with probability of α, of 
falling in one of the tails of the normal curve.

(c) Denoting each of the two tail areas by α/2, it is seen that there is a total prob-
ability of 2(α/2) = α that a sample proportion will belong to one of these two 
tail areas.

(d) As their complements, there is therefore a probability of (1 – α) that a sample 
proportion will belong to the main (nontail) area.

(e) The z-score separating the right-tail region is denoted by zα/2 and is called its 
critical value because it marks the borderline separating sample proportions 
that are likely to occur from those that are not likely to occur.

Hence, one may defi ne the critical value as follows: A critical value is the 
number on the borderline that separates sample BIOS that are likely to occur 
from those that are not likely to occur.

The number zα/2 is a critical value, which is a z-score such that it separates an 
area of α/2 in the right tail of the standard normal distribution.

 ■ Example: The Critical Value zα /2 Using the z-Table

Corresponding to any confi dence level, the critical value z may be obtained using 
the z-table.
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FIGURE 2.5 The standard normal curve and the critical value z = 1.45.

In the standard normal curve shown in Figure 2.5, the mean is 0 and the standard 
deviation is 1. In the diagram, the gray-shaded area represents the area that is within 
1.45 standard deviations from the mean. The area of this shaded portion is 0.4265 (or 
42.65% of the total area under the curve).

To get this area of 0.4265:

1. Read down the left side of the table for the standard deviation’s fi rst two digits 
(the whole number and the fi rst number after the decimal point, in this case 1.4).

2. Read across the table for the “0.05” part (the top row represents the second deci-
mal place of the standard deviation of interest).

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279

3. The result is (left column) 1.4 + (top row) 0.05 = 1.45 standard deviations.

The area represented by 1.45 standard deviations to the right of the mean is shaded 
in green in the standard normal curve in Figure 2.5.

The table in the appendix at the end of this chapter shows how to fi nd the value of 
0.4265 in the full z-table: Follow the “1.4” row across and the “0.05” column down until 
they meet at 0.4265.

 ■ Example: Using the z-Table to Find the Critical Value zα/2

In this example, we use the z-table to fi nd the critical value zα/2 corresponding to a 
95% confi dence level.

A 95% confi dence level corresponds to

α = 1 – (95%/100%) = 1 – 0.95 = 0.05

and

α/2 = 0.05/2 = 0.0250

corresponds to the critical value of zα/2—a half-area under the standard normal distri-
bution curve of

0.0500 – 0.0250 = 0.4750.

From the z-table in the appendix, this corresponds to the critical value zα/2 = 1.96.
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STEP 4: THE CONCEPT OF THE MARGIN OF ERROR (TRIOLA & 
TRIOLA, 2006)

When data collected from a random sample are used to estimate a population 
proportion p, the margin of error E is the maximum likely difference between the 
observed sample proportion p and the true population proportion p, with proba-
bility (1 – α). E may be obtained by multiplying the critical value and the standard 
deviation of sample proportions:

 E = zα/2 √(pq/n) (2.4-20)

This is based upon the following assumptions.
Assumption 1: Since both the conditions np ≥ 5 and nq ≥ 5 are satisfi ed, the sam-

pling distribution of proportions is approximately normal. Thus, one may use 
results from another assumption regarding the normal distribution (again for these 
conditions, when working with binomial distributions): namely, that the binomial 
random variable has a probability distribution that can be approximated as a nor-
mal distribution with the mean m and standard deviation s given by

 m = np (2.4-21)

and

 s = √(npq) (2.4-22)

Both these parameters are based on n trials. Thus, their values on a per-trial basis 
may be obtained, by dividing by n, as follows:

 Mean of sample proportions m = (m for n trials)/n = np/n = p (2.4-23)

This is the standard deviation of sample proportions:

 s = (s for n trials)/n = [√(npq)]/n = √(pq/n) (2.4-24)

STEP 5: USING THE MARGIN OF ERROR RULE

Using the margin of error rule, Equation (2.4-20), with the further assumption of
p = Population probability to be approximated by Sample probability = p

p ≈ p, and q ≈ q

so that Equation (2.4-24) becomes

 √(pq) ≈ s √(n) (2.4-25)

and Equation (2.4-20) becomes

 E = zα/2 √(pq/n) (2.4-26)

E = zα/2 √(pq)/√n

= zα/2 s √(n)/n

 E = zα/2 s/√(n) (2.4-27)

Given s, the margin of error for the mean = E = zα/2 (s/√n).
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STEP (6) FINDING THE REQUIRED SAMPLE SIZE

Finally, Equation (2.4-27) shows that the required sample size

 n = (zα/2 s/E)2 (2.4-28)

depends on:

 ■ The critical score zα/2, which is based on the required confi dence level
 ■ The population standard deviation s
 ■ The required margin of error E

Remarks:

1. Equation (2.4-28) may not yield a whole number for n, in which case, apply the 
following round-off rule: Always increase the value of the sample size n to the next 
larger whole number.

2. When using Equation (2.4-28), note that it requires the value of the population 
standard deviation s, which is usually unknown. The following methods may 
be used to overcome this problem:

 (a) Estimate the standard deviation s using the range rule of thumb as follows: 
s ≈ range/4.

 (b) Conduct a pilot study by starting the sampling process. From the fi rst col-
lection of 30 or more randomly selected sample values, calculate the sample 
standard deviation s, and then use s in place of s. As more sample data are 
collected, the estimated value of s may be improved.

3. Use the results of other studies to estimate the value of s.
4. When calculating the sample size n, errors should be conservative; having n 

too large will give more accurate results than having it too small. For example, 
doubling the margin of error results in decreasing the sample size to one quarter 
of its original value. Conversely, halving the margin of error increases the sam-
ple-size value fourfold.

 ■ Example: The Epidemiology of Epidemiologists

It should be obvious by now that epidemiologists are highly intelligent professionals, 
each with a high IQ. IQ tests are designed so that the mean is 100 and the standard 
deviation is 15. Therefore, it is expected that epidemiologists will have IQ scores with 
mean greater than 100 and standard deviation less than 15, as they are a more intellec-
tually homogeneous group than the average population. To determine the mean IQ for 
the population of epidemiologists, one would like to know:

How many epidemiologists must be randomly chosen for IQ testing, if one wants 
90%, 95%, or 99% confi dence that the sample mean is within 5 IQ points of the pop-
ulation mean?

Solution:
Using Equation (2.4-28),

n = (zα/2 s/E)2

the values required for calculating the sample size n are determined as follows:
zα/2 = 1.645, 1.960, and 2.575 for 90%, 95%, and 99%, respectively.
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These are found by converting the 90/95/99% confi dence levels to α = 
0.10/0.05/0.01, respectively, and then fi nding the critical value zα/2, as shown in Step 3.

Set E = 2. This is chosen so that the sample mean will be within 2 IQ units of the 
mean μ, and makes the required margin of error 2.

s = 15. This is specifi ed in the statement of the problem.
With these values, one can now use Equation (2.4-28) to calculate n:

n = (zα/2 s/E )2 = {(1.645 or 1.960 or 2.575)(15)/2}2

= 152.21/216.09/372.97

which round off to 153, 217, or 373, respectively.
So, if one can fi nd a random sample of 217 epidemiologists, and obtain the IQ of 

each, one may have a 95% confi dence level that the sample mean x will be within 2 IQ 
units of the true population mean. If only 153 epidemiologists can be located, settle for 
the 90% confi dence level. But if 373 epidemiologists can be found, then go all out for 
the 99% confi dence level. (Care to try any of that?)

 Using R

Of course, one can use the R environment to run this computation as follows:
>
> # IQ Testing of Epidemiologists
> # 90/95/99 % Confidence Levels Computation
> # Computing n = the required Sample Sizes of Case-subjects
>
> z <- c(1.645, 1.960, 2.575) # z is being entered as a 3-vector
> E <- 2
> s <- 15
> n <- (z*s/E)**2
> n # Outputting the 3 corresponding Sample Sizes:
[1] 152.2139 216.0900 372.9727
>
Using R, you can obtain the same results in a single run.

 ■ Example: Using an Online Sample Size Table or Calculator

Numerous computing tools are available online. Some examples are:

Using tables: www.itl.nist.gov/div898/handbook/prc/section2/prc222.htm
Using a calculator: http://statisticslectures.com/topics/samplesizepopulationmean

 Evaluating a Single Measure of Occurrence (Virasakdi, 2011)

Generally, the probability of encountering a signifi cant epidemiologic event is very 
small. Therefore, instead of probability, measurement is focused on density, which 
means incidence or the number of occurrences over a period of time. Time is only 
one dimension; the same concept applies to the density of counts of small objects in 
a two-dimensional area or three-dimensional space.

http://www.itl.nist.gov/div898/handbook/prc/section2/prc222.htm
http://statisticslectures.com/topics/samplesizepopulationmean
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When events are independent from another, the occurrence is at random. Math-
ematically, it can be proven that under this condition, the densities in different units 
of time vary with a variance equal to the average density. When the probability of 
having an event is affected by some factors, a model may be used to explain, ana-
lyze, and predict the density. Variation among different strata is explained by the 
factors. Within each stratum, the distribution is random.

 Poisson Count (Incidence) and Rate Data

Poisson regression deals with outcome variables that are counts in nature (whole 
numbers or integers). Independent covariates are similar to those encountered in 
linear and logistic regression.

In EPDM, Poisson regression is used for analyzing grouped cohort data, look-
ing at incidence density among person-time contributed by subjects of similar char-
acteristics of interest. It is one of three commonly used generalized linear models 
(GLMs):

 ■ Poisson regression
 ■ Linear regression
 ■ Logistic regression

There are two main assumptions for Poisson regression:

First, risk is homogeneous among person-times contributed by different subjects 
who have the same characteristics of interest (e.g., gender, age group, etc.) and 
the same period.

Second, asymptotically (i.e., as the sample size increases), the mean of the counts is 
equal to the variance.

The Poisson distribution is a discrete probability distribution with the following 
density function:

 
P X x

x
x

x

( )
!

= =
−ll

 (2.4-29)

where X is the random variable, x is the observed count, and λ is the expected count. 
The distribution function is
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 Binomial Risk and Prevalence Data (Lachin, 2011)

BINOMIAL RISK

In epidemiologic research, a typical data structure consists of n independent and 
identically distributed (iid) observations {xi} from a sample of n case subjects (i = 1, 
2, 3, …, n) drawn at random from a population with probability p of a characteristic 
of interest, such as death or deterioration, or survival or improvement.
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Thus, X is a binary variable such that:

xi = I{positive response for the ith observation}

where I{.} is the indicator function: I{.} = 1, if true, or = 0 if not.
The total number of case subjects in the sample with a positive response is 

y = ∑i xi, and the simple proportion with a positive response in the sample is p = y/n. 
In such cases, the binomial distribution probability model is usually the model of 
choice for analysis of the data; hence, binomial risk is introduced.

PREVALENCE DATA

The prevalence of a characteristic is the probability P that the characteristic appears 
in the population, or the proportion p in a sample, with that characteristic present 
in a cross-section of the population at a specifi c time. For example, the prevalence 
of adult-onset type 2 diabetes as of 1980 was estimated to be about 6.8% of the U.S. 
population based on the National Health and Nutrition Examination Survey. Half 
of those who met the criteria for diabetes on an oral glucose tolerance test (3.4%) 
were previously undiagnosed. In that study, n is the total sample size of which y 
have the positive characteristic, in this instance type 2 diabetes.

The incidence of an event (the positive characteristic) is the probability P in the 
population, or the proportion p in a sample, that acquire the positive characteristic 
or experience an event over an interval of time among those who were free of the 
characteristic at baseline. In this case, n is the sample size at risk in a prospective 
longitudinal follow-up study of whom y experience the event over a period of time. 
For example, from the annual National Health Interview survey, it was estimated 
that the incidence of a new diagnosis of diabetes among adults in the U.S. popula-
tion is 2.42 new cases per 1,000 in the population per year.

Such estimates of the prevalence of a characteristic, or the incidence of an event 
of interest, are generally simple proportions based on a sample of n iid observations.

 Evaluating Two Measures of Occurrence—Comparison of Risk: Risk 
Ratio and Attributable Risk

To compare the risk of disease in different exposure groups, two methods may be 
used:

1. Risk ratio (RR; also called relative risk) is the ratio of the risk of getting the dis-
ease among the exposed compared with that among the unexposed. It indicates 
how many times the risk would increase if the subject changed his or her status 
from unexposed to exposed. The increment is considered in multiples or “-fold,” 
and therefore RR is a multiplicative model.

2. Risk difference (RD) measures the amount of risk gained or lost if the subject 
changes from unexposed to exposed. The increase is absolute, and therefore RD 
is an additive model.

RR is an important indicator for causation. An RR greater than or equal to 
10 strongly suggests a causal relationship. However, RD has more public health 
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implications than the RR. A high RR may not be of public health importance if the 
 disease is very rare. However, the RD measures direct health burden and the need 
for health services.

For example, the risk of developing lung cancer among the exposed (e.g., 
 smokers) is l higher than that among the unexposed (e.g., nonsmokers). In this situ-
ation, the RD changes sign from positive to negative. The RR reciprocates to a small 
value.

The RR increases as the dose (time) of exposure to smoking increases.

DOSE–RESPONSE RELATIONSHIP

A criterion for causation is evidence of a dose–response relationship. If a higher 
dose of exposure is associated in a linear fashion with a higher level of risk, then the 
exposure is likely to be the cause.

 Comparing Two Rate Estimates: Rate Ratio rr

Suppose that we have a cohort study that yields binomial data in the format shown 
in Table 2.8.
The corresponding rate ratio rr relations are

 rate ratio rr ≡ r1/r0 = (a/PT1)/(b/PT0) (2.4-31)

 Comparing Two Risk Estimates: Risk Ratio RR and Disease (Morbidity) 
Odds Ratio DOR

A cohort study yields binomial data in the format shown in Table 2.9.
The corresponding risk ratio RR relations are

 Risk ratio RR ≡ R1/R0 = (a/N1)/(b/N0) (2.4-32)
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TABLE 2.8 Table Notation for Cohort Study, Person-Time Data

EXPOSED UNEXPOSED TOTAL

Number of new 
cases

a B M

Person-time at risk PT1 PT0
T
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ODDS AND OR

The concept of odds is related to probability: If p is the probability, then p/(1 p) is the 
odds. Conversely, the probability p would be equal to odds/(odds + 1).

DISEASE (MORBIDITY) OR/RATES

In PH studies, rates are used to describe the likelihood of an event, to monitor the 
health status of a population, and so on. Usually, a time interval of 1 year is used to 
describe these rates.

A rate is the frequency of occurrence of a signifi cant event. It is the relative fre-
quency of the event multiplied by some number, typically a value such as 1,000 or 
100,000. The rate is expressed as (x/y)k, where:

x = frequency count of the number of subjects for whom the event occurred,
y = total number of people exposed to the risk of the occurring event,
k = a number such as 1,000 or 100,000.

This defi nition may be applied to measures of, for example, mortality (deaths), 
morbidity (diseases), and fertility (births). In these instances, k is usually taken as 
1,000.

 ■ Example of Mortality Rate: In the United States in a particular year, there were 
2,416,000 deaths in a population of 285,318,000. What is the crude mortality rate?

Solution: The crude mortality rate = (2,416,000/285,318,100) ¥ 1,000 = 8.4677. This 
is rounded off to a mortality rate of 8.5 deaths for each 1,000 people in the popula-
tion.

 ■ Example of Infant Mortality Rate: In a recent year, in the United States there were 
4,026,000 live births and 27,500 deaths of infants under 1 year of age. What is the 
infant mortality rate?

Solution: The infant mortality rate = (27,500/4,026,000) ¥ 1,000 = 6.8306. This is 
rounded off to an infant mortality rate of 6.8 per 1,000 infants under 1 year of age. This 
is substantially lower than the infant mortality rate of more than 35 per 1,000 in some 
countries.

TABLE 2.9 Cohort Study, Binomial Data

EXPOSED UNEXPOSED

Number of new 
cases

a b

Person at risk N1 N0
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 Comparing Two Odds Estimates From Case–Control: The Salk Polio 
Vaccine Epidemiologic Study

In one of the most renowned epidemiologic investigations (Triola & Triola, 2006), it 
was found that of 200,745 children receiving the Salk vaccine, 33 developed paralyz-
ing poliomyelitis. Hence, for this treatment group:

P(polio) = 33/200,745 = 0.000,163,9

This single measure does not tell the whole story, because this measure carries no 
information about the rate of polio for those who were given a placebo shot. The risk of 
polio for children treated with the Salk vaccine should be compared to the risk of polio for those 
given a placebo. Now consider the data for that investigation summarized in Table 2.10.

Based on Table 2.10, one can calculate the following probabilities:
Polio rate for treatment group = P(polio/vaccine)
= 33/200,745 = 0.000,163,9 = p1

Polio rate for placebo group = P(polio/placebo)
= 115/200,229 = 0.000,574,3 = p2

The RR, or the relative risk, is

p1/p2 = 0.000,163,9/0.000,574,3 = 0.285,4

The reciprocal risk ratio = 1/0.285,4 = 3.504, which means that the placebo group is 
3.504 times more likely to suffer polio.

 Review Questions for Section 2.4

1. (a)  Name five areas of epidemiologic investigation in which BIOS is used for data 
analyses.

(b) Research epidemiologists frequently publish their findings in professional jour-
nals. List five journals in which their work is often found.

2. (a) Name five epidemiologic measures of occurrence and association.
(b) How does one obtain these measures in PH investigations?

3. (a)  In epidemiologic research, what are one-sample measurements? Give an 
example of each.

(b) What are two-sample measurements? Give examples.
4. (a)  What are the following epidemiologic measures: ratios, proportions, and rates? 

Give examples of each.
(b) What are the commonly used estimation methods for epidemiologic mea-

sures? Give examples.

TABLE 2.10 Epidemiologic Investigation of Poliomyelitis and the Salk Vaccine

TREATMENT POLIO NO POLIO TOTAL

Salk vaccine 33 200,712 200,745

Placebo 115 200,114 201,229
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5. (a)  What are the CIs in epidemiologic estimation of sample sizes? Give an 
 example.

(b) Using null hypothesis testing, how may one determine the CIs corresponding 
to a prescribed confidence level?

6. (a) What is biostatistical power?
(b) How is this power related to the sample size of an epidemiologic investigation? 

Give an example.
7. (a) What is the central limit theorem (CLT) in mathematical statistics?

(b) How does it contribute to the process for estimating the required sample size in 
an epidemiologic investigation? Give an example.

8. (a)  Briefly explain the concepts of binomial risk and prevalence, and give an exam-
ple of each.

(b) Contrast the concepts of RR and risk difference, and give an example of each.
9. (a) Describe the use of odds and OR, giving an example of each.

(b) In the comparison of risks, what are an attributable risk and its RR?
10. (a)  What is meant by mortality rate, infant mortality rate, and fertility rate? Give an 

example of each.
(b) In a case–control epidemiologic investigation, what is the RR (or the relative 

risk) and the reciprocal risk ratio? Give an example.

 EXERCISES FOR CHAPTER 2 (CDC, 2006; BROADBENT, 2011)

 Using Probability Theory

1. In each of the following situations, express the indicated degree of likelihood as a 
probability value:
(a) The weather forecast says there is a 25% chance of snow tomorrow.
(b) In guessing the answer for the five options in a multiple-choice test question, 

one has less than a 50-50 chance of success.
(c) One has no more than 1 chance in 10 million of winning the lottery.
(d) The sun will rise tomorrow morning.
(e) In rolling two dice (each die is six-sided), there is 1 chance in 36 to get a pair 

of sixes.
2. A married couple has four children. What is the probability of each of the following 

outcomes?
(a) All four are girls.
(b) All four are boys.
(c) Three girls and a boy.
(d) One girl and three boys.
(e) Two girls and two boys.

 Disease Symptoms in Clinical Drug Trials

3. A group of 937 case subjects was given a trial drug in a clinical treatment of obesi-
ty; 17 of the subjects experienced high fever, but the rest did not.
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(a) What is the probability that a case subject taking the test drug will have the 
symptom of fever?

(b) Would it be considered normal for an individual taking the same drug to experi-
ence fever? Why or why not?

 Risks and Odds in Epidemiology

4. Use the data summarized in Table 2.10 (Epidemiologic Investigation of Poliomyeli-
tis and the Salk Vaccine) to calculate:
(a) the absolute risk reduction that may be used to assess the effectiveness of the 

Salk vaccine
(b) the relative risk
Explain in words what is meant by each calculated result.

 Case–Control Epidemiologic Study

5. In a case–control study of the effectiveness of bicycle safety helmets for the pre-
vention of facial injuries, the data are summarized in the following table:

HELMET WORN HELMET NOT WORN

Facial injuries 
received

30 182

All nonfacial injuries 83 236

(a) Calculate the value of absolute risk reduction for facial injuries in the two 
groups.

(b) For those not wearing helmets, what are the odds for facial injuries?
(c) What is the OR for facial injuries in the group that did not wear helmets com-

pared to the group that wore helmets? What does this ratio mean?
(d) Does wearing a helmet decrease the risk of facial injuries? How do you know?
(e) What is the risk ratio of facial injuries for those wearing helmets? What is the 

risk ratio for those not wearing helmets? Is it reasonable to make helmet wear-
ing a legal requirement? Why or why not?

 Mortality, Morbidity, and Fertility Rates

7. In a certain year in the United States, the following epidemiologic BIOS were taken:
Population: 285,318,000 Deaths: 2,416,000
Live births: 4,026,000 Infant deaths: 27,500
Women aged 15–44: 61,811,000 HIV-infected persons: 900,000
Deaths from HIV infection: 17,402 Motor vehicle deaths: 43,900

(a) What is the infant mortality rate?
(b) What is the birth rate?
(c) What is the HIV mortality rate for HIV-infected persons?
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(d) What is the general fertility rate?
(e) Using k = 100,000, calculate the motor vehicle death incidence rate.

 Incidence Rates in Case-Cohort Survival Analysis

8. A team of epidemiologic investigators enrolled 4,200 women in a study and fol-
lowed them annually for 4 years to determine the incidence rate of heart disease.

 ■  After 1 year, none had a new diagnosis of heart disease, but 200 had been lost 
to follow-up.

 ■  After 2 years, 1 had a new diagnosis of heart disease, and another 198 had 
been lost to follow-up.

 ■  After 3 years, another 7 had new diagnoses of heart disease, and 1,586 had 
been lost to follow-up.

 ■  After 4 years, another 8 had new diagnoses of heart disease, and 784 more 
had been lost to follow-up.

Calculate the incidence rate of heart disease among this cohort.  Assume 
that persons with new diagnoses of heart disease and those lost to  follow-up 
were  disease-free for half the year, and thus contribute ½ year to the 
 denominator.

9. A diabetes follow-up study included 218 diabetic women and 3,823 nondiabet-
ic women. By the end of the study, 72 of the diabetic women and 511 of the 
nondiabetic women had died. The diabetic women were observed for a total of 
1,862 person-years; the nondiabetic women were observed for a total of 36,653 
 person-years. Calculate the incidence rates of death for the diabetic and nondia-
betic women.

 Prevalence

10. In a study of 1,150 women who gave birth, a total of 468 reported taking a pre-
scribed dose of vitamins at least 4 times a week during the month before becoming 
pregnant. Calculate the prevalence of frequent vitamin use in this group.

 Mortality Rates

11. Table 2.11 provides the number of deaths from all causes and from accidents (un-
intentional injuries) by age group in 2002 in the United States.
(a) Calculate the following mortality rates:

 (i) The unintentional-injury-specific mortality rate for the entire population
 (ii) The all-cause mortality among males
 (iii) The all-cause mortality rate for 25- to 34-year-olds
 (iv) The unintentional-injury-specific mortality among 25- to 34-year-old males

(b) Suggest what to call each mortality rate.
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 Estimating Sample Sizes

12. Finite Population Correction Factor for CI:
For an infinite population, the standard error of the mean = s/√n
For a finite population N, one must apply the correction factor √{(N – n)/(n – 1)}, 
whenever n > 0.05N. This factor should be applied in Equation (2.4-27):

 E = zα/2 s /√(n) (2.4-27)

so that the margin of error will be given by

 E = {zα/2 s /√(n)} √{(N – n)/(n – 1)} (2.4-34)

Find the 95% CI for the mean of the IQ scores taken for 1,000 epidemiologists, if 
40 of these scores produced a mean of 120. Assume that s = 15.

13. Finite Population Correction Factor for Sample Size:
In Equation (2.4-27), it was assumed that the population is infinite or very 

large, and that the sampling was undertaken with replacement. However, if the 
population is small, and the sampling was undertaken without replacement, one 
should modify the margin of error E to include a finite population correction fac-
tor so that E is to be given by Equation (2.4-34). Solving this equation for n, one 
obtains:

 n = {Ns2(zα/2)
2}/{(N – 1)E 2 + s2(zα/2 )

2} (2.4-35)

TABLE 2.11 All-Cause and Unintentional Injury Mortality and Estimated Population by Age 
Group, for Both Genders and for Males Alone, United States, 2002

ALL RACES, BOTH SEXES ALL RACES, MALES

AGE 
GROUP 
(YEARS) ALL CAUSES

UNINTENTION-
AL INJURIES

ESTIMATED 
POP. (X 1000) ALL CAUSES

UNINTEN-
TIONAL 

INJURIES
ESTIMATED 

POP. (X 1000)

0–4 32,892 2,587 19,597 18,523 1,577 10,020

5–14 7,150 2,718 41,037 4,198 1,713 21,013

15–24 33,046 15,412 40,590 24,416 11,438 20,821

25–34 41,355 12,569 39,928 28,736 9,635 20,203

35–44 91,140 16,710 44,917 57,593 12,012 22,367

45–54 172,385 14,675 40,084 107,722 10,492 19,676

55–64 253,342 8,345 26,602 151,363 5,781 12,784

65+ 1,811,720 33,641 35,602 806,431 16,535 14,772

Not Stated 357 85 0 282 74 0

Total 2,443,387 106,742 288,357 1,199,264 69,257 141,656

Source: Web-based Injury Statistics Query and Reporting System (WISQARS) [online database] Atlanta; National 

Center for Injury Prevention and Control. Available from: http://www.cdc.gov./ncipc/wisqars.
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Repeat the preceding Example: The Epidemiology of Epidemiologists, assuming 
that the epidemiologists are randomly selected without replacement from a popula-
tion of N = 300 reputable epidemiologists.
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 APPENDIX

The z-Table for a Standard Normal Distribution

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517

0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549

0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852

0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3304 0.3365 0.3389

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015

1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545

1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633

1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767

2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857

2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890

2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916

2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
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2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974

2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981

2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986

3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990

3.1 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993

3.2 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995

3.3 0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997

3.4 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998

3.5 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998

3.6 0.4998 0.4998 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999

3.7 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999

3.8 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999





 Data Analysis Using 
R Programming

 INTRODUCTION

A job vacancy advertisement on the Internet for a biostatistician reads as follows:

Job Summary: Biostatistician I

Salary: Open

Employer: XYZ Research and Biostatistics

Location: City X, State Y

Type: Full Time—Entry Level

Category: Biometrics/biostatistics, Data analysis/processing, Statistical organi-
zation and administration

Required Education: Master’s degree

XYZ Research and Biostatistics is a national leader in designing, managing, and 
analyzing cancer clinical trials. XYZ partners with clinical investigators to offer 
respected biostatistical expertise supported by sophisticated web-based data 
management systems. XYZ services assure timely and secure implementation of 
trials and reliable data analyses.

Job Description:

Position Summary: An exciting opportunity is available for a biostatistician to 
join a small but growing group focused on cancer clinical trials and related trans-
lational research. XYZ, which is located in downtown City XX, is responsible 
for the design, management, and analysis of a variety of phase I, phase II, and 
phase III cancer clinical trials, as well as the analysis of associated laboratory 
data, including microarray, SNP, and proteomics data. The successful candidate 
will collaborate with fellow biostatistics staff and clinical investigators to design, 
evaluate, and interpret clinical studies.

Primary Duties and Responsibilities: Analyzes clinical trials and associated ancil-
lary studies in collaboration with fellow statisticians and other scientists. Prepares 
tables, fi gures, and written summaries of study results; interprets results in collab-
oration with other scientists; and assists in preparation of manuscripts. Provides 
statistical consultation with collaborating staff. Performs other job-related duties as 
assigned.

THREE



82 3. DATA ANALYSIS USING R PROGRAMMING

Requirements:

Required Qualifi cations: Master’s degree in statistics, biostatistics, or a related 
fi eld. Sound knowledge of applied statistics. Profi ciency in statistical computing 
in SAS.

Preferred Responsibilities/Qualifi cations: Biostatistical consulting experience. 
S-Plus or R programming language experience. Experience with analysis of high- 
dimensional data. Ability to communicate well orally and in writing. Excellent 
interpersonal/teamwork skills for effective collaboration. Spanish-language 
skills a plus.

*In your cover letter, describe how your skills and experience match the 
qualifi cations for the position.

To learn more about XYZ, visit www.XYZ.org (American Statistical Association, 
n.d.).

Clearly, anyone planning a career in biostatistics should be cognizant of the 
overt requirement of an acceptable level of professional profi ciency in data analysis 
using the R programming environment. Even if one is not a biostatistician working 
in the fi elds of epidemiology, public health, and preventive medicine, a skill set that 
includes R programming would be helpful.

 3.1 DATA AND DATA PROCESSING

Data are facts or fi gures from which conclusions can be drawn. When the data have 
been recorded, classifi ed and organized, related, and interpreted within a frame-
work so that meaning emerges, they become information. There are several steps 
involved in turning data into information, and these steps are known as data pro-
cessing. This section describes data processing and how computers perform these 
steps effi ciently and effectively. Many of these processing activities may be under-
taken using R programming or performed in an R environment with the aid of avail-
able R packages where R functions and datasets are stored.

The simplifi ed fl owchart that follows shows how raw data are transformed into 
information (Statistics Canada, 2013):

Data → Collection → Processing → Information

Data processing takes place once all of the relevant data have been collected. 
They are gathered from various sources and entered into a computer where they 
can be processed to produce information—the output.

Data processing includes the following steps, each of which will be discussed 
in the next sections:

 ■ Data coding
 ■ Data capture
 ■ Editing
 ■ Imputation
 ■ Quality control
 ■ Producing results
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 Data Coding

Before raw data can be entered into a computer, they must fi rst be coded. To do 
this, survey responses must be labeled; usually simple, numerical codes are used. 
Labeling may be done by the interviewer in the fi eld or by an offi ce employee. 
The data-coding step is important because it makes data entry and data processing 
easier. Surveys use two types of questions: closed and open. The responses to these 
questions affect the type of coding performed. With a closed question, only a fi xed 
number of predetermined survey responses are permitted. These responses already 
will have been coded. The following, drawn from a survey on sporting activities, is 
an example of a closed question:

To what degree are sports important in providing you with the following 
 benefi ts?
<1/> Very important
<2/> Somewhat important
<3/> Not important

When open questions are used, any response is allowed, making subsequent 
coding more diffi cult. To code an open question, the processor must sample a num-
ber of responses and then design a code structure that includes all possible answers.

The following code structure is an example of an open question:

What sports do you participate in?
Specify (28 characters) ______________

In the U.S. Census and almost all other surveys, the codes for each question 
fi eld are premarked on the questionnaire. When the questionnaire is processed, the 
codes are entered directly into the database and prepared for data capturing. The 
following is an example of premarked coding:

What language does this person speak most often at home?
<18/> English
<19/> French
<20/> Other—Specify ____________

AUTOMATED CODING SYSTEMS

Programs are available to automate repetitive and routine tasks. Some of the advan-
tages of an automated coding system are that the process increasingly becomes 
faster, more consistent, and more economical.

The next step in data processing is inputting the coded data into a computer 
database; this is called data capture.
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 Data Capture

Data capture is the process by which data are transferred from paper, such as ques-
tionnaires and survey responses, to an electronic fi le in a computer. Before this pro-
cedure takes place, the questionnaires must be groomed (prepared) for data capture. 
In this  processing step, each questionnaire is reviewed to ensure that all of the min-
imum required data have been reported and that they are decipherable. Grooming 
is usually performed through extensive automated edits.

Several methods are used for capturing data:

 ■ Tally charts are used to record data such as the number of occurrences of a 
particular event and to develop frequency distribution tables.

 ■ Batch keying is one of the oldest methods of data capture; the data are input 
through a computer keyboard. This process is very practical for high-volume 
entry, where fast production is a requirement. No editing procedures are neces-
sary, but there must be a high degree of confi dence in the editing program.

 ■ Interactive capture is often referred to as intelligent keying. Usually, captured 
data are edited before they are input. However, interactive capture combines 
data capture and data editing in one function.

 ■ Optical character readers or bar-code scanners are able to recognize alpha or 
numeric characters or bar codes. These readers scan lines and translate them 
into the program. Bar-code scanners are quite common and often used in 
stores. They can take the shape of a handheld gun or a wand, as well as “pass-
over” glass plates.

 ■ Magnetic recordings have both reading and writing capabilities. Magnetic 
recording may be used in areas where data security is important. An important 
application for this type of data capture is the magnetic strip found on debit 
and credit cards.

A computer keyboard is one of the best-known input (or data entry) devices in 
current use. In the past, people performed data entry using punch cards or paper 
tape. Some other examples of modern data-input devices are:

 ■ Optical mark reader
 ■ Bar-code reader
 ■ Scanner used in desktop publishing
 ■ Light pen
 ■ Trackball
 ■ Mouse

Once data have been entered into a computer database, the next step is to ensure 
that all of the responses are accurate; this requires data editing.

 Data Editing

Data should be edited before being presented as information. This action ensures 
that the information provided is accurate, complete, and consistent. There are two 
levels of data editing: microediting and macroediting.
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Microediting corrects the data at the record level. This process detects errors 
in data through checks of the individual data records. The intent at this point is to 
determine the consistency of the data and correct the individual data records.

Macroediting also detects errors in data, but does so through the analysis 
of aggregate data (totals). The data are compared with data from other surveys, 
administrative fi les, or earlier versions of the same data. This process deter-
mines the compatibility of data.

 Imputations

Editing adds little value to the overall improvement of the actual survey results if 
no corrective action is taken when items fail to follow the rules set out during the 
editing process. When all of the data have been edited using the applied rules and a 
fi le is found to have missing data, then imputation is usually done as a separate step.

Nonresponse and invalid data defi nitely affect the quality of the survey results. 
Imputation resolves the problems of missing, invalid, or incomplete responses iden-
tifi ed during editing, as well as any editing errors that might have occurred. At this 
stage, all of the data are screened for errors because respondents are not the only 
ones capable of making mistakes; errors can also occur during coding and editing.

Some other types of imputation methods include the following:

 ■ Hot deck uses other records as “donors” to answer the question (or a set of 
questions) that requires imputation.

 ■ Cold deck uses a fi xed set of values that cover all of the data items. These 
values can be constructed using historical data, subject-matter expertise, and 
so on.

 ■ Substitution relies on the availability of comparable data. Imputed data can 
be extracted from the respondent’s record from a previous cycle of the survey, 
or they can be taken from an alternative source fi le (e.g., administrative fi les or 
other survey fi les for the same respondent).

 ■ Estimator uses information from other questions or from other answers (from 
the current cycle or a previous cycle), and through mathematical operations, it 
derives a plausible value for the missing or incorrect fi eld.

Donor data can also be found through a method called nearest neighbor impu-
tation. In this case, some sort of criterion must be developed to determine, in accor-
dance with predetermined characteristics, which responding unit is “most like” the 
unit with the missing value. The closest unit to the missing value is then used as 
the donor.

Imputation methods can be performed automatically, manually, or in combination.

 Data Quality

Quality is an essential element at all levels of processing. To ensure the quality of 
a product or service in survey development activities, both quality assurance and 
quality control methods are used.
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QUALITY ASSURANCE

Quality assurance refers to all planned activities necessary to provide confi dence 
that a product or service will satisfy its purpose and the users’ needs. In the context 
of survey-conduct activities, quality assurance activities and checks may take place 
at any of the major stages of survey development: planning, design, implementa-
tion, processing, evaluation, and dissemination.

Quality assurance:

 ■ Anticipates problems before they occur
 ■ Uses all available information to generate improvements
 ■ Is not tied to a specifi c quality standard
 ■ Is applicable mostly at the planning stage
 ■ Is all-encompassing in its activities

QUALITY CONTROL

Quality control is a regulatory procedure through which one:

 ■ Measures quality
 ■ Compares quality with preset standards
 ■ Acts on the differences

Some examples of this include controlling the quality of the coding operation, 
the quality of the survey interviewing, and the quality of the data capture.

Quality control:

 ■ Responds to observed problems
 ■ Uses ongoing measurements to make decisions on the processes or products
 ■ Requires a prespecifi ed quality standard for comparison
 ■ Is applicable mostly at the processing stage
 ■ Is a set procedure that is a subset of quality assurance

QUALITY MANAGEMENT IN STATISTICAL AGENCIES

The quality of the data must be defi ned and assured in the context of being “fi t 
for use”; this fi tness will depend on the intended function of the data and the fun-
damental characteristics of quality. It also depends on the users’ expectations and 
what they consider to be useful information.

There is no standard defi nition among statistical agencies for the term offi cial 
statistics. There is a generally accepted, but evolving, range of quality issues under-
lying the concept of fi tness for use. These elements of quality must be considered 
and balanced in the design and implementation of an agency’s statistical program.

The following is a list of the elements of quality:

 ■ Relevance
 ■ Accuracy
 ■ Timeliness
 ■ Accessibility
 ■ Interpretability
 ■ Coherence
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These elements of quality tend to overlap. Just as there is no single measure of 
accuracy, there is no effective statistical model for bringing together all these charac-
teristics of quality into a single indicator. Also, except in simple or one-dimensional 
(1D) cases, there is no general statistical model for determining whether one partic-
ular set of quality elements provides higher overall quality than another.

 Producing Results

After editing, data may be processed further to produce a desired output. The com-
puter software used to process the data will depend on the form of output required. 
Software applications for word processing, desktop publishing, graphics (including 
graphing and drawing), programming, databases, and spreadsheets are commonly 
used. The following are some examples of ways that software can produce data:

 ■ Spreadsheets are programs that automatically add columns and rows of 
 fi gures, calculate means, and perform statistical analyses.

 ■ Databases are electronic fi ling cabinets. They systematically store data for 
easy access and can produce summaries, aggregates, or reports. Relational 
 databases make it easier to view and compare selected subsets of data.

 ■ Specialized programs can be developed to edit, clean, impute, and process the 
fi nal output.

 Review Questions for Section 3.1

1. What basic statistical computing languages were noted as being important in the 
sample job description for an entry-level biostatistician? Why?

2. In a typical school of public health or school of medicine, should the core curric-
ulum for a typical Master of Public Health program in epidemiology and public 
health, or for a degree in preventive medicine, include the development of profi-
ciency in the use of R programming for biostatistics? Why or why not?

3. (a) Contrast the concepts of data and information.
(b) How are data converted into information?

4. In the steps that convert data into information, how are statistics and computing 
applied to the various data processing steps?

5. (a)  Describe and delineate quality assurance and quality control in computer data 
processing.

(b) In what way does statistics feature in these phases of data processing?

 3.2 BEGINNING R

R is an open-source, freely available, integrated software environment for data manip-
ulation, computation, analysis, and graphical display. The R environment consists of:

 ■ A data handling and storage facility
 ■ Operators for computations on arrays and matrixes
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 ■ A collection of tools for data analysis
 ■ Graphical capabilities for analysis and display
 ■ An effi cient and continuously developing, algebra-like programming language 

that consists of loops, conditionals, user-defi ned functions, and input and 
 output capabilities

The term environment is used to show that R is indeed a planned and coherent 
system (Aragon, 2011; Venables et al., 2004).

 R and Biostatistics

R was initially written by Robert Gentleman and Ross Ihaka* of the Statistics 
Department of the University of Auckland, New Zealand, in 1997. Since then, an R 
development core group of about 20 people has write-access to the R source code.

The original R environment, evolved from the S/S-PLUS languages, was not pri-
marily directed toward statistics and biostatistics. However, since its development 
in the 1990s, it has been become the preferred tool of many working in the areas of 
classical and  modern statistical techniques, including many who apply it in biosta-
tistics with respect to epidemiology, public health, and preventive medicine (Ara-
gon, 2011; Dalgaard, 2002; Everitt & Hothorn, 2006; Mittal, 2011; Murrell, 2006; Peng 
& Domonici, 2008; Teetor, 2011; Venable et al., 2004; Virasakdi, 2011; Verzani, 2005). 
These latter applications are the raison d’être for this book.

As of this writing, the latest version of R is R-2.14.1, offi cially released on Decem-
ber 22, 2011. The primary source of R packages is the Comprehensive R Archive 
Network (CRAN), at http://cran.r-project.org.

R packages may also be found in numerous publications, such as the Journal of 
Statistical Software. That journal’s 45th volume is available at www.jstatsoft.org/v45.

We will now get started with the R-2.9.1 version environment by downloading 
it from the Internet and taking a fi rst look at the R computing environment. Recall 
from Chapter 1 that the R environment was obtained as follows:

Access the Internet at the website of CRAN (http://cran.r-project.org).

To install R: R-2.9.1-win32.exe
http://www.r-project.org/
=> download R
=> Select: USA
http://cran.cnr.Berkeley.edu <http://cran.cnr.berkeley.edu/>
University of California, Berkeley, CA
=> http://cran.cnr.berkeley.edu/
=> Windows (95 and later)
=> base
=> R-2.9.1-win32.exe
AFTER the download completes:
=> Double-click on: R-2.9.1-win32.exe
(on the desktop) to unzip and install R

* Hence the program is called “R.”

http://cran.r-project.org
http://www.jstatsoft.org/v45
http://cran.r-project.org
http://www.r-project.org
http://cran.cnr.Berkeley.edu
http://cran.cnr.berkeley.edu
http://cran.cnr.berkeley.edu
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=>  An icon (Script R 2.9.1) will appear on your computer desktop as shown in 
Figure 3.1.

FIGURE 3.1 The R icon on the computer desktop.

In this book, the following scheme is used for all statements during the compu-
tational activities in the R environment to clarify the various inputs to and outputs 
from the computational process:

1. Regular book text
2. Line input in R code
3. Line output in R code
4. Line comment statements in R code

Note: The # sign is the comment character: All text in a line following this sign 
is treated as a comment by the R program, and no computational action will be 
taken regarding such a statement. That is, the computational activities will ignore 
the comments and proceed as though the comment statements did not exist. These 
comment statements help the programmer and user by providing some clarifi cation 
of the purposes of the rest of the R environment. However, the computations will 
proceed even if these comment statements are eliminated.

To use R with a Microsoft Windows operating system, double-click on the R 
2.9.1 icon.

After you select and click on R, the R window opens, with the following decla-
ration:

R version 2.9.1 (2009-06-26)
Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-
07-0
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and 'citation()' on how to cite R or R 

packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an 

HTML browser interface to help.
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Type 'q()' to quit R.
[Previously saved workspace restored]
> # This is the R computing environment.
> # Computations may begin now!
>
> # First, let’s use R as a calculator and try a simple arithmetic
> # operation, say: 1 + 1
> 1+1
[1] 2 # This is the output!
> # WOW! It’s really working!
> # The [1] in front of the output result is part of R’s way of printing numbers
> # and vectors. Although it is not so useful here, it does become so when the
> # output result is a longer vector: see the example in Section 3.5.
>

From this point on, this book is most benefi cially read with the R environment at 
hand. It will be a most effective learning experience if you practice each R command 
as you go through the textual materials.

 A First Session Using R

This subsection introduces some important and practical features of the R environ-
ment (Venables et al., 2004).

Log in and start an R session in the Windows system of the computer:
>
> # This is the R environment.
> help.start() # This outputs a page that lists the various online help manuals
> # and materials available, such as
> # Statistical Data Analysis Manuals,
> # “An Introduction to R” (Venables et al., 2004)
starting httpd help server ... done
If nothing happens, you should open 
'http://127.0.0.1:28103/doc/html/index.html' yourself

At this point, explore the Hypertext Markup Language (HTML) interface for 
online help right from the desktop, using the mouse pointer to note the various 
features of this facility available within the R environment.

One may now access each of these R program packages and use them for further 
applications as needed.

Returning to the R environment:

> x <- rnorm(100)
> # Generating a pseudo-random 100-vector x
> y <- rnorm(x)
> # Generating another pseudo-random 100-vector y
> plot (x, y)
> # Plotting x vs. y in the plane, resulting in a graphic window (Figure 3.2).
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FIGURE 3.2 Graphical output for plot (x, y).

Remark: For reference, the appendix at the end of this chapter contains the CRAN 
documentation of the R function plot(), available for graphic outputting, which may 
be found by the R code segment:

> ?plot

CRAN has documentation for many R functions and packages.
   Again returning to the R workspace, enter:

>
> ls() # (This is a lowercase “L” followed by “s”; it is the “list” command.)
> # (NOT 1 = “ONE” followed by “s”)
> # This command will list all the R objects now in the R workspace.
> # Outputting:
[1] "E" "n" "s" "x" "y" "z"

Return to the R workspace and enter:
>
> rm (x, y) # Removing all x and all y from the R workspace
> x # Calling for x
Error: object 'x' not found # Of course, the xs have just been removed!
> y # Calling for y
Error: object 'y' not found # Because the ys have been removed too!
>
> x <- 1:10 # Let x = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
> x # Outputting x (just checking!)
[1] 1 2 3 4 5 6 7 8 9 10
> w <- 1 + sqrt(x)/2 # w is a weighting vector of standard deviations
> dummy <- data.frame (x = x, y = x + rnorm(x)*w)
> # Making a data frame of two columns, x and y, for inspection
> dummy # Outputting the data frame dummy
 x y
1 1 1.311612
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2   2 4.392003
3   3 3.669256
4   4 3.345255
5   5 7.371759
6   6 −0.190287
7   7 10.835873
8   8 4.936543
9   9 7.901261
10 10 10.712029
> fm <- lm(y~x, data=dummy) # Doing a simple linear regression
> summary(fm) # Fitting a simple linear regression of y on x,
> # then inspecting the analysis, and outputting:
Call:
lm(formula = y ~ x, data = dummy)

Residuals:
       Min         1Q Median 3Q Max
–6.0140 –0.8133 –0.0385 1.7291 4.2218

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept)    1.0814 2.0604 0.525 0.6139
x    0.7904 0.3321 2.380 0.0445 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.016 on 8 degrees of freedom
Multiple R-squared: 0.4146, Adjusted R-squared: 0.3414
F-statistic: 5.665 on 1 and 8 DF, p-value: 0.04453

> fm1 <- lm(y~x, data=dummy, weight=1/w^2)
> summary(fm1) # Knowing the standard deviation, then doing a weighted
> # regression and outputting:
Call:
lm(formula=y ~ x, data=dummy, weight=1/w^2)

Residuals:
         Min           1Q Median 3Q Max
–2.69867 –0.46190 –0.00072 0.90031 1.83202

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.0814 2.0604 0.525 0.6139
x 0.7904 0.3321 2.380 0.0445 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.356 on 8 degrees of freedom
Multiple R-squared: 0.4424, Adjusted R-squared: 0.3728
F-statistic: 6.348 on 1 and 8 DF, p-value: 0.03583

> attach(dummy) # Masking the columns in the data frame as variables
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The following object(s) are masked _by_ '.GlobalEnv':
x
> lrf <- lowess(x, y) # A nonparametric local regression function lrf
> plot (x, y) # Making a standard point plot, outputting Figure 3.3.
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FIGURE 3.3 A standard point plot.

> lines(x, lrf$y) # Adding in the local regression line
> # outputting Figure 3.4.
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FIGURE 3.4 Adding in the local regression line.
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> abline(0, 1, lty = 3) # adding in the true regression line:
>  # (Intercept = 0, Slope = 1)
>  # outputting Figure 3.5.
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FIGURE 3.5 Adding in the true regression line (intercept = 0, slope = 1).

> abline(coef(fm)) # adding in the unweighted regression line
> # outputting Figure 3.6.
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FIGURE 3.6 Adding in the unweighted regression line.
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> abline(coef(fm1), col="red") # adding in the weighted regression line
> # outputting Figure 3.7.
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FIGURE 3.7 Adding in the weighted regression line.

> detach() # Removing data frame from the search path
> plot(fitted(fm), resid(fm), # Doing a standard diagnostic plot
+ xlab="Fitted values", # to check for heteroscedasticity*,
+ ylab="residuals", # checking for differing variance
+ main="Residuals vs. Fitted") # outputting Figure 3.8.

*Heteroscedasticity occurs when the variance of the error terms differs across 
 observations.

> qqnorm(resid(fm), main="Residuals Rankit Plot")
> # Doing a normal scores plot to check for skewness, kurtosis, and outliers.
> # (Not very useful here.) Outputting Figure 3.9.

>
> rm(fm, fm1, lrf, x, dummy) # Removing these 5 objects
> fm
Error: object 'fm' not found # Checked!
> fm1
Error: object 'fm1' not found # Checked!
> lrf
Error: object 'lrf' not found # Checked!
> x
Error: object 'x' not found # Checked!
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FIGURE 3.8 A standard diagnostic plot to check for heteroscedasticity.
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FIGURE 3.9 A normal scores plot to check for skewness, kurtosis, and outliers.

> dummy
Error: object 'dummy' not found # Checked!
# END OF THIS PRACTICE SESSION
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 The R Environment

Getting through the fi rst session (in the previous section) shows that:

 ■ Technically, R is an expression language with a simple syntax that is almost 
self- explanatory. It is case sensitive: thus, x and X are different symbols and 
refer to different variables. All alphanumeric symbols are allowed, plus “.” and 
“-”, with the restriction that a name must start with “.” or a letter. If it starts 
with “.”, the second character must not be a digit. The command prompt > 
indicates when R is ready for input. This is where you type commands to be 
processed by R; processing will start when you hit the ENTER key.

 ■ Commands consist of either expressions or assignments. When an expression 
is given as a command, it is immediately evaluated and printed, and the value 
is discarded. An assignment evaluates an expression and passes the value to 
a variable—but the value is not automatically printed. To print the computed 
value, simply enter the variable again at the next command.

 ■ Commands are separated either by a new line or by a semicolon (“;”). Several 
elementary commands may be grouped together into one compound expres-
sion by braces (“{“ and ”}”).

 ■ Comments, which start with a hash mark/number sign (“#”), may be put 
almost anywhere. Everything to the end of the line following this sign is 
a comment. Comments may not be used in an argument list of a function 
defi nition or inside strings. If a command is not complete at the end of a 
line, by default R will give a different prompt (a “+” sign) on the second and 
subsequent lines, and continue to read input until the command is completed 
syntactically.

 ■ The result of a command is printed to the output device. If the result is an 
array, such as a vector or a matrix, then the elements are formatted with line 
breaks (wherever necessary) with the indices of the leading entries labeled in 
square brackets: [index]. For example, an array of 15 elements may be out-
putted as follows:

> array(8, 15)
[1] 8 8 8 8 8 8 8 8 8 8
[11] 8 8 8 8 8

 The labels [1] and [11] indicate the fi rst and eleventh elements in the output. 
These labels are not part of the data itself.

Similarly, the labels for a matrix are placed at the start of each row and 
column in the output. For example, for the 3 × 5 matrix M, it is outputted as 
follows:

>
> M <- matrix(1:15, nrow=3)
> M
 [,1] [,2] [,3] [,4] [,5]
[1,]    1 4 7 10 13
[2,]    2 5 8 11 14
[3,]    3 6 9 12 15
>
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Note that the storage is a column-major; that is, the elements of the fi rst column 
are printed out fi rst, followed by those of the second column, and so on. To cause 
a matrix to be fi lled in a row-wise manner rather than the default column-wise 
fashion, use the additional switch byrow=T; this will cause the matrix to be fi lled 
row-wise rather than column-wise:

>
> M <- matrix(1:15, nrow=3, byrow=T)
> M
 [,1] [,2] [,3] [,4] [,5]
[1,]    1 2 3 4 5
[2,]    6 7 8 9 10
[3,]  11 12 13 14 15
>

The fi rst session (completed in the preceding subsection) also shows that a host 
of helpful resources are embedded in the R environment that you can readily access, 
using the online help provided by CRAN.

 Review Questions for Section 3.2

1. Follow the step-by-step instructions given in the opening paragraphs of the first 
session to set up an R environment. The R window should look like this:

 >
Now enter the following arithmetic operations; remember to press ENTER after 

each entry:
(a) 2 + 3 <Enter>
(b) 13 – 7 <Enter>
(c) 17 * 23 <Enter>
(d) 100/25 <Enter>10/25
(e) Did you obtain the following results: 5, 6, 391, 4?

2. Here are a few more. (The <Enter> prompt will be omitted from now on.)
(a) 2^4
(b) sqrt(3)
(c) 1i [1i is used for the complex unit i, where i 2 = 1.]
(d) (2 + 3i) + (4 + 5i)
(e) (2 + 3i) * (4 + 5i)

3. Here is a short session on using R to do complex arithmetic. Just enter the follow-
ing commands into the R environment and report the results:
> th <- seq(-pi, pi, len=20)
> th (a) How many numbers are printed out?
> z <- exp(1i*th)
> z (b) How many complex numbers are printed out?
> par(pty="s")
       (c) Along the menu bar at the top of the R environment:

 ■ Select and left-click on “Window”.
 ■ Move downward and select the second option:

    R Graphic Device 2 (ACTIVE)
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 ■ Go to the “R Graphic Device 2 (ACTIVE)” window.
       (d) What is there?
> plot(z)
       (e) Describe what is in the Graphic Device 2 window.

 3.3 R AS A CALCULATOR (ARAGON, 2011; DALGAARD, 2002)

 Mathematical Operations Using R

To learn to do biostatistical analysis and computations, start by considering the R 
programming language as a simple calculator. Begin here: Just enter an arithmetic 
expression, press the ENTER key, and look for the answer from the machine on the 
next line.

>
> 2 + 3
[1] 5
>

What about other calculations? For example, 13 − 7, 3 × 5, 12 /4, 72, √2, e3, eiπ, 
ln 5 = loge5, (4 + √3)(4 – √3), (4 + i√3)(4 − i√3), … and so on. Just try:

>
> 13 − 7
[1] 6
> 3*5
[1] 15
> 12/4
[1] 3
> 7^2
[1] 49
> sqrt(2)
[1] 1.414214
>
> exp(3)
[1] 20.08554
>
> exp(1i*pi) [1i is used for the complex number i = √−1.]
[1] −1 − 0i [This is the famous Euler’s identity equation: eiπ + 1 = 0.]
> log(5)
[1] 1.609438
> (4+sqrt(3))*(4-sqrt(3))
[1] 13 [Checking: (4 + √3)(4 − √3) = 42 − (√3)2 = 16 − 3 = 13 (Checked!)]
> (4 + 1i*sqrt(3))*(4 − 1i*sqrt(3))
[1] 19+0i [Checking: (4 + i√3)(4 − i√3) = 42 − (i√3)2 = 16 − (−3) = 19 (Checked!)]

Remark: Remember, the [1] in front of the computed result is R’s way of output-
ting numbers. It becomes useful when the result is a long vector. The number N 
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enclosed in brackets [N] is the index of the fi rst number on that line. For example, if 
you generate 23 random numbers from a normal distribution, the following result 
is obtained:

>
> x <- rnorm(23)
> x
  [1] −0.5561324 0.2478934 −0.8243522 1.0697415 1.5681899
  [6] −0.3396776 −0.7356282 0.7781117 1.2822569 −0.5413498 
[11] 0.3348587 −0.6711245 −0.7789205 −1.1138432 −1.9582234 
[16] −0.3193033 −0.1942829 0.4973501 −1.5363843 −0.3729301 
[21] 0.5741554 −0.4651683 −0.2317168
>
Remark: After the random numbers have been generated, there is no output until 
you call for x; then x becomes a vector with 23 elements, so we call it a 23-vector.

The [11] on the third line of the output indicates that 0.3348587 (highlighted in 
gray here for emphasis) is the eleventh element in the 23-vector x. The number of out-
puts per line depends on the length of each element, as well as the width of the page.

 Assignment of Values in R and Computations 
Using Vectors and Matrices

R is designed to be a dynamically typed language; that is, at any time, one may change 
the data type of any variable. For example, you can fi rst set x to be numeric, as has 
been done so far; say, x = 7. You may also set x to be a vector; say, x = c (1, 2, 3, 4). 
Then again, you may set x to be a word object, such as “Hi!” Just watch the follow-
ing R environment:

>
> x <- 7
> x
[1] 7
> x <- c(1, 2, 3, 4) # x is assigned to be a 4-vector.
> x
[1] 1 2 3 4
> x <- c("Hi!") # x is assigned to be a character string.
> x
[1] "Hi!"
> x <- c("Greetings & Salutations!")
> x
[1] "Greetings & Salutations!"
> x <- c("The rain in Spain falls mainly on the plain.")
[1] "The rain in Spain falls mainly on the plain."
> x <- c("Biostatistics", "Epidemiology", "Public Health")
> x
[1] "Biostatistics" "Epidemiology" "Public Health"
>



3.3 R as a Calculator (Aragon, 2011; Dalgaard, 2002) 101

 Computations in Vectors and Simple Graphics

The use of arrays and matrices was introduced in the preceding subsection. In fi nite 
mathematics, a matrix is a two-dimensional (2D) array of elements, which are usu-
ally numbers. In R, the use of the matrix extends to elements of any type, such as a 
matrix of character strings. Arrays and matrices may be represented as vectors with 
dimensions.

In biostatistics, most variables carry multiple values, so computations are 
usually performed between vectors of many elements. These operations among 
multivariates result in large matrices. To demonstrate the results, often graphical 
representations are useful. The following simple example illustrates these opera-
tions being readily accomplished in the R environment:

>
> weight <- c(73, 59, 97)
> height <- c(1.79, 1.64, 1.73)
> bmi <- weight/height^2
> bmi # Read the notes on BMI after the example.
[1] 22.78331 21.93635 32.41004
> # To summarize the results, proceed to compute as follows:
> cbind(weight, height, bmi)
 weight height bmi
[1,]         73 1.79 22.78331
[2,]         59 1.64 21.93635
[3,]         97 1.73 32.41004
>
> rbind(weight, height, bmi)
  [,1] [,2] [,3]
weight 73.00000 59.00000 97.00000
height 1.79000 1.64000 1.73000
bmi 22.78331 21.93635 32.41004
>

Clearly, the functions cbind and rbind bind (join, link, glue, concatenate) the 
vectors by column and by row, respectively, to form new vectors or matrices.

 Use of Factors in R Programming

In the analysis of epidemiologic datasets, categorical variables are often needed. 
These categorical variables indicate subdivisions of the original dataset into var-
ious classes (for example, age, gender, disease stages, degrees of diagnosis, etc.). 
Input of the original dataset is generally delineated into several categories using 
a numeric code: 1 = age, 2 = gender, 3 = disease stage, and so on. Such variables 
are specifi ed as factors in R, resulting in a data structure that enables one to assign 
specifi c names to the various  categories. In certain analyses, it is necessary for R 
to distinguish among categorical codes and variables whose values have direct 
numerical meanings.
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A factor has four levels, consisting of two items:

1. A vector of integers between 1 and 4
2. A character vector of length four containing strings that describe the four levels

Consider the following example:

 ■ A certain type of cancer is being categorized into four levels: stages 1, 2, 3, 
and 4.

 ■ The corresponding pain levels consistent with these diagnoses are none, mild, 
moderate, and severe, respectively.

 ■ In the dataset, fi ve case subjects have been diagnosed in terms of their respec-
tive stages.

The following R code segment delineates the dataset:

> cancerpain <- c(1, 4, 3, 3, 2, 4)
> fcancerpain <- factor(cancerpain, level=1:4)
> levels(fcancerpain) <- c("none", "mild", "moderate", "severe")

The fi rst statement creates a numerical vector cancerpain that encodes the pain 
levels of six case subjects. This is considered a categorical variable for which, using 
the factor function, a factor fcancerpain is created. This may be called with one 
argument in addition to cancerpain (namely, levels = 1 to 4), which indicates that 
the input coding uses the values 1–4. In the fi nal line, the pain level names are 
changed to the four specifi ed character strings. The result is:

> fcancerpain
[1] none severe moderate moderate mild severe
Levels: none mild moderate severe
> as.numeric(fcancerpain)
[1] 1 4 3 3 2 4
> levels(fcancerpain)
[1] "none" "mild" "moderate" "severe"

Remark: The function as.numeric outputs the numerical coding as numbers 1 to 
4, and the function levels outputs the names of the respective levels. The original 
input coding in terms of the numbers 1 to 4 is no longer needed, There is an addi-
tional option to use the function ordered, which is similar to the function factor 
used here.

BMI (BMI NOTES, 2012)

Body mass index (BMI) is a useful measure for human body fat based on an indi-
vidual’s weight and height, although it does not actually measure the percentage of 
fat in the body. Invented in the early 19th century, BMI is defi ned as a person’s body 
weight (in kilograms) divided by the square of the person’s height (in meters). The 
formula universally used in medicine produces a unit of measure of kg/m2:

 BMI = body mass (kg)/{Height (m)}2 (3.3-1)
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A BMI chart may be used to display BMI as a function of weight (horizontal 
axis) and height (vertical axis), with contour lines for different values of BMI or 
colors for different BMI categories (see Figure 3.10).
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FIGURE 3.10 A graph of BMI. The dashed lines represent subdivisions within a major class; the 
“Underweight” classifi cation is further divided into “severe,” “moderate,” and “mild” subclasses.
Source: World Health Organization data (BMI Notes, 2012).

 Simple Graphics

Generating graphical presentations is an important aspect of biostatistical data 
analysis. Within the R environment, one may construct plots that allow production 
of graphics and control of the graphical features. Using the previous example, the 
relationship between body weight and height may be considered by fi rst plotting 
one versus the other, using the following R code segments:

>
> plot (weight, height)
> # Outputting Figure 3.11.
> 
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FIGURE 3.11 An x-y plot for > plot (weight, height).

Remark: (1)   Note the order of the parameters in the plot (x, y) command: the fi rst 
parameter is x (the independent variable, which appears on the hor-
izontal axis) and the second parameter is y (the dependent variable, 
which appears on the vertical axis).

 (2)   Within the R environment, many plotting parameters may be selected 
to modify the output. To get a full list of available options, return to the 
R environment and call for:

> ?plot # This is a call for “Help!” within the R environment.
> # The output is the R documentation for:
plot {graphics} Generic X–Y plotting

This is the offi cial documentation of the R function plot, within the R package 
 graphics. Note the special notations used for plot and {graphics}. To make full use 
of the provisions of the R environment, one should carefully investigate all such 
documentation. (R has many available packages, each containing a number of use-
ful functions.) This document shows all the plotting options available with the R 
environment. A copy of this documentation is shown in the appendix at the end of 
this chapter for reference.

For example, to change the plotting symbol, you may use the keyword pch (for 
“plotting character”) in the following R command:

> plot (weight, height, pch=8)
> # Outputting Figure 3.12.
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FIGURE 3.12 An x-y plot for plot (weight, height, pch = 8).
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Note that the output is the same as that shown in Figure 3.11, except that 
the points are marked with little asterisks, corresponding to Plotting Character 
pch = 8.

In the documentation for pch, a total of 26 options are available, provid-
ing different plotting characteristics for points in R graphics. They are shown in 
Figure 3.13.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

FIGURE 3.13 Plotting symbols in R: pch = n, n = 0, 1, 2, …, 25.

The parameter BMI was chosen so that this value would be independent of a 
person’s height, thus expressing a single number or index indicative of whether a 
case subject is overweight, and by what relative amount.

Of course, one may also plot “height” as the abscissa (the horizontal x-axis) and 
“weight” as the ordinate (the vertical y-axis), as follows:
> plot(height, weight, pch=8) # Outputting Figure 3.14.
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FIGURE 3.14 An x-y plot for > plot (height, weight, pch=8).

A normal BMI is between 18.5 and 25, averaging (18.5 + 25)/2 = 21.75. For this 
BMI value, then, the weight of a typical “normal” person would be (21.75 x height2). 
Thus, one can superimpose a line of “expected” weights at BMI = 21.75 on Figure 
3.14. This line may be accomplished in the R environment by the following code 
segments:

> ht <- c(1.79, 1.64, 1.73)
> lines(ht, 21.75*ht^2) # Outputting Figure 3.15.
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FIGURE 3.15 Superimposed reference curve using lines (ht, 21.75*ht^2).

In the last plot, a new variable for height (ht) was defi ned instead of the original 
(height) because:

 ■ The relation between height and weight is quadratic, and hence nonlinear. 
Although it may not be obvious on the plot, it is preferable to use points that 
are spread evenly along the x-axis rather than relying on the distribution of the 
original data.

 ■ Because the values of height are not sorted, the line segments would not con-
nect neighboring points, but would run back and forth between distant points.

Remarks:

1. In the last of the preceding examples, R was actually doing the arithmetic of 
vectors.

2. Notice that the two vectors weight and height are both 3-vectors, making it rea-
sonable to perform the next step.

3. The cbind statement, when used immediately after the computations have been 
completed, forms a new matrix by binding together matrices horizontally, or 
column-wise. It results in a multivariate response variable. Similarly, the rbind 
statement does a similar operation vertically, or row-wise.

4. If for some reason (such as a mistake in one of the entries) the two entries weight 
and height have different numbers of elements, R will output an error message. 
For example:

>
> weight <- c(73, 59, 97) # a 3-vector
> height <- c(1.79, 1.64, 1.73, 1.48) # a 4-vector
> bmi <- weight/height^2 # Outputting:
Warning message: # An error message!
In weight/height^2:
longer object length is not a multiple of shorter object length
>
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 x as Vectors and Matrices in Biostatistics

We have just seen that a variable, such as x or M, may be assigned as follows:

1. A number, such as x = 7
2. A vector or an array, such as x = c(1, 2, 3, 4)
3. A matrix, such as x =

 [,1] [,2] [,3] [,4] [,5]
[1,] 1 4 7 10 13
[2,] 2 5 8 11 14
[3,] 3 6 9 12 15

4. A character string, such as
x = "The rain in Spain falls mainly on the plain."

5. In fact, in R, a variable x may be assigned a complete dataset, which may consist 
of a multidimensional set of elements, each of which may in turn be any one of 
these kinds of variables. For example, besides being a numerical vector, as in 
number 2 in this list, x may be:
(a) a character vector, which is a vector of text strings whose elements are 

expressed in quotation marks, using double, single, or mixed quotes:

> c("one", "two", "three", "four", "five") # Double quotes
[1]  "one" "two" "three" "four" "five"
>
> c('one', 'two', 'three', 'four', 'five') # Single quotes
[1]  "one" "two" "three" "four" "five"
>
> c("one", 'two', "three", 'four', "five") # Mixed quotes
[1]  "one" "two" "three" "four" "five"

However, a mixed pair of quotes, such as "xxxxx', will not be accepted. 
For example:

> c("one", "two", "three", "four", "five')
+

(b) a logical vector, which takes the value TRUE or FALSE (or NA). For inputs, one 
may use the abbreviation T or F. These vectors are similarly specifi ed using 
the c function:

> c(T, F, T, F, T)
[1] TRUE FALSE TRUE FALSE TRUE

In most cases, there is no need to repeat specifi ed logical vectors. It is 
acceptable to use a single logical value to provide the needed options, as 
vectors of more than one value will respond in terms of relational expres-
sions. Observe:

> weight <- c(73, 59, 97)
> height <- c(1.79, 1.64, 1.73)
> bmi <- weight/height^2
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> bmi # Outputting:
[1] 22.78331 21.93635 32.41004
> bmi > 25 # A single logical value will suffi ce.
[1] FALSE FALSE TRUE
>

 Some Special Functions That Create Vectors

Three functions that create vectors are c, seq, and rep.

c, for “concatenate”; the joining of objects end to end (this was introduced earlier). 
For example:

> x <- c(1, 2, 3, 4) # x is assigned to be a 4-vector.
> x
[1]  1  2  3  4
seq, for “sequence”; defi ning an equidistant sequence of numbers. For example:
> seq(1, 20, 2) # To output a sequence from 1 to 20 in steps of 2.
[1]  1  3  5  7  9 11 13 15 17 19
> seq(1, 20) # To output a sequence from 1 to 20 in steps of 1 (which may
>  # be omitted).
[1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
> 1:20 # This is a simplifi ed alternative to writing seq(1, 20).
[1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
> seq(1, 20, 2.5) # To output a sequence from 1 to 20 in steps of 2.5.
[1]  1.0  3.5  6.0  8.5 11.0 13.5 16.0 18.5
rep, for “replicate”; for generating repeated values. This function takes two forms, 

depending on whether the second argument is a single number or a vector. For 
example:

> rep(1:2, c(3,5)) # Replicating the fi rst element (1) 3 times, and
> # then replicating the second element (2) 5 times
[1] 1 1 1 2 2 2 2 2 # This is the output.
> vector <- c(1, 2, 3, 4)
> vector # Outputting vector
[1] 1 2 3 4
> rep(vector, 5) # Replicating vector 5 times
[1] 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

 Arrays and Matrices

In fi nite mathematics, a matrix M is a 2D array of elements (generally numbers), 
such as:

 M =  1  4  7  10  13
  2  5  8  11  14
  3  6  9  12  15
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The array is usually placed inside parentheses (), or some type of brackets {}, []. In 
R, the use of a matrix is extended to elements of many types, numbers as well as char-
acter strings. For example, in R, the preceding sample matrix M is expressed as follows:

  [,1]  [,2]  [,3]  [,4]  [,5]
 [1,]  1  4  7  10  13
 [2,]  2  5  8  11  14
 [3,]  3  6  9  12  15

 Use of the Dimension Function dim in R

In R, the preceding sample 3 × 5 matrix may be set up as vectors with dimension 
dim(x) using the following code segment:

> x <- 1:15
> x
[1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
> dim(x) <- c(3, 5) # A dimension of 3 rows by 5 columns
> x
 [,1] [,2] [,3] [,4] [,5]
[1,]    1 4 7 10 13
[2,]    2 5 8 11 14
[3,]    3 6 9 12 15

Remark: Here 15 total elements, 1 through 15, are set to be the elements of the 
matrix x. Then the dimension of x is set as c(3, 5), making x a 3 × 5 matrix. The 
assignment of the 15 elements follows a column-wise procedure, such that the ele-
ments of the fi rst column are allocated fi rst, followed by those of the second column, 
then the third column, and so on.

 Use of the Matrix Function matrix in R

Another way to generate a matrix is to use the function matrix. The 3 × 5 matrix used 
in the previous subsection may be created by the following one-line code segment:

> matrix (1:15, nrow=3)
 [,1] [,2] [,3] [,4] [,5]
[1,]    1 4 7 10 13
[2,]    2 5 8 11 14
[3,]    3 6 9 12 15

However, if the 15 elements should be allocated by row, then the following code 
segment should be used:

> matrix (1:15, nrow=3, byrow=T)
 [,1] [,2] [,3] [,4] [,5]
[1,]    1 2 3 4 5
[2,]    6 7 8 9 10
[3,]  11 12 13 14 15
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 Some Useful Functions Operating on Matrices in R

 ■ colnames, rownames, and t (for transpose)

Using the same 3 × 5 matrix example, fi rst the fi ve columns of the 3 × 5 matrix x 
are assigned the names C1, C2, C3, C4, and C5, respectively. Then the transpose is 
obtained, and fi nally one takes the transpose of the transpose to obtain the original 
matrix x:

> matrix (1:15, nrow=3, byrow=T)
 [,1] [,2] [,3] [,4] [,5]
[1,]    1 2 3 4 5
[2,]    6 7 8 9 10
[3,]  11 12 13 14 15
> colnames(x) <- c("C1", "C2", "C3", "C4", "C5")
> x
 C1 C2 C3 C4 C5
[1,]    1 4 7 10 13
[2,]    2 5 8 11 14
[3,]    3 6 9 12 15
> t(x)
 [,1] [,2] [,3]
C1     1 2 3
C2     4 5 6
C3    7 8 9
C4  10 11 12
C5  13 14 15
> t(t(x)) # which is just x, as expected.
 C1 C2 C3 C4 C5
[1,]    1 4 7 10 13
[2,]    2 5 8 11 14
[3,]    3 6 9 12 15

Yet another way to do this is to use the function LETTERS, which is a built-in vari-
able containing the capital letters A through Z. Other useful vectors include letters, 
month.name, and month.abb for lowercase letters, month names, and abbreviated 
names of months, respectively. Take a look:

> X <-LETTERS
> X
[1]    "A"  "B"  "C"  "D"  "E"  "F"  "G"  "H"  "I"  "J"  "K"  "L"  "M"  "N"  "O"
[16]  "P"  "Q"  "R"  "S"  "T"  "U"  "V"  "W"  "X"  "Y"  "Z"
> x <-letters
> x
[1]    "a"  "b"  "c"  "d"  "e"  "f"  "g"  "h"  "i"  "j"  "k"  "l"  "m"  "n"  "o"
[16]  "p"  "q"  "r"  "s"  "t"  "u"  "v"  "w"  "x"  "y"  "z"
> M <- month.name
> M
[1] "January" "February" "March" "April" "May"
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[6] "June" "July" "August" "September" "October"
[11] "November" "December"
> m <- month.abb
> m
[1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct"
[11] "Nov" "Dec"

 NA: “Not Available” for Missing Values in Datasets

NA is a logical constant of length 1, which contains a missing value indicator.
NA can be forced to any other vector type except raw. There are also constants 

NA_integer_, NA_real_, NA_complex_, and NA_character_ of the other atomic 
vector types that support missing values. All of these are reserved words in the R 
language.

 ■ The generic function .na indicates which elements are missing.
 ■ The generic function .na<- sets elements to NA.

The reserved words in R’s parser are if, else, repeat, while, function, for, next, 
break, NA_complex_, NA_character_, ..., and ...1, ...2, and so on, which are used to 
refer to arguments passed down from an enclosing function.

Reserved words outside quotation marks are always parsed to be references to 
the objects linked to in the foregoing list, and are not allowed as syntactic names. 
They are allowed as nonsyntactic names.

 Special Functions That Create Vectors

There are three useful R functions that are often used to create vectors:

1. c for “concatenate,” which was introduced earlier in this section for joining 
items together end to end. For example:

> c(2, 3, 5, 7, 11, 13, 17, 19, 23, 29) # The fi rst 10 prime numbers
[1]  2  3  5  7 11 13 17 19 23 29

2. seq for “sequence,” which is used for listing equidistant sequences of numbers. 
For example:

> seq(1, 20) # Sequence from 1 to 20
[1]  1  2  3  4  5  6   7  8  9 10 11 12 13 14 15 16 17 18 19 20
> seq(1, 20, 1) # Sequence from 1 to 20 in steps of 1
[1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
> 1:20 # Sequence from 1 to 20 in steps of 1
[1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
> seq(1, 20, 2) # Sequence from 1 to 20 in steps of 2
[1]  1  3  5  7  9 11 13 15 17 19
> seq(1, 20, 3) # Sequence from 1 to 20 in steps of 3
[1]  1  4  7 10 13 16 19
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> seq(1, 20, 10) # Sequence from 1 to 20 in steps of 10
[1]  1 11
> seq(1, 20, 20) # Sequence from 1 to 20 in steps of 20
[1] 1
> seq(1, 20, 21) # Sequence from 1 to 20 in steps of 21
[1] 1
>

3. rep for “replicate,” which is used to generate repeated values and may be 
expressed in two ways. For example:

> x <- c(3, 4, 5)
> rep(x, 4) # Replicate the vector x 4 times.
[1] 3 4 5 3 4 5 3 4 5 3 4 5
> rep(x, 1:3) # Replicate the elements of x: the fi rst element once, the second
> # element twice, and the third element three times.
[1] 3 4 4 5 5 5
> rep(1:3, c(3,4,5)) # For the sequence (1, 2, 3), replicate its elements 3,
> # 4, and 5 times, respectively.
[1] 1 1 1 2 2 2 2 3 3 3 3 3

 Review Questions for Section 3.3

1. Generate a “Tower of Powers” by computations using R. There is an interesting 
challenge in arithmetic which goes like this:

√2√2…

What is the value of √2√2…? This is an infinity of ascending “tower of powers” 
of the square root of 2.

Solution: Let x be the value of this “Tower of Powers.” Then it is easily seen that √2x 
= x itself. Do you agree? Watch the lowest √2. Clearly, it follows that x = 2, because 
√22 = 2. This shows that the value of this infinite Tower of Powers of √2 is just 2.

Now use the R environment to verify this interesting result:
(a) Compute √2

> sqrt(2)
(b) Compute √2√2

> sqrt(2)^sqrt(2) [a 2-Towers of √2-s]
(c) > sqrt(2)^sqrt(2)^sqrt(2) [a 3-Towers of √2-s]
(d) > sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2) [a 4-Towers of √2-s]
(e) > sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2) [a 5-Towers of √2-s]
(f) Now try the following computations of 10-, 20-, 30-, and finally 40-Towers of 

Powers of √2, and finally reach the result of 2 (accurate to six decimal places).
> sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^
sqrt(2)
[1] 1.983668 [a 10-Tower of Powers of √2-s]



3.3 R as a Calculator (Aragon, 2011; Dalgaard, 2002) 113

> sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^s
qrt(2)^
+ sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^s
qrt(2)
[1] 1.999586 [a 20-Tower of Powers of √2-s]

> sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^s
qrt(2)^
+ sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^s
qrt(2)^
+ sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^s
qrt(2)
[1] 1.999989 [a 30-Tower of Powers of √2-s]

> sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^s
qrt(2)^
+ sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^s
qrt(2)^
+ sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^s
qrt(2)^
+ sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^sqrt(2)^s
qrt(2)
[1] 2 [a 40-Tower of Powers of √2-s]

Thus, this R computation verifies the solution.
2. (a)  What are the equivalents in R for the basic mathematical operations: +, −, ×, / 

(division), √, and squaring of a number?
(b) Describe the use of factors in R programming. Give an example.

3. If x = (0, 1, 2, 3, 4, 5) and y = (0, 1, 4, 9, 16, 25), use R to plot:
(a) y versus x
(b) x versus y
(c) √y versus x
(d) y versus √x
(e) √y versus √x
(f) √x versus √y

4. Explain, giving an example, how the following functions may be used to combine 
matrices to form new ones: (a) cbind, (b) rbind.

5. (a) Describe the R function factor().
(b) Give an example of using factor() to create new arrays.

6. Using examples, illustrate two procedures for creating:
(a) a vector
(b) a matrix

7. Describe, using examples, the following three functions for creating vectors:
(a) c
(b) seq
(c) rep

8. (a) Use the function dim() to set up a matrix. Give an example.
(b) Use the function matrix() to set up a matrix. Give an example.
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9. Describe, using an example, the use of the following functions operating on a ma-
trix in R: t(), colnames(), and rownames().

10. (a) What are reserved words in the R environment?
(b) In R, how is the logical constant NA used? Give an example.

 Exercises for Section 3.3 (Everitt & Hothorn, 2006; Virasakdi, 2011)

Enter the R environment and do the following exercises using R programming.

1. Perform the following elementary arithmetic exercises:
(a) 7 + 31
(b) 87 – 23
(c) 3.1417 × (7)2

(d) 22/7
(e) e√2

2. BMI is calculated from your weight in kilograms and your height in meters:

BMI = kg/m2

Using 1 kg ≈ 2.2 lb and 1 m ≈ 3.3 ft ≈ 39.4 in.:
(a) Calculate your BMI.
(b) Is it in the “normal” range 18.5 ≤ BMI ≤ 25?

3. In the MPH program, five graduate students taking the class called “Introductory 
Epidemiology” measured their weight (in kilograms) and height (in meters). The 
result is summarized in the following matrix:
 John Chang Michael Bryan Jose
WEIGHT 69.1 62.5 74.3 70.9 96.6
HEIGHT 1.81 1.46 1.69 1.82 1.74
(a) Construct a matrix showing their BMIs as the last row.
(b) Plot:

    (i) WEIGHT (on the y-axis) versus HEIGHT (on the x-axis)
   (ii) HEIGHT versus WEIGHT
(iii)  Assuming that the weight of a typical “normal” person is (21.75 × 

HEIGHT2), superimpose a line of “expected” weight at BMI = 21.75 on the 
plot from (i).

4. (a)  To convert between temperatures in degrees Fahrenheit (F) and Celsius (C), 
the following conversion formulas are used:

F = (9/5)C + 32

C = (5/9) × (F – 32)

At standard temperature and pressure, the freezing and boiling points of water are 
0 and 100 degrees Celsius, respectively. What are the freezing and boiling points 
of water in degrees Fahrenheit?
(b) For C = 0, 5, 10, 15, 20, 25, ..., 80, 85, 90, 95, 100, compute a conversion 

table that shows the corresponding Fahrenheit temperatures.
Note: To create the sequence of Celsius temperatures, use the R function seq(0, 
100, 5).
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5. Use the data in Table 3.1 (Aragon, 2011; CDC, 2005). Assume that a person is 
initially HIV-negative.

If the probability of getting infected per act is p, then the probability of not get-
ting infected per act is (1 − p).

The probability of not getting infected after two consecutive acts is (1 − p)2, and 
the probability of not getting infected after three consecutive acts is (1 − p)3.

Therefore, the probability of not getting infected after n consecutive acts is 
(1 − p)n, and the probability of getting infected after n consecutive acts is 
1 − (1 − p)n.
(a) For the non-blood-transfusion transmission probability (per-act risk) in Table 

3.1, calculate the risk of being infected after 1 year (365 days) if one carries 
out needle-sharing injection-drug use (IDU) once daily for 1 year.

(b) Do these cumulative risks seem reasonable? Why or why not?

TABLE 3.1 Estimated Per-Act Risk (Transmission Probability) for 
Acquisition of HIV by Exposure Route to an Infected Source

EXPOSURE ROUTE RISK PER 10,000 EXPOSURES

Blood transfusion (BT) 9,000

Needle-sharing injection-drug use (IDU) 67

Source: CDC, 2005

SOLUTION:
> p <- 67/10000
> p
[1] 0.0067
> q <- (1 - p)
> q
[1] 0.9933
> q365 <- q^365
> q365
[1] 0.08597238
> p365 <- 1 - q365
> p365
[1] 0.9140276
=> Probability of being infected in a year = 91.40%. A high risk, indeed!

 3.4 USING R IN DATA ANALYSIS IN BIOS

In epidemiologic investigations, after preparing the collected datasets to under-
take biostatistical analysis (as discussed in Section 3.1), the fi rst step is to enter 
the datasets into the R environment. Once the datasets are placed within the R 
environment, analysis will process the data to obtain results leading to creditable 
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conclusions, and likely to recommendations for defi nitive courses of actions to 
improve public and personal health. Several methods for dataset entry are exam-
ined in this section.

 Entering Data at the R Command Prompt

DATA FRAMES AND DATASETS (VIRASAKDI, 2011)

Many epidemiologic investigators use the terms data frame and dataset interchange-
ably. However, one can make distinctions.

In many applications, a complete dataset contains several data frames, includ-
ing the real data that have been collected.

Rules for data frames are similar to those for arrays and matrixes, introduced 
earlier in Section 3.3. However, data frames are more complicated than arrays. In an 
array, if just one cell is a character, then all the columns will be characters. In con-
trast, a data frame can consist of:

 ■ A column “IDnumber,” in which the data are numeric
 ■ A column “Name,” in which the data are characters

In a data frame, each variable can have long variable descriptions, and a fac-
tor can have “levels” or value levels. These properties can be transferred from the 
original dataset in other software formats (such as SPS, Stata, etc.). They can also be 
created in R.

CREATING A DATA FRAME FOR R COMPUTATION USING AN EXCEL SPREADSHEET (WIN-
DOWS PLATFORM)
As an example using a typical set of real case–control epidemiologic research data, 
consider the dataset in Table 3.2. These data were drawn from a clinical trial to eval-
uate the effi cacy of maintenance chemotherapy for case subjects with acute myelog-
enous leukemia (AML), conducted at Stanford University, California, in 1977. After 
reaching a status of remission through treatment by chemotherapy, the patients 
who entered the study were assigned randomly to one of two groups:

 (1) Maintained: this group received maintenance chemotherapy.
 (0) Nonmaintained: this group did not receive chemotherapy; it is the control group.

The clinical trial was done to ascertain whether maintenance chemotherapy pro-
longed the time until relapse (=“death”).

We will use the following procedure (a) to create an AML data fi le, called AML.
csv, in Windows; and (b) to input the new data fi le into R as a data fi le AML.

Creating a Data Frame for R Computation:

1. Data input, using Microsoft Excel:
 (a) Open the Excel spreadsheet.
 (b) Type in data so that the variable names are in row 1 of the Excel  spreadsheet.
 (c) Consider each row of data to represent an individual case subject in the study.
 (d) Start with column A.
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2. Save the spreadsheet as a .csv fi le:
 (a) Click: “File” → “Save as” → and then, in the fi le name box (the upper box at 

the bottom) type: AML.
 (b) In the “Save in:” box (at the top), choose: “Local Disc (C:)”. The fi le AML 

then will be saved in the top level of the C drive; you may choose another 
level or location if you wish.

 (c) In the “Save as Type” box (the lower box at the bottom), scroll down, select, 
and click on: CSV (Comma delimited = Comma Separated Values).

 (d) To close Excel, click the big “X” at the top right-hand corner.
3. In Windows, check the C: drive for the AML.csv fi le.
4. Read AML into R:

 (a) Open R.
 (b) Use the read.csv() function:
  > aml <- read.csv(“C:\\AML.csv”, header = T,sep= “,”).
 (c) This can be also be done by:
  > aml <- read.csv(“C:\\AML.csv”)
  > # Read in the AML.csv fi le from the C: drive of the computer, and call it
  > # aml.

5. Output the AML.csv fi le for inspection:
  > aml # Outputting:

 weeks group status
  1    9 1 1
  2   13 1 1
  3   13 1 0
  4   18 1 1
  5   23 1 1

TABLE 3.2 Data for the AML Maintenance Clinical Study*

A + INDICATES A CENSORED VALUE

GROUP DURATION FOR COMPLETE REMISSION (WEEKS)

1 = Maintained (11) 9,13,13+,18,23,28+,31,34,45+,48,161+ } 1 = Uncensored

0 = Nonmaintained (12) 5, 5, 8, 8, 12, 16+,23,27,30,33,43,45} 0 = Censored (+)

NB: The nonmaintained group may be considered as MBD.**

*Data points taken from Survival Analysis Using S: Analysis of Time-to-Event Data, by Mara Tableman and Jong 

Sung Kim (Boca Raton, FL: Chapman & Hall/CRC, 2004).

**The cancer epigenome is characterized by specifi c DNA methylation and chromatin modifi cation patterns. The 

proteins that mediate these changes are encoded by the epigenetics genes defi ned here as:

■ DNA methyltransferases (DNMT)

■ methyl-CpG-binding domain (MBD) proteins

■ histone acetyltransferases (HAT)

■ histone deacetylases (HDAC)

■ histone methyltransferases (HMT)

■ histone demethylases
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  6   28 1 0
  7   31 1 1
  8   34 1 1
  9   45 1 0
10   48 1 1
11 161 1 0
12     5 0 1
13     5 0 1
14     8 0 1
15     8 0 1
16   12 0 1
17   16 0 0
18   23 0 1
19   27 0 1
20   30 0 1
21   33 0 1
22   43 0 1
23   45 0 1
>

Later in this book, in Section 7.3 of Chapter 7, this dataset will be revisited 
and further processed for survival analysis.

OBTAINING A DATA FRAME FROM A TEXT FILE
Data from various sources are often entered using many different software pro-
grams. They may be transferred from one format to another through the ASCII fi le 
format. For example, in Windows, a text fi le is the most common ASCII fi le, usually 
having a “.txt” extension. There are other fi les in ASCII format, including the “.R” 
command fi le.

Data from most software programs can be output or saved as an ASCII fi le. 
From Excel, a very popular spreadsheet program, the data can be saved in “.csv” 
(comma-separated values) format. This is an easy way to interface between Excel 
spreadsheet fi les and R. Open the Excel fi le and “save as” the .csv format.

Files with fi eld separators: As an example, suppose that the fi le csv1.xls was 
originally an Excel spreadsheet. After it is saved in .csv format, the output fi le is 
called csv1.csv, the contents of which are:

"name","gender","age"
 "A", "F", 20
 "B", "M", 30
 "C", "F", 40

The characters are enclosed in quotation marks and the delimiters (variable sep-
arators) are commas. Sometimes a fi le may not contain quotation marks, as in the 
fi le csv2.csv:

name, gender, age
 A, F, 20
 B, M, 30
 C, F, 40
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For both fi les, the R command to read in the dataset is the same:

> a <- read.csv(“csv1.csv”, as.is=TRUE)
> a
 name gender age
1         A F 20
2         B M 30
3         C F 40

The argument as.is=TRUE keeps all characters as they are; otherwise, the characters 
would have been coerced into factors. The variable “name” should not be factored, 
but “gender” should. The following command should therefore be entered as follows:

> a$gender <- factor(a$gender)

Note that the object a has a class data frame and that the names of the variables 
within the data frame “a” must be referenced using the dollar sign notation $. Oth-
erwise, R will state that the object “gender” cannot be found.

For fi les with white space (spaces and tabs) as the separator, such as in the fi le 
data1.txt, the command to use is read.table():

> a <- read.table(“data1.txt”, header=TRUE, as.is=TRUE)

Files without fi eld separators: Consider the fi le data2.txt, which is in a fi xed 
fi eld format without fi eld separators.

 name gender age
1         A F 20
2         B M 30
3         C F 40

To read in such a fi le, use the function read.fwf():

1. Skip the fi rst line, which is the header.
2. The width of each variable and the column names must be specifi ed:

> a <- read.fwf("data2.txt", skip=1, width=c(1,1,2), col.names
+ = c("name", "gender", "age"), as.is=TRUE)

DATA ENTRY AND ANALYSIS USING THE FUNCTION DATA.ENTRY()

The previous section dealt with creating data frames by reading in data created from 
programs outside R, such as Excel. It is also possible to enter data directly into R by 
using the function data.entry(). However, if the amount of data is large (say, more 
than 15 columns and/or more than 25 rows), the chance of human error is high with 
spreadsheet or text-mode data entry. A software program specially designed for 
data entry, such as EpiData (www.epidata.dk), is more appropriate.

DATA ENTRY USING SEVERAL AVAILABLE R FUNCTIONS

The dataset in Table 3.3 (Aragon, 2011), listing deaths among subjects who received 
a dose of tolbutamide or a placebo in the University Group Diabetes Program (1970), 
is stratifi ed by age.

http://www.epidata.dk
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TABLE 3.3 Deaths Among Subjects Who Received Tolbutamide or a Placebo in the 
University Group Diabetes Program (1970)*

AGE < 55 AGE ≥ 55 COMBINED

TOLBUTAMIDE PLACEBO TOLBUTAMIDE PLACEBO TOLBUTAMIDE PLACEBO

Deaths 8 5 22 16 30 21

Survivors 98 115 76 69 174 184

*Available at http://www.medepi.net/data/ugdp.txt

The R functions that can be used to import the data frame were introduced in 
Section 3.3, earlier in this chapter.

A convenient way to enter data at the command prompt is to use the R functions 
c(), matrix(), array(), apply(), list(), data.frame(), and odd.ratio(), as shown by the 
following examples, which use the data from Table 3.3:

> #Entering data for a vector
> vector1 <- c(8, 98, 5, 115) # Using data from Table 3.3.
> vector1
[1]  8 98  5 115
>
> vector2 <- c(22, 76, 16, 69); vector2 # Data from Table 3.3.
[1] 22 76 16 69
>

> # Entering data for a matrix
> matrix1 <- matrix(vector1, 2, 2)
> matrix1

 [,1] [,2]
[1,] 8 5
[2,] 98 115

> matrix2 <- matrix(vector2, 2, 2); matrix2
 [,1] [,2]
[1,] 22 16
[2,] 76 69
>

> # Entering data for an array
> udata <- array(c(vector1, vector2), c(2, 2, 2))
> udata

, , 1
 [,1] [,2]
[1,] 8 5
[2,] 98 115

http://www.medepi.net/data/ugdp.txt
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, , 2
 [,1] [,2]
[1,] 22 16
[2,] 76 69

> apply(udata, c(1, 2), sum); udata.tot
 [,1] [,2]
[1,] 30 21
[2,] 174 184
>

> # Entering a list
> x <- list(crude.data = udata.tot, stratified.data = udata)
> x$crude.data

 [,1] [,2]
[1,] 30 21
[2,] 174 184
> x$stratified

, , 1
 [,1] [,2]
[1,] 8 5
[2,] 98 115

, , 2
 [,1] [,2]
[1,] 22 16
[2,] 76 69
>

> # Entering a simple data frame
> subjectname <- c("Peter", "Paul", "Mary")
> subjectnumber <- 1:length(subjectname)
> age <- c(26, 27, 28) # These are the singers’ true ages, respectively, in 1964.
> gender <- c("Male", "Male", "Female")
> data1 <- data.frame(subjectnumber, subjectname, age, gender)
> data1
 subjectnumber subjectname age gender
1                          1 Peter 26 Male
2                          2 Paul 27 Male
3                          3 Mary 28 Female
>
> # Entering a simple function
> odds.ratio <- function(aa, bb, cc, dd){ aa*dd / (bb*cc)}
> odds.ratio(30, 174, 21, 184) # Data from Table 3.3.
[1] 1.510673
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DATA ENTRY AND ANALYSIS USING THE FUNCTION SCAN() 
(TEETOR, 2011)

The R function scan() is taken from the CRAN package base. This function, which 
reads data into a vector or list from the console or fi le, takes the following usage 
form:
scan(file = "", what = double(), nmax = -1, n = -1, sep = "",

quote = if(identical(sep, "\n")) "" else “"\"", dec = ".",
skip = 0, nlines = 0, na.strings = "NA",
flush = FALSE, fill = FALSE, strip.white = FALSE,
quiet = FALSE, blank.lines.skip = TRUE, multi.line = TRUE,
comment.char = "", allowEscapes = FALSE,
fileEncoding = "", encoding = "unknown", text)

Argument:

what The type of what gives the type of data to be read. The supported 
types are logical, integer, numeric, complex, character, raw, and list. 
If what is a list, it is assumed that the lines of the data fi le are records, 
each containing length(what) items (“fi elds”) and the list components 
should have elements that are one of the fi rst six types listed or NULL.

The what argument describes the tokens that scan() should expect in the input fi le.
For a detailed description of this function, execute:

> ?scan

The methodology of applying scan() is similar to that for c(), as described in 
the preceding subsection, except that it does not matter that the numbers are being 
entered on different lines. The result will still be a vector.

 ■ Use scan() when accessing data from a fi le that has an irregular or a complex 
structure.

 ■ Use scan() to read individual tokens and use the argument what to describe 
the stream of tokens in the fi le.

 ■ scan() converts tokens into data and then assembles the data into records.
 ■ Use scan() along with readLines(), especially when attempting to read an 

unorthodox fi le format. Together, these two functions will likely result in suc-
cessful processing of the individual lines and tokens of the fi le.

The function readLines() reads lines from a fi le and returns them to a list of 
character strings:

> lines <- readLines("input.text")

One may limit the number of lines to be read, per pass, by using the n parame-
ter, which gives the maximum number of lines to be read:

> lines <- readLines("input.text, n=5) # Read 5 lines and stop

The function scan() reads one token at a time and handles it as instructed. For 
example, assume that the fi le to be scanned and read contains triplets of data (like 
the dates and the corresponding daily highs and lows of fi nancial markets):
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15-Oct-1987 2439.78 2345.63 16-Oct-1987 2396.21 2207.73
19-Oct-1987 2164.16 1677.55 20-Oct-1987 2067.47 1616.23
21-Oct-1987 2087.07 1951.76

Use a list to inform scan() that it should expect a repeating, 3-token sequence:

> triplets <- scan("triples.txt, what=list(character(0), numeric(0), numeric(0)))

Give names to the list elements, and scan() will assign those names to the data:

> triplets <- scan("triples.txt,
+ what=list(date=character(0), high=numeric(0), low=numeric(0)))

Here, it reads fi ve records:

> triples # Outputs:
$date
[1] "15-Oct-1987" "15-Oct-1987" "19-Oct-1987" "20-Oct-1987" "21-Oct-1987"
$high
[1] 2439-78 2396.21 2164.16 2067.47 2081.07
$low
[1] 2345.63 2207.73 1677.55 1616.21 1951.76

DATA ENTRY AND ANALYSIS USING THE FUNCTION SOURCE() (ARAGON, 
2011; TEETOR, 2011; VENABLES ET AL., 2004)

The R function source() is also taken from the CRAN package base. This function, 
which reads data into a vector or list from the console or fi le, takes the following 
usage form:

source() causes R to accept its input from the named fi le or URL or connection. 
Input is read and parsed from that fi le until the end of the fi le is reached; then the 
parsed expressions are evaluated sequentially in the chosen environment:

source(file, local = FALSE, echo = verbose, print.eval = echo,
verbose = getOption("verbose"),
prompt.echo = getOption("prompt"),
max.deparse.length = 150, chdir = FALSE,
encoding = getOption("encoding"),
continue.echo = getOption("continue"),
skip.echo = 0, keep.source = getOption("keep.source"))

Commands that are stored in an external fi le, such as commands.R in the work-
ing directory “work,” can be executed in an R environment with the command:

> source("command.R")

The function source() instructs R to read the text and execute its contents. Thus, 
when you have a long or frequently used piece of R code, you may capture it inside 
a text fi le. This allows you to rerun the code without having to retype it, and use the 
function source() to read and execute the code.

For example: Suppose that the fi le howdy.R contains the familiar greeting:

Print("Hi, My Friend!")
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By sourcing the fi le, you can execute the content of the fi le, as in the following 
R code segment:

> source("howdy.R")
[1] "Hi, My Friend!"

Setting echo-TRUE will echo the same script lines before they are executed, with 
the R prompt shown before each line:

> source("howdy.R", echo=TRUE)
> Print("Hi, My Friend!")
[1] "Hi, My Friend!"

DATA ENTRY AND ANALYSIS USING THE SPREADSHEET INTERFACE IN R 
(ARAGON, 2011)

Data entry with R’s spreadsheet interface uses the following R functions in the pack-
age utils:

data.entry(..., Modes = NULL, Names = NULL)
dataentry(data, modes)
de(..., Modes = list(), Names = NULL)

The arguments of these R functions are as follows:

... A list of variables; currently, these should be numeric or character vec-
tors or a list containing such vectors.

Modes The modes to be used for the variables.
Names The names to be used for the variables.
Data A list of numeric and/or character vectors.
Modes A list of a length up to that of data giving the modes of (some of) the 

variables; list() is allowed.

The function data.entry() edits an existing object, saving the changes to the 
original object name. However, the function edit() edits an existing object but does 
not save the changes to the original object name; thus, one must assign it to an object 
name (even if it is the original name).

To enter a vector, one needs to initialize a vector and then use the function data.
entry(). For example:

Start by entering the R environment, and set:

> x <- c(2, 4, 6, 8, 10) # X is initially defi ned as an array of fi ve elements.
> x # Just checking to make sure.
[1] 2 4 6 8 10 # x is indeed set to be an array of fi ve elements.
>
> data.entry(x) # Entering the Data Editor:
> # The Data Editor window opens. Looking at the fi rst column:
> # it is now named “x”, with the fi rst fi ve rows (all in the fi rst column) fi lled
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> # respectively, by the numbers 2, 4, 6, 8, 10
> # One can now edit this dataset by, say, changing all the entries to 2, then
> # closing the Data Editor window and returning to the R console window.
> x
[1] 2 2 2 2 2 # x is indeed changed.
> # Thus, one can change the entries for x via the Data Editor, and save the changes.

When using the functions data.entry(x) and edit() for data entry, there are a 
number of limitations (Aragon, 2011):

 ■ Arrays and nontabular lists cannot be entered using a spreadsheet editor.
 ■ When using the function edit() to create a new data frame, one must assign it 

an object name in order to save the data frame.
 ■ This approach is not a preferred method for entering data because one often 

prefers to have the original data in a text editor or available to be read in from 
a data fi le.

EDITING A DATA FRAME IN R (ADLER, 2010)

To edit a data frame, one may use the function edit(). This calls up a spreadsheet 
editor with a column for each variable in the data frame. Within the editor spread-
sheet, one may then direct the mouse/cursor and begin editing the existing cells 
by typing in the new data in place of the old data. One may also change the type of 
variable from real (numeric) to character (factor) by clicking on the column headers. 
The names of the variables may also be changed. When the Data Editor is closed, 
the new edited data frame is assigned to the new name given, and the original data frame is 
left unchanged.

For example, if the dataset cancer, in the package survival, is to be edited, one 
may use:

> data(cancer)
> cancer1 <- edit(cancer)

This is illustrated in the next example. Moreover, to enter data into a blank data 
frame, one may use:

> newdata <- data.frame()
> fix(newdata)

 ■ Example: In the data frame cancer, in the CRAN package survival, change the 
meal.cal value of the fi rst row from 1175 to 1176.

Solution: The following R code segment is used to accomplish the required editing 
task:
> install.packages("survival") # Installing the package survival
> library(survival) # Bringing in the fi les of survival
> ls("package:survival") # Listing all the fi les in survival, noting that
> # the data frame cancer is among them.
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 [1] "aareg" "aml" "attrassign"
 [4] "basehaz" "bladder" "bladder1"
 [7] "bladder2" "cancer" "cch"
[10] "cgd" "clogit" "cluster"
[13] "colon" "cox.zph" "coxph"
[16] "coxph.control" "coxph.detail" "coxph.fit"
[19] "dsurvreg" "format.Surv" "frailty"
[22] "frailty.gamma" "frailty.gaussian" "frailty.t"
[25] "heart" "is.na.coxph.penalty" "is.na.ratetable"
[28] "is.na.Surv" "is.ratetable" "is.Surv"
[31] "jasa" "jasa1" "kidney"
[34] "labels.survreg" "leukemia" "logan"
[37] "lung" "match.ratetable" "mgus"
[40] "mgus1" "mgus2" "nwtco"
[43] "ovarian" "pbc" "pbcseq"
[46] "pspline" "psurvreg" "pyears"
[49] "qsurvreg" "ratetable" "ratetableDate"
[52] "rats" "ridge" "stanford2"
[55] "strata" "Surv" "survConcordance"
[58] "survdiff" "survexp" "survexp.mn"
[61] "survexp.us" "survexp.usr" "survfit"
[64] "survfitcoxph.fit" "survobrien" "survreg"
[67] "survreg.control" "survreg.distributions" "survreg.fit"
[70] "survregDtest" "survSplit" "tcut"
[73] "tobin" "tt" "untangle.specials"
[76] "veteran"
> data(cancer) # Calling in the data frame cancer
> cancer # Checking over the data frame (looking at the fi rst 5 lines only)

 inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
1 3   306 2 74 1 1 90 100 1175 NA
2 3   455 2 68 1 0 90 90 1225 15
3 3 1010 1 56 1 0 90 90 NA 15
4 5   210 2 57 1 1 90 60 1150 11
5 1   883 2 60 1 0 100 90 NA 0

> cancer1 <- edit(cancer) # Editing cancer and renaming it cancer1
> # A spreadsheet with the dataset cancer opens. Within the spreadsheet,
> # manually change the fi rst meal.cal entry from "1175" to "1176":

 inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
1 3   306 2 74 1 1 90 100 1176 NA
2 3   455 2 68 1 0 90 90 1225 15
3 3 1010 1 56 1 0 90 90 NA 15
4 5   210 2 57 1 1 90 60 1150 11
5 1   883 2 60 1 0 100 90 NA 0
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> # Close the spreadsheet. Return to the R environment and check the
> # newly edited data frame cancer1:
> cancer1
 inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
1 3   306 2 74 1 1 90 100 1176 NA
2 3   455 2 68 1 0 90 90 1225 15
3 3 1010 1 56 1 0 90 90 NA 15
4 5   210 2 57 1 1 90 60 1150 11
5 1   883 2 60 1 0 100 90 NA 0

> # cancer1 is the edited dataset, as required. The original data frame
> # cancer remains unchanged.

 The Function list() and the Making of data.frame() in R (Dalgaard, 2002; 
Teetor, 2011; Venables et al., 2004)

THE FUNCTION list()
A list in R consists of an ordered collection of objects—its components—which may 
be of any mode or type. For example, a list may consist of a matrix, a numeric vec-
tor, a complex vector, a logical value, a character array, a function, and so on. The 
following example shows a simple way to create a list.

 ■ Example: It’s as easy as 1, 2, 3!

> x <- 1
> y <- 2
> z <- 3
> list1 <- list(x, y, z) # Forming a simple list
> list1 # Outputting:
[[1]]
[1] 1
[[2]]
[1] 2
[[3]]
[1] 3

The components are always numbered and may be referred to as such. Thus, if 
my.special.list is the name of a list with four components, they may be referred to 
individually as my.special.list[[1]], my.special.list[[2]], my.special.list[[3]], and my
. special.list[[4]].

If one defi nes my.special.list as follows:

> my.special.list <- list(name="John", wife="Mary",
+ number.of.children=3, children.age=c(2, 4, 6))
then

> my.special.list[[1]] # Outputting:
[1] "John"
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> my.special.list[[2]]
[1] "Mary"
> my.special.list[[3]]
[1] 3
> my.special.list[[4]]
[1] 2 4 6

The Number of Components in a List: The number of (top-level) components in a 
list may be found by the function length(). Thus:

> length(my.special.list)
[1] 4

That is, the list my.special.list has four components.
To combine a set of objects into a larger composite collection for more effi cient 

processing, the list function may be used to construct a list from its components. As an 
example, consider

> odds <- c(1, 3, 5, 7, 9, 11,13,15,17,19)
> evens <- c(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)
> mylist <- list(before=odds, after=evens)
> mylist
$before
[1] 1 3 5 7 9 11 13 15 17 19
$after
[1] 2 4 6 8 10 12 14 16 18 20
> mylist$before
[1] 1 3 5 7 9 11 13 15 17 19
> mylist$after
[1] 2 4 6 8 10 12 14 16 18 20

Components of a List: Components of a list may be named. In such a case, the 
component may be referred to either:

1. By giving the component name as a character string in place of the number in 
double square brackets, or

2. By giving an expression of the form > name$component_name for the same 
object

 ■ Example 2: Concatenating Lists

Take any three, more or less, lists:

> list.A <- c("The", "quick", "brown")
> list.A
[1] "The" "quick" "brown"
> list.B <- c("fox", "jumps", "over")
> list.B
[1] "fox" "jumps" "over"
> list.C <- c("the", "lazy", "dog")
> list.C
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[1] "the" "lazy" "dog"
> list.ABC <- c(list.A, list.B, list.C) # Concatenating the three lists
> list.ABC # Outputting:
[1] "The" "quick" "brown" "fox" "jumps" "over" "the" "lazy" "dog"
>

THE CONSTRUCTION OF DATA FRAMES USING THE FUNCTION 
data.frame()
A data frame is a list with class “data.frame”. Restrictions on lists that may be turned 
into data frames are as follows:

 ■ The components in the list must be vectors (including numeric, logical, or 
character), numeric matrixes, lists, factors, or other data frames.

 ■ Matrixes, lists, and data frames provide as many variables to the new data 
frame as that frame has columns, elements, and variables, respectively.

 ■ Numeric and logical vectors and factors are included as is. Character vectors 
are restricted to being factors, whose levels are the unique values appearing in 
the vector.

 ■ Vector structures appearing as variables of the data frame should all have the 
same row size.

For most purposes, a data frame may be considered a matrix with columns possibly 
of different modes and attributes. However, a data frame may be shown in matrix 
form, with its rows and columns extracted using matrix-indexing conventions.

The function data.frame(), from the R package base, creates data frames 
that are tightly coupled collections of variables sharing many of the properties of 
matrixes and of lists. This function is used as the fundamental data structure by 
most of R’s modeling software. It is defi ned by

data.frame(..., row.names = NULL, check.rows = FALSE,
 check.names = TRUE,
 stringsAsFactors = default.stringsAsFactors())

Many rules used for arrays are also applicable to data frames. For example, 
the main structure of a data frame consists of columns (or variables) and rows (or 
records). The rules for subscripting, column or row binding, and selection of a sub-
set in arrays apply to data frames.

However, data frames are more complicated than arrays:

 ■ All columns in an array are forced to be character if just one cell is a character. 
In contrast, a data frame can have different classes of columns. For example, 
a data frame can consist of a column “Patient.ID”(which is numeric); and a 
column “name”(which is character).

 ■ A data frame can also have extra attributes. For example, each variable can 
have lengthy variable descriptions.

 ■ A factor in a data frame often has “levels” or value labels.

These attributes can be transferred from the original dataset in other formats, 
such as SAS, SPSS, or Stata. They can also be created in R during the analysis.
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OBTAINING A DATA FRAME FROM A TEXT FILE

Obtaining a data frame from a text fi le was discussed earlier in this section, and exam-
ples were given. Those subsections dealt with creating data frames by reading in data 
created from programs outside R, such as Excel on the Windows platform. We also 
discussed, and gave examples of, obtaining a data frame by entering data directly 
into R using the function data.entry(). As noted there, the chance of human error is 
high when spreadsheet or text-mode data entry is undertaken. Hence, the software 
program EpiData, which is specially designed for data entry, is more appropriate.

EpiData has facilities for setting up useful constraints such as range checks, 
automatic jumps, and labeling of variables and values (codes) for each variable. 
One can do a direct transfer between EpiData and R (using “read.epiinfo”), but it is 
recommended to export data from EpiData (using the export procedure inside that 
software) to Stata format and use the function read.dta to read the dataset into R. 
Exporting data into Stata format maintains many of the attributes of the variables, 
such as the variable labels and descriptions (Virasakdi, 2011).

 Review Questions for Section 3.4

1. To use R in data analysis in BIOS, the data to be processed must first be entered 
into the R environment. Discuss seven ways of entering data, giving examples.

2. How can the function list() be used to enter data into the R environment? Provide 
an example.

3. Use the function data.frame() to enter data into the R environment, giving an example.
4. Use the following functions to input data into the R environment, giving an example 

of each: c(), matrix(), and array().
5. Use the function source() to enter data into the R environment, giving an example.
6. What are the limitations when using the functions data.entry(x) and edit() for 

data entry?
7. Show that the function list() may be used to combine several components to form a 

new list, giving an example.
8. Write a code segment in R to extract the name of a component stored in another 

variable, giving an example.
9. Set up an example in which you use the concatenation function c() with given list 

arguments, and obtain a list whose components are those of the argument list 
joined together sequentially, in the following form:
> list.ABC <- c(list.A, list.B, list.C)

10. Look up the EpiData software from its website (www.epidata.dk), and suggest an 
efficient method of data entry in R.

 Exercises for Section 3.4 (Dalgaard, 2002; Everitt & Hothorn, 
2006; Virasakdi, 2011)

1. Bladder cancer data in HSAUR2 (Everitt & Hothorn, 2006).
The data were taken from 31 male patients who were treated for superficial 

bladder cancer. The data record the number of recurrent tumors during a particular 

http://www.epidata.dk
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time after removal of the primary tumor, along with the size of the original tumor. 
Let us take an in-depth look at the dataset.
(a) Use the following code segments to enter the dataset to examine its contents:

> data("bladdercancer", package = "HSAUR2")
(b) Output the whole data frame using the code segment:

> bladdercancer
(c) Sort the data frame by components using the code segment:

> data1 <- c(~ number + tumorsize, data = bladdercancer)
> data1

(d) Using the following code segment, you can also reach the package HSAUR2, 
which contains the dataset bladdercancer.
> install.packages("HSAUR2")

You will be asked to select a CRAN site for support of your work:
Please select a CRAN mirror for use in this session ---

If you have no particular preference, select the site USA (CA1), which is the 
University of California at Berkeley:
> data ("bladdercancer")

2. Here is another data frame:
(a) Use the following code segments to enter the dataset to examine its 

contents:
> data("HELPrct", package = "mosaic")
> data

(b) Use the following code segment to extract the component from the dataset:
> data1 <- c(data = HELPrct)
> data1

3. Here is one more data frame of epidemiologic interest: the data frame USmelano-
ma, which may also be downloaded from the R package HSAUR2.

In this case, one can examine the annual mortality rate from a malignant 
melanoma by U.S. state, and also by the latitude of their geographical centers. 
These epidemiologic data were collected from the population of White males in 
the United States during 1950–1969. The study was of interest because it was 
thought that

 ■  People with light skin color are more susceptible to the development of 
malignant melanoma.

 ■  The geographic latitude of the location is related to the amount of sun 
exposure per unit time on average.

(a) Use the following code segments to download the dataset from HSAUR2:
> data("USmelanoma", package = "HSAUR2")

(b) Use the following code segment to extract the dataset USmelanoma:
> data
[1] "USmelanoma"
> USmelanoma

(c) Sort the data frame by components using the following code segment:
> data1 <- c(~ mortality + latitude, data = USmelanoma)
> data1
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4. Here are some data frames from the study of genetics (genome size data from 
www.ornl.gov; Seefeld & Linder, 2005).
(a) Use the following code segments to download the vectors that constitute the 

dataset and to create the data frame object:
> organism<-c("Human","Mouse","Fruit Fly",
+ "Roundworm”,”Yeast")
> genomeSizeBP<-
+ c(3000000000,3000000000,135600000,97000000,12100000)
> estGeneCount<-c(30000,30000,13061,19099,6034)

(b) If you have three vectors of equal length, you can join them in a data frame 
using the function data.frame() with the vectors as the arguments of this 
function. Note that the format is “column name”=“vector to add” and the equals 
(not assignment <-) operator is used. Here, you are naming columns rather 
than creating new variables: the variable names are used as column names, 
but you could rename the columns with names other than the variable names:
> comparativeGenomeSize<-
+ data.
> comparativeGenomeSize<-
+ data.frame(organism=organism,genomeSizeBP=genomeSizeBP,
+ estGeneCount=estGeneCount)
> comparativeGenomeSize

(c) Sort the data frame by components using the following code segment:
> data1 <- c(~ organism, data = comparativeGenomeSize)
> data1

5. Using the Data Editor: From ISwR (Introductory S tatistics w ith R; Dalgaard, 2002)
(a) Bring the ISwR package onto the computer-desktop R environment using the 

following code segment:
> install.packages("ISwR")
> # For --- Please select a CRAN mirror for use in this session --- # select CA1

(b) Edit the data frame airquality using the function edit() in the following code 
segment:
> data(airquality)
> aq <- edit(airquality)
 This brings up a spreadsheet-like editor with a column for each variable in the 
data frame.

(c) Once inside the editor, move the cursor around with the mouse or the touch-
pad, and edit the cells by typing in new data or changing the existing data. 
Then close the editor and enter:
> aq
The first two lines of the aq file will look like this:
 Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 10
2 36 118 8.0 72 5 2

(d) Return to the Data Editor by entering:
> aq <- edit(airquality)
 Once back inside the editor, change the data. For example, change the first row 
of the variable “Ozone” from 41 to 42. Then close the editor again and enter:

http://www.ornl.gov
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> aq
The first two lines of the aq file will then look like this:
 Ozone Solar.R Wind Temp Month Day
1 42 190 7.4 67 5 10
2 36 118 8.0 72 5 2
 The value of the variable “Ozone” on the first row has been changed from 41 to 
42. Has the data editing process been a success?

Remark: When the Data Editor is closed, the edited data frame is assigned to aq 
and the original fi le airquality is left unchanged.

 3.5 UNIVARIATE, BIVARIATE, AND MULTIVARIATE DATA ANALYSIS

A univariate dataset has only one variable:{x}, such as {patient name}.
A bivariate dataset has two variables:{x1, x2} or {x, y}, such as {patient name, gender}.
A multivariate dataset has more than two, or many, variables: {x1, x2, x3, …, xn}, 

such as {patient name, gender, age, diagnosis, treatment, …}.

 Univariate Data Analysis

As an example, enter the following code segments:

> x <- rexp(100); x # Outputting 100 exponentially distributed random
> # numbers:
 [1] 0.39136880 0.66948212 1.48543076 0.34692128 0.71533079 0.12897216
 [7] 1.08455419 0.07858231 1.01995665 0.81232737 0.78253619 4.27512555
[13] 2.11839466 0.47024886 0.62351482 1.02834522 2.17253419 0.37622879
[19] 0.16456926 1.81590741 0.16007371 0.95078524 1.26048607 5.92621325
[25] 0.21727112 0.07086311 0.83858727 1.01375231 1.49042968 0.53331210
[31] 0.21069467 0.37559212 0.10733795 2.84094906 0.17899040 1.34612473
[37] 0.00290699 1.77078060 1.79505318 0.09763821 1.96568170 0.15911043
[43] 4.36726420 0.33652419 0.01196883 0.35657882 0.72797670 0.91958975
[49] 0.68777857 0.29100399 0.22553560 1.56909742 0.20617517 0.37169621
[55] 0.53173534 0.26034316 0.21965356 2.94355695 1.88392667 1.13933083
[61] 0.31663107 0.23899975 0.01544856 1.30674088 0.53674598 1.72018758
[67] 0.31035278 0.81074737 0.09104104 1.52426229 1.35520172 0.27969075
[73] 1.36320488 0.56317216 0.85022837 0.49031656 0.17158651 0.31015165
[79] 2.07315953 1.29566872 1.28955269 0.33487343 0.20902716 2.84732652
[85] 0.58873236 1.54868210 2.93994181 0.46520037 0.73687959 0.50062507
[91] 0.20275282 0.49697531 0.58578119 0.49747575 1.53430435 4.56340237
[97] 0.90547787 0.72972219 2.60686316 0.33908320

Note: The function rexp() is defi ned as follows:

rexp(n, rate = 1)
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with arguments:

x Vector

n Number of observations. If length(n) > 1, the length is taken to be the 
 number required.

The exponential distribution with rate l has the following density: f(x) = le−lx, 
for x ≥ 0. If the rate l is not specifi ed, it assumes the default value of 1.

Remark: The function rexp() is one of the functions in R under Exponential in the 
CRAN package stats.

To undertake a biostatistical analysis of this set of univariate data, call up the 
function univax(), in the package epibasix, using the following code segments:
> library(epibasix)
> univar(x) # Outputting:
Univariate Summary
Sample Size: 100
Sample Mean: 1.005
Sample Median: 0.646
Sample Standard Deviation: 1.067
>

Thus, for this sample, with a size of 100 elements, the mean, median, and stan-
dard deviation have been computed.

For data analysis of univariate datasets, the R package epibasix may be used. 
This CRAN (n.d.) package covers many elementary epidemiologic functions for bio-
statistics and epidemiology. It contains elementary tools for the analysis of com-
mon epidemiologic problems, ranging from sample-size estimation, through 2 × 2 
contingency table analysis, and basic measures of agreement (kappa, sensitivity/
specifi city).

Appropriate print and summary statements have also been written to facilitate 
interpretation wherever possible. This work is appropriate for graduate biostatis-
tics/epidemiology courses. This package is a work in progress.

To start, enter the R environment and use the following code segment:

> install.packages("epibasix")
Installing package(s) into 'C:/Users/bertchan/Documents/R/win-library/2.14' 

(as 'lib' is unspecified)
--- Please select a CRAN mirror for use in this session ---
> # Select CA1
trying URL
'http://cran.cnr.Berkeley.edu/bin/windows/contrib/2.14/epibasix_1.1.zip'
Content type 'application/zip' length 57888 bytes (56 Kb)
opened URL
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downloaded 56 Kb
package 'epibasix' successfully unpacked and MD5 sums checked
The downloaded packages are in
C:\Users\bertchan\AppData\Local\Temp\RtmpMFOrEn\downloaded_

packages

With epibasix loaded into the R environment, follow these steps to learn more 
about this package:

1. Go to the CRAN website (http://cran.r-project.org).
2. Select (single click) “Packages” in the left column.
3. On the “Packages” page, select E (for epibasix).

Available CRAN Packages by Name
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

4. Scroll down the list of packages whose names start with “E” or “e”, and select:

epibasix Elementary Epidemiological Functions for a Graduate Epide-
miology\Biostatistics Course

5. When the epibasix page opens up, select: Reference manual: epibasix.pdf
6. The information is now displayed as follows:

Package ‘epibasix’
 January 2, 2012
Version 1.1
Date 2009-05-13
Title  Elementary Epidemiological Functions for a Graduate

Epidemiology\{}Biostatistics Course
Author Michael A Rotondi <mrotondi@uwo.ca>
Maintainer Michael A Rotondi mrotondi@uwo.ca
Depends R (>= 2.01)

For another example, consider the same analysis on the fi rst 100 natural num-
bers, using the following R code segments:

> x <-1:100; x # Consider, and then output, the fi rst 100 natural numbers:
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
[55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
[73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
[91] 91 92 93 94 95 96 97 98 99 100
> # ANOVA Tables: Summarized in the following tables, ANOVA is used for
> # two different purposes:
> library(epibasix)
> univar(x) # Performing a univariate data analysis on the vector x, and
> # outputting:
Univariate Summary
Sample Size: 100

http://cran.r-project.org
mailto:mrotondi@uwo.ca
mailto:mrotondi@uwo.ca
http://epibasix.pdf
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Sample Mean: 50.5
Sample Median: 50.5
Sample Standard Deviation: 29.011

 Bivariate and Multivariate Data Analysis (Daniel, 2005)

When there are two variables, (X, Y), one needs to consider two cases:

Case I: In the classical regression model, only Y (called the dependent variable) is 
required to be random. X is defi ned as a fi xed, nonrandom, variable, and is 
called the independent variable. Under this model, observations are obtained by 
preselecting values of X and determining the corresponding value of Y.

Case II: If both X and Y are random variables, the correlation model is used. 
Under this model, sample observations are obtained by selecting a random 
sample of the units of association, such as persons, characteristics (age, gender, 
locations, points of time, specifi c events/actions/…,), or elements on which 
the two measurements are based; and by recording a measurement of X and 
of Y. In this case, values of X are not preselected but rather occur at random, 
depending on the unit of association selected in the sample.

REGRESSION ANALYSIS

Case I—Correlation analysis cannot be meaningfully performed under this model.
Case II—Regression analysis can be performed under the correlation model.

Correlation for two variables implies a co-relationship between the variables 
and does not distinguish between them as to which is the dependent or  independent 
variable. Thus, one may fi t a straight line to the data either by minimizing ∑(xi – x)2 
or by minimizing ∑(yi – y)2. The fi tted regression line will generally be different in 
the two cases, so a logical question arises as to which line to fi t.

Two situations do exist, and should be considered:

1. If the objective is to obtain a measure of strength of the relationship between the 
two variables, it does not matter which line is fi tted; the measure calculated will 
be the same in either case.

2. If one needs to use the equation describing the relationship between the two 
variables to gauge the dependency of one upon the other, it does matter which 
line is to be fi tted. The variable for which one wishes to estimate means or to 
make predictions should be treated as the dependent variable. That is, this vari-
able should be regressed with respect to the other variable.

AVAILABLE R PACKAGES FOR BIVARIATE DATA ANALYSIS

Among the R packages for bivariate data analysis, a notable one available for 
sample-size calculations in the bivariate random intercept (RI) regression model is 
bivarRIpower.
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 ■ Example of Bivariate Data Analysis: As an example, this package may be used 
to calculate the necessary sample size to achieve 80% power at 5% alpha level 
for null and alternative hypotheses so that the correlation between RIs is 0 and 
0.2, respectively, across six time points. Other covariance parameters are set as 
follows:

 ■ Correlation between residuals = 0
 ■ Standard deviations: 1st RI = 1, 2nd RI = 2, 1st residual = 0.5, 2nd residual = 0.75

The following R code segment may be used:

> library(bivarRIpower)
> bivarcalcn(power=.80,powerfor=’RI’,timepts=6,d1=1,d2=2,
+ p=0,p1=.2,s1=.5,s2=.75,r=0,r1=.1) # Outputting:

Variance parameters
-------------------------------
Clusters = 209.2
Repeated measurements = 6
Standard deviations
1st random intercept = 1
2nd random intercept = 2
1st residual term = 0.5
2nd residual term = 0.75
Correlations
RI under H_o = 0
RI under H_a = 0.2
Residual under H_o = 0
Residual under H_a = 0.1
Con obs under H_o = 0
Con obs under H_a = 0.1831984
Lag obs under H_o = 0
Lag obs under H_a = 0.1674957
Correlation variances under H_o
-------------------------------
Random intercept = 0.005096138
Residual = 0.0009558759
Concurrent observations = 0.00358999
Lagged observations = 0.003574277
Power (%) for correlations
-------------------------------
Random intercept = 80%
Residual = 89.9%
Concurrent observations = 86.4%
Lagged observations = 80%
>
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BIVARIATE NORMAL DISTRIBUTION

Under the correlation model, the bivariates X and Y vary together in a joint dis-
tribution, which, if this joint distribution is normal, is called a bivariate normal 
distribution. From this distribution, inferences may be made based on the results 
of sampling properly from the population. If the joint distribution is known to be 
nonnormal, or if the form is unknown, inferential procedures are invalid. When 
sampling from a bivariate distribution, the following assumptions must hold if 
inferences about the population are to be valid:

 ■ For each value of X, there is a normally distributed subpopulation of Y values.
 ■ For each value of Y, there is a normally distributed subpopulation of X values.
 ■ The joint distribution of X and Y is a normal distribution (the bivariate normal 

distribution).
 ■ The subpopulation of Y values all have the same variance.
 ■ The subpopulation of X values all have the same variance.

Two random variables X and Y are said to be jointly normal if they can be 
expressed in the form

 X = aU + bV (3.5-1)

 Y = cU + dV (3.5-2)

where U and V are independent normal random variables.
If X and Y are jointly normal, then any linear combination

 Z = s1X + s2Y (3.5-3)

has a normal distribution. The reason is that if one has X = aU + bV and Y = cU + dV 
for some independent normal random variables U and V, then

 Z = s1(aU + bV) + s2(cU + dV) = (as1 + cs2)U + (bs1 + ds2) (3.5-4)

Thus, Z is the sum of the independent normal random variables (as1 + cs2)U and 
(bs1 + ds2)V, and is therefore normal.

A very important property of jointly normal random variables is that zero cor-
relation implies independence. If two random variables X and Y are jointly nor-
mal and are uncorrelated, then they are independent. This property can be verifi ed 
using multivariate transforms.

 Multivariate Data Analysis (Daniel, 2005)

Two similar, but distinct, approaches are used for multivariate data analysis: 
 multiple linear regression analysis and multiple correlation model analysis.

MULTIPLE LINEAR REGRESSION ANALYSIS

Multiple linear regression analysis assumes that a linear relationship exists between some 
variable Y (the dependent variable) and n independent variables X1, X2, X3, … , Xn, 
which are called explanatory or predictor variables because of the way they are used.
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For multiple linear regression, the model equation is

 yj = b0 + b1x1j + b2x2j + b3x3j + … + bnxnj + ej (3.5-5)

where yj is a typical value from one of the subpopulations of Y values and the bi 
values are the regression coeffi cients.

x1j, x2j, x3j, …, xnj are particular values of the independent variables X1, X2, X3, 
…, Xn, respectively, and ej is a random variable with mean 0 and variance b2, the 
common variance of the subpopulation of Y values. Generally, ej is assumed to be 
normal and independently distributed.

When Equation (3.5-1) consists of one dependent variable and two independent 
variables, the model becomes

 yj = b0 + b1x1j + b2x2j + ej (3.5-6)

A plane in three-dimensional (3D) space may be fi tted to the data points. For models 
containing more than two variables, it is a hyperplane.

The parameter of interest in this model is the coeffi cient of multiple determi-
nation, R2

y,12…n, obtained by dividing the explained sum of squares by the total sum 
of squares:

 R2
y,12…n = ∑ (yi y)2/∑ (yi y)2 = SSR/SSE (3.5-7)

where
∑ (yi y)2 = the explained variation,
 = the original observed values from the calculated Y values,
 =  the sum of squared deviation of the calculated values from the mean of 

the observed Y values, or
 = the sum of squares due to regression (SSR)
∑ (yi y)2 = the unexplained variation,
 =  the sum of squared deviations of the original observations from the 

calculated values,
 = the sum of squares about regression, or
 = the error sum of squares (SSE).

The total variation is the sum of squared deviations of each observation of Y from 
the mean of the observations:

 ∑ (yj y)2 = ∑ (yi y)2 + ∑ (yi y)2 (3.5-8A)

 SST = SSR + SSE (3.5-8B)

or

Total sum of squares = Explained (regression) sum of squares

 + Unexplained (error) sum of squares (3.5-8C)

MULTIPLE CORRELATION MODEL ANALYSIS

The object of this approach is to gain insight into the strength of the relationship 
between variables.
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The assumptions underlying multiple regression model analysis are:

1. The Xi items are nonrandom fi xed variables, indicating that any inferences 
drawn from sample data apply only to the set of X values observed, but not to 
larger collections of X. Under this regression model, correlation analysis is not 
meaningful.

2. For each set of Xi values, there is a subpopulation of Y values. Usually, one 
assumes that these Y values are normally distributed.

3. The variances of Y are all equal.
4. The Y values are independent of the different selected sets of X values.

The multiple correlation model equation is

 yj = b0 + b1x1j + b2x2j + b3x3j + … + bnxnj + ej (3.5-9)

where yj is a typical value from one of the subpopulations of Y values; the bi values 
are the regression coeffi cients; x1j, x2j, x3j, …, xnj are particularly known values of the 
random variables X1, X2, X3, …, Xn, respectively; and ej is a random variable with 
mean 0 and variance s2, the common variance of the subpopulation of Y values. 
Generally, ej is assumed to be normal and independently distributed.

This model is similar to Equation (3.5-5), with one important distinction: In 
Equation (3.5-5), the Xi items are nonrandom variables, but in Equation (3.5-9), the 
Xi items are random variables. That is, in the correlation model Equation (3.5-9), 
there is a joint distribution of Y and Xi, which is called a multivariate distribution.

Under this model, the variables are no longer considered as being dependent or 
independent, because logically they are interchangeable, and any Xi may play the 
role of Y.

To analyze the relationships among the variables, consider the multiple cor-
relation coeffi cient, which is the square root of the coeffi cient of multiple deter-
mination. Hence, the sample value may be computed by taking the square root of 
Equation (3.5-7):

 R2
y,12…n = √R2

y,12…n = √{∑ (yi y)2/∑ (yi y)2} = √(SSR/SSE) (3.5-10)

 Analysis of Variance (ANOVA, n.d.)

In biostatistics, ANalysis Of VAriance (ANOVA) is a collection of biostatistical 
models in which the observed variance in a particular variable is partitioned into 
components from different sources of variation. ANOVA provides a biostatistical 
test of whether the means of several groups are all equal, and therefore generalizes 
the t-test to more than two groups. Doing multiple two-sample t-tests would result 
in an increased chance of committing a Type I error. For this reason, ANOVA is use-
ful in comparing two, three, or multiple means.

As summarized in Tables 3.4 and 3.5, ANOVA is used for two different  purposes:

1. To estimate and test hypotheses for simple linear regression about population 
variances

2. To estimate and test hypotheses about population means
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TABLE 3.4 ANOVA Table for Testing Hypotheses About Simple Linear Regression

SOURCE DF SUM OF SQUARES MEAN SQUARES F VALUE P-VALUE

Model 1 Σ(  ̂y
i
 − y)2 = SSModel SSM = MSM MSG/MSE = F1, n−2 Pr(F > F1, n−2*)

Residual n − 2 Σe
i
2 = SSResidual SSR/(n − 2) = MSE

Total n − 1 Σ(  ̂y
i
 − y)2 = SSTotal SST/(n − 1) = MST

Residuals are often called errors because they are the part of the variation that 
the line could not explain. In this case,

MSR = MSE = sum of squared residuals/df = ŝ =  estimate for variance of the 
 population regression line

SSTot/(n − 1) = MSTOT = sy
2 = the total variance of the ys

F = t2 for simple linear regression

The larger the F (the smaller the p-value), the more of y’s variation the line explained, 
so the less likely it is that H0 is true. We reject a hypothesis when the p-value < α:

R2 =  proportion of the total variation of y explained by the regression 
line = SSM/SST = 1 – SSResidual/SST

The F test statistic has two different DFs: the numerator = k – 1 and the denom-
inator = N – k → Fk − 1, N – k.

Note: SSE/(N − k) = MSE = sp
2 = (pooled sample variance) = 

( ) ... ( )
( ) ... ( )

n s n s
n n

k k

k

1 1
2 2

1

1 1
1 1

− + + −
− + + −

 

= ŝ 2 = estimate for assumed equal variance (this is the “average” variance for each 
group)
SSTot/(N − 1) = MSTOT = s2 = the total variance of the data (assuming NO groups)
F ≈ variance of the (between) sample means divided by the approximate average 

variance of the data; the larger the F (the smaller the p-value), the more var-
ied the means are, so the less likely it is that H0 is true. It is rejected when the 
p-value < α.

TABLE 3.5 ANOVA Table for Testing Hypotheses About Population Means

SOURCE DF
SUM OF 
SQUARES MEAN SQUARES F VALUE P-VALUE

Group 
(between)

k − 1 Σn
i
(x

i
 x)2 = SSG SSG/(k − 1) = MSG MSG/MSE = F

k − 1, N − k
Pr(F > F

k − 1, N − k
)

Error 
(within)

N − k Σ(n
i
 – 1)s

i
2 = SSE SSE/(N − k) = MSE

Total N − 1 Σ(x
ij
 − x)2 = 

SSTot
SSTot/(N − 1) = MST

Note: N = total number of observations = Σn
i
, where n

i
 = number of observations for group i.
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R2 = proportion of the total variation explained by the difference in means = 
 SSG

SSTot

 ■ Example 1 in Multivariate Data Analysis: Cystic Fibrosis Epidemiologic Study 
(Dalgaard, 2002)

Consider an epidemiologic study of lung function in patients suffering from cystic fi bro-
sis. The data frame may be obtained from CRAN using the following R code segments:

> install.packages("ISwR")
--- Please select a CRAN mirror for use in this session ---
> # Select CA1
> library(ISwR)
> data(cystfibr)
> cystfibr # Outputting a matrix with a heading of 10 items and 25 cases:

 age sex height weight bmp fev1 rv frc tlc pemax
1   7 0 109 13.1 68 32 258 183 137 95
2   7 1 112 12.9 65 19 449 245 134 85
3   8 0 124 14.1 64 22 441 268 147 100
4   8 1 125 16.2 67 41 234 146 124 85
5   8 0 127 21.5 93 52 202 131 104 95
6   9 0 130 17.5 68 44 308 155 118 80
7 11 1 139 30.7 89 28 305 179 119 65
8 12 1 150 28.4 69 18 369 198 103 110
9 12 0 146 25.1 67 24 312 194 128 70
10 13 1 155 31.5 68 23 413 225 136 95
11 13 0 156 39.9 89 39 206 142 95 110
12 14 1 153 42.1 90 26 253 191 121 90
13 14 0 160 45.6 93 45 174 139 108 100
14 15 1 158 51.2 93 45 158 124 90 80
15 16 1 160 35.9 66 31 302 133 101 134
16 17 1 153 34.8 70 29 204 118 120 134
17 17 0 174 44.7 70 49 187 104 103 165
18 17 1 176 60.1 92 29 188 129 130 120
19 17 0 171 42.6 69 38 172 130 103 130
20 19 1 156 37.2 72 21 216 119 81 85
21 19 0 174 54.6 86 37 184 118 101 85
22 20 0 178 64.0 86 34 225 148 135 160
23 23 0 180 73.8 97 57 171 108 98 165
24 23 0 175 51.1 71 33 224 131 113 95
25 23 0 179 71.5 95 52 225 127 101 195

> # To obtain pairwise scatter plots between all the variables
> par(mex=0.5)
> pairs(cystfibr, gap=0, cex.labels=0.9)
> # Outputting fi gure
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Plotting the data frame: A simple plot of all 10 components of the data may be obtained 
by the following code segment:

> plot(cystfibr) # Outputting Figure 3.16.
The function plot() is generic, behaving differently depending on the class of its 
 arguments.
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FIGURE 3.16 Plots for all 10 components of the cystic fi brosis data cystfibr.

Plotting multivariate data: To obtain pairwise scatter plots between all the variables 
in the data frame, the R function pairs() is used in the following code segment:

> par (mex=0.5)
> pairs(cystfibr, gap=0, cex.labels=0.9) # Outputting Figure 3.17.
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FIGURE 3.17 Enhanced pairwise plots for cystic fi brosis data cystfibr.

Here, the arguments control the appearance of the plot:

 ■ The mex graphics parameter reduces the interline distance in the margins.
 ■ gap ( =0, viz., no gap) removes the space between subplots.
 ■ cex.labels ( =0.9 ) decreases the font size.

Remarks:

1. As the individual plots are small, the clarity may be compromised.
2. The 10 variables in the data frame are age, sex, height, weight, bmp, fev1, rv, 

frc, tlc, and pemax.
They represent the following parameters:
age: age, a numeric vector; age in years
sex: sex, a numeric vector code; 0: male, 1: female
height: height, a numeric vector; height (cm)
weight: weight, a numeric vector; weight (kg)
bmp: bmp, a numeric vector; body mass percentage (percentage of normal)
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fev1: fev1, a numeric vector; forced expiratory volume
rv: rv, a numeric vector; residual volume
frc: frc, a numeric vector; functional residual capacity
tlc: tlc, a numeric vector; total lung capacity
pemax: pemax, a numeric vector; maximum expiratory pressure

3. Nevertheless, some special characteristics and clear trends are apparent. For 
example:

(a) In the data frame cystfibr, there are 10 variables: age, sex, height, weight, 
bmp, fev1, rv, frc, tlc, and pemax. It appears that the tenth variable pemax 
may be considered the dependent variable, with the other nine considered as 
independent variables.

(b) In the age versus sex subplot (Row 1, Column 2), because there are only two 
sexes (M, F), all the data are stacked up on two piles: one column for M and 
another column for F.

(c) In the weight versus height subplot (Row 3, Column 4), there is a defi nite trend 
showing that, by a near-linear slope, weight is approximately directly propor-
tional to height.

(d) This data frame contains common variable names such as age, height, 
weight, and so on. To eliminate possible confusion, it is prudent to ensure that 
these identically named objects are not involved elsewhere in the R environ-
ment at this workspace in the same work session.

Further Analysis Using Biostatistical Modeling

Additional information may be obtained by biostatistical modeling of the data frame 
cystfibr. For example, a linear R model lm() may be used to correlate the data. (Clearly, 
other biostatistical models may be used.)

The function lm() is used to fi t linear models. It can be used to carry out regression, 
single-stratum ANOVA, and analysis of covariance.

The form for the use of lm() is
lm(formula, data, subset, weights, na.action,

 method = “qr”, model = TRUE, x = FALSE, y = FALSE,
 qr = TRUE, singular.ok = TRUE, contrasts = NULL, offset, ...)

For a clinical diagnosis of cystic fi brosis using the collected data frame, one may 
consider the maximum expiratory pressure (MEP) parameter, pemax, which is a 
measure of the strength of the respiratory muscles and is obtained by having the patient 
exhale as strongly as possible into a mouthpiece. The maximum value is near total lung 

capacity. Hence, one may defi ne the linear model correlation function to be

> lm(pemax ~ age + sex + height + weight + bmp + fev1 + rv + frc + tlc)

which means that pemax is being described using a linear model that is additive in the 
remaining nine variables. The output of this code segment is

Call:
lm(formula = pemax ~ age + sex + height + weight + bmp +
 fev1 + rv + frc + tlc)
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 Coefficients:
 (Intercept) age sex height weight
  176.0582 −2.5420 −3.7368 −0.4463 2.9928
  bmp fev1 rv frc tlc
  1.7449 1.0807 0.1970 −0.3084 0.1886

> # Using the summary command, more meaningful output was
> # obtained:
> summary(lm(pemax ~ age + sex + height + weight + bmp +
+ fev1 + rv + frc + tlc))
> # Outputting the ANOVA table:
Call:
lm(formula = pemax ~ age + sex + height + weight + bmp + fev1 +
rv + frc + tlc)
Residuals:

 Min 1Q Median 3Q Max
 −37.338 −11.532 1.081 13.386 33.405

Coefficients:
  Estimate Std. Error t value Pr(>|t|)
(Intercept) 176.0582 225.8912 0.779 0.448
age   −2.5420 4.8017 −0.529 0.604
sex   −3.7368 15.4598 −0.242 0.812
height   −0.4463 0.9034 −0.494 0.628
weight     2.9928 2.0080 1.490 0.157
bmp   −1.7449 1.1552 -1.510 0.152
fev1     1.0807 1.0809 1.000 0.333
rv     0.1970 0.1962 1.004 0.331
frc   −0.3084 0.4924 −0.626 0.540
tlc     0.1886 0.4997 0.377 0.711

Residual standard error: 25.47 on 15 degrees of freedom
Multiple R-squared: 0.6373, Adjusted R-squared: 0.4197
F-statistic: 2.929 on 9 and 15 DF, p-value: 0.03195

Remarks:

1. With the function lm(), there was not a great deal of output.
2. With the additional help of the function summary(), more output was obtained.
3. The t-values, in absolute terms, varied from 0.242 to 1.510; thus, there is not one 

single t-value that is biostatistically signifi cant. However, in the joint F test, the 
p-value was 0.03195, which indicated that it is a signifi cant result. The reason for 
this result is that the t-tests will say something about what happens only if one 
variable is removed while all the other variables are left in. The conclusion is, there-
fore, that not one particular variable should be included. It is not biostatistically 
clear whether any particular variable should be removed to form a reduced model.

4. The unadjusted R2 of 0.6373 differs markedly from the adjusted R2 of 0.4197. This 
is likely due to the large number of variables, 10, relative to the number of DF 
for variance, 15. This is consistent with the fact that the former is the change in 
residual sum of squares relative to an empty model, whereas the latter is a similar 
change in residual variance.
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The adjusted R2 is computed as follows:

R1 = Residual standard error = 25.47

Returning to the R environment, the adjusted R-squared (denoted as R2 in the 
code) may be found by the following code segment:

>
> R1 <- 25.47 # This is the residual standard error
> R2 <- 1 - R1^2/var(pemax)
> R2 # Outputting the adjusted R-squared
[1] 0.4197626
>

 Review Questions for Section 3.5

1. Define univariate, bivariate, and multivariate data analyses, giving an example of each.
2. (a) How are these analyses carried out in the R environment?

(b) Give examples of the R code segments for these analyses.
3. (a) What is meant by regression analysis?

(b) How is regression analysis used in data analysis?
4. (a) How is regression analysis carried out in the R environment?

(b) Provide examples of the R functions used for regression analysis.
5. (a) Summarize the two uses of the ANOVA table in data analysis.

(b) For data analysis, suggest an applicable R code segment.

 Exercises for Section 3.5

1. Using the R code segment here:
(a) Create a 50-vector x of 50 random numbers from the standard normal  distribution.
(b) Output x.
(c) Perform a univariate data analysis on x:

> x <- rnorm(1:50)
> x
> install.packages(“epibasix”)
> library(epibasix)
> univar(x)
> x

2. Using the R code segment here:
(a) Install the package ISwR.
(a) Call up the files in this package.
(b) Look into the “Blood Pressure Versus Obesity” dataset bp.obese.
(c) Plot obesity versus blood pressure, distinguishing the data between men and 

women:
> install.packages("ISwR")
> library(ISwR)
> bp.obese
> plot(bp~obese,pch = ifelse(sex=1, "F", "M"), data = bp.obese)
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3. The Epidemiology of Heart Rates After Enalaprilat Treatment
Enalaprilat is a modification of the drug enalapril, an angiotensin-converting 

enzyme (ACE) inhibitor used in the treatment of hypertension and some types 
of chronic heart failure. ACE raises blood pressure by constricting blood vessels; 
hence, enalaprilat is called a pro-drug.

The heart.rate dataset has 36 rows and 3 columns. It contains data for nine pa-
tients with congestive heart failure before and shortly after administration of enalapri-
lat, in a balanced two-way layout. This data frame contains the following columns:

hr a numeric vector; heart rate in beats per minute
subj a factor with levels 1 to 9
time a factor with levels 0 (before), 30, 60, and 120 (minutes after administration)

Using the R code segment here:

(a) Install the package ISwR.
(b) Call up the file heart.rate in this package.
(c) Inspect the dataset.
(d) For each of the nine patients, plot the mean heart rate versus time.

> install.packages(“ISwR”)
> library(ISwR)
> heart.rate
> evalq(interaction.plot(time,subj,hr), heart.rate)

4. Nutritional Epidemiology: An Exercise in Multivariate Data Analysis and Analysis of 
Variance

First, here are some more useful R functions for this application:
The function tapply(), in the CRAN R package base, applies a function to each 

cell of a ragged array; that is, to each nonempty group of values given by a 
unique combination of the levels of certain factors.

The function aov(), in the CRAN R package stats, fits an ANOVA model by a call 
to lm for each stratum.

The Investigation: Weight Gain in Laboratory Rats
Here is an interesting analysis in an investigation in nutritional epidemiology. 

The data arise from an experiment to study the gain in weight of laboratory rats fed 
on four different diets, distinguished by the amount of protein (low and high) and by 
the source of protein (beef and cereal).

Using the R code segment here:
(a) Install the package HSAUR.

> install.packages("HSAUR")

(b) Call up the file weightgain in this package:
> data("weightgain", package = "HSAUR")

(c) Inspect the dataset weightgain:
> weightgain

(d) Summarize the main features of this dataset by calculating the means and 
standard deviation, using the function tapply():.
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> tapply(weightgain$weightgain, list(weightgain$source,

+ weightgain$type), mean)

(e) Plot the mean weight gain for the amount of protein factor, showing that the 
gain for the high-protein diet is far more than for the low-protein diet:
> plot.design(weightgain)

(f) Summarize the cell variances to show that they are relatively similar, and that 
there is no apparent relationship between cell mean and cell variance. This 
in turn shows that the homogeneity assumption of the ANOVA seems to be 
reasonable for this dataset:
> tapply(weightgain$weightgain, list(weightgain$source,
+ weightgain$type), sd)

(g) Use the R function aov() to perform an ANOVA for the dataset; then examine 
the result of the analysis. Finally, use the function summary() to produce an 
ANOVA table:
> wg_aov <- aov(weightgain ~ source * type, data = weightgain)
> wg_aov
> summary(wg_aov)

(h) The resulting ANOVA table shows that the main effect of type is highly signif-
icant, confirming what was seen in part (e) of this exercise. The main effect 
of the source is not significant, but interpretation of both these main effects is 
complicated by the type X source interaction, which approaches significance 
at the 5% level. To understand this interaction effect, plot the mean weight gain 
for low- and high-protein diets for each level of source protein: beef and cereal. 
Use the following R code segment:
> interaction.plot(weightgain$type, weightgain$source,
+ weightgain$weightgain)

(i) From the resulting plot, it can be seen that for low-protein diets, the use of 
cereal as the source of protein resulted in a greater weight gain than the use of 
beef. For high-protein diets, the reverse is true, with the beef/high-protein diet 
leading to the highest weight gain. Obtain the estimates of the intercept and 
the main and interaction effects by extracting them from the model fit by using 
the following R code segment:
> coef(wg_aov)

(j) Note that the model was fitted with the following restrictions:
g1 = 0 (corresponding to Beef) and b1 = 0 (corresponding to High)
 because treatment contrasts were used as the default. This can be seen from 
the following R code segment:
> options("contrasts")

(k) Thus, the coefficient for a source of 14.1 (in the ANOVA table) may be con-
sidered an estimate of the differences g2 – g1. Also, one may use the following 
restriction:

     ∑i gi = 0
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by the following R computations of the coefficients:

> coef(aov(weightgain ~ source + type + source:type, data =
+ weightgain, contrasts = list(source = contr.sum)))

5. Medicare Air Pollution Study (MCAPS; Peng & Domonici, 2008)
The MCAPS package contains maximum likelihood estimates and biostatistical 

variances of the county-specific log-relative risks of hospital admissions for each of 
the cardiovascular and respiratory diseases associated with lags 0, 1, and 2 expo-
sure to PM2.5. (PM2.5 and PM10 are measures of particles in the atmosphere with a 
diameter of less than or equal to a nominal 2.5 and 10 micrometers, respectively.) 
The package also contains air pollution and weather data for the seven geographi-
cal regions used.

The following R code segments load the package, extract the datasets, and 
examine their contents critically.
(a) Run the code segment.
(b) Briefly explain the output at each stage:

> install.packages("MCAPS")
> library(MCAPS)
> initMCAPS("MCAPS")
> getData()
> estimates <-getData("estimates.subset")
> head(estimates[, c("CountyName", "outcome", "beta", "var")])
> sites <- getData("siteList")
> head(sites)
> apw <- getData("APWdata")
> chic <- apw[["17031"]]
> head(chic)

6. Cystic Fibrosis: Polynomial Regression Analysis
Returning to the cystic fibrosis dataset in Example 1 of Section 3.5, the plot of 

pemax versus height shows considerable nonlinearity. Under biostatistics theory, 
to test this observation, it may be instructive to add a nonlinear term in height, such 
as the square of the height: (height)2.
(a) On this basis, provide an R code segment that adds the effect of (height)2 to 

the correlation model.
(Hint: Use the R function predict() for the new model; and newdata, which allows 
the prediction of values for a chosen set of predictors. Choose a set of heights 
between 110 and 180 cm in steps of 2 cm.)
(b) Comment on the success or failure of this new nonlinear correlation  model.
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 APPENDIX: DOCUMENTATION FOR THE plot FUNCTION

plot {graphics} R Documentation 

 Generic X–Y Plotting

DESCRIPTION

Generic function for plotting of R objects. For more details about the graphical 
parameter arguments, see par.

For simple scatter plots, plot.default will be used. However, there are plot 
methods for many R objects, including functions, data.frames, density objects, and 
so on. Use methods(plot) and the documentation for these.
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USAGE

plot(x, y, ...)

ARGUMENTS
x The coordinates of points in the plot. Alternatively, a single plotting 

structure, function, or any R object with a plot method can be provided.
y The y coordinates of points in the plot; optional, if x is an appropriate 

structure.
... Arguments to be passed to methods, such as graphical parameters (see 

par). Many methods will accept the following arguments:
type
What type of plot should be drawn. Possible types are
• "p" for points
• "l" for lines
• "b" for both
• "c" for the lines part alone of "b"
• "o" for both "overplotted"
• "h" for "histogram" like (or "high-density") vertical lines
• "s" for stair steps
• "S" for other steps (see "Details" below)
• "n" for no plotting
All other types give a warning or an error; using, for example, type = 
"punkte" being equivalent to type = "p" for S compatibility. Note that some 
methods (e.g., plot.factor), do not accept this.
main
    An overall title for the plot; see title.
sub
    A subtitle for the plot; see title.
xlab
    A title for the x-axis; see title.
ylab
    A title for the y-axis; see title.
asp
    The y/x aspect ratio; see plot.window.

DETAILS

The two step types differ in their x–y preference. Going from (x1,y1) to (x2,y2) with 
x1 < x2, type = "s" moves fi rst horizontally and then vertically, whereas type = "S" 
moves the other way around.

See also plot.defvault, plot.formula, and other methods; points, lines, par.
For X–Y–Z plotting, see contour, persp, and image.

Examples
require(stats)
plot(cars)
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lines(lowess(cars))
plot(sin, -pi, 2*pi) # see ?plot.function
## Discrete Distribution Plot:
plot(table(rpois(100,5)), type = "h", col = "red", lwd=10,
 main="rpois(100,lambda=5)")
## Simple quantiles/ECDF; see ecdf() {library(stats)} for a better one:
plot(x <- sort(rnorm(47)), type = "s", main = "plot(x, type = \"s\")")
points(x, cex = .5, col = "dark red")





 Graphics Using R

 INTRODUCTION

Up to this point, you have been introduced to many graphical outputs in the R 
environment, all on a casual, ad hoc basis. Clearly, graphics are an important and 
versatile feature in the biostatistics of epidemiology and public health. This chapter 
investigates such graphics facilities in some detail.

R graphics functionality may be described in terms of two systems (Dalgaard, 
2002; Mittal, 2011; Murrell, 2006; Venables, Smith, & R Development Core Team, 
2005): base (or traditional) graphics and grid graphics.

The R graphics system may be considered as consisting of four levels:

1. Graphics packages: mostly listed on the CRAN website
2. Graphics systems: including the graphics and the grid, which will be discussed 

in some detail in this chapter
3. Graphics engines: known as grDevices; these allow users to deal with such 

aspects as font types and colors, output formats, and the like
4. Graphics device packages: including add-on graphics packages, which provide 

the details on graphical outputs

The base system, along with the graphics packages built on it, provides the 
majority of the high-level functions. The exception is the lattice package, which pro-
vides complete plots based on the grid system. Both the base and grid systems may 
be used in batch modes or interactively; however, the latter is more productive. 
For interactive use, at startup time, R initiates a graphics device driver that opens a 
graphics window for the display of interactive graphics. In Microsoft Windows, the 
command is simply windows().

As soon as the device driver is started, R plotting commands may be used to 
produce graphs and create various displays. The available plotting commands are 
classifi ed into three groups:

Group I: High-level functions that create a new, complete plot on the graphics 
device (with the axes, lines, points, labels, titles, etc.)

Group II: Low-level functions that add information to an existing plot (such as 
lines, extra points, labels, etc.)

Group III: Interactive functions that interactively add information to, or remove 
information from, an existing plot using a pointing device such as a touchpad 
or mouse

FOUR
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The foregoing R facilities are known as base graphics. A subsystem, coexisting 
with the base, is a package called grid graphics; this contains the package lattice, 
which provides codes to produce multilevel plots similar to the Trellis system in S.

 Choice of System

Because R can produce complete plots with a single function call, the choice of 
which graphics systems to use depends only on what type of plot is needed. If it 
is necessary to add further outputs to an initial plot, it is important to know the 
specifi c system that was used to produce the original plot: in general, the same 
graphics systems should be used to add output to existing plots (though there are 
exceptions). The grid system usually gives more fl exibility.

 Packages

Functions in R are organized in terms of packages, which allows:

 ■ Loading of only the packages that contain the required functions; this requires 
less memory and thus enables R to run faster.

 ■ Use of functions that others have written and loaded into the package; there 
are now hundreds of these contributed packages.

To download and install packages from within an R session, use:

> install.packages("PACKAGE NAME")

and

> update.packages("PACKAGE NAME")

Upon installation, to load the functions in that package, use:

> library("PACKAGE NAME")

Notes:

1. The base graphics system is provided by the graphics package, which is installed 
and loaded, by default, in a standard installation of R.

2. The Grid Graphics System is provided by the grid package, which, together with 
the lattice package, is also installed by default when the Grid Graphics System 
is loaded.

3. To automate the loading of packages, use:

> help(Startup)
4. To get help on any function FUNCTION, use:

> help(FUNCTION)
For more help, try one or all of the following:
> help(help) # For additional help
> example() # For some examples to run the function under study
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> help.start() # Takes you to further available help
> help.search() # To locate a function for a special purpose
> vignette() # Vignettes have more extensive help

Finally, the R home page has a guide for the R-help forum, to which one submits 
questions for online assistance.

 4.1 BASE (OR TRADITIONAL) GRAPHICS

 High-Level Functions

R’s high-level plotting functions generate a complete plot of the data that have been 
passed as arguments of the function. Unless otherwise requested, axes, labels, and 
titles are generated. A high-level command starts a new plot, erasing the current 
plot if needed.

THE FUNCTION plot()
This is the most commonly used plotting command; it is a generic function. That is, 
the type of plot produced depends on the class or type of the fi rst argument of the 
function. The following are some typical examples.

 ■ Example 4.1

> plot(x)
If x is a time series, plot(x) will produce a time-series plot. If x is numeric vector, this 
function will produce a plot of the values in the vector against their respective indexes 
in the vector. If x is a vector of imaginary numbers, this function will produce a plot of 
the imaginary versus real parts of the vector components.

As an illustration of the function in the R environment, consider:

> x <- 1:25 # Let x be the vector of the fi rst 25 natural numbers

> x # Outputting x:

[1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

> plot(x) # Outputting Figure 4.1.

PLOTTING MULTIVARIATE DATASETS

For plotting multivariate data in R, there are several special functions: pairs(), 
coplot(), stars(), and mosaicplot(). Some are described here, with examples.

pairs(X), where X is a numeric matrix or data frame, outputs a pairwise scatter 
plot of the variables defi ned by the columns of X. In this plot, every column of X is 
plotted against every other column of X, and the n(n – 1) plots, where n is the num-
ber of variables, are arranged in a matrix with plot scales constant over its rows and 
columns.
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 ■ Example 4.2: A simple numerical example of the function pairs(X)

> x <- c(1, 2, 3, 4, 5)
> y <- c(1, 4, 9, 16, 25) # Note: yi = xi2, i = 1,2,3,4,5

> X <- data.frame(x, y)
> X

 x y
1 1  1
2 2  4
3 3  9
4 4 16
5 5 25

> pairs(X)
> # Outputs: Figure 4.2.

 ■ Example 4.3: Output of a simple coplot()

> ## Tonga Trench Earthquakes

> coplot(lat ~ long | depth, data = quakes) # Outputting: Figure 4.3.

If c is a factor, a is then plotted against b for values of c within the interval. The number 
and position of intervals may be controlled with the given.values= argument in coplot(). 
Also, one may use two given variables with the command coplot(a ~ b | c + d), which 
outputs scatter plots of a versus b for every joint conditioning interval of c and d.
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FIGURE 4.1 > plot(x).
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 ■ Example 4.4: for persp(x, y, z, …)

This example is drawn from the online “Documentation” page of the function persp().1

> require(grDevices) # for trans3d

> ## Examples in demo(persp)

>
> # (1) The Obligatory Mathematical surface.

> # Rotated sinc function.

>
> x <- seq(-10, 10, length= 30)
> y <- x
> f <- function(x,y) { r <- sqrt(x^2+y^2); 10 * sin(r)/r }
> z <- outer(x, y, f)
> z[is.na(z)] <- 1
> op <- par(bg = "white")
> persp(x, y, z, theta = 30, phi = 30, expand = 0.5,
+ col = "lightblue")
> # Outputting: Figure 4.4.
>
> persp(x, y, z, theta = 30, phi = 30, expand = 0.5,
+ col = "lightblue",
+ ltheta = 120, shade = 0.75, ticktype = "detailed",
+ xlab = "X", ylab = "Y", zlab = "Sinc( r )")
> # Outputting: Figure 4.5.
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 FIGURE 4.4 > persp(). Figure 4.5 > persp().

ARGUMENTS OF HIGH-LEVEL PLOTTING FUNCTIONS

Arguments that may be used to modify the high-level graphics functions include 
the following:

1 CRAN site for image(){graphics}: http://127.0.0.1:27481/library/graphics/html/image.html
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add=TRUE This additional argument will cause the function to act as a low-level 
function, superimposing the plot on the current plot.

add=FALSE This argument suppresses the generation of axes and may be used 
when adding custom axes with the function axis().

log ="x", log="y", log"xy" These arguments cause the respective axes to be  logarithmic.
type= This argument controls the types of plots produced, as follows:

"p" plots individual points
"l" plots lines
"b" plots points connected by lines
"o" plots points overlaid by lines
"h" plots vertical lines from the points to the zero axis
"s", "S"  plots step functions, with the top/bottom, respectively, of the vertical 

defi ning the point
"n" no plotting

xlab/ylab=(string) Inserts axis labels for the x- and y-axes, respectively.
main/sub=(string)  Inserts fi gure title/subtitle, respectively, placing the text at 

the top of the plot/just below the x-axis.

 Low-Level Plotting Functions

Low-level plotting may be used to add extra information, such as points, lines, text, 
and so on, to an existing display. Some useful low-level plotting functions are:

points (x, y) Draws a sequence of points at the specifi ed coordinates. The speci-
fi ed character(s) are plotted, centered at the coordinates.

lines (x, y) Adds points or connecting lines to the existing plot.

A type=argument may be used with these functions, defaulting to “p” for points() 
and “l” for lines().

text(x, y, labels, …) Adds text to a plot at points x, y. labels is usually an integer 
or character vector; labels[i] is plotted at the points (x[i], y[i]). The default is 
1:length(x). Thus, to plot a set of labeled points, the following sequence may 
be used:
> plot(x, y, type="n"; text(x, y, names)

Here, type="n" suppresses the points but sets up the axes, while the function text() 
supplies special characters, specifi ed by the character vector names for the points.

abline() adds one or more straight lines through the current plot.
abline(a, b) adds a straight line with intercept a and slope b to the existing plot.
abline(v=x) specifi es x-coordinates for the widths of vertical lines to go across a plot.
abline(h=y) specifi es y-coordinates for the heights of horizontal lines to go across 

a plot.
abline(lm.obj) specifi es a list, lm/obj, with a coeffi cient component of length 2, 

which are taken as an intercept and slope, respectively.
axis(side, …) adds an axis to the existing plot on the side specifi ed by the fi rst 

argument (1–4, counting clockwise from the bottom).
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Other arguments control the positions of the axes within or next to the plot, and 
tick positions and labels. It is useful for adding axes after fi rst calling plot() with the 
axes=FALSE argument.

title(main, sub) adds a title main to the top of the current plot in a large font, and 
optionally a subtitle sub at the bottom (in a smaller font).

legend(x, y, legend, …) adds a legend to the existing plot as the position labels 
in the character vector legend. At least one additional argument v (a vector 
with the same length as legend), with the corresponding values of the plotting 
unit, should also be specifi ed, as follows:

legend( , fill=v) specifi es colors for fi lled boxes.
legend( , col=v) specifi es colors in which lines or points will be drawn.
legend( , lty=v) specifi es line styles.
legend( , lwd=v) specifi es line widths.
legend( , pch=v) specifi es plotting characteristics (a character vector).

 ■ Example 4.5: legend(x, y, legend, …)

This function can be used to add legends to plots. Its documentary form is:

legend(x, y = NULL, legend, fill = NULL, col = par("col"),
border="black", lty, lwd, pch,
angle = 45, density = NULL, bty = "o", bg = par("bg"),
box.lwd = par("lwd"), box.lty = par("lty"),
box.col = par("fg"),
pt.bg = NA, cex = 1, pt.cex = cex, pt.lwd = lwd,
xjust = 0, yjust = 1, x.intersp = 1, y.intersp = 1,
adj = c(0, 0.5), text.width = NULL, text.col = par("col"),
merge = do.lines && has.pch, trace = FALSE,
plot = TRUE, ncol = 1, horiz = FALSE, title = NULL,
inset = 0, xpd, title.col = text.col, title.adj = 0.5,
seg.len = 2)

To illustrate its use, for a given existing plot, legends will be added to each of the nine 
major positions on the plot:

> x <- 0:1
> y <- sin(x)
> plot(x, y, type=’n’)
> # Outputting: Figure 4.6.
> legend("bottomright", "(x,y)", pch=1, title="bottomright")
> legend("bottom", "(x,y)", pch=1, title="bottom")
> legend("bottomleft", "(x,y)", pch=1, title="bottomleft")
> legend("left", "(x,y)", pch=1, title="left")
> legend("topleft","(x,y)", pch = 1, title = "topleft, inset = 0.05",
+ inset = .05)
> legend("top", "(x,y)", pch=1, title="top")
> legend("topright", "(x,y)", pch=1, title="topright, inset = 0.02",
+ inset = 0.02)
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> legend("right", "(x,y)", pch=1, title="right")
> legend("center", "(x,y)", pch=1, title="center")
> # Outputting: Figure 4.7.
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FIGURE 4.7 > legend(x, y, legend, …).
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MATHEMATICAL ANNOTATION

In the R environment, to output a given mathematical expression as a graphic, one 
may use the function plotmath(), in the package grDevices. Features of this func-
tion may be found in demo(plotmath) or help(plotmath), among others. Some 
examples follow.

 ■ Example 4.6: Displaying mathematical expressions2

A mathematical expression must obey the normal rules of syntax for any R expression, 
but it is interpreted according to very different rules than for normal R expressions. 
However, it is possible to produce many different mathematical symbols, generate 
superscripts or subscripts, produce fractions, and so on.

Observe the R modes of expression for a typical mathematical expression that 
includes the summation sign, as given by the following R code segment:

> plot(1:10, 1:10)
> text(4, 7, expression(bar(x) == sum(frac(x[i], n), i==1, n)))
> text(4, 6.4, "expression(bar(x) == sum(frac(x[i],n), i==1, n))",
+ cex = .8) # Outputting: Figure 4.8.

expression(bar(x) == sum(frac(x[i], n), i==1, n))

⎯X = ∑
n xi

ni=1
—

2 4 6

1:10

1:
10

8 10

2
4

6
8

10

FIGURE 4.8 Displaying a mathematical expression.

2 CRAN site for plotmath{grDevices}: http://127.0.0.1:10508/library/grDevices/html/plotmath.html
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 Interacting With Graphics

R functions that permit users to add to, or remove from, information on a plot (using 
a mouse) include locator(n = 512, type = "n", ...):

locator(n = 512, type = "n", ...). This function waits for the user to select certain 
locations on the existing plot using the left mouse button. This process contin-
ues until n points have been selected or another mouse button is pressed. The 
type argument permits plotting at the selected points and has the same effect 
for high-level graphics. The default is no plotting. This function returns the lo-
cations of the selected points. When called without an argument, this function 
has a large (512) default value.

identify(x, y, labels) This function allows the highlighting of any points by x and 
y, using the left mouse button by plotting the corresponding component of 
labels nearby. It returns the indexes of the selected points.

 Using Graphics Parameters

One may change many aspects of a graphical display using graphics parameters 
that control features such as line types and widths, colors, fi gure arrangements, text 
manipulations, and so forth. Each graphics parameter has a name; for example, col 
controls colors and a value (e.g., a color number).

Graphics parameters may be set either permanently (affecting all graphics func-
tions that access the existing device), or temporarily (affecting only a single  graphics 
call).

PERMANENT CHANGES: THE FUNCTION par()
par(), in the package graphics, may be used to query or set graphical parameters. 
Parameters may be set by specifying them as arguments to par in tag = value form, 
or by passing them as a list of tagged values. Some typical examples are:

par() Without arguments, this function returns a list of all graphics parameters 
and their values for the existing graphics device.

par(c("lty", "lwd", "col")) With a character vector argument, this function returns 
only the named graphics parameter, which in this case are the line type, line 
width, and line color, respectively.

par(col=3, lty=1) With named arguments setting the values of the named 
 graphics parameters, this function returns only the original values of the 
parameter as a list.

By saving the result of par() when making changes, one may restore the original 
values when the plotting is complete.

 ■ Example 4.7: The function par()

> par1 <- par(mfrow = c(3, 3), # 3 × 3 pictures on one plot

+ col=3, pty = "s") # with color, square plotting region,

>  # independent of device size
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> # At end of plotting, reset to previous settings:

> par(par1)

TEMPORARY CHANGES BY ADDING ARGUMENTS TO 
GRAPHIC FUNCTIONS

By adding graphics parameters to a graphic function such as plot(), the result has 
the same effect as passing the arguments to effect changes expressed in a par() func-
tion, except that the indicated changes will last only for the duration of the graphic 
function call. Thus, for example,

> plot(x, y, pch=20)

will produce a scatter plot using “bullets” (small solid circles) as the plotting charac-
ter, without making changes in the default character for any future plots.

 Parameters List for Graphics

Many useful graphical parameters are outlined in the following subsections.

GRAPHICAL ELEMENTS

A complete list of parameters for graphics may readily be found in the following 
two R function documentation sites, which may be called up as follows:

> ?par
> ?points or ?pch

1. par() {graphics} may be used to set or query graphical parameters. Parameters 
may be set by specifying them as arguments to par().

2. points() {graphics} is a generic function for drawing a sequence of points at 
specifi ed coordinates. The specifi ed characters are plotted and centered at the 
coordinates. The documentation includes that of pch().

TICK MARKS AND AXES

For high-level plots that call for axes, one may construct axes with the low-level 
graphics function axis(). The three components of a set of axes are:

1. The axis line, with the line style controlled by the graphics parameter lty (line 
type)

2. The tick marks that mark off unit divisions along the axis line
3. The tick labels that mark the units

Examples of these features are:

xaxs="r", yaxs="i"

The above is the style of axis interval calculation to be used for the x- and y-axes. 
Possible values are "r" and "i". The styles are generally controlled by the range of 
data or xlim, if given. Style "r" (regular) fi rst extends the data range by 4% at each 
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end and then fi nds an axis with pretty or visually attractive labels that fi ts within 
the extended range. Style "i" (internal) just fi nds an axis with pretty labels that fi ts 
within the original data range.

tck=0.5

The above is the length of tick marks as a fraction of the smaller of the width or 
height of the plotting region. If tck ≥ 0.5, it is interpreted as a fraction of the relevant 
side, so if tck = 1, grid lines are drawn. The default setting is tck = NA.

lab=c(3, 6, 12)

A numerical vector of the form c(x, y, len) that modifi es the default way of annotat-
ing axes. The values of x and y give the (approximate) number of tick marks on the 
x- and y-axes, and len specifi es the label length. The default is c(5, 5, 7).

FIGURE MARGINS

In R, a single plot, known as a fi gure, comprises a plot region surrounded by mar-
gins that may contain titles, subtitles, axis labels, and so on. This region is usually 
bounded by the axes. The parameters controlling fi gure layout include:

mai=c(1.5, 1.0, 1.5, 1.0) These four parameters are the width at the bottom, left, 
top, and right margins, respectively, measured in inches (Figure 4.9).

mar=c(4, 3, 4, 3) Similar to mai, with the measurement unit in text lines.

These two sets of parameters are equivalent because specifying one set changes the 
value of the other. For further details or other sets of parameters for fi gure margins, 
refer to the documentation par {graphics} in CRAN.

mar[3]

Plot region

mai[2]

mai[1] Margin
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FIGURE 4.9 mar = c(a, b, c, d): A numerical vector of the form c(bottom, left, top, right), 
which gives the margin size specifi ed in inches.
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MULTIPLE FIGURE OUTPUTS

In R, one may create an n × m array of fi gures in a page, with each fi gure having 
its own margins and with the array of fi gures optionally surrounded by an outer 
margin or border. In the documentation of par {graphics}, this confi guration may 
be specifi ed as follows:

mfcol, mfrow A vector of the form c(nr, nc). Subsequent fi gures will be drawn 
in an nr-by-nc array on the device by columns (mfcol), or rows (mfrow), 
 respectively.

oma, omi A vector of the form c(bottom, left, top, right) giving the size of the 
outer margins in lines of text, or inches, respectively.

A 3-row × 2-column array is shown in Figure 4.10.

oma[3]

omi[4]

omi[1]

mfg=c(3,2,3,2)

mfrow=c(3,2)

FIGURE 4.10 A 3-row x 2-column array of fi gures set by mfrow=c(3,2) or by mfcol=c(2,3).

For more complicated confi gurations of multiple fi gures, consider the functions 
layout() in layout{graphics} and split.screen() in screen{graphics}.

 Device Drivers

In R computing, the device driver converts graphical instructions (e.g., plot(x, y)) 
into a form that a particular device can accept. Some common device drivers are:
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windows() For use on Windows
quartz() For use on MacOS X
X11() For use with an X11 window system on Unix-like systems
postscript() For printing on PostScript printers or creating PostScript graphics
pdf() For producing a portable document format (PDF) fi le
png() For producing a bitmap portable network graphics (PNG) fi le
jpeg()  For producing a bitmap joint photographic experts group (JPEG; 

good for image plots)

When the run is fi nished, terminate the device driver as follows:

> dev.off()

POSTSCRIPT DIAGRAMS

The graphic function postscript(), also in the grDevices package, starts the graphics 
device driver for producing PostScript graphics. The function has the general form:

postscript(file = ifelse(onefile, "Rplots.ps", "Rplot%03d.ps"),
 onefile, family, title, fonts, encoding, bg, fg,
 width, height, horizontal, pointsize,
 paper, pagecentre, print.it, command,
 colormodel, useKerning, fillOddEven)

Passing the fi le argument by the postscript() device driver function, one stores 
the plot in PostScript format in a designated fi le. That plot will be in landscape 
orientation unless the horizontal=FALSE argument is passed. The size of the graphic 
may be controlled using the width and height arguments.

For example, the code

> postscript("file.ps", horizontal=FALSE, height=3, pointsize=8)

produces a fi le containing PostScript code for a fi gure 3 inches high. Refer to the 
documentation of postscript {grDevices} for further details.

MULTIPLE GRAPHICS DEVICES

When it is necessary to have several graphics devices open simultaneously, even 
when only one device can accept graphics commands at any given instance (that 
being the current device), the multiple devices form a numbered sequence with 
names giving the kind of device at any position. Each new call to a device extends 
the device list by one. That new device becomes the current device to which graph-
ics output will then be directed.

This R function, dev(), also within the package grDevices, is defi ned in one of 
the following forms:

dev.cur()
dev.list()
= return the numbers and names of all active devices.

dev.next(which = dev.cur())
dev.prev(which = dev.cur())
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= return the numbers and names of the following, or prior, active devices.

dev.off(which = dev.cur())

= terminates the graphics device.

dev.set(which = dev.next())

= changes the current device to the next, as specifi ed.

dev.new(...)

= returns the return value of the device opened, usually invisible NULL.

graphics.off()
= terminates all graphics devices on the list, except the null device.

These functions may be used with the following arguments:

which = an integer specifying a device number
…  = arguments to be passed to the device selected

 Review Questions for Section 4.1

1. (a) What are the two systems of R graphics functionality?
(b) What are the four levels that constitute the R graphics system?

2. (a) What are the three groups of plotting commands in R? Briefly describe each.
(b) Suggest an R command for installing a package called PACKAGENAME.

3. (a)  When the package PACKAGENAME has been installed, suggest a command 
to load all the functions in that package.

(b) We want to obtain helpful information regarding a function called FUNCTION. 
Suggest a command to obtain the appropriate documentation for that function.

4. (a) Suggest a function to plot the values of an arbitrary vector x.
(b) Use this function to plot the vector x = (1, 3, 5, 7, 9, 11, 13, 15, 17, 19).

5. x and y are vectors given by x = (1, 3, 5, 7, 9) and y = (2, 4, 6, 8, 10). Construct a 
matrix of two columns, in which the elements of x and y are the elements of Col-
umn 1 and Column 2, respectively.

6. Suggest a command to plot the elements of x and y (from question 5) to obtain a 
pairwise scatter plot of x and y; then obtain the scatter plot.

7. For plotting multivariate datasets, describe the graphics obtained by coplot().
8. What do the following low-level functions add to the graphic display of an already 

completed plot?
 (a) text()
 (b) abline()
 (c) axis()
 (d) legend()
9. (a)  In the package graphics, what graphical parameters may be set by the 

 following parameters in the function par(): "lty", "lwd", and "col"?
(b) When preparing for multiple figure outputs, describe the configurations of the plot 

obtained when using the following parameters: mfcol, mfrow, oma, and omi.
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 Exercises for Section 4.1

1. Using R as a calculator, compute the answers to the following:

(a) 1 + 2
(b) 13 – 5
(c) 17 × 29
(d) 851/37
(e) (3.1416)2

(f) π2

(g) e−3

(h) √(112 – 4 × 3 × 7)
(i) log10(1234567)
(j) sin2(30°)

2. Blood pressure is the pressure of the circulating blood against the walls of the 
blood vessels. It is measured as part of an evaluation of a person’s health. Adult 
blood pressure is considered normal at 120/80; the first number is the systolic 
pressure and the second is the diastolic pressure.

The systolic pressure is measured during the contraction of the left ventricle of 
the heart, and the diastolic pressure is measured after the contraction of the heart 
while the chambers of the heart refill with blood.

The following is the measured systolic pressure of Patient A taken daily for 10 
consecutive days:

145, 150, 135, 140, 160, 170, 138, 168, 155, 165

(a) Enter these 10 readings into the variable bpsystolic.
(b) Use the function diff() on this variable. What do the results mean?
(c) Use the command mean(bpsystolic). What do the results mean?
(d) Use the command mean(diff(bpsystolic)). What do the results mean?

3. Using the function boxplot(), enter the 10 blood pressure readings and obtain a 
plot of these 10 readings (see Figure 4.11).
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FIGURE 4.11 Plot of 10 blood pressure readings.
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4. Four successive national health surveys, for the population of male subjects in their 
20s, showed that the average amount of daily calories was:

2450, 2439, 2866, 2618.

The percentage of calories from fat was 37.0%, 36.2%, 34.0%, 32.1%.
The percentage of calories from carbohydrates was 43.1%, 42.2%, 50.0%, 48.1%.

(a) Is the average number of fat calories increasing or decreasing?
(b)  Is this result consistent with the information that over the same time period, the 

prevalence of obesity in the country increased from 14.5% to 30.9%?
5. For the data in Exercise 4, use the function boxplot() to write down the three com-

mands to obtain plots of the relative levels of:
(a) calories
(b) percentage of calories from fat
(c) percentage of calories from carbohydrates

> boxplot(2450, 2439, 2866, 2618)
> boxplot(37.0, 36.2, 34.0, 32.1)
> boxplot(43.1, 42.2, 50.0, 48.1)

The results are shown in Figures 4.12, 4.13, and 4.14.

6. The following are some data on accident rates by age group (Dalgaard, 2002). The 
age groups are 0–4, 5–9, 10–15, 16, 17, 18–19, 20–24, 25–59, and 60–79 years 
old. The recorded data are summarized as follows:

> group.midage<-c(2.5, 7.5, 13, 16.5, 17.5, 19, 22.5, 44.5, 70-5)
> accidents <- c(28, 46, 58, 20, 31, 64,149, 316, 103)

Combine these two parameters as follows:

> age.acc <- rep(group.midage, accidents)
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FIGURE 4.12 Total calories for four tests.
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Note: The function rep(x) replicates the values in x.
Now, define the break points as follows:

> breakpoint <- c(0, 5, 10, 16, 17, 18, 20, 25, age.acc
60, 80)

Plot a histogram of the parameter age.acc, to display the distribution by age 
groups, as follows:

> hist(age.acc, breaks=breakpoint)
and obtain the histogram of the age.acc factor (Figure 4.15).
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FIGURE 4.13 Percentage of calories from fat for four tests.
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FIGURE 4.14 Percentage of calories from carbohydrates for four tests.
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FIGURE 4.15 Histogram of the age–acc parameter.

7. In the package HSAUR is a dataset water, which is a record of 61 towns in Britain 
with information about the marginal distributions of water hardness ( concentration 
of calcium) and mortality.

(a) Access this dataset by:
 > data("water", package="HSAUR")
(b) Examine the dataset by:
 > water
(c) Obtain a scatter plot of mortality versus hardness by:
 > plot (data = water)
(d) Plot the linear regression line of mortality versus hardness by:
 > abline(lm(mortality ~ hardness, data = water))
(e) Add a legend table on the top-right corner of the graph by:
 > legend("topright", legend = levels(water$location),
 + pch=c(1, 2), bty= "n")
(f) Display a histogram of water versus hardness by:
 > hist(water$hardness)
(g) Show a boxplot of water versus mortality by:
 > boxplot(water$mortality)

The results are shown in Figures 4.16–4.20.
8. Displaying multivariate data.

In a Danish study on the effect of screening for breast cancer (Dalgaard, 2002; 
Olsen et al., 2005), four groups or cohorts were collected:
(i)  The study group, consisting of the population of women in the appropriate age 

range in Copenhagen and Frederiksberg after the introduction of routine mam-
mography screening
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(ii)  The national control group, consisting of the population in the parts of 
 Denmark in which routine mammography screening was not available

These two groups were collected in 1991–2001.

(iii) The historical control group
(iv) The historical national control group
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FIGURE 4.16 Mortality vs. water hardness.
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FIGURE 4.17 Mortality vs. water hardness with regression line.
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FIGURE 4.18 Mortality vs. water hardness with regression line, with legend.
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FIGURE 4.19 Histogram of mortality vs. water hardness.

These latter two are similar cohorts from 10 years earlier, before the introduc-
tion of screening in Copenhagen and Frederiksberg. The study group comprises 
the entire population, not just those accepting the invitation to be screened.

(a) Examine the dataset, using the following R code segment:
> install.packages("ISwR")
> library("ISwR")
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> data(bcmort)
> bcmort

(b) Display the dataset by:
> plot(bcmort)

(c) Remove the gaps using the function pair():
> par(mex=1)
> pairs(bcmort, gap=0, cex.labels=2.0)

The results are shown in Figures 4.21 and 4.22.

9. Displaying more multivariate data.
A public health study investigated the effect of body weight on the resting 

 metabolic rate (rmr) for women (Dalgaard, 2002; Altman, 1991).
The rmr data frame has 44 rows and 2 columns, containing the rmr and body 

weight data for 44 women. The two columns are:

body.weight A numeric vector, body weight (kg)
metabolic.rate A numeric vector, metabolic rate (kcal/24 hr)

(a) Examine the dataset, using the following R code segment:
> install.packages("ISwR")
> library("ISwR")
> data(rmr)
> rmr

(b) Display the dataset by:
> plot(rmr)

The result is shown in Figure 4.23.
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FIGURE 4.20 Boxplot of data.
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FIGURE 4.21 pairs plots of data.

(c) Execute the following plot:
> plot(metabolic.rate~body.weight,data=rmr)

The result is shown in Figure 4.24.

(d) Notice any difference between this plot and the last plot?
(e) Add a linear regression line on the display using:

> abline(lm(metabolic.rate ~ body.weight, data = rmr))

The result is shown in Figure 4.25.

10. A step-by-step procedure to display a plot with labeling (Murrell, 2006).
(a) Get ready by using:

> plot.new()
(b) Set up a window by using:

> plot.window(range(pressure$temperature),
+ range(pressure$temperature))
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FIGURE 4.22 pairs plots of data, removing gaps between individual plots.
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FIGURE 4.23 pairs plots of data.
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FIGURE 4.24 Specifi c plot of dataset.

10
00

12
00

14
00

16
00

18
00

20
00

Body.weight

M
et

ab
ol

ic
.r

at
e

40 60 80 100 120 140

FIGURE 4.25 Specifi c plot of dataset, with regression line.

(c) Plot the pressure versus temperature data by using:
> plot.xy(pressure, type="p")
> # Outputting: Figure 4.26.

(d) Put a rectangular frame over the display by using:
> box()
> # Outputting: Figure 4.27.
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FIGURE 4.26 > plot.xy(pressure, type="p").

FIGURE 4.27 Adding > box().

(e) Add the horizontal (temperature) axis by using:
> axis(1)
> # Outputting: Figure 4.28.

(f) Add the other axis, the vertical (pressure) axis, by using:
> axis(2)
> # Outputting: Figure 4.29.
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(g) Finally, label the plot centered at the position (100 units horizontal, 250 units 
vertical) by using:

> text(100, 250, "Pressure (mm Hg)\nversus\nTemperature
+ (Centigrade)")
> # Outputting: Figure 4.30.
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FIGURE 4.28 Adding > axis(1).
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FIGURE 4.29 Adding > axis(2).
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FIGURE 4.30 Adding > text(100, 250, "Pressure (mm Hg)\nversus\nTemperature 
(Centigrade)").

 4.2 GRID GRAPHICS

Within the R environment for statistical computing and graphics, the Grid Graph-
ics System is an add-on package. It provides a set of graphical functions, with sub-
stantial fl exibility, that support graphics display. Several other R packages also use 
grid graphics (Murrell, 2006), including:

 ■ Deepayan Sarkar’s lattice package, distributed with R
 ■ Frank Harrell’s Hmisc and Design
 ■ M. Kondrin’s RGrace
 ■ Paul Murrell’s gridBase (available from CRAN) and gridSVG (available from 

Murrell’s home page)

The grid graphics system is now part of the base R distribution.
This section introduces grid graphics in terms of the seminal CRAN package 

lattice (Sarkar, 2011b) package and the defi nitive treatise of Murrell (2006).

 The lattice Package: Trellis Graphics

The lattice package (http://r-forge.r-project.org/projects/lattice) is a powerful, 
elegant, high-level data visualization system, with an emphasis on multivariate 
data, which is suffi cient for typical graphics needs. It is also fl exible enough to han-
dle most nonstandard requirements. (Strictly speaking, lattice graphics produce an 
object of class “trellis,” containing a description of the plot, and the function print() 
draws the plot.)

http://r-forge.r-project.org/projects/lattice
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As an introduction to grid graphics, in this section, we consider one of the 
best-known lattice graphics functions, xyplot(), as a time-series plotting method. 
Other useful grid functions are also shown in the following examples. The xyplot() 
function handles time-series plotting, including cut-and-stack plots, and allows the 
superposing, juxtaposing, and styling of different time series. Consider the follow-
ing code segment (Sarkar, 2011a):

> library(lattice)
> install.packages("graphics")
> library("graphics")

Two examples, each with special reference to biostatistical applications, from 
the package lattice are selected and run in the R environment. The resulting graph-
ics are displayed.

 ■ Example 4.8: Grid lattice graphics

xyplot.ts Time-series plotting methods (Sarkar, 2011a)
> ### Example with simpler data, few data points

> set.seed(1)
> z <- ts(cbind(a = 1:5, b = 11:15, c = 21:25) + rnorm(5))
> xyplot(z, screens = 1)
> # Outputting: > xyplot(z, screens = list(a = "primary (a)", "other (b & c)"),
+ type = list(a = c("p", "h"), b = c("p", "s"), "o"),
+ pch = list(a = 2, c = 3), auto.key = list(type = "o"))
> # Outputting: Figures 4.31 and 4.32.
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FIGURE 4.31 Grid lattice graphics: xyplot().
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FIGURE 4.32 Grid lattice graphics: xyplot(), separating a dataset into two groups.

 ■ Example 4.9: Lattice grid graphics plot cloud(x, data, ...)

> ?cloud # The following documentation is presented 3:
B_07_cloud {lattice}

3D Scatter Plot and Wireframe Surface Plot

Description:

Generic functions to draw three-dimensional (3D) scatter plots and surfaces. The 
 formula methods do most of the actual work.

Use:

cloud(x, data, ...)
wireframe(x, data, ...)

Details:

These functions produce 3D plots in each panel (so long as the default panel functions 
are used). The orientation is obtained as follows: The data are scaled to fall within a 
bounding box that is contained in the [0.5, 0.5] cube (and even smaller for nondefault 
values of aspect). The viewing direction is given by a sequence of rotations specifi ed 

3 CRAN site for grid(){graphics}: http://127.0.0.1:19796/library/graphics/html/grid.html.
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by the screen argument, starting from the positive z-axis. The viewing point (camera) is 
located at a distance of 1/distance from the origin. If perspective=FALSE, distance 
is set to 0 (i.e., the viewing point is at an infi nite distance).

cloud draws a 3D scatter plot, while wireframe draws a 3D surface (usually 
evaluated on a grid). Multiple surfaces can be drawn by wireframe using the groups 
argument (although this is of limited utility because the display is incorrect when the 
surfaces intersect). Specifying groups with cloud results in a panel.superpose-like 
effect (via panel.3dscatter).

wireframe can optionally render the surface as being illuminated by a light source 
(no shadows, though). Details can be found in the help page for panel.3dwire. Note 
that although arguments controlling these are actually arguments for the panel function, 
they can be applied to cloud and wireframe directly.

For single-panel plots, wireframe can also plot parametrized 3D surfaces [i.e., 
functions of the form f(u,v) = (x(u,v), y(u,v), z(u,v)], where values of (u,v) lie on a rectan-
gle. The simplest example of this sort of surface is a sphere parametrized by latitude 
and longitude. This can be achieved by calling wireframe with a formula x of the form 
z~x*y, where x, y, and z are all matrixes of the same dimension, representing the values 
of x(u,v), y(u,v), and z(u,v) evaluated on a discrete rectangular grid [the actual values of 
(u,v) are irrelevant].

When this feature is used, the heights used to calculate drape colors or shading 
colors are no longer the z-values, but the distances of (x,y,z) from the origin.

Note that this feature does not work with groups, subscripts, subset, or other such 
functions. Conditioning variables are also not supported in this case.

The algorithm for identifying which edges of the bounding box are “behind” the 
points does not work in some extreme situations. Also, panel.cloud automatically 
tries to fi gure out the optimal location of the arrows and axis labels, but it can fail on 
occasion (especially when the view is from “below” the data). This can be manually 
controlled by the scpos argument in panel.cloud.

These and all other high-level Trellis functions have several other arguments in 
common. These are extensively documented only in the help page for xyplot, which 
should be consulted to learn more detail on use.

> cloud(Sepal.Length ~ Petal.Length * Petal.Width | Species,
+ data=iris, screen=list(x=-90, y=70), distance =0.4, zoom =0.6)
> # Outputting: Figure 4.33.

CONTROLLING LATTICE PLOTS

To control the color, text font size, line types/widths of the graphic display, and 
so on in a lattice plot, graphical parameters may be used. Large lists of parameter 
groups are in the documentation fi les of each lattice function, and each parameter 
group consists of a list of parameter settings. For each function, reference informa-
tion is readily available online, in conjunction with the help(function) route within 
the R environment.
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FIGURE 4.33 Lattice grid graphics plot cloud(x, data, ...).

 ■ Controlling text font size:

 ■ Example 4.10: To control the text font size of the lattice plot in Example 4.9

Here, one may use the following code segment to control the font size:

> fontsize <- trellis.par.get("fontsize")
> fontsize$text <- 10
> trellis.par.set("fontsize", fontsize)
>
> cloud(Sepal.Length ~ Petal.Length * Petal.Width | Species,
+ data=iris, screen=list(x=-90, y=70),distance =0.4, zoom =0.6)
> # Outputting: Figure 4.34.

 ■ Controlling line color/type/width: Refer to plot.lone.
 ■ Controlling data symbols, size, shape, and color: Refer to plot.symbol and the pch 

settings, as well as the fontsize and strip.background settings.
 ■ The current value of graphical parameter setting may be obtained using the 

functions trellis.par.get().
 ■ Font size settings may be specifi ed using the function trellis.par.set(), or using 

the par.settings argument within a plotting command.
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ARRANGING LATTICE PLOTS

Two types of arrangements must be considered when doing lattice plots:

Type I: Within a single plot, the arrangement of strips and panels
Type II: On a given page, the arrangement of several complete plots together

For Type I, two arguments may be specifi ed: the layout argument and the aspect 
argument.

1. The layout argument consists of up to three values; the fi rst two indicate the 
number of rows and columns of panels on each page, and the third indicates the 
number of pages.
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Sepal.Length Sepal.Length

Petal.Width Petal.Length

Petal.Width
Petal.Length Petal.Width Petal.Length

FIGURE 4.34 Lattice grid graphics plot cloud(x, data, ...) with modifi ed font size using 
> fontsize$text.
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2. The aspect argument specifi es the aspect ratio (the height divided by the width) 
of the panel. The default value is fill, which makes panels expand to fi ll as much 
space as possible. aspect=1 forces all panels to be square, because a square has 
an aspect ratio of 1.0.

 The Grid Model for R Graphics (Murrell, 2006)3

As noted earlier, the Grid Graphics System is an add-on package within the R envi-
ronment. The grid system consists of basic features such as functions for drawing 
geometric objects (point, lines, triangles, rectangles, etc.); texts; and concepts such 
as layouts, viewports, and units, which permit outputs to be sized and located as 
required. The grid system may be loaded into R as follows:

> library(grid)

with additional online documentation accessible via the functions help() and 
vignette().

> ?grid # To examine the function grid in the graphics package
grid adds an nx by ny rectangular grid to an existing plot.

Use:
> grid(nx = NULL, ny = nx, col = "lightgray", lty = "dotted",
+ lwd = par("lwd"), equilogs = TRUE)

Arguments:

nx,ny Number of cells of the grid in the x- and y-directions. When NULL, as 
per default, the grid aligns with the tick marks on the corresponding 
default axis (i.e., tick marks as computed by axTicks). When NA, no grid 
lines are drawn in the corresponding direction.

Col Character or (integer) numeric; color of the grid lines.
Lty Character or (integer) numeric; line type of the grid lines.
Lwd Nonnegative numeric giving line width of the grid lines.
equilogs Logical; only used when log coordinates and alignment with the axis 

tick marks are active. Setting equilogs = FALSE in that case gives non-
equidistant tick-aligned grid lines.

 ■ Example 4.11: A demonstration of the Grid Graphics System

> plot(1:3)
> grid(NA, 5, lwd = 2) # grid only in y-direction

> # Outputting: Figure 4.35.
> ## maybe change the desired number of tick marks:

> ## par(lab=c(mx,my,7))
> op <- par(mfcol = 1:2)
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> with(iris,
+ {
+ plot(Sepal.Length, Sepal.Width, col = as.integer(Species),
+ xlim = c(4, 8), ylim = c(2, 4.5), panel.first = grid(),
+ main = "with(iris, plot(...., panel.first = grid(), ..) )")
+ plot(Sepal.Length, Sepal.Width, col = as.integer(Species),
+ panel.first = grid(3, lty=1,lwd=2),
+ main = "... panel.first = grid(3, lty=1,lwd=2), ..")
+ }
+ ) # Outputting: Figure 4.36.
># At end of plotting, reset to previous settings:

> par(op)
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FIGURE 4.35 Grid Graphics System plot(1:3) with grid only in the y-direction.

 ■ Controlling the output:

A set of grid functions exists for producing basic graphical output such as points, lines, 
rectangles, circles, and text. These functions are of the form grid.*(). For each one, 
there is a corresponding Grob() function that creates an object containing a descrip-
tion of primitive graphical output, but does not draw anything.

The full set of these functions is listed in Table 4.1.3

Notes:

1. In most cases, the fi rst argument of each of these functions is a set of locations 
and dimensions for the graphical object to be drawn. For example, grid.rect() has 
arguments x, y, width, and height, specifying the locations and dimensions of the 
rectangles to be drawn. An exception is the function grid.text(), which requires 
the text to be drawn as its fi rst argument.

2. Multiple primitives can be produced when multiple locations and dimensions are 
specifi ed.
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with(iris, plot(...., panel.first = grid() ... panel.first = grid(3, lty = 1, lwd = 2)))
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FIGURE 4.36 Grid Graphics System plot() with specifi ed grid lines, titles, labels, and data 
points in different colors.

TABLE 4.1 Graphical Primitives in Grid

This is the complete set of low-level functions that produce graphical output. For each function 
that produces graphical output (leftmost column), there is a corresponding function that returns a 
graphical object containing a description of graphical output instead of producing graphical output 
itself (rightmost column). The latter set of functions is described later in this chapter.

FUNCTION TO PRODUCE 
OUTPUT DESCRIPTION

FUNCTION TO PRODUCE 
 OBJECT

grid.move.to() Set the current location. moveToGrob()

grid.line.to() Draw a line from the current location 
to a new location and reset the current 
location.

lineToGrob()

grid.lines() Draw a single line through multiple 
locations in sequence.

linesGrob()

grid.segments() Draw multiple lines between pairs of 
locations.

segmentsGrob()

grid.rect() Draw rectangles given locations and 
sizes.

rectGrob()

(continued)
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 Grid Graphics Objects

In grid graphics, a grob is a graphic object. A grob may be used to interactively edit 
a scenario produced by grid. Because lattice is built on grid, this approach allows 
one to interactively edit a lattice plot.

In the following code segment, which has 10 graphical outputs, notice the grob 
function barbedGrob(), described in the CRAN package gridExtra (Baptiste, 2012).

> set.seed(1234)
> grid.barbed(name="test") # Outputting: Figure 4.37.
> grid.edit("test", gp=gpar(fill="blue", lwd=3))
> # Outputting: Figure 4.38.
> grid.edit("test::points", pch=22) # Outputting: Figure 4.39.
> grid.newpage()
> g <-
+ barbedGrob(size=unit(1:5, "char"), only=FALSE,
+ gp=gpar(col="red", lex=3, fill="blue", alpha=0.5, pch=3))
>
> pushViewport(vp=viewport(width=1, height=1))
> grid.rect(gp=gpar(fill="thistle2")) # Outputting: Figure 4.40.
> grid.grill(gp=gpar(col="lavenderblush1",lwd=3,lty=3))
> # Outputting: Figure 4.41.
> grid.draw(g) # Outputting: Figure 4.42.
> x <- c(0.2, 0.7)
> y <- x
> dev.new(width=3, height=7) # Outputting: Figure 4.43.
> grid.newpage()# Outputting: Figure 4.44.
> grid.draw(g) # Outputting: Figure 4.45.
> grid.points(x, y, pch=3) # Outputting: Figure 4.46.

TABLE 4.1 Graphical Primitives in Grid (continued)

FUNCTION TO PRODUCE 
OUTPUT DESCRIPTION

FUNCTION TO PRODUCE 
 OBJECT

grid.circle() Draw circles given locations and radii. circleGrob()

grid.polygon() Draw polygons given vertexes. polygonGrob()

grid.text() Draw text given strings, locations, and 
rotations.

textGrob()

grid.arrows() Draw arrows at either end of lines given 
locations or an object describing lines.

arrowsGrob()

grid.points() Draw data symbols given locations. pointsGrob()

grid.xaxis() Draw x-axis. xaxisGrob()

grid.yaxis() Draw y-axis. yaxisGrob().
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FIGURE 4.37 grid.barbed() Output. FIGURE 4.38 grid.edit() Output.

FIGURE 4.39 grid.edit() Output. FIGURE 4.40 grid.rect() Output.

FIGURE 4.41 grid.grill() Output. FIGURE 4.42 grid.draw() Output.
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Murrell (2006) recommended the following useful functions (Table 4.2) that pro-
vide the ability to interact with grobs of the form grid.*().

 Applications to Biostatistical and Epidemiologic Investigations

Some applications of grid graphics to real-life biostatistical and epidemiologic inves-
tigations will be described in this section to showcase the grid graphics techniques.

ENGINE EXHAUST FUMES FROM BURNING ETHANOL

This subsection illustrates an application of the grid graphics–Trellis plot from the 
 lattice package (in CRAN).4

4 CRAN package {lattice}. Available at http://cran.cnr.berkeley.edu

FIGURE 4.43 dev.new() Output. FIGURE 4.44 grid.newpage() Output.

FIGURE 4.45 grid.draw() Output. FIGURE 4.46 grid.points() Output.

http://cran.cnr.berkeley.edu
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Description of the Investigation:
Ethanol fuel was burned in a single-cylinder engine. For various settings of the 
engine compression and equivalence ratio, the emissions of nitrogen oxides were 
recorded. A data frame was constructed with 88 observations on the following three 
variables:

NOx Concentration of nitrogen oxides (NO and NO2) in micrograms/J
C Compression ratio of the engine
E  Equivalence ratio (a measure of the richness of the air and ethanol fuel 

 mixture)

Authors:
Documentation: Wright, K.
Source: Brinkman (1981).
Reference: Cleveland, William S. (1993). Visualizing data. Summit, NJ: Hobart Press.

>
> # H_ethanol
> install.packages("lattice")
> library("lattice")
>
> # The 88 sets of data in the dataframe ethanol may be inspected by
> # outputting the data using: > ethanol
>
> ## Constructing panel functions on the fl y
> EE <- equal.count(ethanol$E, number=9, overlap=1/4)
> xyplot(NOx ~ C | EE, data = ethanol,
+ prepanel = function(x, y) prepanel.loess(x, y, span = 1),
+ xlab = "Compression ratio", ylab = "NOx (micrograms/J)",
+ panel = function(x, y) {
+ panel.grid(h=-1, v= 2)
+ panel.xyplot(x, y)
+ panel.loess(x,y, span=1)
+ },
+ aspect = "xy")

TABLE 4.2 Some Useful Functions for Working With Grobs

FUNCTION TO WORK 
WITH OUTPUT DESCRIPTION FUNCTION TO WORK WITH GROBS

grid.get() Returns a copy of one or more grobs getGrob()

grid.edit() Modifi es one or more grobs editGrob()

grid.add() Adds a grob to one or more grobs addGrob()

grid.remove() Removes one or more grobs removeGrod()

grid.set() Replaces one or more grobs setGrob()
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> # Outputting: Figure 4.47 ethanol-1
>
>
> # Wireframe loess surface fi t (see Figure 4.48).
> require(stats)
> with(ethanol, {
+ eth.lo <- loess(NOx ~ C * E, span = 1/3, parametric = "C",
+ drop.square = "C", family="symmetric")
+ eth.marginal <- list(C = seq(min(C), max(C), length.out = 25),
+ E = seq(min(E), max(E), length.out = 25))
+ eth.grid <- expand.grid(eth.marginal)
+ eth.fit <- predict(eth.lo, eth.grid)
+ wireframe(eth.fit ~ eth.grid$C * eth.grid$E,
+ shade=TRUE,
+ screen = list(z = 40, x = -60, y=0),
+ distance = .1,
+ xlab = "C", ylab = "E", zlab = "NOx")
+ })
> # Outputting: Figure 4.48 ethanol-2
>
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FIGURE 4.47 ethanol-1: Grid lattice panel.xyplot() of NOx concentration vs. compression 
ratio C, for varying fuel mixture equivalence ratios E.
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NOx
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FIGURE 4.48 ethanol-2: Wireframe loess surface fit of NOx concentration vs. compression ratio C, 
for varying fuel mixture equivalence ratios E.

ENVIRONMENTAL EPIDEMIOLOGY: ATMOSPHERIC CONDITIONS IN 
NEW YORK CITY

Description of the Investigation:
Daily measurements of ozone concentration, wind speed, temperature, and solar 
radiation in New York City from May to September of 1973.

A data frame with 111 observations on the following four variables:

ozone—Average ozone concentration (hourly measurements) in parts per billion
radiation—Solar radiation (from 08:00 a.m. to 12:00 p.m.) in langleys
temperature—Maximum daily temperature in degrees Fahrenheit
wind—Average wind speed (at 07:00 a.m. and 10:00 a.m.) in miles per hour

Authors:
Documentation: Wright, K.
Source: Bruntz, S. M., Cleveland, W. S., Kleiner, B., & Warner, J. L. (1974). The depen-

dence of ambient ozone on solar radiation, wind, temperature, and mixing 
height. In Symposium on atmospheric diffusion and air pollution (pp. 125–128). 
 Boston, MA: American Meteorological Society.

Reference: Cleveland, W. S. (1993). Visualizing data. Summit, NJ: Hobart Press.

This environmental epidemiology example shows three different graphical ways 
for presenting four environmental factors (ozone, radiation, temperature, and wind 
conditions) using grid graphics–Trellis plot from the lattice package (in CRAN).4

 ■ Example: environmental {lattice} (Murrell, 2006)

> install.packages("lattice")
> library("lattice")
>
> # The 111 sets of data in the dataframe environmental may be inspected by

> # outputting the data using: > environmental
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>
> # splom() plot of dataframe environmental
> # Scatter plot matrix with loess lines
> splom(~environmental,
+ panel=function(x,y){
+ panel.xyplot(x,y)
+ panel.loess(x,y)
+ }
+ )
> # The function splom(), in the package lattice, draws conditional scatter

> # plot matrixes and parallel coordinate plots5

> # Outputting: Figure 4.49 environmental-1
> # Conditioned plot similar to Figure 5.3 from Cleveland
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FIGURE 4.49 environmental-1: Grid lattice splom() plot of ozone, radiation, temperature, and wind 
conditions.

5 CRAN site for splom() {lattice}: http://127.0.0.1:27736/library/lattice/html/splom.html.
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> attach(environmental)
> Temperature <- equal.count(temperature, 4, 1/2)
> Wind <- equal.count(wind, 4, 1/2)
> xyplot((ozone^(1/3)) ~ radiation | Temperature * Wind,
+ aspect=1,
+ prepanel = function(x, y)
+ prepanel.loess(x, y, span = 1),
+ panel = function(x, y){
+ panel.grid(h = 2, v = 2)
+ panel.xyplot(x, y, cex = .5)
+ panel.loess(x, y, span = 1)
+ },
+ xlab = "Solar radiation (langleys)",
+ ylab = "Ozone (cube root ppb)")
> # Outputting: Figure 4.50 environmental-2
> detach()
>

 ■ Example: environmental-2 {lattice}

> install.packages("lattice")
> library("lattice")
>
> # Conditioned plot similar to Figure 5.3 from Cleveland

> attach(environmental)
> Temperature <- equal.count(temperature, 4, 1/2)
> Wind <- equal.count(wind, 4, 1/2)
> xyplot((ozone^(1/3)) ~ radiation | Temperature * Wind,
+ aspect=1,
+ prepanel = function(x, y)
+ prepanel.loess(x, y, span = 1),
+ panel = function(x, y){
+ panel.grid(h = 2, v = 2)
+ panel.xyplot(x, y, cex = .5)
+ panel.loess(x, y, span = 1)
+ },
+ xlab = "Solar radiation (langleys)",
+ ylab = "Ozone (cube root ppb)")
> # Outputting: Figure 4.50 environmental-2
> detach()
>

 ■ Example: environmental-3 {lattice}

> install.packages("lattice")
> library("lattice")
>
> # Similar display using the coplot function
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FIGURE 4.50 environmental-2: Grid lattice panel.xyplot() of ozone, radiation, temperature, 
and wind conditions.

> with(environmental,{
+ coplot((ozone^.33) ~ radiation | temperature * wind,
+ number=c(4,4),
+ panel = function(x, y, ...) panel.smooth(x, y, span = .8, ...),
+ xlab="Solar radiation (langleys)",
+ ylab="Ozone (cube root ppb)")
+ })
> # Outputting: Figure 4.51 environmental--3
>
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FIGURE 4.51 environmental-3: Grid lattice coplot() of ozone, radiation, temperature, and 
wind conditions.

ENVIRONMENTAL EPIDEMIOLOGY II

This subsection uses “Lattice-p.44: B_06_levelplot—Level plots and contour plots” 
to produce the desired graphics.

Description of the Investigation:
This is the same investigation as the examples in the preceding subsection.

Analytical Approach:
To display the variations within the multivariate dataset environmental by draw-
ing color level plots and contour plots, using the following function in the lattice 
package: contourplot(x, data, ...)
>
> require(stats)
> attach(environmental)
> ozo.m <- loess((ozone^(1/3)) ~ wind * temperature *
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+ radiation, parametric = c("radiation", "wind"),
+  span = 1, degree = 2)
> w.marginal <- seq(min(wind), max(wind), length.out = 50)
> t.marginal <- seq(min(temperature), max(temperature),
+  length.out = 50)
> r.marginal <- seq(min(radiation), max(radiation),length.out= 4)
> wtr.marginal <- list(wind = w.marginal, temperature =
+  t.marginal, radiation = r.marginal)
> grid <- expand.grid(wtr.marginal)
> grid[, "fit"] <- c(predict(ozo.m, grid))
> contourplot(fit ~ wind * temperature | radiation, data = grid,
+  cuts = 10, region = TRUE,
+  xlab = "Wind Speed (mph)",
+  ylab = "Temperature (F)",
+  main = "Cube Root Ozone (cube root ppb)")
> # Outputting Figure 4.52 environmental-4
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and wind conditions.
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CANCER EPIDEMIOLOGY: MELANOMA SKIN CANCER INCIDENCE

This subsection uses grid graphics–Trellis plot from the lattice package (in CRAN)4 
to produce a time-series plot (Sarkar, 2011a).

Description of the Investigation:
The data from the Connecticut Tumor Registry present age-adjusted numbers of 
melanoma skin cancer incidences per 100,000 people in the U.S. state of Connecticut 
for the years from 1936 to 1972. It consists of a data frame with 37 observations on 
the following two variables:

year—Years 1936 to 1972
incidence—Rate of melanoma cancer per 100,000 population

Author(s):
Documentation: Wright, K.
Source: Houghton, A., Munster, E. W., & Viola, M. V. (1978). Increased incidence of 
malignant melanoma after peaks of sunspot activity. Lancet, 8, 759–760.
Reference: Cleveland, W. S. (1993). Visualizing data. Summit, NJ: Hobart Press.

> # Time-series plot (Figure 3.64 from Cleveland).
> xyplot(incidence ~ year,
+ data = melanoma,
+ aspect = "xy",
+ panel = function(x, y)
+ panel.xyplot(x, y, type="o", pch = 16),
+ ylim = c(0, 6),
+ xlab = "Year",
+ ylab = "Incidence"
+ )
> # Outputting: Figure 4.53 melanoma
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FIGURE 4.53 melanoma grid lattice panel.xyplot(x, y) time-series plot.
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EXAMPLES FROM THE CRAN PACKAGE {latticeExtra}
In 2011, Sarkar (2011b) published the CRAN package latticeExtra, which contains a 
number of grid graphics functions that may support graphic displays for biostatisti-
cal datasets reported in research and investigational activities in epidemiology and 
public health. Some examples of applications of these functions to reported datasets 
are shown here.

 ■ Example 4.12: Grid graphics in R: gvhd10 in latticeExtra

Dataset: gvhd10—Flow cytometry (FCM) data from fi ve samples from a patient

Note: FCM is a technique for examining and counting microscopic particles, 
such as chromosomes and cells, by suspending them in a stream of fl uid and pass-
ing them by an electronic detection apparatus. It allows simultaneous multipara-
metric analysis of the physical and chemical characteristics of up to thousands of 
particles per second. FCM is used in the diagnosis of health disorders, especially 
blood  cancers, but it has many other applications in both research and clinical 
practice.

Description of the Investigation:
FCM data are recorded from blood samples taken from a leukemia patient before 
and after allogenic bone marrow transplant (a transplant procedure in which the 
patient receives stem cells from a genetically compatible, but not identical, donor). 
The data cover fi ve visits.

Use: data(gvhd10)

Format of Data: A data frame with 113,896 observations on the following eight 
 variables:

FSC.H forward scatter height values
SSC.H side scatter height values
FL1.H intensity (height) in the FL1 channel
FL2.H intensity (height) in the FL2 channel
FL3.H intensity (height) in the FL3 channel
FL2.A intensity (area) in the FL2 channel
FL4.H intensity (height) in the FL4 channel
Days a factor with levels −6 0 6 13 20 27 34

Reference: Brinkman, R. R., et al. (2007). High-content fl ow cytometry and tempo-
ral data analysis for defi ning a cellular signature of graft-versus-host disease. 
 Biology of Blood and Marrow Transplantation, 13(6), 691–700.
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The R code segment for the analysis is as follows:

> install.packages("latticeExtra")
> library("latticeExtra")
Loading required package: RColorBrewer
Loading required package: lattice
> data(gvhd10)
>
> # The many thousands of datasets in the dataframe gvhd10 may be
> # inspected by outputting the data using: > gvhd10
>

> histogram(~log2(FSC.H) | Days, gvhd10, xlab = "log Forward
+ Scatter", type = "density", nint = 50, layout = c(2, 4))
> # Outputting: Figure 4.54.
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FIGURE 4.54 R grid graphics: Histogram for ghvd10 in latticeExtra with the Days factor labeled 
above each panel.

pixmapGrob(x): A SPECIAL GRID PLOT FOR ALL R USERS

To display the R insignia, the grid function pixmapGrob() may be used to create a 
grob from a pixmap object.
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Description of the grid function: Using the R grid function pixmapGrob(), in the 
package RGraphics, one may create a grob from a pixmap object and produce the 
familiar insignia of the R program itself.

Use:
pixmapGrob(pic, x = 0.5, y = 0.5, scale = 1,

raster = FALSE, angle = 0, vp = NULL, ...)

Arguments:

Pic Pixmap object
X x-unit
Y y-unit
Scale Scale
Raster Raster
Angle Angle
Vp Viewport
... Optional grob parameters, passed to imageGrob() or rasterGrob()

Details:
Very primitive function, using R Graphics’ imageGrob or rasterGrob (R > = 2.11)

Value:
A gTree of class “pixmap,” with natural width and height in points

The requisite R code segment is:

> install.packages("RGraphics")
> library(pixmap)
> library(RGraphics)
> x <- read.pnm(system.file("pictures/logo.ppm",
+ package="pixmap")[1])
> g1 <- pixmapGrob(x)
> dev.new(width=g1$width/72, height=g1$height/72)
> grid.draw(g1)
> # Outputting: Figure 4.55.

FIGURE 4.55 Drawing R using the grid function pixmapGrob(x) in the package RGraphics.
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 Review Questions for Section 4.2

1. (a) What is the Grid Graphics System?
(b) Name some packages within this system.

2. (a)  Contrast the plotting functions in the grid {lattice} graphics with base 
( traditional) graphics.

(b) Give an example of dotplot().
3. (a)  What two types of arrangements are available for multiple plots on a single 

page using lattice plots?
(b) Give an example of each type.

4. When annotating a lattice plot of several panels, which function is available for
(a) controlling the scaling and size of the panels?
(b) controlling the contents in the strips of a lattice plot?
 Give an example of each.

5. (a) In grid graphics, what is a grob?
(b) Write an R code segment that defines a grob.

6. In grid graphics, to draw circles at given locations and radii, which function is 
 available
(a) to create an object?
(b) to produce an output of the object created?
 Give an example of each.

7. In grid graphics, describe the functions:
(a) viewport()
(b) pushViewport()
 Give an example of each.

8. In working with grobs in grid graphics, describe the functions:
(a) getGrob()
(b) grid.get()
 Provide an example of each.

9. (a) Describe the CRAN package latticeExtra.
(b) Contrast the two functions map() and mapplot() from this package.

10. (a) Describe the CRAN package RGraphics.
(b) Use the grid function pixmapGrob() from this package to create a pixmap 

object of your choice.

 Exercises for Section 4.2

1. This is a practice session in using the grid graphics package lattice to produce 
Trellis graphics. In the R environment, execute the following code segment, com-
mand by command. For each command:
(a) Explain the action expected of the command.
(b) After executing the command, describe the results and outputs.

2. Compare the final output display obtained in Exercise 1 with the lattice plot type: 
the name of the R function for producing each plot type is shown on the strip above 
each plot. To obtain the same output, rewrite the code segment to obtain a more 
succinct program that will accomplish the same task.
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> library(lattice)
> trellis.device()
> library(grid)
> x <- 1:5
> x
> y <- 1:5
> y
> g <- factor(1:5)
> g
> types <- c("barchart", "bwplot", "densityplot", "dotplot",
+  "histogram", "qqmath", "stripplot", "qq",
+  "xyplot", "levelplot", "contourplot",
+  "cloud", "wireframe", "splom", "parallel")
> types
> angle <- seq(0, 2*pi, length=21)[-21]
> angle
> xx <- cos(angle)
> xx
> yy <- sin(angle)
> yy
> gg <- factor(rep(1:2, each=10))
> gg
> aaa <- seq(0, pi, length=10)
> aaa
> xxx <- rep(aaa, 10)
> xxx
> yyy <- rep(aaa, each=10)
> yyy
> zzz <- sin(xxx) + sin(yyy)
> zzz
> doplot <- function(name, ...) {
+ do.call(name,
+  list(..., scales=list(draw=FALSE), xlab=NULL, ylab=NULL,
+  strip=function(which.panel, ...) {
+  grid.rect(gp=gpar(fill="grey90")); grid.text(name)
+  }))}
> plot <- vector("list", 15)
> plot
> plot[[1]] <- doplot("barchart", y ~ g | 1)
> plot[[1]]
> plot[[2]] <- doplot("bwplot", yy ~ gg | 1,
+  par.settings=list(box.umbrella=list(lwd=0.5)))
> plot[[2]]
> plot[[3]] <- doplot("densityplot", ~ yy | 1)
> plot[[3]]



4.2 Grid Graphics 209

> plot[[4]] <- doplot("dotplot", y ~ g | 1)
> plot[[4]]
> plot[[5]] <- doplot("histogram", ~ yy | 1)
> plot[[5]]
> plot[[6]] <- doplot("qqmath", ~ yy | 1)
> plot[[6]]
> plot[[7]] <- doplot("stripplot", yy ~ gg | 1)
> plot[[7]]
> plot[[8]] <- doplot("qq", gg ~ yy | 1)
> plot[[8]]
> plot[[9]] <- doplot("xyplot", xx ~ yy | 1)
> plot[[9]]
> plot[[10]] <- doplot("levelplot", zzz ~ xxx + yyy | 1,
+ colorkey=FALSE)
> plot[[10]]
> plot[[11]] <- doplot("contourplot", zzz ~ xxx + yyy | 1,
+  labels=FALSE, cuts=8)
> plot[[11]]
> plot[[12]] <- doplot("cloud", zzz ~ xxx + yyy | 1, zlab=NULL,
+  zoom=0.9, par.settings=list(box.3d=list(lwd=0.01)))
> plot[[12]]
> plot[[13]] <- doplot("wireframe", zzz ~ xxx + yyy | 1,
+  zlab=NULL, zoom=0.9, drape=TRUE,
+  par.settings=list(box.3d=list(lwd=0.01)), colorkey=FALSE)
> plot[[13]]
> plot[[13]]
> plot[[14]] <- doplot("splom", ~ data.frame(x=xx[1:10],
+  y=yy[1:10]) | 1, pscales=0)
> plot[[14]]
> plot[[15]] <- doplot("parallel", ~ data.frame(x=xx[1:10],
+  y=yy[1:10]) | 1)
> plot[[15]]
>
> grid.newpage()
> pushViewport(viewport(layout=grid.layout(4, 4)))
> for (i in 1:15) {
+ pushViewport(viewport(layout.pos.col=((i - 1) %% 4) + 1,
+  layout.pos.row=((i - 1) %/% 4) + 1))
+ print(plot[[i]], newpage=FALSE,
+  panel.width=list(1.025, "inches"),
+  panel.height=list(1.025, "inches"))
+ popViewport()}
>
> popViewport()
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 Probability and Statistics in 
Biostatistics

 INTRODUCTION

Why study probability? As discussed in Chapter 2, different schools of biostatistical 
inference have become established. These schools, or paradigms, are not mutually 
exclusive; methods that work satisfactorily under one paradigm often yield attrac-
tive interpretations under other paradigms as well. The two main paradigms in use 
are Bayesian biostatistics and frequentist biostatistics.

The foundation for biostatistical inference, under any approach, is the theory 
of probability. Although this theory, often considered a branch of mathematics, is 
not the main focus of this book, it is benefi cial to examine its fundamental concepts 
as they apply to biostatistical analysis within the disciplines of epidemiology and 
public health.

The concept of probability is familiar to epidemiologic investigators and work-
ers in public health and preventive medicine. For example, one may learn from a 
health worker that someone has a “90% chance” of contracting malaria under cer-
tain environmental conditions, or hear an oncologist say that a patient has a “50–50 
chance” of surviving a particular cancer diagnosis.

As shown by these informal examples, probabilities are often expressed in terms 
of percentages or fractions. The probability of occurrence of an event is a number 
between 0 (for no chance at all) and 1 (for absolute certainty). The more likely it is 
that the event will occur, the closer the probability gets to 1; the more unlikely it is 
that the event will occur, the closer the probability is to 0.

In epidemiology and public health/preventive medicine, investigators often 
must ask if the initially observed results of their work could have occurred by 
pure chance or if some other defi nitive factors have been operating to produce the 
observed efforts. For instance, if 5 out of 10 patients are cured of a certain illness 
upon receiving a particular treatment, the question may be posed as follows:

Would that cure rate likely have occurred if the patients had not received the 
treatment, or can the result be considered evidence of a true healing effect from 
the treatment?

Applications of the theory of probability (Dalgaard, 2002; Daniel, 2005; 
Kolmogorov, 1964; Triola & Triola, 2006) are helpful in addressing such questions.

FIVE
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 5.1 THEORIES OF PROBABILITY

 What Is Probability?

Probability has been considered in at least two ways: subjective and objective.
Subjective probability considers probability as a measure of the confi dence 

that one has in the truth of a particular proposition. It does not depend on any pro-
cess or on repeatability. This concept allows one to determine the probability of a 
single event that can happen only once: for example, the probability that a complete 
cure for cancer will be found in 25 years.

Biostatisticians generally subscribe to the other concept of probability, objec-
tive probability, which is itself divided into two categories: classical and relative 
frequency.

Classical probability was developed in the 17th century to solve problems in 
games of chance, such as card games or the rolling of a six-sided die:

 ■ If a card is drawn at random from a deck of 52 (well-shuffl ed) playing cards, 
the probability of drawing the ace of spades is 1/52, the probability of drawing 
a diamond is 13/52, and so on.

 ■ If a fair die is rolled, then the probability of getting the six-spot face is 1/6, the 
probability of getting the four-spot face is 1/6, and so on.

Using this concept, one considers only the equally likely events—and the physical 
presence of a deck of cards, or a die, is not necessary.

The following is a good defi nition of classical probability:

When an event can occur in N equally likely (and mutually exclusive) ways, 
and if m of these events always occur with a property E, then the probability of 
the occurrence of E is m/N.

The common notation for this defi nition is

 P(E) = m/N (5.1-1)

which is read as “the probability of E is m divided by N.”
The relative frequency probability approach depends on the repeatability of a 

process, as well as the ability to enumerate the repetitions and the number of times 
that some event of interest occurs. Thus, to state the probability of observing the 
occurrence of some characteristic E of an event, one uses the following defi nition of 
relative frequency probability:

If a process is repeated n (a large number of) times, and if some event with the 
characteristic E occurs m times, then the relative frequency of the occurrence of 
E, being m/n, will be approximately equal to the probability of E.

This defi nition may be expressed as

 P(E) = m/n (5.1-2)

with the caveat that m/n is only an estimate of P(E).
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 Basic Properties of Probability

The whole system of probability theory rests on the following three properties:

Property 1: In an experiment or process with n mutually exclusive outcomes 
or events: E1, E2, E3, …, En, the probability of a particular event Ei is given a 
 nonnegative number:

 P(Ei) ≥ 0 (5.1-3)

Thus, all events must have a nonnegative probability. According to this defi nition, 
two events are mutually exclusive if and only if they cannot occur simultaneously.
Property 2: The sum of the probabilities of the outcomes is equal to 1:

 P(E1) + P(E2) + P(E3) + … + P(Ei) + … + P(En) = 1 (5.1-4)

This is called the property of exhaustiveness. It requires the observer of a proba-
bilistic process to allow all possible events, while the mutually exclusive property 
guarantees that the n events do not overlap (i.e., no two of them can occur simulta-
neously).
Property 3: For any two mutually exclusive events Ej and Ek, the probability of the 

occurrence of either event is equal to the sum of their individual probabilities:

 P(Ej or Ek) = P(Ej) + P(Ek) (5.1-5)

 ■ Example 5.1: Calculating the probability of having girls and boys in a family

Assume that, within a family, having girls and having boys is equally likely, and that the 
gender of any child is not infl uenced by the gender of the other children in the family. If 
a married couple, John and Mary Smith, plans to have four children, fi nd the probability 
that they will have

 ■ 4 girls (and no boys)
 ■ 3 girls and 1 boy
 ■ 2 girls and 2 boys
 ■ 1 girl and 3 boys
 ■ 4 boys (and no girls)

Solution:
To solve this problem, use Equation (5.1-1): P(E) = m/N.

To fi nd m and N for each of the fi ve cases, one should fi rst enumerate all equally 
likely scenarios for the case of having four children. One may begin by examining the 
sample space—all possible combinations of the ways that four children can occur—
which is as shown in Table 5.1.

This sample space shows that there are 16 equally likely possible outcomes for Mr. 
and Mrs. Smith. They represent the 16 different possible outcomes: N = 16.

(i) Characteristic E1 = 4 girls (and no boys):
Only 1 possible outcome corresponds to exactly 4 girls and no boys:
Case #1, so m = 1.
Hence, by Equation (5.1-1): P(E1) = m/N = 1/16, or 0.0625, or 6.25%.
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(ii) Characteristic E2 = 3 girls and 1 boy:
Only 4 possible outcomes correspond to exactly 3 girls and 1 boy:
Cases #2, #3, #4, and #5, so m = 4.
Hence, by Equation (5.1-1): P(E2) = m/N = 4/16, or 1/4, or 0.25, or 25%.

(iii) Characteristic E3 = 2 girls and 2 boys:
Only 6 possible outcomes correspond to exactly 2 girls and 2 boys:
Cases #6, #7, #8, #9, #10, and #11, so m = 6.
Hence, by Equation (5.1-1): P(E3) = m/N = 6/16, or 3/8, or 0.375, or 37.5%.

(iv) Characteristic E4 = 1 girl and 3 boys:
Only 4 possible outcomes correspond to exactly 1 girl and 3 boys:
Cases #12, #13, #14, and #15, so m = 4.
Hence, by Equation (5.1-1): P(E4) = m/N = 4/16, or 1/4, or 0.25, or 25%.

(v) Characteristic E5 = 4 boys (and no girls):
Only 1 possible outcome corresponds to exactly 4 boys and no girls:
Case #16, so m = 1.
Hence, by Equation (5.1-1): P(E5) = m/N = 1/16, or 0.0625, or 6.25%.

Remarks:
Note the two steps in determining the probability of any characteristic:
Step 1: List the sample space of all possible outcomes.
Step 2:  For a specifi c characteristic, search the entire sample space and enumerate the 

number of possible outcomes that carry the specifi c characteristic.

Now we can check the results with respect to the three basic properties of probability:

Property I: Because each of the probabilities P(Ei) is positive, clearly

P(Ei) ≥ 0, as required.

Property 2: P(E1) + P(E2) + P(E3) + P(E4) + P(E5)

 = 1/16 + 4/16 + 6/16 + 4/16 + 1/16

 = (1 + 4 + 6 + 4 + 1)/16

 = 16/16

 = 1, or 100%, as required

TABLE 5.1 Sample Space: All Possible Combinations of Having Four Children

G = GIRL, B = BOY

Case #: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1st child G G G G B G G G B B B G B B B B

2nd child G G G B G G B B B G G B G B B B

3rd child G G B G G B G B G B G B B G B B

4th child G B G G G B B G G G B B B B G B



5.1 Theories of Probability 215

Property 3: The condition P(Ej or Ek) = P(Ej) + P(Ek) is clearly satisfi ed, as may be 
seen by inspection of Table 5.1, and the values of the fi ve calculated probabili-
ties P(Ei)|i = 1, 2, 3, 4, 5.

The concept of probability may be discussed in terms of the following special 
properties (each defi ned in a following subsection):

 ■ The probability for complement events
 ■ Conditional probability
 ■ Joint probability
 ■ The multiplication rule for probabilities
 ■ The addition rule for probabilities
 ■ Independence and dependence of occurrences
 ■ Marginal probability

THE PROBABILITY FOR COMPLEMENT EVENTS

If one wants to fi nd the probability that a certain event E does not occur, then it is 
said that one is looking for the complement of event E, denoted by E.

Because it must be true that either event E occurs or event E does not occur, one 
may write:

P(E) + P(E) = P(all possible occurrences) = 1

so that

 P(E) = 1 P(E) (5.1-6)

which may be considered the defi nition of the complement of event E.

 ■ Example 5.2: Using the complement to calculate the probability of having girls and 
boys in a family

Again using the case of Mr. and Mrs. Smith, suppose that they would still like to have 
four children, but only with the condition of:

 ■ No girls (i.e., only boys)
 ■ 2 girls and 2 boys
 ■ All except 2 girls and 2 boys
 ■ No boys (i.e., only girls)

What are the probabilities for each of these conditions?

Solution:
Here we can use Equation (5.1-6): P(E) = 1 P(E).

(i) P(an event for “no girls”)
= P(Eg) where Eg = the “no girls” event

=1 P(Eg) by Equation (5.1-6), where Eg = the “any girls”

= 1 {P(E1) + P(E2) + P(E3) + P(E4)} from Example 5.1

= 1 {1/16 + 4/16 + 6/16 + 4/16} from Example 5.1(i), (ii), (iii), (iv)

= 1 15/16
= 1/16, or 0.0625, or 6.25%
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(ii) P(an event for “only 2 girls and 2 boys”)
= 6/16, or 3/8, or 0.375, or 37.5% from Example A1(iii)

(iii) Pan event for “all except 2 girls and 2 boys”)
= 1 P(E) where E = “just 2 girls and 2 boys”
= 1 – 6/16 from Example A1(iii), and part (ii) of this example
= 10/16
= 5/8, or 0.625, or 62.5%

(iv) P(an event for “no boys”) = P(E1)  where E1 = the “1-boy” event, and E1 = an 
event without a boy

= 1 – 15/16, by counting the events in Table 5.1
= 1/16, or 0.0625, or 6.25%

Remarks:
1. Both Cases (i) and (iv) have the same probability, 0.0625%. This implies that it is 

very unlikely—about a 6% chance—that there will be no girls at all or no boys at 
all.

2. Cases (ii) and (iii) are interesting results. One might be inclined to believe that, for 
a family with 4 children, the probability for a 2-girls-and-2-boys outcome would 
be 50%—but that is not the case for 62.5% of the possible outcomes.

3. Note that if the family has only 2 children, the probability for a 1-girl-and-1-boy 
outcome would indeed be 50%. (Show that this is indeed the case!)

CONDITIONAL PROBABILITY

Given any two events A and B, if it is fi rst assumed that event A has already 
occurred, then the probability of event B occurring is the conditional probability 
P(B|A), which is read as the probability of B occurring given A, or as the probability 
of event B occurring after event A has already occurred.

 ■ Example 5.3: Using the conditional probability concept to calculate the probability 
of a daughter, in a family of four children, having a sister or a brother

Again we use the case of the four-child family of Mr. and Mrs. Smith. If this family 
already has a daughter, what are the probabilities that this daughter would have a sister 
or would have a brother?

(i) The probability of a daughter having a sister:
If A is a daughter in this family, for A to have a sister, there must be at least 2 girls 
among the set of 4 children in the Smith family. Hence, the probability for A to 
have a sister is the conditional probability of having at least 2 girls in the set of 4 
children.

From Table 5.1, we fi nd that there are 16 possible outcomes (N = 16). By enu-
meration, we see that there are 11 possible outcomes with at least 2 girls each: 
they are Cases #1 through #11 (G = 11). Hence, the conditional probability, written 
as P(G|N), is

P(G|N) = 11/16, or 0.6875, or 68.75%

Thus, A has an almost 70% chance of having a sister.
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(ii) The probability of a daughter having a brother:
If A is a daughter in this family, for A to have a brother, there must be at least 1 girl 
and 1 boy among the set of 4 children in the Smith family. Hence, the probability 
for A to have a brother is the conditional probability of having at least 1 girl and 1 
boy in the set of 4 children.

From Table 5.1, we fi nd that there are 16 possible outcomes (N = 16). By 
enumeration, we fi nd that there are 14 possible outcomes with at least 1 girl and 
1 boy: they are Cases #2 through #15 (B = 14). Hence, the conditional probability, 
written as P(B|N), is

P(B|N) = 14/16, or 7/8, or 0.875, or 87.5%

Thus, A has an almost 90% chance of having a brother.

JOINT PROBABILITY

Given two random variables A and B, the joint distribution for A and B defi nes the 
probability of events defi ned in terms of both A and B. For two random variables, 
this yields a bivariate distribution; for any number of random variables, this yields 
a multivariate distribution.

 ■ Example 5.4: Using the concept of joint probability to calculate the probabilities of 
a fi rst-born daughter, in a family of 4 children, having 2 sisters and 1 brother or 1 sister 
and 2 brothers

Yet again we use the case of the four-child family of Mr. and Mrs. Smith. If the fi rst-born 
child of this family is a girl, G1, the question is: What are the probabilities that G1 will 
have (i) 2 sisters and 1 brother? (ii) 1 sister and 2 brothers?

In this example, it is assumed that a family’s having a girl or a boy is an independent 
event from the probability viewpoint. (In some families, genetic factors, as well as other 
factors, may skew the odds in favor of having one sex or the other; girls or boys may just 
“run in the family.” For purposes of these examples, though, we ignore these factors.)

From Table 5.1, we see that out of the 16 possible outcomes, there are 8 in which 
the fi rst-born is a girl: Cases #1, #2, #3, #4, #6, #7, #8, and #12.

(Likewise, there are 8 in which the fi rst-born is a boy.) Hence, N
g
 = 8.

Of these 8 cases, only 3 have 2 other girls and 1 boy: Cases #2, #3, and #4. Hence, 
G21 = 3, and

P(G21/Ng
) = G21/Ng

 = 3/8

Also, of these 8 cases, only 3 have 1 other girl and 2 boys: Cases #6, #7, and #9. 
Hence, G12 = 3, and

P(G12/Ng
) = G12/Ng

 = 3/8

The required probability is the joint probability of these two events. Because these 
are independent events, their joint probability is the sum of their individual probabilities. 
Let this joint probability be P[(G21, G12)/Ng

]. Then

P[(G21, G12)/Ng
] = P(G21/Ng

) + P(G12/Ng
) = 3/8 + 3/8 = 6/8, or 3/4, or 75%

Hence, a fi rst-born girl has a 75% chance of having either 2 sisters and 1 brother or 1 
sister and 2 brothers.
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THE MULTIPLICATION RULE FOR PROBABILITIES

In symbolic notation, the multiplication rule for probabilities may be written as: 
For any two events A and B,

 P(A∩B) = P(A) P(B|A), if P(A) ≠ 0 (5.1-7A)

or

 P(A∩B) = P(B) P(A|B), if P(B) ≠ 0 (5.1-7B)

in which the symbol ∩ is read either as “and” or “intersection” (as used in set 
 theory). The statement A∩B indicates the joint occurrence of conditions A and B.

 ■ Example 5.5: Using the multiplication rule for probabilities to calculate the proba-
bility of having a fi rst-born son, in a family of 4 children, who will have 2 brothers and 
1 sister after him

Using the case of the four-child family of Mr. and Mrs. Smith, we posit that the fi rst-born 
child of this family is a son, B1. The question is: What are the probabilities that B1 will 
have 2 brothers and 1 sister?

Table 5.1 shows that out of the 16 possible outcomes, N = 16, there are 8 in which 
the fi rst-born is a boy: Cases #5, #9, #10, #11, #13, #14, #15, and #16. Hence, N

b
 = 8.

Thus, the probability of having a son as the fi rst-born is

P(B) = N
b
/N = 8/16

Now, of these 8 cases, 3 have 2 boys and a girl: Cases #13, #14, and #15. Hence, N
bbg

 
= 3, and the probability of being the fi rst-born with 2 brothers and 1 sister is

P(A|B) = N
bbg

/N
b
 = 3/8

Using the multiplication rule for probabilities,

    P(A∩B) = P(B) P(A|B), if P(B) ≠ 0 (5.1-7B)

 = (8/16) × (3/8)

 = 3/16, or 0.1875, or 18.75%

Hence, the Smith family can expect a somewhat less than 20% chance of having a 
fi rst-born son to be followed by 2 boys and 1 girl.

THE ADDITION RULE FOR PROBABILITIES

The addition rule for probabilities states that, given two events A and B, the prob-
ability that event A or B, or both, will occur is equal to the probability that event A 
occurs, plus the probability that event B occurs, less the probability that these two 
events occur jointly.

In symbolic form, this rule may be expressed as

 P(A∪B) = P(A) + P(B) P(A∩B) (5.1-8)

in which the symbol ∪ is read either as “or” or “union” (as used in set theory).
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 ■ Example 5.6: Using the addition rule for probabilities to calculate the probability of 
having either a fi rst-born son, in a family of 4 children, who will have at least 1 brother 
after him; or a fi rst-born son, in a family of 4 children, who will also have at least 1 sister 
after him

Table 5.1 shows that out of the 16 possible outcomes, N = 16, there are 8 in which the 
fi rst-born is a boy: Cases #5, #9, #10, #11, #13, #14, #15, and #16. Hence, N

b
 = 8, and 

the probability of having a son as the fi rst-born is

P(N
b
) = N

b
/N = 8/16

Now, of these 8 cases, 7 have at least 1 boy to follow: Cases #9, #10, #11, #13, #14, 
#15, and #16. Hence, N

bb
 = 7, and the probability of being the fi rst-born with 1 younger 

brother is

P(N
bb

/N
b
) = N

bb
/N

b
 = 7/8

Using the multiplication rule for probabilities:

P(N
bb

∩N
b
) = P(N

b
) P(N

bb
|N

b
), if P(N

b
) ≠ 0 from Equation (5.1-7B)

 = (8/16) × (7/8)

 = 7/16, or 0.4375, or 43.75%

Designate this probability as P(A).
From Table 5.1, out of the 16 possible outcomes, N = 16, there are 8 in which the 

fi rst-born is a boy: Cases #5, #9, #10, #11, #13, #14, #15, and #16. Hence, N
b
 = 8, and 

the probability of having a son as the fi rst-born is

P(N
b
) = N

b
/N = 8/16

Now, of these 8 cases, 7 have 1 girl to follow: Cases #9, #10, #11, #13, #14, #15, and 
#16. These are the same seven cases as those in the fi rst part of this example.

Hence, N
bg

 = 7, and the probability of being a fi rst-born son with 1 younger sister will be

P(N
bg

\N
b
) = N

bg
/N

b
 = 7/8.

Using the multiplication rule for probabilities,

P(N
bg

∩N
b
) = P(N

b
) P(N

bg
N

b
), if P(N

b
) ≠ 0 from Equation (5.1-7B)

 = (8/16) × (7/8)

 = 7/16, or 0.4375, or 43.75%

Designate this probability as P(B).
The probability that these two events will occur simultaneously is those 7 cases 

indicated earlier, out of a total of 16 possible cases. Hence,

P(A∩B) = 7/16

Now we apply the addition rule for probabilities. For both events to occur simultane-
ously, the probability is given by

    P(A∪B) = P(A) + P(B) P(A∩B) (5.1-8)

 = 7/16 + 7/16 7/16

 = 7/16, or 0.4375, or 43.75%
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Hence, if the Smith family has its four children, they may expect to have a greater than 
40% chance of having a boy as the fi rst-born, with either a brother or a sister to follow 
after him.

INDEPENDENCE AND DEPENDENCE OF OCCURRENCES

Given two events A and B, if event B has occurred, but it has no effect on the prob-
ability of A (i.e., the probability of event A is unchanged whether or not event B 
occurs), then

 P(A|B) = P(A) (5.1-9)

In such a case, one says that A and B are independent events (in the probability 
sense).

Thus, for two independent events, the multiplication rule [Equation (5.1-7B)] 
may be written as

 P(A∩B) = P(B) P(A|B), if P(B) ≠ 0 (5.1-7B)

 = P(B) P(A) (5.1-10)

according to Equation (5.1-9). That is:

 P(A∩B) = P(B) P(A), if P(A) ≠ 0, if P(B) ≠ 0 (5.1-11)

When two events, A and B, with nonzero probabilities are independent, each of the 
following statements is true:

P(A|B) = P(A); P(B|A) = P(B); P(A∩B) = P(A) P(B)

Remarks:

1. In the theory of probability, the terms independent and mutually exclusive do not 
necessarily mean the same thing.

2. If events A and B are not independent, they are said to be dependent.

 ■ Example 5.7: Using the independence and dependence of occurrences to calcu-
late the probabilities of having a fi rst-born daughter, in a family of 4 children, who then 
also has sisters

We return to the case of the four-child family of Mr. and Mrs. Smith. If the fi rst-born child 
of this family is a daughter, G1, the question is: What are the probabilities that G1 will 
have (i) no sister, (ii) only 1 sister, (iii) only 2 sisters, or (iv) 3 sisters?

In this example, it is again assumed that a family’s having a girl or a boy is an inde-
pendent event from the probability viewpoint. (As noted earlier, genetic factors that “run 
in the family” may skew these odds.)

(i) Table 5.1 shows that out of the 16 possible outcomes, N = 16, there are 8 in which 
the fi rst-born is a girl: Cases #1, #2, #3, #4, #6, #7, #8, and #12. Hence, N

g
 = 8, and

P(A) = P(N
g
) = N

g 
/N = 8/16

Of these 8 cases, only 1 has no more girls: Case #12. Hence, N
g = 0

 = 1, and

P(B) = P(N
g = 0

) = N
g = 0 

/N
g
 = 1/8
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Because these two events are independent,

P(A∩B) = P(B) P(A)

 = (1/8) × (8/16)

 = 1/16, or 0.0625, or 6.25%

(ii) Table 5.1 shows that out of the 16 possible outcomes, N = 16, there are 8 in which 
the fi rst-born is a girl: Cases #1, #2, #3, #4, #6, #7, #8, and #12. Hence, N

g
 = 8, and

P(A) = P(N
g
) = N

g
/N = 8/16

Of these 8 cases, only 3 have one more girl: Cases #6, #7, and #8.
Hence, N

g=1
 = 3, and

P(B) = P(N
g = 1

) = N
g = 1

/N
g
 = 3/8

Because these two events are independent,

P(A∩B) = P(B) P(A)

 = (3/8) × (8/16)

 = 3/16, or 0.1875, or 18.75%

(iii) Table 5.1 shows that out of the 16 possible outcomes, N = 16, there are 8 in which 
the fi rst-born is a girl: Cases #1, #2, #3, #4, #6, #7, #8, and #12. Hence, N

g
 = 8, and

P(A) = P(N
g
) = N

g
/N = 8/16

Of these 8 cases, only 3 have two more girls: Cases #2, #3, and #4. Hence, N
g = 2

 
= 3, and

P(B) = P(N
g = 2

) = N
g = 2 

/N
g
 = 3/8

Because these two events are independent,

P(A∩B) = P(B) P(A)

 = (3/8) × (8/16)

 = 3/16, or 0.1875, or 18.75%

(iv) Table 5.1 shows that out of the 16 possible outcomes, N = 16, there are 8 in which 
the fi rst-born is a girl: Cases #1, #2, #3, #4, #6, #7, #8, and #12. Hence, N

g
 = 8, and

P(A) = P(N
g
) = N

g
/N = 8/16

Of these 8 cases, only 1 has three more girls: Case #1. Hence, N
g = 3

 = 1, and

P(B) = P(N
g = 3

) = N
g = 2  

/N
g
 = 1/8

Because these two events are independent,

 P(A∩B) = P(B) P(A)

 = (1/8) × (8/16)

= 1/16, or 0.0675, or 6.25%
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Thus, in this family of 4 children, if the fi rst-born is a girl, the chance that she 
will have

 ■ no more sisters is 6.25%
 ■ only 1 more sister is 18.87%
 ■ only 2 more sisters is 18.75%
 ■ 3 more sisters is 6.25%

MARGINAL PROBABILITY

If a variable can be divided into n categories A1, A2, A3, …, Ai, …, An, and another 
jointly occurring variable can be divided into m categories B1, B2, B3, …, Bj, …, Bm, 
then the marginal probability of Ai, P(Ai), is equal to the sum of the joint probabili-
ties of Ai with all the categories of B; that is:

 P A P A Bi i j
j

( ) ( )= ∩∑ , for all values of j (5.1-12)

The following example (Table 5.2) further illustrates the special properties of mar-
ginal probability.

 ■ Example 5.8: Using Equation (5.1-12) and the data on the frequency of illegal drug 
use by adult males (M) and females (F), calculate the marginal probability for males, P(M)

Solution:
The variable GENDER is separated into two categories: M and F.

The variable lifetime frequency of illegal drug use is separated into three categories: 
1–19 times (A), 20–99 times (B), and ≥ 100 times (C).

The category M occurs jointly with all three categories of the variable frequency of 
illegal drug use. Thus, the three joint probabilities that may be compared are

P(M∩A) = 32/111;  P(M∩B) = 18/111;  P(M∩C) = 25/111

To obtain the marginal probability for males, P(M), apply Equation (5.1-12):

 P A P A Bi i j
j

( ) ( )= ∩∑ , for all values of j (5.1-12)

TABLE 5.2 Frequency of Illegal Drug Use by Gender

LIFETIME FREQUENCY OF ILLEGAL 
DRUG USE

MALE (M) FEMALE (F) TOTAL

1–19 times (A) 32 7 39

20–99 times (B) 18 20 38

≥ 100 times (C) 25 9 34

Total 75 36 111

Source: Daniel (2005).
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or

P(M ) = P(M∩A) + P(M∩B) + P(M∩C)

 = 32/111 + 18/111 + 25/111

 = (32 + 18 + 25)/111

 = 75/111, or 0.6757, or 67.57%

Remark: This same result may also be obtained by using the marginal total for males 
(75) as the numerator and the total number of subjects (111) as the denominator.

 Probability Computations Using R

A number of useful functions in R are available for probability computations. These 
are illustrated in Example 5.9.

 ■ Example 5.9: The special R functions factorial(), choose(), sample(), and prod() 
in probability computations

(a) The function factorial()
An epidemiologist is testing the effects of fi ve new cancer drugs to be given 
sequentially to a group of case subjects. How many sets of experiments (test 
sequences) are required to test all possible permutations?

For each case subject, the test sequence is

Drug1, Drug2, Drug3, Drug4, Drug5.

Clearly, there are fi ve options for Drug1, leaving

4 options for Drug2,
3 options for Drug3,
2 options for Drug4, and
1 option for Drug5.

Thus, the total number of test sequences is 5 × 4 × 3 × 2 × 1, or factorial 5 (5 
factorial), usually written as 5! Now, 5! = 120.

The following R code segment shows that functions from the package base 
are available for such calculations:

> install.packages("base")
> library("base")
> factorial(5) # Outputting:

[1] 120
> lfactorial(5) # This is the natural log of 5!

[1] 4.787492
> lovg(factorial(5)) # This is the same as lfactorial(5).

[1] 4.787492

Hence, the epidemiology investigator should plan for 5! = 120 sequences of tests.
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(b) The function choose()
Going back to the family planning of Mr. and Mrs. Smith, if they prefer to have 2 
girls and 2 boys, in how many ways (the orders of the births of the girls and boys) 
can this occur?
By enumeration using Table 5.1:
Sample space: All possible combinations of having 4 children: G = girl, B = boy

Case #: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1st child G G G G B G G G B B B G B B B B

2nd child G G G B G G B B B G G B G B B B

3rd child G G B G G B G B G B G B B G B B

4th child G B G G G B B G G G B B B B G B

One can see that the number of cases with 2 G and 2 B is 6: Cases #6, #7, #8, 
#9, #10, and #11.

Using combinatorics, the answer is

 nC
r
 = n!/r! (n – r)!

= [n(n – 1)…(n – r + 1)(n – r)!]/[x (x – 1)…1][(n r)!]

 = [n(n – 1)…(n – r + 1)]/[x(x – 1)…1]

Here, n = 4 and x = 2, so nC
r
 = 4C2 = 4 × 3/2 × 1 = 12/2 = 6, confi rming the result 

by counting.
Again, the following R code segment shows that functions from the package 

base are available for these calculations:

> install.packages("base")
> library("base")
> choose(4, 2) # Outputting:

[1] 6
> lchoose(4, 2) # This is the natural log of 4C2
[1] 1.791759
> log(choose(4, 2)) # This is the same as lchoose(4, 2)

[1] 1.791759

(c) The function sample()
Random sampling, with and without replacement, is a crucial step in the process 
of epidemiologic investigation of health characteristics of a population. Sampling 
must be done because it is simply not practical to test the whole population due 
to the large number of individuals in that population.

Suppose that, in a city of population of 1 million, each citizen is designated 
with a number, from 1 to 1,000,000. For biostatistical testing, a health worker 
would like to randomly select (without replacement) 3 representative sets of case 
subjects, each with 5 people. How can this be done?

Solution:
The function sample(), from the package base, may be used. The usage of this 
function (see its CRAN documentation) takes the following form for sampling with-
out replacement:
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sample(x, size, replace = FALSE, prob = NULL)
where:
x = a positive integer (say, 1)
size = a nonnegative integer giving the number of items in the whole population 

from which to choose
replace = FALSE means sampling without replacement; this is the default value 

replace = TRUE does sampling with replacement
prob = a vector of probability weights for obtaining the elements of the vector 

being  sampled (this may be omitted)

The following R code segment executes the requisite computations:

> install.packages("base")
> library("base")
> # The default behavior of sample() is sampling without replacement;

> # this means that, each sampled person will not be selected more than once.

> # To obtain 3 representative sets of 5 case subjects each, the following

> # computation will be executed 3 times:

> sample(1:1000000, 5) # Outputting the fi rst set of 5 case subjects:

[1] 503512 33035 363755 527424 904495
> sample(1:1000000, 5) # Outputting the second set of 5 case subjects:

[1] 853246 286220 211121 393481 842452
> sample(1:1000000, 5) # Outputting the third set of 5 case subjects:

[1] 644293 870071 163122 153612 348948

Remarks:
1. To randomly sample with replacement, the command is

> sample(x, size, replace = TRUE).
2. For large populations, sampling without replacement is tolerated. For rela-

tively small populations, one may choose to sample with replacement.
3. The function sample() is suitable for random sampling. For other, more 

restrictive sampling modes (such as balanced cluster sampling, balanced 

stratifi cation sampling, balanced two-stage sampling, multistage sampling, 

minimal support sampling, multinomial sampling, pivotal sampling, Poisson 

sampling, random systematic sampling, systematic sampling, etc.), consult 
the CRAN documentation for the package sampling.

(d) The function prod()
Out of a patient population of 20 people, the health worker is preparing groups of 
4 each for further clinical testing. How many groups may be combined, without 
concerning the order of testing within each group?

Solution:
This is an elementary problem in combinatorics: determining the number of pos-
sible combinations (without ordering) of groups of 4 from a total population of 20. 
The answer is 20C4, which is given by

20C4 = 20!/{4!(20 4)!
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Rather than evaluating this expression by longhand methods, one may use the 
function prod() in the package base. The usage of this function (see its CRAN 
documentation) takes the following form:

> prod(…, na.rm = FALSE)

for which the arguments are as follows:

 = a numeric or complex or logical vector

na.rm = logical. Should missing values be removed?

In R, computing 20C4 may be performed in one of the following ways, using the 
code segments indicated.

1. In one step:
> prod(20:1)/{prod(4:1)*prod((20 - 4):1)} # 20!/{4!(20 4)!

[1] 4845
2. First, compute each of the three factorials; and then combine the results:

> prod(20:1) # 20!

[1] 2.432902e+18
> prod(4:1) # 4!

[1] 24
> prod((20 - 4):1) # (20 4)!

[1] 2.092279e+13
> 2.432902e+18/(24*2.092279e+13) # Combining the three factorials

[1] 4845
Hence, from a population of 20 people, combination groups of 4 may be 

formed in 4,845 ways.

Remarks:

1. The result applies for combinations of groups of 4 case subjects each and is 
expressed as 20C4.

2. If ordering of members of each group is taken into account, then the possible 
number of 4-member groups is: 20P4 = 20!/(20 – 4)!

The following code segment may be used to compute the value of 20P4:

> prod(20:1)/prod((20 4):1) # Outputting:

[1] 116280

This result may also be obtained by the following combinatoric considerations:

(i) To constitute a group of 4, there are 4 positions to be fi lled: _ _ _ _.
(ii) The fi rst position may be fi lled by any one of the original 20 people.
(iii) The second position by any of the remaining 19,
(iv) The third position by any of the remaining 18, and
(v) The fourth and last position by any of the remaining 17.
(vi) Hence, the total number of such possible permutation groups is

20 × 19 × 18 × 17 = 116,280
which is 20P4.
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 Applications of Probability Theory to Health Sciences

Chapter 2, on research and design in epidemiology and public health, showed that 
applications of probability concepts and theories are widely used, especially for 
making decisions on diagnostic criteria in clinical medicine and for health screen-
ing tests in preventive medicine. Epidemiologists and clinicians would benefi t from 
enhancement of their quantitative ability to effectively predict the absence or pres-
ence of a particular disease through test results (negative or positive) and the status 
of critical symptoms (absence or presence). Moreover, these health professionals 
would be interested in information with respect to the likelihood of negative or pos-
itive test results, and the likelihood of the absence or presence of special symptoms 
in case subjects with and without particular diseases.

The Chapter 2 discussion of Bayesian biostatistics in epidemiology indicated 
that the results of such screening tests are not always infallible. A particular testing 
procedure may yield false positives or false negatives, as shown in Table 5.3.

Applying the theory of probability, one may respond to the following four ques-
tions when attempting to evaluate the applicability and usefulness of test results and 
diagnostic status in assessing whether a case subject has some specifi c disease:

1. If a case subject does not have the disease, what is the probability of obtaining 
a negative test result (or the absence of a symptom)?

2. If a case subject does have the disease, what is the probability of obtaining a 
positive test result (or the presence of a symptom)?

3. If the screening test shows a negative result, or the diagnostic test shows the 
absence of a symptom, what is the probability that the case subject does not 
have the disease?

4. If the screening test shows a positive result, or the diagnostic test shows the 
presence of a symptom, what is the probability that the case subject does have 
the disease?

THE APPROACH USING PROBABILITY THEORY

For a large sample of n case subjects, one obtains the result shown in Table 5.4.
Table 5.4 shows the status of these n case subjects with respect to a particu-

lar disease resulting from a diagnostic screening test for identifying persons who 

TABLE 5.3 A 2×2 Decision Table Showing the Four Possible Outcomes From a Standard 
Dichotomous Clinical Testing Process

Outcomes representing an error are in bold italic typeface.

STATE OF THE SAMPLE POPULATION

TEST DECISION PATIENT IS INFECTED PATIENT IS NOT INFECTED

Positive True Positive False Positive

Negative False Negative True Negative
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have the disease. The cell entries represent the number of case subjects belonging to 
the categories defi ned by row and column headings. Thus, p is the number of case 
subjects who do have the disease and whose test result was positive, and q is the 
number who do not have the disease and whose test was also positive. From the 
information in this table, one may derive various probability estimates.

For example:
To answer Question (1): Note that the conditional probability estimate is

 P(T/D) = s/(q + s) (5.1-13)

This ratio is an estimate of the specifi city of the diagnostic screening test. More 
specifi cally, the specifi city of a screening test or of a diagnostic symptom is the prob-
ability of a negative test result (or the absence of a symptom), given the true absence 
of the disease.
To answer Question (2): The probability for a positive test for case subjects who indeed 
have the disease is given by

 P(T|D) = p/(p + r) (5.1-14)

This ratio is an estimate of the sensitivity of the diagnostic screening test. More spe-
cifi cally, the sensitivity of a screening test or of a diagnostic symptom is the probabil-
ity of a positive test result (or the presence of a symptom), given the true presence 
of the disease.
To answer Question (3): Calculate the conditional probability:

 P(D|T) = p/(p + q) (5.1-15)

This ratio is an estimate of the probability that the subject has the disease, given 
that the screening test result was positive or the requisite symptom was present. It 
is called the predictive value positive of the diagnostic screening test or of a symp-
tom. The predictive value positive of a screening test or of a symptom is the probabil-
ity that a case subject has the disease, given that the subject has a positive screening 
test result or has the requisite symptom.
To answer Question (4): Calculate the conditional probability:

 P(D|T) = s/(r + s)  (5.1-16)

This ratio is an estimate of the predictive value negative of the diagnostic screen-
ing test or of a symptom. The predictive value negative of a test or a symptom is the 

TABLE 5.4 Screening Test Results of n Subjects Cross-Classifi ed According to 
Disease Status

DISEASE

TEST RESULTS PRESENT (D) ABSENT (D) TOTAL

Positive (T) p q p + q

Negative (T) r s r + s

Sum p + r q + s n
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probability that a case subject does not have the disease, given that the subject has a 
negative screening test result or does not have the requisite symptom.

AN APPROACH USING BAYES’S THEOREM

Bayes’s theorem, which may be used to derive the sensitivity and specifi city of 
screening tests, may also be used to obtain the predictive value estimates (positive 
and negative). In the notation of Table 5.4, the following statement gives the predic-
tive value positive of a diagnostic screening test or symptom:

 P D T
P T D P D

P T D P D P T D P D
( | )

( | ) ( )
( | ) ( ) ( | ) ( )

=
+

 (5.1-17)

The basis of this equation may be found in the multiplication rule for probabilities:

 P(A∩B) = P(B) P(A|B), if P(B) ≠ 0 (5.1-7B)

or

P(A|B) = P(A∩B)/P(B), if P(B) ≠ 0

Hence, the conditional probability

P(T|D) = P(T∩D)/P(D), if P(D) ≠ 0

may be expressed as

P(T|D) P(D) = P(T∩D) = P(D∩T)

so that the numerator of Equation (5.1-17) represents P(D∩T). One can see that the 
denominator represents simply P(T), since P(D) + P(D) = 1. The latter may be estab-
lished more formally as follows.

The events represented by P(D∩T) and P(D∩T) are mutually exclusive; that 
is, they have zero intersection. Using the addition rule, Equation (5.1-8), one may 
write:

 P(T) = P(D∩T) + P(D∩T) (5.1-18)

Now, by the multiplication rule:

 P(D∩T) = P(T|D) P(D) (5.1-19A)

and

 P(D∩T) = P(T|D) P(D) (5.1-19B)

Finally, substituting Equations (5.1-19A) and (5.1-19B) into Equation (5.1-18), we get:

 P(T) = P(T|D) P(D) + P(T|D) P(D) (5.1-20)

which is the denominator of the right side of Equation (5.1-13).

Remarks:

1. The numerator of Equation (5.1-13) is equal to the sensitivity × rate (prevalence) 
of the disease.
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2. The denominator of Equation (5.1-13) is equal to the sensitivity × rate of the dis-
ease + (1 – sensitivity) × (1 – rate of the disease).

3. These relationships allow the predictive value positive to be calculated from the 
sensitivity, specifi city, and rate of the disease.

4. Another way to express Bayes’s theorem, analogous to Equation (5.1-17), is

 P(D|T) = {P(T|D) P(D)}/{P(T|D) P(D) + P(T|D) P(D)} (5.1-21)

which permits one to calculate an estimate of the probability that a case subject 
who is negative on the screening test (or has no symptom) does not have the dis-
ease—which is the predictive value negative of a diagnostic screening test or a 
symptom.
In illustrative Example 5.10 (Daniel, 2005), Bayes’s theorem is used to compute 

a predictive value positive of a diagnostic screening test.

 ■ Example 5.10: Screening for Alzheimer’s Disease

A team of clinical epidemiologic investigators plan to evaluate a proposed diagnostic 
screening procedure for Alzheimer’s disease (AD). The test procedure was undertaken 
with

(a) a random sample of 900 case subjects who had AD, and
(b) an independent random sample of 1000 case subjects without symptoms of the 

disease.

These two samples were drawn from populations who were at least 65 years old. 
The results are summarized in Table 5.5.

Solution:
The estimate of the sensitivity of the screening test may be obtained by using Table 5.4 
and Equation (5.1-14):

 P(T|D) = p/(p + r) (5.1-14)

 = 872/(872 + 28)

 = 872/900

 = 0.9689

TABLE 5.5 Summary of Results for Alzheimer’s Disease Diagnostic Screening Test

ALZHEIMER’S DISEASE DIAGNOSIS

TEST RESULTS YES (D) NO (D) TOTAL

Positive (T) 872 10 882

Negative (T) 28 990 1,018

Total 900 1,000 1,900
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The specifi city of the test may be calculated by using Table 5.4 and Equation (5.1-13):

 P(T/D) = s/(q + s) (5.1-13)

 = 990/(10 + 990)

 = 990/1000

 = 0.9900

To calculate the predictive value positive of the test (i.e., to estimate the probability that 
a case subject who is positive on the screening test does have AD), one draws from 
Table 5.5:

P(T | D) = 872/900 = 0.9689

P(T | D) = 10/1000 = 0.0100

Substituting these values in Equation (5.1-17), we get:

 P D T
P T D P D

P T D P D P T D P D
( | )

( | ) ( )
( | ) ( ) ( | ) ( )

=
+

 (5.1-17)

 
=

+
( . ) ( )

( . ) ( ) ( . ) ( )
0 9689

0 9689 0 0100
P D

P D P D
 (5.1-22)

Now, P(D), the rate of AD in the relevant general population, has been estimated to be 
11.3% (Daniel, 2005), or

P(D) = 0.1130

If one accepts this value for P(D), then

P(D) = 1 P(D) = 1 – 0.1130 = 0.8870

Hence,

 P D T
P D

P D P D
( | )

( . ) ( )
( . ) ( ) ( . ) ( )

=
+

0 9689
0 9689 0 0100

 (5.1-17)

 
=

+
( . )( . )

( . )( . ) ( . )( . )
0 9689 0 1130

0 9689 0 1130 0 0100 0 8870

 = 0.1095/0.1184

 = 0.9248, or 92.48%
Remarks:

1. The predictive value positive of the screening test is more than 92%, a very high 
value, indicating that the test is reliable.

2. Equation (5.1-22) shows that the predictive value positive of the test depends on 
the rate of the disease in the population under investigation: case subjects who 
are 65 years or older. Because the two independent samples of the test were taken 
from two different populations, one has to obtain an independent estimate of P(D).
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 Typical Summary Statistics in Biostatistics: Confi dence Intervals, 
Signifi cance Tests, and Goodness of Fit

In biostatistics, summary statistics are often used to summarize a set of observa-
tions, so as to express the largest amount as succinctly as possible. Biostatisticians 
may describe the observations as:

 ■ A measure of location, or central tendency, such as the median, mean, or mode
 ■ A measure of biostatistical dispersion, such as the confi dence level, variance, 

standard deviation (SD), or range
 ■ A measure of the shape of the distribution, such as normalcy, skewness, or 

kurtosis
 ■ A measure of biostatistical dependence, such as a correlation coeffi cient, re-

gression coeffi cients, or the like, if more than one variable is measured
 ■ Visual summary biostatistics often give a biostatistical and visual overview of 

a sample, using a histogram and/or dot, box, mean, percentile, and SD plots to 
present data in a visually meaningful, graphic manner.

A common collection of order statistics used as summary statistics is the 
fi ve-number summary, which is a descriptive biostatistic that provides information 
about a set of observations. It consists of the fi ve most important sample percentiles:

1. The sample minimum
2. The lower quartile or fi rst quartile
3. The median
4. The upper quartile or third quartile
5. The sample maximum

The following is an example of summary statistics using R.

 ■ Example 5.11: Summary Statistics Using R

Calculate the fi ve-number summary in the R programming language using the function 
fivenum(). When applied to a vector, the function summary() displays the fi ve-number 
summary together with the mean (which is not itself a part of the summary):

> x <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) # The fi rst 10 natural numbers

> fivenum(x) # Outputting: the fi ve-number summary

[1] 1.0 3.0 5.5 8.0 10.0
> summary(x) # Outputting: the summary statistics

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 3.25 5.50 5.50 7.75 10.00
> # Trying with another set of numbers:

> x <- rnorm(1000) # Considering 1000 numbers drawn at random from

> # the standard normal distribution

> fivenum(x)
[1] −3.5289989 −0.6730484 0.0056094 0.6482582 3.0345093
> summary(x)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 −3.529000 −0.672700 0.005609 −0.025180 0.648200 3.035000
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> hist(x, freq=F) # Outputting the histogram (only) in Figure 5.1.
> curve(dnorm(x), add=T) # Outputting the curve (only) in Figure 5.1.
>
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FIGURE 5.1 Distribution of 1,000 numbers randomly drawn from the standard normal distribution: 
using functions hist() and curve().

CONFIDENCE INTERVAL (CI)

Example 5.12 shows a probabilistic interpretation of confi dence intervals (CIs).

 ■ Example 5.12: Probabilistic Interpretation of CI

A biomedical scientist, who was investigating the average level of an enzyme E in a 
specifi c population, approached a random sample of 100 individuals, determined the 
enzyme level in each subject, and calculated a sample mean of x = 25 units. It was 
known that the enzyme levels are approximately normally distributed with a variance of 
400 units. How may the population mean enzyme level µ be computed?

Solution:
The approximate 95% CI for m is 

x ± 2s
x
 = 25 ± 2√(400/100) = 25 ± 4 = [21, 29]

In calculating this CI, note that the interval contains:

(a) The point estimate of m as its center.
(b) The factor 2, arising from the standard normal distribution, showing the number of 

standard errors (SEs) that lie approximately within 95% of the possible value of x. 
This value of z is the reliability coeffi cient.
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(c) The component s
x
 is the standard error or standard deviation of the sampling 

distribution of x.

Thus, in general, an interval estimate is represented as

 Estimator ± (Reliability Coeffi cient) × (Standard Error) (5.1-23)

Hence, for a sample taken from a normal distribution with known variance, the interval 
for µ may be written as

 x ± z(1 – α/2)sx
 (5.1-24)

where z(1 – α/2) is the value of z to the left of which lies (1 – α/2), and to the right of which 
lies α/2 of the area under the distribution curve.

INTERPRETATION BASED ON PROBABILITY THEORY. In Example 5.12, where the reli-
ability coeffi cient had the value of 2, one may assert that upon repeated random 
sampling, about 95% of the intervals constructed by Equation (5.1-24) will include 
the population mean. This is based on the probability of occurrence of different 
values of x.

By designating the total area under the distribution curve of x that is outside of 
the interval m ± 2s

x
 as α and the area within the interval as 1 – α, one may generalize 

this interpretation to arrive at the probabilistic interpretation of CI as follows.
By repeated random sampling from a normally distributed population with a 

known SD, 100(1 – α)% of all intervals of the form

 x ± z(1 – α/2)αx (5.1-25)

will ultimately include the population mean m.
The quantity (1 – α), which is 0.95 in this case, is the confi dence coeffi cient (or 

confi dence level), and the interval x ± z(1 – a/2)sx is the CI for μ. When (1 – α) = 0.95, 
the interval is called the “95% CI for m.” In Example 5.12, the biomedical researcher 
may state that she is 95% confi dent that the population mean is between 21 and 29. 
This is the practical interpretation of Equation (5.1-24).

REMARKS ON CI

1. A practical interpretation
When sampling is randomly taken from a normally distributed population with 
a known SD, one may be 100(1 – α)% confi dent that the computed interval x ± 
z(1 – α/2)sx contains the true population mean m.

The more exact value of z is 1.96, instead of 2, corresponding to a confi dence 
coeffi cient of 0.95. Commonly used confi dence coeffi cients are 0.90, 0.95, and 
0.99, for which the reliability factors are 1.645, 1.96, and 2.58, respectively.

2. Quantiles, Median, and CI
The inverse of the cumulative distribution function (cdf) is called the quan-
tile function. The p-quantile is the value such that there is a probability p of 
achieving a value equal to or less than that value. The median is defi ned as the 
50%-quantile.

For the calculation of CI, theoretical quantiles are used. Thus, for n normally 
distributed observations with mean m and SD s, the average x is normally dis-
tributed around m with SD s/√n.
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A 95% CI for m may be obtained as

 x + s/√n × N0.025 ≤ m ≤ x + s/√n × N0.975 (5.1-26)

where N0.025 is the 2.5%-quantile in the normal distribution.
For example: For s = 10, in a study where 6 case subjects were tested and an 

average of 75 units was found, one may compute the quantiles and CI using the 
following R code segment:

> xbar <- 75
> sigma <- 10
> n <- 6
> # Quantiles and CI computation:
> sem <- sigma/sqrt(n) # sem = standard error of the mean
> sem
[1] 4.082483
> xbar + sem * qnorm(0.025)
[1] 66.99848
> xbar + sem * qnorm(0.975)
[1] 83.00152

Hence, a 95% CI for m is [66.99848, 83.00152], or [70, 83] approximately.

Notes:

1. If the normal distribution is symmetric, then N0.025 = N0.975.
2. One may express the CI as x ± (s/√n) N0.975.
3. The quantile may be expressed as Φ1(0.975), where Φ is the cdf of the normal 

distribution, pnorm().
4. Another application of quantiles is through the use of quantile-versus-quantile 

(Q–Q) plots, which may be used to test whether a dataset may be assumed to 
have come from a given distribution. The R function qqnorm() may be used for 
such graphic displays.

 ■ Example 5.13: Q–Q plots of randomly generated datasets

Consider:

1. A set of 10 randomly generated numbers, and show its Q–Q plot.
2. Repeat the procedure for a set of 10,000 numbers.

Solution:
The following code segments provide the required Q–Q plots:
> x1 <- rnorm(10)
> x1 # For a small dataset, print it out and take a look at it!

[1] 1.1076094 1.6250114 −0.2617057 −1.8640710 −0.7168488
[6] 0.5900851 −0.9575308 −1.3772980 0.8060826 −1.8170715
> qqnorm(x1) # Outputting: Figure 5.2(A).
> x2 <- rnorm(10000)
> qqnorm(x2) # Outputting: Figure 5.2(B).
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FIGURE 5.2 Q–Q plots of randomly sampled datasets from a normal distribution: (A) dataset of 
10 points; (B) dataset of 10,000 points.

3. One- and Two-Sample t-Tests for CI
In biostatistical analysis of real data, more often than not, both the population 
mean m and the SD s are not known. From the practical viewpoint, it had been 
considered that a reasonable approach would be to make some estimates of 
these vital parameters, while retaining the concept of a normal distribution for 
all variables. This approach includes:

 ■ Using sample mean x as an estimate for the true mean m
 ■ Using sample SD s for the true SD s
 ■ Using the t distribution instead of the normal distribution
 ■ Instead of the critical values of zα/2 in a normal distribution, using the 

larger critical values of tα/2 values from the t distribution

If a given t distribution is close to a normal distribution (this is the essential 
assumption), then the distribution of the variable t defi ned by

 t = (x – m)/(s/√n) (5.1-27)

is a t distribution for samples of size n.
This distribution, also known as the Student’s t distribution, may be used 

to fi nd the critical value tα/2. The number of degrees of freedom (DFs) is (n – 1), 
representing the number of freely assignable means to n case subjects. In practice, 
it is expected that n > 30.

A number of data testing procedures have been developed. One of the 
most common is the one-sample t-test, which assumes that the datasets come 
from normal distributions. For the one-sample case, the data x1, x2, x3, …, xn 
are assumed to be independent results of random variables with distribution 
N( ms2); that is, the normal distribution with mean m and variance s2. The null 
hypothesis to be tested is m = m0.
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One can then estimate the parameters m and s by the following empirical relations:

 m ≈ x and s ≈ s (5.1-28)

In this approach, the essential concept is that the standard error of the mean 
(SEM), describing the variation of the average of n random values with mean μ 
and variance s2, is

 SEM = s/√n (5.1-29)

This implies that if the test were repeated a number of times and the aver-
age computed each time, these averages would form a distribution somewhat 
narrower than that of the original distribution. For normally distributed data, 
it is expected that there is a 95% probability that the data will be within a range 
of ( m ± 2s). One would further expect that x should be within 2 SEM of it. In 
practice, one calculates:

 t = (x – m0)/SEM (5.1-30)

and then checks to see if this computed parameter lies within an acceptance 
region, outside of which t should fall with probability equal to a predetermined 
signifi cance level. This level is commonly taken to be 5%, corresponding to 
approximately the interval [2, 2]. The values for the acceptance region may be 
found as quantiles in the t distribution tables with (n – 1) DFs.

Acceptance Criteria:

 ■ If t lies outside the acceptance region, then the null hypothesis is rejected at 
the predetermined signifi cance level.

 ■ One may also calculate the p-value (the probability of obtaining a value 
larger than the observed t-value) and, if the p-value is less than the signifi -
cance level, reject the null hypothesis.

 ■ A one-sided t-test is done if there is additional information such that the 
additional data would only cause m to exceed m0. In such a case, one may 
then decide that the null hypothesis should be rejected only if t should fall 
in the upper tail of the distribution.

SIGNIFICANCE LEVELS

In biostatistical tests, one must decide which values go into the rejection region 
and which go into the nonrejection region (this latter is not necessarily the same as 
the acceptance region). This decision is based on the preferred signifi cance level 
α,which specifi es the area under the distribution curves of the test statistic that is 
above the values on the horizontal axis as constituting the rejection region.

Hypothesis tests are also called signifi cance tests, and a computed value of the 
test statistic falling within the rejection region is called signifi cant. Thus, the signif-
icance level α is the probability of rejecting a true null hypothesis.

Usually, small values of α are chosen to make the probability of rejecting a true 
null hypothesis small. Frequently, the chosen values of α are 0.01, 0.05, and 0.10, 
with 0.05 being the most common.
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Review the discussion in Chapter 2 on the concept of biostatistical signifi cance, 
and consider the following examples on the calculations of signifi cance levels in 
biostatistical analysis.

 ■ Example 5.14: Signifi cance levels for two-sample tests for normal populations 
 (Verzani, 2005)

The fi rst Food and Drug Administration (FDA)–supported antiretroviral drug used in the 
care of HIV-infected case subjects was azidothymidine (AZT). The normal dosage was 
300 mg twice daily. Health researchers knew that higher dosages often caused more 
adverse side effects, but they wondered if they were also more effective. Back in 1900, 
an epidemiologic study compared varying doses at the 300-, 600-, and 1500-mg levels. 
The investigation found that higher dosages had elevated levels of toxicity; they also 
noted, somewhat more unexpectedly, that lower dosages might be equally effective.

The p24 antigen stimulates immune responses. Measurement of the p24 levels for 
the 300-mg and 600-mg groups is given by the simulated data in Table 5.6.

Solution:
First, a null hypothesis is set up. Then it is tested at specifi ed signifi cance levels.

Let m300 be the mean of the 300-mg group and m600 be the mean of the 600-mg 
group.

One may test the null hypotheses (H0: m300 = m600, HA
: m300 ≠ m600) with a t-test. Before 

testing, check to see whether the assumption of a common variance and normality is 
appropriate by inspecting two density plots.

The following R code segment will perform these tasks:
> # Inputting the two datasets: ¥300 and ¥600:

> ¥300 <- c(284, 279, 289, 292, 287, 295, 285, 279, 306, 298)
> ¥600 <- c(298, 307, 297, 279, 291, 335, 299, 300, 306, 291)
> plot(density(x300)) # Outputting: Figure 5.3(A).
> lines(density(x600), lty=2) # Outputting: Figure 5.3(B).
> t.test(x300, x600, var.equal=TRUE) # Now, do the t-test, outputting:

Two Sample t-test
data: x300 and x600
t = −2.034, df = 18, p-value = 0.05696
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
−22.1584072 0.3584072
sample estimates:
 mean of x mean of y
 289.4 300.3

TABLE 5.6 Levels of p24 in Milligrams for Two Treatment Populations

DOSAGE p24 LEVEL

300 mg 284 279 289 292 287 295 285 279 306 298

600 mg 298 307 297 279 291 335 299 300 306 291
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FIGURE 5.3 Density plots for comparing variances and shapes of the 300-mg dosage (solid) and 
the 600-mg dosage (dashed).

># Repeat the t-test, without assuming the same variances

> t.test(x300, x600)
Welch Two Sample t-test
data: x300 and x600
t = −2.034, df = 14.509, p-value = 0.06065
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
−22.3557409 0.5557409
sample estimates:
 mean of x mean of y
 289.4 300.3

Remarks:

1. For the equal variance test, the p-value is .05696 for the two-sided t-test. This im-
plies a possible difference in the mean values, but it is not statistically signifi cant 
at the 0.05 signifi cance level. It may be concluded that this dataset is consistent 
with an assumption of no mean difference.

2. The test statistic is t = −2.034.
3. For the case without the assumption of equal variances, the same test statistic (as 

the equal variance case) is obtained: t = −2.034. This agreement is in accord with 
the theoretical model, as follows:

Algebraically, if two samples are independent with normally distributed pop-
ulations, as X and Y estimate m

x
 and m

y
, respectively, the value of (X – Y) may be 

considered a good estimate for ( m
x
 – m

y
). One may use this assumption to form a 

test statistic.
Both sample means have normally distributed sampling distributions, and 

hence a natural test statistic T would be

 T = {(X – Y) E(X – Y |H0)}/SE(X – Y |H0) (5.1-31)
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Under H0, the expected value of the difference is zero.
The SE may be found from the formula for the SD, which is based on the inde-

pendence of the samples:

 SD(X – Y |H0) = √{(s
x 

2/n
x
) + (s

y
2/n

y
)} (5.1-32)

As with the computation for the CI, the estimate used for the population vari-
ances depends on the assumption of equal variances.

If the assumption of equal variance is made, then both sets of data are pooled 
to estimate

 s = s
x
 = s

y
 (5.1-33)

using

 s
p
 = √[{(n

x
 1)s

x
2 + (n

y
 – 1) s

y
2}/(n

x
 + ny 2)] (5.1-34)

The SE is given by

 SE(X – Y) = s
p
√{(1/n

x
) + (1/n

y
)} (5.1-35)

Under these conditions, T has a t distribution with (n – 2) DFs.
If the population variances are not assumed to be equal, then one may esti-

mate s
x
 by s

x
, and s

y
 by s

y
 to obtain

 SE( m
x
 – m

y
) = √{(s

x
2/n

x
) + (s

y
2/n

y
)} (5.1-36)

Thus, with the assumption of equal variances, Equations (5.1-35) and (5.1-36) show 
that when the two samples are the same size, their SEs are mathematically  identical.

4. The p-value increased from .05696 to .06065, as the DFs decreased from 18 to 
14.509.

Many additional tests, such as the Wilcoxon {stats}, and the pairwise.wilcox.
test {stats}, are available in the CRAN site upon prompting by
> ??wilcoxon

GOODNESS OF FIT

A goodness-of-fi t (GoF) test, used on a given dataset, statistically assesses the 
hypothesis that the frequency distribution of the data conforms to, or “fi ts,” some 
particular distribution. In biostatistics, the GoF of a model shows how well the 
model fi ts a set of observations. Summary measures of GoF typically consist of 
the discrepancy between observed values and the values expected under the model. 
Such measures may be used in statistical hypothesis testing for several purposes, 
 including:

 ■ To test for normality of the dataset or the residuals
 ■ To test whether outcome frequencies follow a specifi ed distribution (see dis-

cussion of Pearson’s chi-squared test later in this subsection)
 ■ To test whether two samples are drawn from identical distributions (see dis-

cussion of the Kolmogorov–Smirnov [KS] test later in this section)
 ■ In the analysis of variance (ANOVA), to test whether one of the components into 

which the variance is partitioned may be a lack-of-fi t sum of squares (among 
other things)
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Typically, in epidemiologic investigations, one wishes to test whether or not 
a sample of observed values of some specifi c variable(s) is compatible with the 
hypothesis that the sample was drawn from a normally distributed population 
of values. This test procedure generally consists of putting the observed data into 
mutually exclusive class intervals and noting the frequency of occurrence of the val-
ues in each class. Next, using one’s knowledge of normal distributions, one deter-
mines the frequencies for these classes that could be expected if the sample had 
come from a normal distribution. If the disagreement is such that it could have 
occurred owing to chance, one may conclude that the observed sample may indeed 
have come from a normal distribution. Similarly, GoF tests may be performed in 
investigations in which the hypothesized distribution is the binomial distribution, 
the multinomial distribution, the Poisson distribution, and so on.

From the theory of probability, a number of methodologies have been devel-
oped for GoF testing. These methodologies are presented here, and followed with 
examples to illustrate details of GoF hypothesis testing using these methods within 
the R environment.

PEARSON’S CHI-SQUARE DISTRIBUTION FOR GOF TEST. For populations that are nor-
mally distributed, with variance s2, randomly select independent samples of size n, 
and calculate the sample variance s2, where

 s2 = [∑ xi
2 (∑ xi)

2/n]/(n – 1) (5.1-37)

for each sample. The sample statistic c2, where

 c2 = (n – 1)s2/s2 (5.1-38)

has a distribution called the chi-square distribution, has the following special 
properties:

 ■ This distribution is based on the number of DFs, which is usually taken as 
(n – 1) unless special conditions prevail.

 ■ This distribution is not symmetrical, and the values cannot be negative; it can 
only be zero or positive.

 ■ As DF increases, this distribution approaches a normal distribution.

The test statistic for the chi-squared test is

 X2 = ∑ [(Oi – Ei)
2/Ei] (5.1-39)

where Oi is the observed frequency for the ith class of the variable of interest, and 
Ei is the expected frequency for the ith class of the variable of interest (if the null 
hypotheses H0 were true).

The quantity X2 is a measure of the extent to which, in any situation, pairs of 
observed and expected frequencies agree. The nature of X2 is that:

(a) When there is a perfect agreement between observed and expected frequen-
cies, it is zero, and H0 must be accepted.

(b) When there is a close agreement between observed and expected frequencies, 
it is small (and the p-value is large).

(c) When there is a poor agreement between observed and expected frequencies, 
it is large (and the p-value is small), and H0 must be rejected.
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In general, the calculated value of X2 is compared with the tabulated value of 
(k – r) DF, where k is the number of classes for which observed and expected fre-
quencies are available, and r is the number of constraints or restrictions imposed on 
the given comparison. Thus, a restriction is imposed when one forces the sum of the 
expected frequencies to equal the sum of the observed frequencies. Additional restric-
tions are imposed for each parameter that is estimated from the observed sample.

The decision then is whether to reject the null hypothesis H0 if X
2 is greater than 

or equal to the tabulated c2 for the chosen value of α.
Tables of critical values of the c2 distribution are available in standard texts and 

on the Internet.

THE PEARSON’S CHI-SQUARED TEST IN THE R ENVIRONMENT. The R function chisq.
test(), in the CRAN package stats, performs chi-squared contingency table tests and 
GoF tests. Its usage format is
chisq.test(x, y = NULL, correct = TRUE,
 p = rep(1/length(x), length(x)), rescale.p = FALSE, 

simulate.p.value = FALSE, B = 2000)
for which the arguments are:
x A numeric vector or matrix. x and y can also both be factors.
y A numeric vector; ignored if x is a matrix. If x is a factor, then 

y should be a factor of the same length.
correct A logical label indicating whether to apply continuity correc-

tion when computing the test statistic for 2×2 tables: one-half 
is subtracted from all |O E| differences. No correction is done 
if simulate.p.value = TRUE.

p A vector of probabilities of the same length as x. An error is 
given if any entry of p is negative.

rescale.p A logical scalar; if TRUE, then p is rescaled (if necessary) to sum 
to 1. If rescale.p is FALSE, and p does not sum to 1, an error 
is given.

simulate.p.value A logical label indicating whether to compute p-values by 
Monte Carlo simulation.

B An integer specifying the number of replicates used in the 
Monte Carlo test.

The following example illustrates the use of the chisq.test() function.

 ■ Example 5.15: GoF Test for the Normal Distribution (Daniel, 2005, Verzani, 2005)

An epidemiologic research group collected the inpatient occupancy data on 250 U.S. 
hospitals over a 12-month period and reported the ratio of daily census to the number 
of beds maintained. The sample data were expressed in terms of the distribution of 
percentages, as shown in Table 5.7.

Show whether these data provide reasonably suffi cient evidence to show that the 
sample did or did not come from a normally distributed population.
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Solution:
Begin by assuming that the dataset available for biostatistical analysis is a simple, 
random sample.
Hypothesis (H0): In the population from which this sample was taken, inpatient occu-

pancy ratios are normally distributed.

Test Statistic: X = ∑
i = 1 to k [(Oi

 E
i
)2/E

i
] (5.1-37)

This is the chi-squared statistic, in which O
i
 and E

i
 are the observed and expected 

frequencies, respectively, for the ith class of the dataset.
If H0 is true, then the test statistic is distributed as chi-square with (k – r) DFs.

Decision Rule: H0 will be rejected if the calculated value of X2 is equal to or greater than 
the critical value of chi-square, or the p-value is very small.

Computations: As the mean and variance of the hypothesized distribution are not 
known, the sample data will be used to estimate these parameters. The estimates 
of these parameters are needed to calculate the frequency that would be expected 
in each class when the hypothesis is true. For each of the 8 classes, the median of 
each will be used to represent the class; the medians of the 8 classes are 20, 45, 
55, 65, 75, 85, 95, and 105.
The following R code segments are used to undertake the computations:

> x <- c(16, 18, 22, 51, 62, 55, 22, 4) # Inputting the frequencies

> x # Checking

[1] 16 18 22 51 62 55 22 4
> p1 <- c(20, 45, 55, 65, 75, 85, 95, 105) # Inputting data

> p1 # Checking

[1] 20 45 55 65 75 85 95 105
> p <- p1/sum(p1) # Normalizing

> p # Checking

TABLE 5.7 Summary of Results of Hospital Occupancy Study

INPATIENT OCCUPANCY RATIO NUMBER OF HOSPITALS

0.0 to 39.9 16

40.0 to 49.9 18

50.0 to 59.9 22

60.0 to 69.9 51

70.0 to 79.9 62

80.0 to 89.9 55

90.0 to 99.9 22

100.0 to 109.9 4

Total 250



244 5. PROBABILITY AND STATISTICS IN BIOSTATISTICS

[1] 0.03669725 0.08256881 0.10091743 0.11926606
[5] 0.13761468 0.15596330 0.17431193 0.19266055
> n <- sum(x) # Summing the frequencies

> n # Checking

[1] 250
> chi2 <- sum( (x - n*p)^2 / (n*p) ) # Computing the X2 statistic

> chi2 # Outputting the X2 statistic

[1] 100.7709
> pchisq(chi2, df = 8 - 1, lower.tail = F) # Outputting the p-value

[1] 7.476817e-19
>
> # An alternate computation:

> chisq.test(x, p=p)
 Chi-squared test for given probabilities
data: x
X-squared = 100.7709, df = 7, p-value < 2.2e-16
Biostatistical Decision and Conclusion: The probability of obtaining a value of X2 

to allow the hypothesis H0 to be true is minute: p ≈ 0. Thus, the dataset is mostly 
unlikely to be normally distributed, and one should seek another explanation.

THE CHI-SQUARED TEST OF INDEPENDENCE FOR GOF. Chapter 2 introduced the use 
of a two-way contingency table to clarify the relationship between the variables. 
In particular, one may be concerned whether the levels of one variable affect the 
distribution of the other variable. Often the question arises as to whether they are 
independent random variables. As an illustration, consider the following situation 
(Verzani, 2005).

In California, a survey of carseat-belt use investigated the relationship between 
the use of a seat belt by a parent and by a child. The result of the survey is given in 
Table 5.8.

While the data show some dramatic differences and important correlations 
between the relationships and actions, from a biostatistical viewpoint, one needs a 
signifi cance test—starting with a probability mode, the associated test statistic, and 
the null and alternate hypotheses that are to be tested to reach a decision and yield-
ing a GoF concept of the model. Such an approach may be applied to any similar 
four-way decision situation.

The Probability Model: The sampling model is that each car follows a given 
probability that is recorded in some specifi c cell. These probabilities do not change, 
and the outcome of one does not affect the distribution of another; thus, they form 
an iid sequence. Consider a multinomial model for the dataset.

TABLE 5.8 Survey of Car Seat-Belt Use in California

CHILD

PARENT BUCKLED UNBUCKLED

Buckled 56 8

Unbuckled 2 16
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Let
 nr = The number of rows in the table (the number of levels of the row variable)
 nc = The number of columns in the table
 Xij = A random variable recording the frequency of the (i,j) cell
 pij = The cell probability for the ith row and jth column

Denote the marginal probabilities by pi
r and pj

c, where:

 p p p pj
r

i i inj
= + + +1 2 L  (5.1-38)

and

 p p p pj
c

j j jni
= + + +1 2 L  (5.1-39)

Null Hypothesis: The column variables are independent of the row variables.
That is,

 H0: pij = pi
r pj

c (5.1-40)

In other words, the hypotheses are:

H0: The variables are independent.
HA: The variables are not independent.

After the pij values are estimated so as to calculate the “expected” counts, the c2 
 statistics

 c2 = ∑ [(Observed – Expected)2/Expected] (5.1-41)

may be used. The data are used to estimate the marginal probabilities (see 
 Section 5.1), and the assumption of independence is used to estimate the pij.

For this example, the marginal probabilities are obtained by the marginal distri-
butions of the data, resulting in Table 5.9.

From Table 5.9, it is easy to see that:

 ■ The estimate for pr
1 = P(Parent is Buckled) = pr

1 = 64/82
 ■ The estimate for pr

2 = P(Parent is Unbuckled) = pr
2 = 18/82

 ■ The estimate for pc
1 = P(Child is Buckled) = pc

1 = 58/82
 ■ The estimate for pc

2 = P(Child is Unbuckled) = pc
2 = 24/82

Having calculated these estimates, one may use the null hypothesis H0 to fi nd 
the estimate:

 pij = pi
r pj

c (5.1-40)

For the data on hand, the resultant estimates are obtained as shown in Table 5.10.

TABLE 5.9 Marginal Distribution for Survey of Car Seat-Belt Use in California

CHILD

PARENT BUCKLED UNBUCKLED MARGINAL

Buckled 56 8 64

Unbuckled 2 16 18

Marginal 58 24 82
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Using this table, one may calculate the expected amounts in the ijth cell with npij, 
that is, eij, which is written as RiCj/n, where Ri is the row sum and Cj the column sum:

 eij = RiCj/n (5.1-42)

and the c2 statistic may now be expressed as

 x Y np npij ij iji toni ton cr

2 2

11
= −( )⎡

⎣⎢
⎤
⎦⎥== ∑∑  (5.1-43)

By the hypothesis of multinomial data and the independence of the variables, the 
sampling distribution of c2 will be the chi-squared distribution with (nr – 1)(nc – 1) 
DFs, because by subtracting 1 DF from nr·nc – 1 for each estimated parameter, and 
since there are nr – 1 + nc + 1 parameters, the value for the DF is

nr·nc – 1 – (nr – 1 + nc + 1) = nr·nc – nr – nc + 1 = (nr – 1)(nc – 1)

In the R environment, the following procedure may be followed for a chi-squared 
test for the independence of two categorical variables:

 ■ When the data are summarized in a matrix or table in the variable x, the test is 
done by the test function chisq.test().

 ■ When the data are summarized and stored in two variables x and y where the 
ith entries match up, the test function is chisq.test(x, y).

 ■ The data are fi rst summarized using table(), as in chisq.test(table(x, y)).

The null and alternate hypotheses are not specifi ed, as they are the same for each 
test. When the expected counts in some cells are too small to use the chi-squared 
distribution to represent the sampling distribution of c2, adding the argument sim-
ulate.p.value=TRUE will return a p-value estimate using a Monte Carlo simulation.

The following example illustrates the use of R for this problem.

 ■ Example 5.16: GoF Test Using the Pearson’s χ2 Test of Independence (Verzani, 2005)

Using the data from Table 5.8, the survey of car-seat-belt use in California, perform a 
GoF test using R.

Solution:
The following R code segments may be used to fi rst create a table by using the function 
rbind() to combine rows (see Chapter 3 on computations in vectors and simple graph-
ics), and then using the function chisq.test() to do the GoF test:

TABLE 5.10 Estimated Marginal Probabilities for Survey of Car Seat-Belt Use in California

CHILD

PARENT BUCKLED UNBUCKLED MARGINAL

Buckled (64/82)(58/82) (64/82)(24/82) (64/82)

Unbuckled (18/82)(58/82) (18/82)(24/82) (18/82)

Marginal 58/82 24/82 82/82
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> seatbelt.usage.in.california <- rbind( c(56,8), c(2,16) )
> seatbelt.usage.in.california # Outputting:

 [,1] [,2]
[1,] 56 8
[2,] 2 16
> chisq.test(seatbelt.usage.in.california) # Outputting:

Pearson’s Chi-squared test with Yates’ continuity correction
data: seatbelt.usage.in.california
X-squared = 35.9953, df = 1, p-value = 1.978e–09

Biostatistical Decision and Conclusion: The computed p-value, 1.978e−09, is small, 
is not signifi cant, and therefore is consistent with the observation that the two vari-
ables are not independent.

THE CHI-SQUARED TEST OF HOMOGENEITY FOR GoF. In investigating the effectiveness 
of a drug treatment, research epidemiologists are often called upon to assess a clin-
ical trial in which each case subject is randomly allocated to one of two groups: 
either a treatment group or a placebo group. To biostatistically analyze the results, 
the following approaches are available:

 (A) If the results are recorded numerically, a t-test may be used to test whether any 
differences in sample means are signifi cant.

 (B) If the results are noted categorically, the following procedure shows that the c2 
statistic may be used to check whether the distributions of the results are the 
same. A research study conducted at the Stanford University Medical Center 
(SUMC) is used here to illustrate this approach (Verzani, 2005).

SUMC investigated whether the antidepressant Celexa can be effective in mod-
ifying compulsive shopping behavior. In that study, 24 case subjects (who were 
known compulsive shoppers) participated: 12 were given a daily dose of Celexa for 
7 consecutive days, and 12 were given a placebo. At the end of this treatment, all the 
subjects were surveyed to assess whether their desires to shop had been reduced. 
From the preliminary report, simulated data were developed; they are shown in 
Table 5.11.

To formulate this investigation as a signifi cance test, one may use the following 
hypotheses:

H0: The two distributions are the same.
HA: The two distributions are different.

and the c2 statistics may be used. Because the expected amounts are not fully speci-
fi ed in H0, that amount must be determined.

TABLE 5.11 Data on the Effect of Celexa for Reducing Compulsive Shopping

MUCH WORSE WORSE SAME MUCH IMPROVED VERY MUCH IMPROVED

Celexa 0 2 2 5 2

Placebo 0 2 8 2 0
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The test procedure is as follows. In the data table, let

 ■ The random variable be the column variable, and
 ■ The category that breaks up the data be the row variable.
 ■ For row i of the table, let pij be the probability that the random variable (the 

study result) will be in the jth level of the random variable.

We can then rephrase the hypotheses as

H0: pij = pj for all rows i
HA: pij ≠ pj for some i, j

Let ni be the number of counts in each row; then the expected amount in the (i, j) 
cell under H0 should be nipj. The value of pj in H0 has to be estimated because it is not 
specifi ed. Under the hypothesis H0, all the data in the jth column are binomial with n 
and pj; thus, an estimator for pj would be the column sum divided by n; that is, Cj/n.

Under these circumstances, the expected number in the (i, j) cell would be given by

 eij = nipj = RiCj/n (5.1-44)

This is exactly the same formula as the c2 test of independence, Equation (5.1-42).
In spite of the differences in the hypotheses, the test statistic and its sampling 

distribution under null hypothesis H0 are the same as the test of independence; 
hence, the chi-squared signifi cance tests of homogeneity and independence are 
identical in practice and implementation.

GoF TESTS FOR CONTINUOUS DISTRIBUTIONS. Recall that when testing whether sam-
pled data was taken from a normal distribution, one makes a histogram or a quan-
tile plot of the data, then visually inspects the result. For a sampled continuous 
dataset, one may, using a signifi cance test, compare the dataset with a theoretical 
one. This is the approach for GoF tests for continuous distributions.

For categorical data, it was shown that the chi-squared test may be applied. One 
may extend this technique by “binning”: just as one does when constructing histo-
grams, one chooses some bins and counts the number of data points in each bin. In 
this way, the data may be considered categorical, and the test may be used for GoF.

However, in practice, it has been found that, for continuous distributions, an 
approach that improves results is the KS test: Let X1, X2, X3, …, Xi, …, Xn be a ran-
dom sample from a continuous distribution.

Let f(x) be the probability distribution density function (pdf), and X be some 
other random variable with this density.

The cdf for X is F(x) = P(X ≤ x), or the area to the left of x under the density curve 
of X.

The cdf may be similarly defi ned when X is discrete: It is calculated from the pdf 
by summing: P(X ≤ x) = ∑y≤x f(y).

For a sample X1, X2, X3, …, Xi, …, Xn, the empirical distribution is the distri-
bution obtained by sampling from the data points. The “probability that a number 
randomly selected from a sample is ≤ x” is the number of data points in the sample 
≤ (x/n). Using the notation Fn(x) for this probability:

 Fn(x) = #{i: Xi ≤ x}/n (5.1-45)
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Here, Fn(x) is the empirical cumulative distribution function (ecdf).
In the R environment, Fn(x) may be plotted using the function ecdf(), in the 

package stats, similar to the function density(), for which the return value may be 
plotted in a new fi gure using the function plot(), or it may be added to the existing 
plot using the function lines(). The following example illustrates the use of R for this 
application.

 ■ Example 5.17: Comparing a sample of 15 points from a normally distributed pop-
ulation to the theoretical distribution by showing both sample and theoretical densities 
and cdfs.

Solution:
The following R commands may be used:

> x1 <- rnorm(15)
> x1

[1] −0.63573743 −0.14453713 −0.57131893
[4] −1.76854783 1.41941167 −1.47808847
[7] 0.99010104 −0.06643542 0.25797379

[10] −0.62145348 −0.77645263 0.31534275
[13] −0.96369367 −1.15635521 −1.08556058

> plot(density(x1), main="Densities") # Plotting densities

> curve(dnorm(x), add=TRUE, lty=2) # Add Normal curve

> # Outputting: Figures 5.4(A) and 5.4(B).
> plot(ecdf(x1), main="C.d.f.s") # Plotting Cdf point values

> curve(pnorm(x), add=TRUE, lty=2) # Add Cdf curve

> # Outputting: Figures 5.5(A) and 5.5(B).
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FIGURE 5.4 For a sample size of 15 from a normally distributed population: (A) sample density; 
(B) theoretical density.
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FIGURE 5.5 For a sample size of 15 from a normally distributed population: (A) estimated cdf; 
(B) theoretical cdf.

Remarks:

 ■ The foregoing example shows that if the sampled data are from a population with 
the normal distribution, the distribution and cdf of the dataset will be close to the 
normal distribution and the cdf of the normal distribution.

 ■ Similarly, if the data are from a population with cdf F, one may expect that F
n
 is 

close to F in some way. What does “close” mean in this context?
 ■ Given two different functions of x, the separation D between them may be defi ned as

 D = maximum of |F
n
(x) – F(x)| (5.1-46)

It turns out that, with the only assumption that F is continuous, D has a known sampling 
distribution called the KS distribution. This property allows the construction of a signif-
icance test using the test statistic D.

Moreover, a similar test may be performed to compare two independent samples.

THE K–M GoF TEST. Let X1, X2, X3, …, Xi, …, Xn be an independent and identically 
distributed (iid) sample from a continuous distribution with cdf F(x).

Let Fn(x) be the empirical cdf.
A signifi cance test of H0: F(x) = F0(x), HA: F(x) ≠ F0(x) may be constructed with 

test statistic D. Note that large values of D indicate support for the alternative 
hypothesis.

In R, the KS GoF test may be implemented using the function ks.test(), from the 
CRAN package stats, which performs one- or two-sample KS tests, in the following 
format.

From the R environment, the command

> ?ks.test

provides the following information on the documentation of the function.
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ks.test(), in the CRAN package stats1:
ks.test(x, y, …, alternative = c(“two.sided”, “less”, “greater”),
 exact = NULL)

Arguments:

x A numeric vector of data values.
y Either a numeric vector of data values or a character string nam-

ing a cdf or an actual cdf such as pnorm. Only continuous cdfs are 
valid.

… Parameters of the distribution specifi ed (as a character string) by y.
alternative Indicates the alternative hypothesis and must be one of “two.

sided” (default), “less”, or “greater”. You can specify just the initial 
letter of the value, but the argument name must be given in full. See 
“Details” for the meanings of the possible values.

exact NULL or a logical label indicating whether an exact p-value should 
be computed. See “Details” for the meaning of NULL. This is not 
available in the two-sample case for a one-sided test, or if ties are 
present.

Details:

 ■ If y is numeric, a two-sample test of the null hypothesis that x and y were 
drawn from the same continuous distribution is performed.

 ■ Alternatively, y can be a character string naming a continuous (cumulative) 
distribution function, or another such function. In this case, a one-sample test 
is carried out of the null to see whether the distribution function that generat-
ed x is distribution y with parameters specifi ed by … .

 ■ The presence of ties should always be taken as a warning because continuous 
distributions do not generate them. If the ties arose from rounding, the tests 
may be approximately valid, but even modest amounts of rounding can have a 
signifi cant effect on the calculated statistic.

 ■ Missing values are silently omitted from x and (in the two-sample case) y.
 ■ The possible values “two.sided”, “less”, and “greater” of alternative specify 

the null hypothesis that the true distribution function of x is equal to, not less 
than or not greater than, the hypothesized distribution function (one-sample 
case) or the distribution function of y (two-sample case), respectively. This is a 
comparison of cdfs, and the test statistic is the maximum difference in value, 
with the statistic in the “greater” alternative being D^+ = max[F_x(u) - F_y(u)]. 
Thus, in the two-sample case, alternative = “greater” includes distributions 
for which x is stochastically smaller than y (the cdf of x lies above and hence to 
the left of that for y), in contrast to t.test or wilcox.test.

 ■ Exact p-values are not available for the two-sample case if one-sided or in the 
presence of ties. If exact = NULL (the default), an exact p-value is computed if 
the sample size is less than 100 in the one-sample case and there are no ties; and 
if the product of the sample sizes is less than 10,000 in the two-sample case. 

1 The CRAN package {stats}: http://cran.r-project.org

http://cran.r-project.org
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Otherwise, asymptotic distributions are used whose approximations may be 
inaccurate in small samples. In the one-sample, two-sided case, exact p-val-
ues are obtained as described in Marsaglia, Tsang, and Wang (2003) (but not 
using the optional approximation in the right tail, so this can be slow for small 
p-values). The formula of Birnbaum and Tingey (1951) is used for the one- 
sample, one-sided case.

 ■ If a single-sample test is used, the parameters specifi ed in … must be prespec-
ifi ed and not estimated from the data. There is some more refi ned distribution 
theory for the KS test with estimated parameters (Durbin, 1973), but that is not 
implemented in ks.test.

Value:
A list with class “htest” having the following components:
statistic The value of the test statistic
p.value The p-value of the test
alternative A character string describing the alternative hypothesis
method A character string indicating what type of test was performed
data.name A character string giving the name(s) of the data

Remarks:
For the current application, the function ks.test() may be used as ks.test(x, y), 
where x and y store the data. One- and two-sample tests are available (Conover, 
1971).

The following example illustrates the use of R for this application.

 ■ Example 5.18: The Shapiro–Wilk (SW) GoF test for normality 

Use the SW test for GoF, in R, to assess the following datasets for normality:

(a) A dataset of 1,000,000 points randomly selected from a normal distribution with 
mean 0 and SD 10

(b) A dataset of 1,000 points from a continuous uniform distribution

Solution:
The following R code segments may be used.

To generate the dataset from a normal distribution, one may use the function 
rnorm():
> x <- rnorm(1000, mean = 0, sd = 10)
> shapiro.test(x)
Shapiro–Wilk normality test
data: x
W = 0.9979, p-value = 0.2445

Remarks: The p-value, 0.2445, is not statistically signifi cant. Thus, there is no evidence 
that the dataset is not normally distributed. H0 cannot be rejected.
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The probability density function of the continuous uniform distribution is
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The values of f(x) at the two boundaries a and b do not affect the values of the integrals 
of f(x) dx over any interval, nor of x f(x) dx or any higher moment. They may be chosen 
to be zero, or to be 1/(b − a). The probability density function and the cdf of this distri-
bution are shown in Figures 5.6(A) and (B), respectively.
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FIGURE 5.6 The uniform distribution function: (A) probability density function; (B) cumulative 
distribution function.

> z <- runif(1000) # Generating 1000 uniformly distributed data points

> shapiro.test(z) # Applying the SW GoF test for normality

> # Outputting:

Shapiro–Wilk normality test
data: z
W = 0.9516, p-value < 2.2e − 16

Remarks: The p-value is very small—less than 2.2 x 1016. Hence, there is poor agree-
ment between the observed values and normality. H0 must be rejected.

Notes:

1. In applying the t-test, it was assumed that the observed dataset was sampled 
from a normally distributed population.

2. For data that have failed a test for normalcy, the t-test may still be used because
(a) for small samples, the t-test may still be applicable because the distribution of 

the t-statistic is robust to small changes in the normalcy assumption of the parent 
distribution, and

(b) for large samples, the central limit theorem may apply, validating the use of the 
t-test.
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USING THE FUNCTION fitdistr() TO FIND PARAMETER VALUES. R Documentation of 
 fitdistr {MASS}
Maximum Likelihood Fitting of Univariate Distributions
Description:
Maximum likelihood fi tting of univariate distributions, allowing parameters to be 
held fi xed if desired.
Usage:
fitdistr(x, densfun, start, …)

Arguments:
x A numeric vector of length at least one containing only fi nite values.
densfun Either a character string or a function returning a density evaluated 

at its fi rst argument.

Distributions “beta”, “cauchy”, “chi-squared”, “exponential”, “f”, 
“gamma”, “geometric”, “log-normal”, “lognormal”, “logistic”, 
“negative binomial”, “normal”, “Poisson”, “t”, and “weibull” are 
recognized, with case being ignored.

start A named list giving the parameters to be optimized with initial val-
ues. This can be omitted for some of the named distributions and 
must be for others (see “Details” following).

Additional parameters, either for densfun or for optim. In particular, 
these can be used to specify bounds via lower or upper or both. If 
arguments of densfun (or the density function corresponding to a 
character-string specifi cation) are included, they will be held fi xed.

Details:
 ■ For the normal, log-normal, geometric, exponential, and Poisson distributions, 

the closed-form maximum likelihood estimators (MLEs and exact SEs) are 
used, and start should not be supplied.

 ■ For all other distributions, direct optimization of the log-likelihood is per-
formed using optim. The estimated SEs are taken from the observed informa-
tion matrix, calculated by a numerical approximation. For one-dimensional 
problems, the Nelder–Mead method is used; for multidimensional problems, 
the BFGS2 method is used, unless arguments named lower or upper are sup-
plied (when L-BFGS-B is used) or method is supplied explicitly.

 ■ For the “t” named distribution, the density is taken to be the location–scale 
family with location m and scale s.

 ■ For the following named distributions, reasonable starting values will be comput-
ed if start is omitted or only partially specifi ed: “cauchy”, “gamma”, “logistic”, 
“negative binomial” (parametrized by mu and size), “t”, and “weibull”. Note 
that these starting values may not be good enough if the fi t is poor: in particular, 
they are not resistant to outliers unless the fi tted distribution is long-tailed.

 ■ There are print, coef, vcov, and logLik methods for class “fitdistr”.

2 The BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm in statistics for multidimensional 
problems.
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Value:

An object of class “fitdistr”, a list with four components:

estimate the parameter estimates
sd the estimated standard errors
vcov the estimated variance–covariance matrix
loglik the log-likelihood

The following example illustrates the use of R for this application.

 ■ Example 5.19: Use a pseudo-random number generator in R to obtain samples of 
pseudo-random normally distributed numbers, and a GoF check for normalcy using the 
function fitdistr(). Vary the sample sizes from 10 to 1,000,000, in multiples of 10, and 
check the variations of the parameter SD with respect to sample sizes.

Solution:
The following R code segments may be used:
> # Starting with a sample size of 1,000,000, and vary in steps of multiples of 10:

> x <- rnorm(1000000, mean=0, sd=10)
> fitdistr(x, "normal")

mean sd
−0.00503 9.99917
(0.01000) (0.00707)

>
> x <- rnorm(100000, mean=0, sd=10)
> fitdistr(x, "normal")

mean sd
−0.0337 9.9641
(0.0315) (0.0223)

>
> x <- rnorm(10000, mean=0, sd=10)
> fitdistr(x, "normal")

mean sd
0.00829 9.90678

(0.09907) (0.07005)
>
> x <- rnorm(1000, mean=0, sd=10)
> fitdistr(x, "normal")

mean sd
0.279 9.888

(0.313) (0.221)
>
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> x <- rnorm(100, mean=0, sd=10)
> fitdistr(x, "normal")

mean sd
0.263 8.335

(0.834) (0.589)
>
> x <- rnorm(10, mean=0, sd=10)
> fitdistr(x, "normal")

mean sd
−5.76 6.80
(2.15) (1.52)

> # The results are summarized in Table 5.12.
> # Plotting out these results:

> x <- c(6.80, 8.335, 9.888, 9.90678, 9.9641, 9.99917)
> y <- c(10, 100, 1000, 10000, 100000, 1000000)
> plot(y, x, ann=FALSE) # Setting ann=FALSE to inhibit annotations

> lines(y, x, col="red") # Adding a red line through the points

> title(main="GoF Test: Checking for SD=10 in a rnorm with + 
> SD=10", xlab="Sample Size", ylab="Standard Deviation")
> # Outputting: Figure 5.7.

Remarks:

 ■ Figure 5.7 is a plot of the variation of the computed SDs with respect to the 
sample sizes, with a curve connecting the calculated values. It shows that as the 
sample sizes increase (to infi nity), the SD asymptotically approaches the theoreti-
cal value of 10.

 ■ The outputs of the function fitdistr() included SEs in parentheses. These are used 
to give CIs for the estimates. These SEs and the corresponding 95% CIs (sd ± 
1.96 × SE), have been calculated and are listed in Table 5.12.

 ■ The computed results support the use of the function fitdistr() to estimate param-
eters for known distributions and as a GoF test for these parameters.

TABLE 5.12 Using Function fitdistr() to Find the SD in a Normal Distribution

SAMPLE SIZE n PREDICTED sd BY fitdistr() SE CI =(sd ± 1.96 × SE)

10.00000 (Theoretical) 0 (10.00000–10.00000)

1000000 9.99917 0.00707 (9.99210–10.00624)

100000 9.9641 0.0223 (9.94180–9.98640)

10000 9.90678 0.07005 (9.83670–9.97680)

1000 9.888 0.221 (9.66700–10.10900)

100 8.335 0.589 (7.74600–8.92400)

10 6.80 1.52 (5.28000–8.32000)
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Further information on the R applications for GoF testing may be found in the 
updated CRAN package gof.

 Review Questions for Section 5.1

1. (a) What is probability?
(b) What is classical probability?

2. (a) Name and describe the three basic properties of probability.
(b) What is the probability for complement events?

3. (a) Define the following, giving an example of each:
  (i) Conditional probability
(ii) Joint probability

(b) What is
  (i) the multiplication rule for probabilities?
(ii) the addition rule for probabilities?

4. (a) What is marginal probability?
(b) Give an example of this concept.

5. The following special R functions may be conveniently used in probability compu-
tations: factorial(), choose(), sample(), and prod(). Give an example of each of 
these functions as used for computing applications in probability applications.

6. In a 2 × 2 decision table showing the four possible outcomes from a standard di-
chotomous clinical testing process, what four questions must be addressed before 
you can reach a correct decision?
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FIGURE 5.7 Using fitdistr() to check the SD in a normal distribution.
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7. (a) What is the specificity of a screening test or a diagnostic symptom?
(b) What is the sensitivity of a screening test or a diagnostic symptom?
(c) What is the predictive value negative of a screening test or a diagnostic 

 symptom?
8. Briefly describe how Bayes’s theorem may be used to derive the sensitivity and 

specificity of a screening test.
9. Using an example, show that Bayes’s theorem may be used to derive the predictive 

value positive of a screen test.
10. Define and give an example of each of the following summary statistics used in 

biostatistics:
(a) CI
(b) Significance levels
(c) GoF

 Exercises for Section 5.1

1. Using R as a calculator, compute the answers to the following:
(a) 7! (factorial 7)
(b) 9C5

2. Using R as a calculator, compute the answers to the following:
(a) Sampling, without replacement, 2 sets of 10 representative random numbers 

from a population of 2 million case subjects
(b) Out of a patient population of 30 people, the health worker is preparing groups 

of 5 each for further clinical testing. How many groups may be combined, with-
out concern for the order of testing within each group?

3. (a)  With respect to the R function fivenum(), what is meant by the five-number 
summary in R?

(b) From the set of the first 100 natural numbers, {1, 2, 3, …, i, …, 100}, use the 
R function summary() to obtain the summary statistics after obtaining the 
five-number summary for this set.

4. (a) What is meant by the Q–Q plot of a set of numbers?
(b) Using the R function qqnorm(), obtain the Q–Q plot for a set of 1,000 normally 

distributed, randomly generated numbers.
5. A one-sample t-test.

The daily calorie intake of 11 case subjects, in kilojoules (kJ), are 5,261, 5,674, 
5,968, 6,275, 6,345, 6,587, 6,909, 7,021, 7,183, 8,251, and 8,650.
(a) Compute some summary biostatistics for this dataset.
(b) The recommended daily energy intake is 7,725 kJ. Assuming that this dataset 

is part of a normal distribution, calculate the mean ( m) of the dataset and com-
pare it with the recommended daily energy intake value.

6. A one-sample Wilcoxon signed-rank test.
(a) For the dataset in Exercise 5, use R to compute a one-sample Wilcoxon 

signed-rank test.
(b) Compare the results with those from the one-sample t-test. Comment on these 

two results.
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7. An exercise in the calculation of significance tests.
(This exercise is based on a discussion by Dalgaard [2002, pp. 96ff.].)

In the package ISwR is a data frame thuesen that consists of measurements 
of blood.glucose versus short.velocity for 24 case subjects. The following R code 
segment is used to obtain a linear model object lm to represent these two vari-
ables, followed by an analysis of the significance level of the model correlation.

The complete R computation procedure is as follows:

> install.packages("ISwR")
> library(ISwR)
Attaching package: 'ISwR'
The following object(s) are masked from ‘package:survival’: lung
> ls("package:ISwR")
[1] "alkfos" "ashina" "bcmort" "bp.obese"
[5] "caesar.shoe" "coking" "cystfibr" "eba1977"
[9] "energy" "ewrates" "fake.trypsin" "graft.vs.host"
[13] "heart.rate" "hellung" "IgM" "intake"
[17] "juul" "juul2" "kfm" "lung"
[21] "malaria" "melanom" "nickel" "nickel.expand"
[25] "philion" "react" "red.cell.folate" "rmr"
[29] "secher" "secretin" "stroke" "tb.dilute"
[33] "thuesen" "tlc" "vitcap" "vitcap2"
[37] "wright" "zelazo"

> data(thuesen)
> attach(thuesen)
> thuesen

blood.glucose short.velocity
1 15.3 1.76
2 10.8 1.34
3 8.1 1.27
4 19.5 1.47
5 7.2 1.27
6 5.3 1.49
7 9.3 1.31
8 11.1 1.09
9 7.5 1.18
10 12.2 1.22
11 6.7 1.25
12 5.2 1.19
13 19.0 1.95
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14 15.1 1.28
15 6.7 1.52
16 8.6 NA
17 4.2 1.12
18 10.3 1.37
19 12.5 1.19
20 16.1 1.05
21 13.3 1.32
22 4.9 1.03
23 8.8 1.12
24 9.5 1.70

> lm(short.velocity ~ blood.glucose)
Call:
lm(formula = short.velocity ~ blood.glucose)
Coefficients:

(Intercept) blood.glucose
1.09781 0.02196

> summary(lm(short.velocity ~ blood.glucose))
Call:
lm(formula = short.velocity ~ blood.glucose)
Residuals:

Min 1Q Median 3Q Max
−0.40141 −0.14760 −0.02202 0.03001 0.43490

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.09781 0.11748 9.345 6.26e-09 ***
blood.glucose 0.02196 0.01045 2.101 0.0479 *

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2167 on 21 degrees of freedom (1 observation 
deleted due to missingness)
Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343
F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479
> plot(blood.glucose, short.velocity) (Figure 5.8)
> abline(lm(short.velocity ~ blood.glucose)) (Figure 5.9)
>

With respect to the foregoing exercise in R computations:
(a) The tilde symbol (~) in the command > lm(short.velocity ~ blood.glucose) 

may be read as “described by.” This command correlates the two variables 
short.velocity and blood.glucose. In this correlation, which component is
  (i) the dependent variable?
(ii) the independent variable?
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(b) Next, the basic extractor function summary() provides the information regard-
ing the correlation. For a satisfactory correlation:
  (i) The average of the residuals is, by definition, zero. What is the median of 

the residuals?
(ii) The maximum and minimum should be approximately equal in absolute val-

ue. What are the absolute values of the outputted maximum and minimum?
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(c) Next, the regression coefficient and the intercept are shown, accompanied by 
SEs, t-tests, and p-values. The symbols to the right of the table are graphical 
indicators of the significance level. The line below the table indicates the defini-
tion of these indicators:

* One star implies 0.01 < p < 0.05.

What is the computed p-value in this test? How many stars are there?
(d) Repeat the computation, interchanging the dependent variable with the inde-

pendent variable. Start with > lm(blood.glucose ~ short.velocity)
Compare the second set of results with the first. Comment on the contrasts.

8. An exercise in the calculation of CIs.
In the CRAN package stats is the R function confint(), which may be used 

for computing CIs for one or more parameters in a fitted model. There is a default 
and a method for objects inheriting from class “lm”. The usage form for confint() is 
confint(object, parm, level = 0.95, …), for which the arguments are:

object A fitted model object.

parm A specification of which parameters are to be given CIs, either a vector 
of numbers or a vector of names. If missing, all parameters are consid-
ered.

level The confidence level required.

Additional argument(s) for methods.

confint() is a generic function. The default method assumes asymptotic nor-
mality. The default method can be called directly for comparison with other meth-
ods. For objects of class “lm”, the direct formulas based on t-values are used.
(a) Compute the CI for the model object in Exercise 7 by the following R code 

segments, for 95% CI:

> m <- lm(short.velocity ~ blood.glucose)
> confint(m)

2.5 % 97.5 %

(Intercept) 0.8534993816 1.34213037
blood.glucose 0.0002231077 0.04370194

(b) To go for 99% CI, use:
> confint(m, level=0.99)

0.5% 99.5%
(Intercept) 0.765183405 1.43044635
blood.glucose −0.007635328 0.05156037
>

9. An exercise in the calculation of GoF.
In the CRAN package pgirmess is the function ks.gof(), the KS GoF test for 

normal distributions. The usage form for ks.gof() is ks.gof(var), for which the argu-
ment is var, a numeric vector.



5.1 Theories of Probability 263

The following R code segment illustrates a simple GoF computation:

> install.packages("pgirmess")
> library(pgirmess)
> ls("package:pgirmess")
[1] "CI classnum cormat"
[4] "correlog date2winter diag2edge"
[7] "difshannonbio dirProj dirSeg"
[10] "distNNeigh distNode distSeg"
[13] "distTot expandpoly friedmanmc"
[16] "gps2gpx kruskalmc kruskalmc.default"
[19] "kruskalmc.formula ks.gof pairsrp"
[22] "pave pclig permcont"
[25] "PermTest PermTest.glm PermTest.lm"
[28] "PermTest.lme piankabio piankabioboot"
[31] "plot.correlog polycirc polycirc2"
[34] "postxt print.clnum print.correlog"
[37] "print.mc print.PermTest readGDALbbox"
[40] "readVista rmls rwhatbufCat"
[43] "rwhatbufCat2 rwhatbufNum rwhatpoly"
[46] "Segments selMod selMod.list"
[49] "selMod.lm shannon shannonbio"
[52] "shannonbioboot tabcont2categ thintrack"
[55] "trans2pix trans2seg TukeyHSDs"
[58] "uploadGPS val4symb valchisq"
[61] "write.delim writeGPX writePRJ"
> # Let’s try this on some normally distributed datasets:
> x<-rnorm(50) # Take a set of 50 randomly generated numbers
> x

[1] 1.15482519 −0.05652142 −2.12936065 0.34484576 −1.90495545 −0.81117015
[7] 1.32400432 0.61563685 1.09166896 0.30660486 −0.11015876 −0.92431277

[13] 1.59291375 0.04501060 −0.71512840 0.86522310 1.07444096 1.89565477
[19] −0.60299730 −0.39086782 −0.41622203 −0.37565742 −0.36663095 −0.29567745
[25] 1.44182041 −0.69753829 −0.38816751 0.65253645 1.12477245 −0.77211080
[31] −0.50808622 0.52362059 1.01775423 −0.25116459 −1.42999345 1.70912103
[37] 1.43506957 −0.71037115 −0.06506757 −1.75946874 0.56972297 1.61234680
[43] −1.63728065 −0.77956851 −0.64117693 −0.68113139 −2.03328560 0.50096356
[49] −1.53179814 −0.02499764

> ks.gof(x) # Outputting:
 One-sample Kolmogorov–Smirnov test
data: var
D = 0.0811, p-value = 0.8707
alternative hypothesis: two-sided
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> ks.gof(blood.glucose) # Using the dataset from Exercise 8, outputting:
One-sample Kolmogorov–Smirnov test
data: var
D = 0.1148, p-value = 0.9097
alternative hypothesis: two-sided
Warning message:
In ks.test(var, "pnorm", mean(var), sd(var)):
ties should not be present for the Kolmogorov–Smirnov test
> x1 <- rnorm(10000) # Taking on a larger set of rnorm numbers:
> ks.gof(x1) # Outputting:
 One-sample Kolmogorov–Smirnov test
data: var
D = 0.007, p-value = 0.718
alternative hypothesis: two-sided
> x2 <- rnorm(1000000) # For a still larger set of rnorm numbers:
> ks.gof(x2)
One-sample Kolmogorov–Smirnov test
data: var
D = 5e−04, p-value = 0.979
alternative hypothesis: two-sided
(a) What are the p-values obtained by this GoF test for a randomly generated and 

normally distributed set: 50, 100,000, and 1,000,000?
(b) Collect other sets of data, and use this simple procedure to test for normality.
(c) Increase the size of the datasets, and then repeat this test. How do the p-values 

vary progressively as the size of the datasets increases? Comment on the results.
10. gof: Goodness-of-fit statistical software in R.

A number of statistical software packages for computations in GoF analysis 
are available in the open-sourced R environment, available from the CRAN website 
(http://cran.r-project.org)

A typical contribution is:
cumres: calculating the cumulative residuals for generalized linear models (GLMs) 
within the package gof, which is developed as a GoF statistical software in R.

This software computes GoF measures for linear regression models lm(), 
including logistic and Poisson regression models, as well as generalized linear 
models glm(). These are illustrated as follows:
  (i) the usage form of the class “lm” is

cumres(model, …)
(ii) the usage form of the class “glm” is

cumres(model,
variable=c("predicted",colnames(model.matrix(model))),
data=data.frame(model.matrix(model)),
R=500, b=0, plots=min(R,50),
seed=round(runif(1,1,1e9)),…)

in which the arguments are

model Model object (lm or glm)
variable List of variables to order the residuals after
data Data frame used to fit the model (complete cases)

http://cran.r-project.org
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R Number of samples used in simulation
b  Moving average bandwidth (0 corresponds to infinity = standard 

cumulated residuals)
plots Number of realizations to save for use in the plot routine
seed Random seed
… additional arguments

The computation returns as object of class “cumres”.
A sample computation is shown in the following R code segment to illustrate 

the use of this GoF software, cumres(), to simulate a simple function:
f (x1, x2) = 10x1 + x2

2, where both x1 and x2 are randomly generated, normally 
 distributed independent variables:

> install.packages("gof")
> library(gof)
Loading 'gof' package…
Version : 0.8–1
> ls("package:gof")
[1] "cumres"
> sim1 <- function(n=100, f=function(x1,x2) {10+x1+x2^2},
+ sd=1, seed=1) {
+ if (!is.null(seed))
+ set.seed(seed)
+ x1 <- rnorm(n);
+ x2 <- rnorm(n)
+ X <- cbind(1,x1,x2)
+ y <- f(x1,x2) + rnorm(n,sd=sd)
+ d <- data.frame(y,x1,x2)
+ return(d)
+ }
> d <- sim1(100); l <- lm(y ~ x1 + x2,d)
> system.time(g <- cumres(l, R=100, plots=50))
user system elapsed
0.21 0.00 0.21
> g # Outputting:
Kolmogorov–Smirnov test: p-value = 0.32
Cramer–von Mises test: p-value = 0.36
Based on 100 realizations. Cumulated residuals ordered by predicted vari-
able.
---
Kolmogorov–Smirnov test: p-value = 0.51
Cramer–von Mises test: p-value = 0.26
Based on 100 realizations. Cumulated residuals ordered by x1-variable.
---
Kolmogorov–Smirnov test: p-value = 0
Cramer–von Mises test: p-value = 0
Based on 100 realizations. Cumulated residuals ordered by x2-variable.
---
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> plot(g) # Outputting: Figure 5.10.
> g1 <- cumres(l, c(“y”), R=100, plots=50)
> g1 # Outputting:
Kolmogorov–Smirnov test: p-value = 0.26
Cramer–von Mises test: p-value = 0.32
Based on 100 realizations. Cumulated residuals ordered by predicted 
variable.
---

> plot(g1) # Outputting: Figure 5.11.
> g2 <- cumres(l, c(“y”), R=100, plots=50, b=0.5)
> g2 # Outputting:
Kolmogorov–Smirnov test: p-value = 0.39
Cramer–von Mises test: p-value = 0.21
Based on 100 realizations. Cumulated residuals ordered by predicted 
 variable.
---

> plot(g2) # Outputting: Figure 5.12.
>
(a) Consider the three plots for g, g1, and g2, respectively, shown in Figures 5.10, 

5.11, and 5.12. What are the corresponding KS test p-values for these correla-
tions?

(b) Inspect these three plots and note what happens as the p-values increase. 
Describe the graphical shapes of the corresponding correlation regressions.

(c) Of the three attempts to correlate, which provide the “best” correlation and the 
“worst” correlation? Why?

KS–test: p = 0
CvM–test: p = 0
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 5.2  TYPICAL STATISTICAL INFERENCE IN BIOSTATISTICS: 
BAYESIAN BIOSTATISTICS

 What Is Bayesian Biostatistics?

The term Bayesian refers to Thomas Bayes (1701–1761), an English mathematician 
who formulated a specifi c case of the theorem that bears his name.

Probability theory in the early 18th century arose to answer questions in gaming 
and to support applications in the new insurance business. A problem known as 
the question of inverse probability arose regarding the latter: The mathematicians of 
the time knew how to fi nd the probability that, say, 5 people aged 50 would die in 
a given year out of a sample of 60 if the probability of any one of them dying was 
known. But they did not know how to fi nd the probability of one 50-year-old dying 
based on the observation that 5 had died out of 60. The answer was found by Bayes. 
His solution, known as Bayes’s theorem, underlies the modern Bayesian approach to 
the analysis of all kinds of data.

Scientifi c inquiry is an iterative process, and Bayesian inference provides a logi-
cal, quantitative framework for the process of integrating and accumulating informa-
tion. It has been applied in a multitude of scientifi c, technological, and policy settings.

 Bayes’s Theorem in Probability Theory

One may view this seminal theorem in probabilistic terms.

 ■ Simple form of Bayes’s theorem
For events A and B, if P(B) ≠ 0, then

 P(A|B) = P(B|A) P(A)/P(B) (5.2-1)

From the perspective of Bayesian inference, the probability of the existence of 
B is constant for all An models, and the posterior may be expressed as propor-
tional to the numerator:

 P(An|B) α P(B|An) P(An) (5.2-2)

 ■ Extended form of Bayes’s theorem
 For a partitioning of the event space {Ai}, which is given or expressed in terms 
of P(Ai) and P(B|Ai), one may eliminate P(B) using the law of total probability:

 P(B) = ∑jP(B|Aj) P(Aj) => P(Ai|B) = P(B|Ai)P(Ai)/∑jP(B|Aj)P(Aj) (5.2-3)

For the special case of a binary partition:

 P(A|B) = P(B|A)P(A)/[P(B|A)P(A) + P(B|¬A)P(¬A) (5.2-4)

Similarly, extensions of Bayes’s theorem may be found for three or more events.

 Bayesian Methodology and Survival Analysis (Time-to-Event) Models for 
Biostatistics in Epidemiology and Preventive Medicine

The application of Bayes’s theorem in epidemiologic survival analysis is a seminal 
contribution of statistical theory and is considered one of the classical nonparametric 
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methods. This approach is based on two sources: (1) the investigator’s a priori belief 
in the characteristic of the survival function, when combined with (2) the data to form 
a survival function. This prior knowledge, which may be based on previous experi-
ences with the behavior of similar processes as well as expert understanding, together 
contribute to an effective distribution for the time-to-event survival function.

The sample information is expressed in terms of a likelihood function. These 
two distinct sources of information are then combined by Bayes’s theorem to pro-
duce the a posteriori distribution of the survival function, which is the distribution 
of the survival function for the given data.

In this approach, the parameters of the model are considered as random vari-
ables selected from the prior distribution. This prior distribution, a multivariate dis-
tribution on the parameters, is chosen to represent the investigator’s a priori belief 
in the values of the parameters. They refl ect the investigator’s best estimates regard-
ing the value of the parameters. The prior variance is a measure of the investigator’s 
uncertainty in the prior means. In this analysis, the subject of interest is the survival 
function, also known as the cumulative hazard function.

BAYESIAN INFERENCE

Bayesian inference derives the posterior probability as a result of two antecedents: 
(a) a prior probability and (b) a likelihood function, which is derived from a prob-
ability model for the data to be observed. Bayesian inference then calculates the 
posterior probability according to Bayes’s theorem:

 P(A|B) = P(B|A) P(A)/P(B) (5.2-1)

When applying Bayes’s rule (another common name for Bayes’s theorem), the evi-
dence B corresponds to data that were not used in computing the prior probability. 
A represents any hypothesis whose probability may be affected by the observed 
data. (There may be competing hypotheses, and a decision will be made based on 
their relative probabilities.)

The interpretation of the factors in Bayes’s theorem is as follows:

 ■ P(A|B), the posterior, is the probability of A after B is observed. This shows 
what the probabilities of different possible hypotheses are, given the observed 
evidence.

 ■ P(A), the prior, is the probability of A before B is observed. This reveals precon-
ceived beliefs about how likely different hypotheses are.

 ■ P(A|B) is the likelihood. It indicates how likely it is that one will observe the 
evidence one actually observes, given a particular hypothesis; in other words, 
how compatible the evidence is with a given hypothesis.

 ■ P(B) is the marginal likelihood or “model evidence.” This factor is the same 
for all possible hypotheses being considered. (This can be seen by the fact that 
the hypothesis A does not appear anywhere in the symbol, unlike for all the 
other factors.) This means that this factor does not enter into the determination 
of the relative probabilities of different hypotheses.

Note that only the factors P(A) and P(B|A) affect the value of P(A|B) for differ-
ent values of A. Both appear in the numerator, and hence the posterior probability 
is proportional to both. In other words:
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The posterior probability of a hypothesis is determined by a combination of 
the inherent likeliness of a hypothesis (the prior) and the compatibility of the 
observed evidence with the hypothesis (the likelihood).

Stated in a more concise and technical fashion: Posterior is proportional to prior 
times likelihood.

Note that Bayes’s rule can also be written as follows:

 P(A|B) = [P(B|A)/P(B)] × P(A) (5.2-5)

The factor [P(B|A)/P(B)] represents the impact of B on the probability of A. From 
a logical viewpoint, Bayes’s theorem makes good sense. If the evidence does not 
match up with a hypothesis, one is unlikely to believe the hypothesis. However, if 
one thinks a hypothesis is extremely unlikely a priori, one is also unlikely to believe 
it even if the evidence does appear to match up.

For example, imagine that you have various hypotheses about the nature of a 
newborn baby. If you are presented with evidence in the form of a picture of a black-
haired baby boy, you are likely to believe that the baby is indeed a boy and does 
indeed have black hair, and less likely to believe that the baby is actually a blonde-
haired girl, as the evidence does not agree with this latter hypothesis. In contrast, 
if you are presented with evidence in the form of a picture of a baby dog, then you 
are unlikely to believe that the baby is actually a dog, as your prior belief in this 
hypothesis (that a human can give birth to a dog) is untenable.

Thus, Bayesian inference provides a systematic way of combining prior beliefs 
with new evidence, through the application of Bayes’s theorem. This is in contra-
distinction to frequentist inference, which depends only on the evidence as a whole, 
with no reference to prior beliefs.

Bayes’s theorem can also be applied iteratively and repeatedly. After observing 
some evidence, the resulting posterior probability can then be treated as a prior 
probability, and a new posterior probability computed from new evidence. This per-
mits the Bayesian principles to be applied to various kinds of evidence, whether 
viewed all at once or over time. This procedure, called Bayesian updating, is widely 
used and computationally effi cient.

SURVIVAL ANALYSIS

In clinical research and studies, an investigator often monitors the progress of case 
subjects under treatment from a specifi c point in time (such as when a drug treat-
ment regimen is initiated or a critical surgical procedure is undertaken) until the 
occurrence and/or recurrence of some specifi c event (such as a cessation of crit-
ical symptoms or death). For example, a group of patients who have each had a 
fi rst myocardial infarction (heart attack) are enrolled in a 2-year (January 1, 2011 
through January 1, 2013) investigation to assess the effectiveness of two new com-
peting drugs for the prevention of a second attack. The study commences when the 
fi rst case subject, following the fi rst heart attack, is enrolled in the program, and 
continues until each case subject experiences one of three events:

1. The event of interest (a heart attack),
2. Loss to follow-up, for reasons such as death from a cause other than a heart 

attack or ceasing study participation, or
3. Still surviving at the time the program is terminated.
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For each case subject, the investigator records the duration (in years, months, 
days, etc.) elapsing between the point at which the case subject entered the study 
and at which the case subject experienced one of the terminating events. The time 
elapsing between enrollment and experiencing one of the events is the subject’s 
survival time. The dataset of such survival times is the survival data.

Consider the following information on four case subjects in the study of heart-at-
tack patients, case subjects A, B, C, and D:

 ■ Case subject A entered the investigation on January 1, 2011, and had a heart 
attack on December 31, 2012.

 ■ Case subject B entered the study on July 1, 2011, and moved out of town on 
December 31, 2011.

 ■ Case subject C entered the investigation on September 1, 2011, and died on 
July 1, 2012 from a cause other than a heart attack.

 ■ Case subject entered the program on August 1, 2011, and was still alive when 
the study program ended on December 31, 2012.

Hence:

 ■ Case subject A’s survival time is 24 months.
 ■ Case subject B’s survival time is 6 months. This is called a censored survival 

time because the terminating event was loss to follow-up rather than an event 
of interest.

 ■ Case subject C’s survival time is 9 months.
 ■ Case subject D’s survival time is 17 months. This is also a censored survival 

time.

The survival times for case subjects B and D are both referred to (more gener-
ally) as censored data.

The times spent in the study by these four case subjects are represented graph-
ically in Figure 5.13.

In studies that compare the effi cacies of two treatments, A and B, three items of 
information are of interest for each case subject:

1. Which treatment, A or B, did the case subject receive?
2. For what duration was the case subject observed?
3. Did the case subject experience the event of interest during the study, or was the 

case subject either alive at the end of the study or lost to follow-up?

In studies not concerned with comparative treatments or other special charac-
teristics of the case subjects, only the latter two items are needed, With these three 
items of information, one may estimate the median survival time of the group 
receiving Treatment A, and compare that with the estimated median survival time 
of the group receiving Treatment B. Comparison of the two medians would provide 
critical information:

 ■ Which treatment may delay for a longer period of time (on the average) the 
recurrence of the event of interest (in this example, the occurrence of another 
heart attack)?
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FIGURE 5.13 Four case subjects entering an epidemiologic study at different times with known ( ) 
and censored (•) survival times.

 ■ What is the estimated probability that a case subject will survive for a specifi c 
period of time? The clinician conducting such a study might ask: “What is the 
probability that, after the fi rst heart attack, a patient receiving Treatment A (or 
B) will survive for more than two years?”

The method used to address these types of questions, by using the information col-
lected during a follow-up study, is called survival analysis.

SURVIVAL ANALYSIS USING THE KAPLAN–MEIER PROCEDURE. The Kaplan–Meier (K–M) 
procedure, introduced by Kaplan and Meier (1958), consists of successive multipli-
cation of individual estimated probabilities. It is also known as the product-limit 
method of estimating survival probabilities. The K–M procedure calls for computa-
tion of the proportions of case subjects in a sample who survive for various lengths 
of time. These sample proportions are then used as estimates of the probabilities 
of survival that one would expect to observe in the population represented by the 
sample. In essence, this process estimates a survivorship function. Frequency and 
probability distributions may then be constructed from observed survival times. 
These observed distributions may show evidence of conforming to some known 
theoretical distributions.

When the form of the sampled distribution is unknown, the estimation of a sur-
vivorship function may be accomplished by means of a nonparametric technique, 
such as the K–M procedure. Let:

n = the number of case subjects whose survival times are available
p1 = the proportion of case subjects surviving at least the fi rst time period (days, 

months, years, etc.)
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p2 = the proportion of case subjects surviving the second time period after having 
survived the fi rst time period

p3 = the proportion of case subjects surviving the third time period after having 
survived the second time period

pk = the proportion of case subjects surviving the kth time period after having sur-
vived the (k – 1)th time period

Using these proportions, we can relabel p1, p2, p3, …, pk as estimates of the proba-
bility that a case subject from the population represented by the sample will survive 
time periods 1, 2, 3, …, k, respectively.

For any time period t, 1 ≤ t ≤ k, one may estimate the probability of surviving the 
tth time period, pt, as follows.

 ■ Number of case subjects surviving at least (t – 1) time periods:

 
pt  =  

Number of case subjects who also survive the tth time period 
(5.2-6)

Then the probability of surviving to time t, S(t), is estimated by

 S(t) = p1 × p2 × p3 × … × pt (5.2-7)

THE K–M PROCEDURE USING R. R provides two functions that can be used in survival 
analysis:

1. The function survfit(), in the package survival
2. The function Surv(), also in the package survival

In R, the function survfit() creates survival curves from either a formula (e.g., 
K–M), a previously fi tted Cox model, or a previously fi tted accelerated failure time 
model. Its formal usage takes the following form:

> survfit(formula, …)

in which the arguments are:

Formula Either a formula or a previously fi tted model
… Other arguments specifi c to the chosen method

A survival curve is based on a tabulation of the number at risk and number of 
events at each unique death time. For further details, see the documentation for the 
appropriate method: either ?survfit.formula or ?survfit.coxph.

Also, in the R package survival, the function Surv() creates a survival object, typi-
cally as a response in a model formula. Its usage takes the following form:

> Surv(time, time2, event,
 type=c('right', 'left', 'interval', 'counting', 'interval2'), origin=0)

in which the arguments are:

time For right-censored data, this is the follow-up time. For interval data, 
the fi rst argument is the starting time for the interval.

Number of case subjects alive at the end of time period (t – 1)
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event The status indicator—normally 0 = alive, 1 = dead. Other choices are 
TRUE/FALSE (TRUE = death) or 1/2 (2 = death). For interval-censored 
data, the status indicators are 0 = right-censored, 1 = event at time, 
2 = left-censored, 3 = interval-censored. Although unusual, the event 
indicator can be omitted, in which case all subjects are assumed to 
have had an event.

time2 Ending time of the interval for interval-censored or counting-process 
data only. Intervals are assumed to be open on the left and closed on the 
right [start, end]. For counting-process data, event indicates whether 
an event occurred at the end of the interval.

type Character string specifying the type of censoring. Possible values are 
“right”, “left”, “counting”, “interval”, and “interval2”. The default is 
“right” or “counting”, depending on whether the time2 argument is 
absent or present, respectively.

origin For counting-process data, this is the hazard function origin. This 
option was intended to be used in conjunction with a model contain-
ing time-dependent strata, so as to align the subjects properly when 
they cross over from one stratum to another, but it has rarely proven 
useful.

x Any R object.

Application of the K–M procedure in the R environment is illustrated in the 
following examples.

 ■ Example 5.20 Survival analysis using R in glioma radioimmunotherapy (Hastie & 
Tibshirani, 1990)

A glioma is a type of tumor that starts in the brain or spine (most commonly in the 
brain). It is so named because it arises from glial cells.

Treatment for brain gliomas depends on the location, the cell type, and the grade 
of malignancy. Often, treatment takes a combined approach, using surgery, radioim-
munotherapy (RIT), and chemotherapy. The RIT is usually in the form of external beam 
radiation.

To assess the clinical effectiveness of loco-regional RIT, the survival times for case 
subjects from a control group and a treated group (the latter containing case subjects 
who were treated with a special therapy) may be biostatistically assessed by graphi-
cally plotting the K–M estimates of the respective survival times.

Using the glioma data fi le and applying the K–M procedure, compare results of the 
two groups of (Histology = Grade 3) case subjects: Treated and Control. Repeat the 
analysis for all Male subjects only.

Solution:
The following R code segments may be used:
> install.packages("survival") # First, install the survival package.
> library(survival) # Next, bring up the fi les in survival
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Loading required package: splines
> install.packages("coin") # Next, install the coin package.
> library(coin) # Then bring up the fi les in coin.

Loading required package: mvtnorm
Loading required package: modeltools

Loading required package: stats4
> ls("package:coin") # Inspecting the fi les in coin for glioma:
[1] "alpha" "alzheimer" "ansari_test"
[4] "ansari_trafo" "approximate" "asat"
[7] "asymptotic" "chisq_test" "cmh_test"
[10] "consal_trafo" "covariance" "CWD"
[13] "dperm" "exact" "ExactNullDistribution"
[16] "expectation" "f_trafo" "fligner_test"
[19] "fligner_trafo" "fmaxstat_trafo" "friedman_test"
[22] "glioma"  "hohnloser" "id_trafo"
[25] "independence_test" "jobsatisfaction" "kruskal_test"
[28] "lbl_test" "logrank_trafo" "maxstat_test"
[31] "maxstat_trafo" "median_test" "median_trafo"
[34] "mercuryfish" "mh_test" "neuropathy"
[37] "normal_test" "normal_trafo" "ocarcinoma"
[40] "of_trafo" "oneway_test" "photocar"
[43] "pperm" "pvalue" "qperm"
[46] "rotarod" "spearman_test" "sphase"
[49] "statistic" "support" "surv_test"
[52] "symmetry_test" "trafo" "treepipit"
[55] "variance" "wilcox_test" "wilcoxsign_test"

> attach(glioma) # Bringing up the data frame glioma
The following object(s) are masked from 'jasa':
age
> data(glioma) # Getting the data frame glioma ready for analysis

> glioma # Taking an inside look at glioma
no. age sex histology group event time

1 1 41 Female Grade3 RIT TRUE 53
2 2 45 Female Grade3 RIT FALSE 28
3 3 48 Male Grade3 RIT FALSE 69
4 4 54 Male Grade3 RIT FALSE 58
5 5 40 Female Grade3 RIT FALSE 54
6 6 31 Male Grade3 RIT TRUE 25
7 7 53 Male Grade3 RIT FALSE 51
8 8 49 Male Grade3 RIT FALSE 61
9 9 36 Male Grade3 RIT FALSE 57
10 10 52 Male Grade3 RIT FALSE 57
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11 11 57 Male Grade3 RIT FALSE 50
12 12 55 Female GBM RIT FALSE 43
13 13 70 Male GBM RIT TRUE 20
14 14 39 Female GBM RIT TRUE 14
15 15 40 Female GBM RIT FALSE 36
16 16 47 Female GBM RIT FALSE 59
17 17 58 Male GBM RIT TRUE 31
18 18 40 Female GBM RIT TRUE 14
19 19 36 Male GBM RIT TRUE 36
20 1 27 Male Grade3 Control TRUE 34
21 2 32 Male Grade3 Control TRUE 32
22 3 53 Female Grade3 Control TRUE 9
23 4 46 Male Grade3 Control TRUE 19
24 5 33 Female Grade3 Control FALSE 50
25 6 19 Female Grade3 Control FALSE 48
26 7 32 Female GBM Control TRUE 8
27 8 70 Male GBM Control TRUE 8
28 9 72 Male GBM Control TRUE 11
29 10 46 Male GBM Control TRUE 12
30 11 44 Male GBM Control TRUE 15
31 12 83 Female GBM Control TRUE 5
32 13 57 Female GBM Control TRUE 8
33 14 71 Female GBM Control TRUE 8
34 15 61 Male GBM Control TRUE 6
35 16 65 Male GBM Control TRUE 14
36 17 50 Male GBM Control TRUE 13
37 18 42 Female GBM Control TRUE 25

> # Selecting the required sample for analysis: Grade3 in histology
> g3 <-subset(glioma, histology == "Grade3") # and naming it g3
> g3 # Checking g3: 17 Grade 3 subjects out of 37 subjects are found

no. age sex histology group event time
1 1 41 Female Grade3 RIT TRUE 53
2 2 45 Female Grade3 RIT FALSE 28
3 3 48 Male Grade3 RIT FALSE 69
4 4 54 Male Grade3 RIT FALSE 58
5 5 40 Female Grade3 RIT FALSE 54
6 6 31 Male Grade3 RIT TRUE 25
7 7 53 Male Grade3 RIT FALSE 51
8 8 49 Male Grade3 RIT FALSE 61
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9 9 36 Male Grade3 RIT FALSE 57
10 10 52 Male Grade3 RIT FALSE 57
11 11 57 Male Grade3 RIT FALSE 50
20 1 27 Male Grade3 Control TRUE 34
21 2 32 Male Grade3 Control TRUE 32
22 3 53 Female Grade3 Control TRUE 9
23 4 46 Male Grade3 Control TRUE 19
24 5 33 Female Grade3 Control FALSE 50
25 6 19 Female Grade3 Control FALSE 48

>
> # Here comes the K-M procedure:

> # Obtain the Surv() object, then apply the function survfit(), and plot()
> plot(survfit(Surv(time, event) ~ group, data = g3),
+ main = "Grade III Glioma", lty = 2, col=c("red", "green"),
+ xlab = "Survival Time (months)",
+ ylab = "Probability Value",
+ )
> # Outputting the K-M curve: Figure 5.14.

0

0.
0

0.
2

0.
4

0.
6

P
ro

ba
bi

lit
y 

va
lu

e

0.
8

1.
0

10 20 30

Survival time (months)

Grade lll glioma

40 50 60 70

FIGURE 5.14 Bayesian survival analysis by the K–M procedure.
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To undertake the same analysis for all Male subjects only, the following R code seg-
ments may be used:

>
> g3m <- subset(glioma, sex == "Male")
> g3m # 21 Male subjects out of 37 subjects are found

no. age sex histology group event time
3 3 48 Male Grade3 RIT FALSE 69
4 4 54 Male Grade3 RIT FALSE 58
6 6 31 Male Grade3 RIT TRUE 25
7 7 53 Male Grade3 RIT FALSE 51
8 8 49 Male Grade3 RIT FALSE 61
9 9 36 Male Grade3 RIT FALSE 57
10 10 52 Male Grade3 RIT FALSE 57
11 11 57 Male Grade3 RIT FALSE 50
13 13 70 Male GBM RIT TRUE 20
17 17 58 Male GBM RIT TRUE 31
19 19 36 Male GBM RIT TRUE 36
20 1 27 Male Grade3 Control TRUE 34
21 2 32 Male Grade3 Control TRUE 32
23 4 46 Male Grade3 Control TRUE 19
27 8 70 Male GBM Control TRUE 8
28 9 72 Male GBM Control TRUE 11
29 10 46 Male GBM Control TRUE 12
30 11 44 Male GBM Control TRUE 15
34 15 61 Male GBM Control TRUE 6
35 16 65 Male GBM Control TRUE 14
36 17 50 Male GBM Control TRUE 13

> plot(survfit(Surv(time, event) ~ group, data = g3m),
+ main = "Glioma - Male only", lty = 2, col=c("red", "green"),
+ xlab = "Survival Time (months)",
+ ylab = "Probability Value",
+ )
> # Outputting the K-M Curve: Figure 5.15.

Using R for Glioma RIT for Male Subjects

------- Control Group -------Treated Group

Summary Biostatistical Decision and Conclusion:
The computed K–M curves graphically show that the survival probability for the Treated 
group is higher than for the Control group. Figure 5.14 shows that for Grade III case 
subjects, at about 48 months (4 years), the survival probability for the Treated group is 
about 90%, as compared to about 30% for the Control group.
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From Figure 5.15, a similar result is evident for the all-male sample. Thus, on the 
basis of the survival time analysis alone, it appears that glioma patients may derive 
considerable benefi ts from the RIT treatment; this indicates both the effi cacy and effec-
tiveness of the treatment.

However, the total population size is limited, and other tests may be used to sup-
port the tentative conclusion reached based on this K–M analysis.

Further Analysis:
A number of additional analyses may be undertaken in R to further investigate (and 
possibly lend support to) the preliminary conclusion, including survfit(), survdiff(), and 
surv-test(). Detailed descriptions of these classes of test may be obtained from the R 
environment, using the format (e.g., for survfit()): > ??survfit)

 ■ survfit(), in the package survival, computes an estimate of a survival curve for 
censored data using either the K–M procedure or another method. For competing 
risks data, it computes the cumulative incidence curve.

 ■ survdiff(), also in the package survival, tests if there is a difference between two 
or more survival curves using a special family of tests, or for a single curve against 
a known alternative.

 ■ surv_test(), in the package coin, tests the equality of survival distributions in two 
or more independent groups.

The following are the respective results of these three classes of tests:

1. survfit()
> Surv(time, event)
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FIGURE 5.15 Bayesian survival analysis by the K–M procedure.
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[1]   53 28+ 69+ 58+ 54+ 25 51+ 61+ 57+ 57+ 50+ 43+ 20 14  36+  59+  31  14  36
[20] 34  32   9   19  50+ 48+   8   8  11  12  15   5  8  8  6  14  13  25
> survfit(Surv(time, event) ~ group, data = g3)
Call: survfit(formula = Surv(time, event) ~ group, data = g3)
 records n.max n.start events median 0.95LCL 0.95UCL

group=Control 6 6 6 4 33 19 NA
group=RIT 11 11 11 2 NA NA NA

Remark: These survfit() results were used in the K–M procedure.

2. survdiff()
> survdiff(Surv(time, event) ~ group, data = g3)
Call:
survdiff(formula = Surv(time, event) ~ group, data = g3)

 N Observed Expected (O-E)^2/E (O-E)^2/V
group=Control 6 4 1.49 4.23 6.06
group=RIT 11 2 4.51 1.40 6.06
Chisq= 6.1 on 1 degrees of freedom, p= 0.0138

 Remark: These survdiff() results indicate that the computed survival times are 
different for the two groups Control and Treated.

3. surv_test()
> surv_test(Surv(time, event) ~ group, data = g3)
 Asymptotic Logrank Test
data: Surv(time, event) by group (Control, RIT)
Z = 2.1711, p-value = 0.02992
alternative hypothesis: two.sided

 Remark: These surv_test() results also indicate that the computed survival times 
are different for the two groups Control and Treated. This test may be applied for 
case subjects with GRADE4 (GBM = glioblastoma multiforme) glioma, as follows:

> g4 <-subset(glioma, histology == "GBM")
> surv_test(Surv(time, event) ~ group, data = g4,
+ distribution = "exact")
 Exact Logrank Test
data: Surv(time, event) by group (Control, RIT)
Z = 3.2215, p-value = 0.0001588
alternative hypothesis: two.sided

Remarks: The same difference is evident.

To test whether the new treatment is indeed superior for both groups of tumors 
simultaneously, the same test may be used by stratifying with respect to the tumor 
grading:
> surv_test(Surv(time, event) ~ group | histology,
+ data = glioma, distribution = approximate(B = 1000000))
 Approximative Logrank Test
data: Surv(time, event) by
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 group (Control, RIT)
 stratified by histology
Z = 3.6704, p-value = 7.8e − 05
alternative hypothesis: two.sided

Remark: Once more, the computed results are consonant with the initial fi ndings.

 ■ Example 5.21: Survival analysis using R: Applying the K–M procedure to an acute 
myelogenous leukemia (AML) data fi le

Survival analyses may be undertaken using the computational resources of the survival 
package.

(a) Use the survfit function and obtain a summary of the survival estimation.
(b) Compare and contrast the K–M procedure with the approach from the viewpoint 

of frequentist probability.

Solution:
Results of analyses using the K–M procedure may be applied using the following R 
code segment:

(a) Using the function summary():
> summary(leukemia.surv) # Outputting:

Call: survfit(formula = Surv(time, status) ~ x, data = aml)
x=Maintained

time n.risk n.event survival std.err lower 
95% CI

upper 
95% CI

9 11 1 0.909 0.0867 0.7541 1.000
13 10 1 0.818 0.1163 0.6192 1.000
18 8 1 0.716 0.1397 0.4884 1.000
23 7 1 0.614 0.1526 0.3769 0.999
31 5 1 0.491 0.1642 0.2549 0.946
34 4 1 0.368 0.1627 0.1549 0.875
48 2 1 0.184 0.1535 0.0359 0.944

x=Nonmaintained
time n.risk n.event survival std.err lower 

95% CI
upper 

95% CI
5 12 2 0.8333 0.1076 0.6470 1.000
8 10 2 0.6667 0.1361 0.4468 0.995

12 8 1 0.5833 0.1423 0.3616 0.941
23 6 1 0.4861 0.1481 0.2675 0.883
27 5 1 0.3889 0.1470 0.1854 0.816
30 4 1 0.2917 0.1387 0.1148 0.741
33 3 1 0.1944 0.1219 0.0569 0.664
43 2 1 0.0972 0.0919 0.0153 0.620
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45 1 1 0.0000 NaN NA NA
> leukemia.surv # Outputting:

Call: survfit(formula = Surv(time, status) ~ x, data = aml)
 records n.max n.start events median 0.95LCL 0.95UCL
x=Maintained 11 11 11 7 31 18 NA
x=Nonmaintained 12 12 12 11 23 8 NA

From a frequentist statistician viewpoint, a number of signifi cance tests may 
be used to test the null hypothesis, such as

H
0
 : F

1
 = F

2
,

in which F
1
 and F

2
 are the frequencies of occurrence for cases with and without 

censoring.

Empirical Survivor Function (esf): Sn(t)

Treating the data aml as if there were no censoring,

 S t
Number of Observations t

n

t t

nn
i( )

#( )
= > =

−
 (5.2-8)

In this equation, S
n
(t) is the proportion of patients still in remission after t weeks.

Let aml1 be the data subset of the Maintained group of aml. Then, on a timeline:

esf Calculations:

t 0 9 13 18 23 28 31 34 45 48 161

# (ti – t) 11 10 8 7 6 5 4 3 2 1 0

Sn(t) 11/11 10/11 8/11 7/11 6/11 5/11 4/11 3/11 2/11 1/11 0

The plot of this empirical survivor function (esf) function, S
n
(t) versus t, is shown in 

Figure 5.16.
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FIGURE 5.16 Empirical survivor function (esf) of the Maintained group of the data aml1.
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Remarks:

(a) The esf is a consistent estimator of the true survivor function S(t). The exact distri-
bution of nS

n
(t), for each fi xed t, is binomial (n, p), where n = the number of obser-

vations and p = P(T > t).
(b) From the central limit theorem, it follows that for each fi xed t, S

n
(t) is approximately 

distributed as Normal {p, p(1 – p)/n}.
(c) The esf may be compared with the product-limit estimator of survival, commonly 

called the Kaplan–Meier estimator (K–M estimator). The K–M curve is a right con-
tinuous step function that steps down only at an uncensored observation.

(d) A plot of the K–M curve for the aml1 data, together with the esf curve, is shown 
in Figure 5.17. The “+” on the K–M curve represents the survival probability at a 
censored time.
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FIGURE 5.17 K–M and esf estimates of survival.

(e) Note the difference between the two curves: The K–M is always greater than or 
equal to esf. When there are no censored data values, K–M reduces to esf.

(f) The K–M curve does not reach down to zero, as the largest survival time (161+) is 
censored.

The “redistribute-to-the-right” algorithm considers a censored patient’s potential 
contribution as being equally redistributed among all patients at risk of failure after the 
censored time.
Summary Biostatistical Decision and Conclusion:
Each of the two graphical displays, Figures 5.16 and 5.17, again shows that the esf results 
closely follow those of the K–M procedure. Although the latter shows a more realistic pre-
sentation, the conclusion drawn from both approaches would be in general agreement.

INTRODUCTION TO THE MULTIPLE LINEAR REGRESSION MODEL (DANIEL, 2005). In the 
multiple linear (ML) regression model, it is assumed that a linear relationship exists 
between some dependent variable Y and n independent variables: X1, X2, X3, …, 
Xi, …, Xn.
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The Xi are also known as explanatory variables or predictor variables.
The following assumptions underlie ML regression analysis:

1. Xi are nonrandom fi xed variables (this assumption is in contradistinction to the 
multiple correlation model). This condition means that any inferences drawn 
from sample data apply only to the set of X values observed, and not to other 
larger collections of Xs.

2. For each set of Xi values, there is a subpopulation of Y values. To construct the 
CI and to test hypotheses, the subpopulation must be known unless one may 
assume that these subpopulations of Y values are normally distributed. This 
assumption will be made in the fi rst instance.

3. The variances of the subpopulations of Y are all equal.
4. The Y values are independent; that is, the values of Y chosen for one set of X 

values do not depend on the values of Y chosen for another set of X values.

In generating an ML regression model equation, the foregoing assumptions for 
multiple regression analysis may be stated as follows:

 yj = b0 + b1x1j + b2x2j + b3x3j + … + bixij + … + bnxnj + ej (5.2-9)

where

 ■ yj is a typical value from one of the subpopulations of Y values,
 ■ the bi are the regression coeffi cients,
 ■ x1j, x2j, x3j, …, xij, …, xkj are particular values of the independent variables X1j, 

X2j, X3j, …, Xij, …, Xnj, respectively, and
 ■ ej is a random variable with mean zero and variance s2, the common variance 

of the subpopulations of Y values. To set CIs for testing hypotheses about the 
regression coeffi cients, assume that the ej are normally and independently 
distributed.

Estimates of the parameters b0, b1, b2, b3, …, bj, …, bk of the ML regression model 
specifi ed in Equation (5.2-9) may be obtained by the method of least squares: the sum 
of the squared deviations of the observed values of Y from the resulting regression 
surface in the minimized state.

SURVIVAL ANALYSIS USING THE COX REGRESSION MODEL (PROPORTIONAL HAZARDS). 
Regression techniques are available when the dependent measures consist of a mix-
ture of either time-to-event data or censored time observations. The Cox regres-
sion model, also known as proportional hazards, is an approach in applied statistics 
used to account for the effects of continuous and discrete covariate (independent 
variable) measurements when the dependent variable is possibly censored time-
to-event data. The model is also commonly applied to Bayesian survival analyses.

The hazard function, h(ti), describes the conditional probability that an event 
will occur at a time just exceeding ti, conditional on having survived event-free until 
time ti. This conditional probability, known as the instantaneous failure rate at time 
ti, is written as h(ti). The regression model requires one to assume that the covariates 
have the effect of either increasing or decreasing the hazard for a particular case 
subject, as compared to some baseline value for the function.
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Thus, in a typical clinical trial, one might measure n covariates on each of the 
case subjects, where there are I = 1, 2, 3, …, i, …, n subjects, and h0(ti) is the baseline 
hazard function. The regression model may now be written as

 h(ti) = h0(t) exp(b1zi1 + b2zi2 + b3zi3 + … + bizii + … + bnzin) (5.2-10)

The regression coeffi cients represent the changes in the hazard that results from 
the risk factor, zin, that was measured. Recasting Equation (5.2-10) shows that the 
exponentiated coeffi cient represents the hazard ratio, or the ratio of the conditional 
probabilities of an event. This is the basis for calling this method the proportional 
hazards regression:

 [h(ti)/h0(t)] = exp(b1zi1 + b2zi2 + b3zi3 + … + bizii + … + bnzin) (5.2-11)

Estimation of the covariate effects, {b}, may best be achieved using statistical soft-
ware, such as in the R environment.

THE COX REGRESSION MODEL (PROPORTIONAL HAZARDS) USING R. When applied to 
survival analysis, the Cox regression model is similar to linear models, lm, or gener-
alized linear models, glm, in that it assumes linearity in the log-hazard scale. Mod-
els are then fi tted using the maximization of the Cox likelihood (which is not a true 
likelihood function, although it may be used as one). Survival is then calculated as 
the product of conditional likelihoods of the observed time to event.

The procedure in R generally begins by computing the coxph objects, using the 
function coxph(), in the package survival. This class of objects is returned by the coxph 
class of functions to represent a fi tted proportional hazards model. Objects of this class 
have methods for the functions print, summary, residuals, predict, and survfit.

Application of the Cox regression model (the proportional hazards) in the R 
environment is illustrated in the following example.

 ■ Example 5.22: Survival analysis using R: Applying the Cox regression model (the pro-
portional hazards technique) to the ovarian cancer data fi le ovarian in the package survival

This example is taken from the package survival in the CRAN website3 (entitled “cox.
zph—Test the Proportional Hazards Assumption of a Cox Regression Model Fit 
(coxph),” dated February 15, 2012).

Solution:
The R function cox.zph() has the following usage form:

cox.zph(fit, transform="km", global=TRUE)

in which the arguments are:

fit  The result of fi tting a Cox regression model using the function coxph().
transform  A character string specifying how the survival times should be trans-

formed before the test is performed. Possible values are “km”, “rank”, 
“identity”, or a function of one argument.

3 The CRAN package {epicalc}: http://cran.r-project.org

http://cran.r-project.org
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global  Asks whether a global chi-square test should be done in addition to the 
per-variable tests.

Moreover, an object of the class “cox.zph” has the following components:

table  A matrix with one row for each variable, and optionally a last row for 
the global test. Columns of the matrix contain the correlation coeffi cient 
between the transformed survival time and the scaled Schoenfeld resid-
uals, a chi-square, and the two-sided p-value. For the global test, there 
is no appropriate correlation, so NA is entered into the matrix as a place-
holder.

x  The transformed time axis.
y  The matrix of scaled Schoenfeld residuals. There will be one column per 

variable and one row per event. The row labels contain the original event 
times (for the identity transform, these will be the same as x).

call  The calling sequence for the routine.

The computations require the original x matrix of the Cox model fi t. Thus, it saves 
time if the x=TRUE option is used in coxph. This function is usually followed by both a 
plot and a print of the result. The plot gives an estimate of the time-dependent coeffi -
cient beta(t). If the proportional hazards assumption is true, beta(t) will be a horizontal 

line. The printout gives a test for slope=0.
The Cox regression model may be applied using the following R code segment:

> install.packages("survival")
> library(survival)

Loading required package: splines

> ls("package:survival") # Looking for the data frame ovarian:
[1] "aareg" "aml" "attrassign"
[4] "basehaz" "bladder" "bladder1"
[7] "bladder2" "cancer" "cch"
[10] "cgd" "clogit" "cluster"
[13] "colon" "cox.zph" "coxph"
[16] "coxph.control" "coxph.detail" "coxph.fit"
[19] "dsurvreg" "format.Surv" "frailty"
[22] "frailty.gamma" "frailty.gaussian" "frailty.t"
[25] "heart" "is.na.coxph.penalty" "is.na.ratetable"
[28] "is.na.Surv" "is.ratetable" "is.Surv"
[31] "jasa" "jasa1" "kidney"
[34] "labels.survreg" "leukemia" "logan"
[37] "lung" "match.ratetable" "mgus"
[40] "mgus1" "mgus2" "nwtco"
[43] "ovarian" "pbc" "pbcseq"
[46] "pspline" "psurvreg" "pyears"
[49] "qsurvreg" "ratetable" "ratetableDate"
[52] "rats" "ridge" "stanford2"
[55] "strata" "Surv" "survConcordance"
[58] "survdiff" "survexp" "survexp.mn"
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[61] "survexp.us" "survexp.usr" "survfit"
[64] "survfitcoxph.fit" "survobrien" "survreg"
[67] "survreg.control" "survreg.distributions" "survreg.fit"
[70] "survregDtest" "survSplit" "tcut"
[73] "tobin" "tt" "untangle.specials"
[76] "veteran"

> data(ovarian)
> ovarian # Inspecting the data frame:

futime fustat age resid.

ds

rx ecog.ps

1 59 1 72.3315 2 1 1
2 115 1 74.4932 2 1 1
3 156 1 66.4658 2 1 2
4 421 0 53.3644 2 2 1
5 431 1 50.3397 2 1 1
6 448 0 56.4301 1 1 2
7 464 1 56.9370 2 2 2
8 475 1 59.8548 2 2 2
9 477 0 64.1753 2 1 1
10 563 1 55.1781 1 2 2
11 638 1 56.7562 1 1 2
12 744 0 50.1096 1 2 1
13 769 0 59.6301 2 2 2
14 770 0 57.0521 2 2 1
15 803 0 39.2712 1 1 1
16 855 0 43.1233 1 1 2
17 1040 0 38.8932 2 1 2
18 1106 0 44.6000 1 1 1
19 1129 0 53.9068 1 2 1
20 1206 0 44.2055 2 2 1
21 1227 0 59.5890 1 2 2
22 268 1 74.5041 2 1 2
23 329 1 43.1370 2 1 1
24 353 1 63.2192 1 2 2
25 365 1 64.4247 2 2 1
26 377 0 58.3096 1 2 1

> attach(ovarian)
> fit <- coxph(Surv(futime, fustat) ~ age + ecog.ps,
+ data=ovarian)
> temp <- cox.zph(fit)
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> print(temp) # Displaying the results:

 rho chisq p
age −0.243 0.856 0.355
ecog.ps 0.520 2.545 0.111
GLOBAL NA 3.195 0.202

> plot(temp) # Plotting curves.

> # Outputting: Figure 5.18.
>
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FIGURE 5.18 cox.zph() fi tting: The plot gives an estimate of the time-dependent coeffi cient beta(t). 
If the proportional hazards assumption is true, beta(t) will be a horizontal line. The printout gives a test 
for slope = 0.

 The Inverse Bayes Formula

The inverse Bayes formula (IBF) is an important statistical tool in distribution the-
ory and Bayesian missing-data problems (examples can be seen in Tan, Tian, and 
Ng [2010], among others). Earlier in 1997, Ng provided a form of IBF essentially 
for product measurable space (PMS), and recognized that IBF is potentially useful 
in computing marginals and checking compatibility. Moreover, Tian and Tan (Ng 
& Tong, 2010) provided a form of modifi ed IBF in nonproduct measurable space 
(NPMS) and gave some applications, extending the concept to the generalized 
inverse Bayes formula (GIBF).

In the Bayesian literature, one traditionally expresses the posterior distribution 
in terms of the prior distribution. In 1995, K. W. Ng introduced the point-wise IBF 
in order to emphasize its unconventional character, in that the prior distribution may 
be expressed in terms of the posterior distribution.
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In standard Bayesian notation, one uses π(q) to denote the prior probability den-
sity function (pdf) of parameter q with support S(Θ); L(y|μ) to denote the likelihood 
function (i.e., the pdf of data, given the parameter) with support S(Y|q); p(q|y) to 
denote the posterior pdf with support S(Θ|Y) of parameter given the data; and f(y) 
to denote the unconditional pdf for the data with support S(Y). Both q and y may 
be vectors.

Note that, in general, the projection of S(Y|q) into S(Y) is a subset:

 S(Y|q) ⊂ S(Y) (5.2-12A)

and the equality

 S(Y|q) = S(Y) (5.2-12B)

may hold for some q.
With respect to integral or probability, the latter is essentially the same as when 

the complement of the projection of S(Y|q) into S(Y) is a set of measure zero. If the 
joint support S(q, Y) equals the product space S(Θ) × S(Y), then:

 S(Y|q) = S(Y) (5.2-13)

for all q, and vice versa. A similar relationship holds true between S(Q|y) and S(Q).
From the joint pdf identity, L(y|q)p(q) = p(q|y)f(y), the Bayes formula

 p y L y L Y d
S y

( | ) ( ) ( | )/ ( ) ( | )
( | )

q p q q p q q q
q

= ∫  (5.2-14)

results by a substitution of f(y), which is expressed as the integral of the joint pdf 
with respect to q over S(Q|y). One may rewrite this joint pdf identity as p(q)L(y|q)/
p(q|y) = f(y), where (q, y) is in the joint support S(Θ, Y). Now, for any fi xed q, one 
may integrate both sides of the re-expressed joint pdf identity with respect to y over 
S(Y|q) and obtain the prior pdf at q:
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where the equality holds if and only if S(Y|q) = S(Y), or the complement of the pro-
jection of S(Y|q) into S(Y) is a set of measure zero.

In particular, under the so-called positivity assumption, where

 S(Q, Y) = S(Q) × S(Y) (5.2-16)

one has

 p q q q
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1

 (5.2-17)

The explicit form of Equation (5.2-17) was not found in the general literature of clas-
sical Bayesian statistics. This may be due to the tradition in the Bayesian literature 
of expressing the posterior distribution in terms of the prior distribution. Ng (2010) 
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called Equation (5.2-17) the (pointwise) IBF to emphasize its unconventional char-
acter, in that the prior distribution is expressed in terms of the posterior distribution. In 
fact, it is the harmonic mean of p(q|y) with respect to L(y|q).

DERIVATIONS OF THREE FORMS OF THE INVERSE BAYES FORMULA 
(TAN, TIAN, & NG, 2010)

From the Bayes formula, one may derive three IBFs involving integration in the 
support of a random variable. To do so, it is necessary to consider two notions: the 
product measurable space (PMS) and the nonproduct measurable space (NPMS).

Let two random variables (or vectors) (X, Y), taking values in the spaces (X, Y), 
respectively, be absolutely continuous with respect to some measure m on the joint 
support:

 S = S(X, Y) = {(x, y): f(X, Y)(x, y) > 0, (x, y) ∈ (X, Y)} (5.2-18)

where f(X, Y)(x, y) denotes the joint probability density function (pdf) of (X, Y).
Now, denote the marginal and conditional pdfs of X and Y by fX(x), fY(y), f(X|Y)

(x|y), and f(Y|X)(y|x), respectively. Let

 SX = {x: fX(x) > 0, x ∈ X} (5.2-19)

and

 SY = {y: fY(y) > 0, y ∈ Y} (5.2-20)

denote the supports of X and Y, respectively.
If

 S(X, Y) = SX × SY (5.2-21)

then the measure m is product measurable, and m may be written as mX × mY; otherwise, 
it is nonproduct measurable.

The absolute continuous assumption allows consideration of a continuous vari-
able (whose density is Lebesgue measurable) with a discrete variable (its probabil-
ity mass function gives rise to a counting measure). To apply this concept, one may 
denote the conditional supports of X|(Y = y) and Y|(X = x) as follows:

 S(X|Y)(y) = {x: f(X|Y)(x|y) > 0, x ∈ X } ∀ y ∈ SY (5.2-22)

 S(Y|X)(x) = {y: f(Y|X)(y|x) > 0, y ∈ Y } ∀ x ∈ SX (5.2-23)

In practice, one usually has

 S(Y|X)(x) ⊆ SY ∀ x ∈ SX (5.2-24)

and

 S(X|Y)(x) ⊆ SX ∀ y ∈ SY (5.2-25)

so that the joint pdf becomes

 f(X|Y)(x|y)fY(y) = f(Y|X)(y|x)fX(x), ∀ (x, y) ∈S(X, Y) (5.2-26)
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In PMSs, one has

 S(Y|X)(x) = SY, ∀ x ∈ SX (5.2-27)

and

 S(X|Y)(x) = SX ∀ y ∈ SY (5.2-28)

Hence, from Equation (5.2-26), one obtains by division:

 f y f y x f x y f x x S y SY Y X X Y X X Y( ) ( | )/ ( | ) ( ), ,( | ) ( | )= ⎡⎣ ⎤⎦ ∀ ∈ ∀ ∈and  (5.2-29A)

Integrating the identity (5.2-29A) with respect to y, on support SY, one obtains:

f y dy f y x f x y f x

f y x

Y Y X X Y X

Y X

( ) ( | )/ ( | ) ( )

( | )/

( | ) ( | )

( | )

= ⎡⎣ ⎤⎦{ }
=

∫∫
1 ff x y f x dy

f x f y x f x y

X Y X

X Y X X Y

( | )

( | ) ( | )

( | ) ( )

( ) ( | )/ ( | )

⎡⎣ ⎤⎦{ }
= ⎡⎣ ⎤

∫
⎦⎦{ }∫ dy

Because x and y are independent, one gets

 f x f y x f x y dy x SX Y X Y X
S

x
Y

( ) ( | )/ ( | ) ,( | ) ( | )= ⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭

∀ ∈∫
−1

 (5.2-30A)

which is the pointwise IBF for X(x).
The dual form of Equation (5.2-29A) is

 f x f x y f y x f y x S y SX X Y Y X Y X Y( ) ( | )/ ( | ) ( ), ,( | ) ( | )= ⎡⎣ ⎤⎦ ∀ ∈ ∀ ∈and  (5.2-29B)

whereas the dual form of Equation (5.2-30A) is

 f y f x y f y x dx y SY X Y Y X
S

Y
X

( ) ( | ) ( | ) ,( | ) ( | )= ⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭

∀ ∈∫
−1

 (5.2-30B)

On substituting fY(y) from Equation (5.2-30B) into Equation (5.2-29B), one obtains

f x f x y f y x dx f x yX X Y Y X
S

X Y
X

( ) ( | )/ ( | ) ( | )/( | ) ( | ) ( | )= ⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭∫

−1

ff y x x y S

f x y f y x

Y X X Y

X Y Y X

( | ) ( , )

( | ) ( | )

( | ) , ( , )

( | )/ ( | )

⎡⎣ ⎤⎦ ∀ ∈

= ⎡⎣ 0 0 ⎤⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭

⎡⎣ ⎤⎦∫
−

dx f x y f y x
S

X Y Y X
X

1

0 0( | ) ( | )( | )/ ( | )

 ∀ x ∈SX, and ∀ arbitrarily fi xed y0 ∈ SY (5.2-31A)

which is the functionwise IBF for X(x).
Finally, upon omitting the normalizing constant in Equation (5.2-31A), one obtains

    f x f x y f y x x SX X Y Y X X( ) ( | )/ ( | ) , ,( | ) ( | )∝ 0 0⎡⎣ ⎤⎦ ∀ ∈ ∀and arbitrarily fiixed y SY0 ∈
 (5.2-32A)

which is the sampling IBF for X(x).
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Clearly, the corresponding dual forms of Equations (5.2-30A), (5.2-31A), and 
(5.2-32A) may be readily stated, for fY(y), by interchanging X(x) with Y(y), as the 
corresponding IBFs for Y(y):

 f y f x y f y x dx y SY X Y Y X
S

Y
X

( ) ( | ) ( | ) ,( | ) ( | )= ⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭

∀ ∈∫
−1

 (5.2-30B)

 f y f y x f x y dy f y xY Y X X Y
S

Y X
Y

( ) ( | )/ ( | ) ( |( | ) ( | ) ( | )= ⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭∫

−

0 0

1

00 0)/ ( | ) ,( | )f x yX Y⎡⎣ ⎤⎦

 ∀ y ∈ SY, and ∀ arbitrarily fi xed x0 ∈ SX (5.2-31B)

and

        f y f y x f x y y SY Y X X Y Y( ) ( | )/ ( | ) , ,( | ) ( | )∝ 0 0⎡⎣ ⎤⎦ ∀ ∈ ∀and arbitrarily fiixed x SX0 ∈  (5.2-32B)

These are the corresponding pointwise IBF for Y(y), functionwise IBF for Y(y), and 
sampling IBF for Y(y), respectively.

The following example illustrates the application of IBF for obtaining prior 
probabilities from posterior probabilities.

 ■ Example 5.23: An application of the inverse Bayes formula (Ng & Tong, 2010)

This example shows a direct application of the pointwise IBF for Y(y), using Equation 
(5.2-30B) to obtain the prior probability of f

Y
(y) from the information available in the pos-

terior probabilities of the system.
Consider the following conditional probability densities:

fX|Y(x|y) = 1/2√(1 – y 2)

−√(1 – y 2) < x < √(1 – y 2)

−1 < y < 1

and

fY|X(y |x) = 1/2√(1 – x 2)

−√(1 – x 2) < y < √(1 – x 2)

−1 < x < 1

The support S
XY

 is the interior of the unit disk: with center (0, 0) and radius 1 unit. 
f
X|Y(x|y)/f

Y|X(y|x) is defi ned only on S
XY

, along the circumference of the unit disk.
To calculate f

Y
(y), consider a positive extension function of f

X|Y(x|y)/f
Y|X(y|x) on the 

space (−1, 1) × (−1, 1). Set

u(x) = √(1 – x2), for 1 < x < 1; and v(y) = 1/√(1 – y2), for 1 < y < 1 
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Then, r(x, y) = u(x) v(y) may be considered as representing f
X|Y(x|y)/f

Y|X(y|x) on the space 
(−1, 1) × (−1, 1). Moreover, applying the pointwise IBF by using Equation (5.2-30B), 
we get

 f y f x y f y x dx y SY X Y Y X
S

Y
X

( ) ( | )/ ( | ) ,( | ) ( | )= ⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭

∀ ∈∫
−1

 (5.2-30B)
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1 1
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1 1
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 ■ Example 5.24: An application of the posterior distribution simulation using R

Within the currently available CRAN packages, there are application packages that use 
posterior simulation to obtain Bayesian inference. For example, the function MCMCre-
gress(), in the package MCMCpack, uses Markov Chain Monte Carlo for Gaussian 
linear regression.

This function MCMCregress() generates a sample from the posterior distribution 
of a linear regression model with Gaussian errors using Gibbs sampling (with a multi-
variate Gaussian prior on the beta vector and an inverse gamma prior on the conditional 
error variance). The user must supply data and priors, and a sample from the posterior 
distribution is returned as an mcmc object, which can subsequently be analyzed with 
functions provided in the coda package.

Theoretical Background of the Application of the Function

MCMCregress()
MCMCregress() simulates from the posterior distribution using standard Gibbs sam-
pling (a multivariate Normal draw for the betas, and an inverse Gamma draw for the 
conditional error variance). The simulation proper is performed in compiled C++ code 
to maximize effi ciency; consult the coda documentation for a comprehensive list of 
functions that can be used to analyze the posterior sample.

The model takes the following form:

 yi = x¢I b + ei (5.2-33)

where the errors are assumed to be Gaussian, as follows:

 ei ~ N(0, s2) (5.2-34)

Assuming standard, semiconjugate priors:

 B ~ N(b0, B0
−1) (5.2-35)

and

 s2 ~ Gamma(c0/2, d0/2) (5.2-36)

where b and s2 are assumed a priori independent.
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Note that only starting values for b are allowed because the simulation is done using 
Gibbs sampling with the conditional error variance as the fi rst block in the  sampler.

The value of the function MCMCregress() is an mcmc object that contains the poste-
rior sample. This object can be summarized by functions provided by the coda package.

The R code for this example is
line <- list(X = c(-2,-1,0,1,2), Y = c(1,3,3,3,5))
posterior <- MCMCregress(Y~X, data=line, verbose=1000)
plot(posterior)
raftery.diag(posterior)
summary(posterior)

This example is run using the following R code segment:

> install.packages(“MCMCpack”)
> library(MCMCpack)
Loading required package: coda
Loading required package: lattice
Loading required package: MASS
##
## Markov Chain Monte Carlo Package (MCMCpack)
## Copyright (C) 2003-2012 Andrew D. Martin, Kevin M. Quinn, and Jong Hee 
Park
##
## Support provided by the U.S. National Science Foundation
## (Grants SES-0350646 and SES-0350613)
##
> ls("package:MCMCpack") # Noting the function MCMCregress()
[1] "BayesFactor" "choicevar" "ddirichlet"
[4] "dinvgamma" "diwish" "dnoncenhypergeom"
[7] "dtomogplot" "dwish" "HMMpanelFE"
[10] "HMMpanelRE" "make.breaklist" "MCbinomialbeta"
[13] "MCMCbinaryChange" "MCMCdynamicEI" "MCMCdynamicIRT1d"
[16] "MCMCfactanal" "MCMChierEI" "MCMChlogit"
[19] "MCMChpoisson" "MCMChregress" "MCMCirt1d"
[22] "MCMCirtHier1d" "MCMCirtKd" "MCMCirtKdHet"
[25] "MCMCirtKdRob" "MCMClogit" "MCMCmetrop1R"
[28] "MCMCmixfactanal" "MCMCmnl" "MCMCoprobit"
[31] "MCMCoprobitChange" "MCMCordfactanal" "MCMCpoisson"
[34] "MCMCpoissonChange" "MCMCprobit" "MCMCprobitChange"
[37] "MCMCquantreg" "MCMCregress" "MCMCSVDreg"
[40] "MCMCtobit" "MCmultinomdirichlet" "MCnormalnormal"
[43] "MCpoissongamma" "mptable" "plotChangepoint"
[46] "plotState" "PostProbMod" "procrustes"
[49] "rdirichlet" "read.Scythe" "rinvgamma"
[52] "riwish" "rnoncenhypergeom" "rwish"
[55] "SSVSquantreg" "testpanelGroupBreak" "testpanelSubjectBreak"
[58] "tomogplot" "topmodels" "vech"
[61] "write.Scythe" "xpnd"
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> library(lattice)
> library(coda)
> library(MASS)
> line <- list(X = c(-2,-1,0,1,2), Y = c(1,3,3,3,5))
> posterior <- MCMCregress(Y~X, data=line, verbose=1000)
> # Outputting:

MCMCregress iteration 1 of 11000
beta =
 3.11989
 0.80906
sigma2 = 0.27278

MCMCregress iteration 1001 of 11000
beta =
 2.87038
 0.80699
sigma2 = 0.38403

MCMCregress iteration 2001 of 11000
beta =
 3.75130
 0.44314
sigma2 = 0.77820

MCMCregress iteration 3001 of 11000
beta =
 3.72461
 0.97119
sigma2 = 1.33523

MCMCregress iteration 4001 of 11000
beta =
 2.79921
 0.58334
sigma2 = 0.80892

MCMCregress iteration 5001 of 11000
beta =
 3.06049
 0.99932
sigma2 = 0.35595

MCMCregress iteration 6001 of 11000
beta =
 3.09242
 0.68169
sigma2 = 1.37335
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MCMCregress iteration 7001 of 11000
beta =
 3.21538
 1.35860
sigma2 = 5.18619

MCMCregress iteration 8001 of 11000
beta =
 3.13608
 0.81812
sigma2 = 1.46922

MCMCregress iteration 9001 of 11000
beta =
 3.40301
 1.43191
sigma2 = 2.76159

MCMCregress iteration 10001 of 11000
beta =
 4.78574
 2.30508
sigma2 = 3.57808

> plot(posterior) # Outputting several plots, summarized in Figure 5.19.
> raftery.diag(posterior) # Outputting:

Quantile (q) = 0.025
Accuracy (r) = +/−0.005
Probability (s) = 0.95

Burn-in
(M)

Total
(N)

Lower bound
(Nmin)

Dependence
factor (I)

(Intercept) 3 4374 3746 1.17
X 3 4374 3746 1.17
sigma2 2 3865 3746 1.03

> summary(posterior)

Iterations = 1001:11000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable, plus standard 
error of the mean:
 Mean SD Naive SE Time-series SE
(Intercept) 3.013 0.5459 0.005459 0.005948
X 0.807 0.3873 0.003873 0.004647
sigma2 1.510 5.0969 0.050969 0.084921
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2. Quantiles for each variable:
 2.5% 25% 50% 75% 97.5%
(Intercept) 2.04394 2.7552 3.0043 3.2483 4.083
X 0.05681 0.6287 0.8047 0.9769 1.562
sigma2 0.17091 0.3876 0.6837 1.3395 7.155

>
> line <- list(X = c(-2,-1,0,1,2), Y = c(1,3,3,3,5))
> line # Outputting:

$X
[1] −2 −1 0 1 2

$Y
[1] 1 3 3 3 5
> posterior <- MCMCregress(Y~X, data=line, verbose=1000)
> plot(posterior)
> # Outputting: Figure 5.19.
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FIGURE 5.19 Posterior densities by MCMCregress.
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> raftery.diag(posterior) # Outputting:

Quantile (q) = 0.025
Accuracy (r) = +/−0.005
Probability (s) = 0.95

Burn-in 
(M)

Total 
(N)

Lower 
bound 
(Nmin)

Dependence 
factor (I)

(Intercept) 3 4374 3746 1.17
X 3 4374 3746 1.17

sigma2 2 3865 3746 1.03

> summary(posterior) # Outputting:

Iterations = 1001:11000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable, plus standard 
error of the mean:
 Mean SD Naive SE Time-series SE
(Intercept) 3.013 0.5459 0.005459 0.005948
X 0.807 0.3873 0.003873 0.004647
sigma2 1.510 5.0969 0.050969 0.084921

2. Quantiles for each variable:

 2.5% 25% 50% 75% 97.5%
(Intercept) 2.04394 2.7552 3.0043 3.2483 4.083
X 0.05681 0.6287 0.8047 0.9769 1.562
sigma2 0.17091 0.3876 0.6837 1.3395 7.155

>

 Modeling in Biostatistics

In biostatistics, a parametric model is a family of distributions that can be described 
using a fi nite number of parameters. These parameters are usually collected to form 
a single n-dimensional parameter vector q = (q1, q2, q3, …, qi, …, qn).

Parametric models are contrasted with semiparametric, semi-nonparametric, 
and nonparametric models, all of which consist of an infi nite set of “parameters” 
for description. The distinctions among these four classes are as follows:

 ■ In a parametric model, all the parameters are in fi nite-dimensional parameter 
spaces.

 ■ A model is nonparametric if all the parameters are in infi nite-dimensional pa-
rameter spaces.

 ■ A semiparametric model contains fi nite-dimensional parameters of interest and 
infi nite-dimensional nuisance parameters.
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 ■ A semi-nonparametric model has both fi nite-dimensional and infi nite- 
dimensional unknown parameters of interest.

Among the modeling tools available in the CRAN packages, two important 
ones are selected for discussion here:

1. The CRAN package grofit for estimating dose–response curves
2. The CRAN packages gam (generalized additive model, gam[x]) by Hastie and 

Tibshirani (1990); and gamair[y] (Wood, 2006) 

These models favor the nonparametric approach, use techniques derived from 
numerical analysis and approximation theory, and are generally applicable to 
all biostatistical applications. They are both readily adaptable to computations 
using R.

THE CRAN PACKAGE GROFIT FOR ESTIMATING 
DOSE–RESPONSE CURVES 

The package grofit was developed to fi t many growth curves obtained under differ-
ent conditions in order to derive a conclusive dose–response curve. For instance, for 
a compound that may affect growth, grofit fi ts data to different parametric models 
using function gcFitModel(), and also provides a model-free spline fi t using func-
tion gcFitSpline() to circumvent systematic errors that might occur with the appli-
cation of parametric methods.

Also within the package grofit, the R functions drFitSpline() and drBootSpline() 
may be used to generate a table with estimates for half maximal effective concen-
tration (EC50) and associated statistics. The term half maximal effective concentration 
(EC50) refers to the concentration of a drug, antibody, or toxicant that induces a 
response halfway between the baseline and maximum after some specifi ed expo-
sure time. It is commonly used as a measure of the potency of a drug.

The EC50 of a graded dose–response curve therefore represents the concentra-
tion of a compound at which 50% of its maximal effect is observed. The EC50 of a 
quantal dose–response curve represents the concentration of a compound where 
50% of the population exhibits a response, after a specifi ed exposure duration. It is 
also related to IC50, which is a measure of a compound’s inhibition (50% inhibition). 
For competition binding assays, functional antagonist assays, and agonist/stimu-
lator assays, EC50 is the most common summary measure of the dose–response 
curve. Responses to concentration typically follow a sigmoidal curve, increasing 
rapidly over a relatively small change in concentration. The infl ection point at 
which the increase in effectiveness with increasing concentration begins to slow is 
the EC50. This can be determined mathematically by derivation of the best-fi t line. 
Although relying on a graph for estimation is more convenient, it yields less precise 
and less accurate results.

Within the CRAN package grofit, the R function gcFitModel(x,y) may be used 
for general modeling tasks.
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THE CRAN PACKAGES gam AND gamair
This subsection introduces GAM, the generalized additive model (Hastir & 
 Tibshirani, 1990; Wood, 2006).4

Let Y be a response random variable and X1, X2, X3, …, Xi, …, Xn be a set of 
predictor variables. A regression procedure may be considered as a method for esti-
mating how the value of Y depends on the values of X1, …, Xn. The standard lin-
ear regression model assumes that the expected value of Y has a linear form. The 
expected value of Y, E[Y] is calculated as follows:

 = f(X1, X2, X3, …, Xi, …, Xn) (5.2-37A)

 = b0 + b1X1 + b2X2 + b3X3 + … + biXi + … + bnXn (5.2-37B)

Given a sample of values for Y and X, estimates of b0, b1, b2, b3, …, bi, …, bn are usu-
ally obtained by the least squares method.

The additive model generalizes the linear model by modeling the expected 
value of Y as

 E(Y) = f(X1, X2, X3, …, Xi, …, Xn) (5.2-38A)

 = s0 + s1(X1) + s2(X2) + s3(X3) + … + si(Xi) + … sn(Xn) (5.2-38B)

where si(X), i = 1, …, n are smooth functions. These functions are to be estimated in 
a nonparametric approach.

GAM extends traditional linear models in another way, by allowing for a link 
between f(X1, …, Xn) and the expected value of Y. This amounts to allowing an 
alternative distribution for the underlying random variation besides just the normal 
distribution. Although Gaussian models can be used in many statistical applications, 
there are types of problems for which they are not appropriate. The normal distri-
bution may not be adequate for modeling categorical variables, discrete responses 
such as counts, or bounded responses such as proportions.

GAM consists of a random component, an additive component, and a link 
function relating these two components. The response Y, the random component, 
is assumed to have a density in the exponential family:

 fY(y; q; f) = exp{[{yq – b(q)}/a(f)] + c(y, φ)} (5.2-39)

where q is called the natural parameter and f is the scale parameter. The normal, bino-
mial, and Poisson distributions are all in this family. The quantity

 h = +
=∑s s Xi ii

n
0 1

( )  (5.2-40)

where s1(·), …, sn(·) are smooth functions, defi nes the additive component. Finally, 
the relationship between the mean m of the response variable and h is defi ned by a 
link function:

 g(m) = h (5.2-41)

4 Meulman, J. J. Lecture 4: Generalized additive models. (2008). Available at www.math.vu.nl/sto/
onderwijs/statlearn/GAM-OptimalScaling2.pdf

http://www.math.vu.nl/sto/onderwijs/statlearn/GAM-OptimalScaling2.pdf
http://www.math.vu.nl/sto/onderwijs/statlearn/GAM-OptimalScaling2.pdf
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The most commonly used link function is the canonical link, for which

 h = q (5.2-42)

A combination of backfi tting and local scoring algorithms is used in the actual fi tting 
of the model.

GAM and GLMs can be applied in similar situations, but they serve differ-
ent analytic purposes. GLMs emphasize estimation and inference for the param-
eters of the model, whereas GAM focuses on exploring data nonparametrically. 
The GAM model is fi tted using a local scoring algorithm, which iteratively fi ts 
weighted additive models by backfi tting. The backfi tting algorithm is a Gauss–
Seidel method for fi tting additive models, with iterative smoothing of partial 
residuals. The algorithm separates the parametric from the nonparametric part of 
the fi t, fi tting the parametric part using weighted linear least squares within the 
backfi tting algorithm.

The following example provides an elementary introduction to the GAM 
approach, using R in computation.

 ■ Example 5.25: An application of GAM to a simple linear model of two independent 
variables4

Let x1 and x2 be two independent predictor variables. The same treatment may be 
extended to n (n > 2) independent variables. Let y be the dependent outcome variable, 
and e be the error term. A linear model may then be written as

 y = b1x1 + b2x2 + e (5.2-43)

The objective of the modeling is to minimize the least squares loss function L defi ned 
by

 L(b) = ||y b1x1 b2x2||
2 (5.2-44)

A simple GAM seeks the model given by

 L[f(x)] = ||y f1(x1) – f2(x2)||
2 (5.2-45)

where f1(x1) and f2(x2) are functions—specifi cally nonlinear transformations of x1 and x2.
The computation of these functions, f1(x1) and f2(x2), may now be undertaken using 

the following R code segment:

> n <- 100 # Considering 100 data points

> x1 <- scale(runif(n, 0, 1))
> x2 <- scale(runif(n, 0, 1))
> # The function runif(n, min=0, max=1) provides information about

> # the uniform distribution on the interval from min to max.
> # runif() generates random deviates.

> # The uniform distribution has density

> # f(x) = 1/(max − min)

> # for min ≤ x ≤ max.

> # scale() is a generic function whose default method centers and/or scales

> # the columns of a numeric matrix.
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> f <- x1**2 + x2**2
> e <- rnorm(n, 0, 0.1)
> # The function rnorm(n, mean, sd) randomly generates normally

> # distributed numbers with mean equal to mean, and standard deviation

> # equal to sd.
>
> y <- f + e
> a <- lm(y ~ cbind(x1,x2))
> yhat <- a$fitted.values
> mr2 <- cor(yhat,y)**2
> plot(yhat, y, main=c('multiple R2=',(round(mr2,digit=5))))
> # Outputting: Figure 5.20.
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FIGURE 5.20 Linear model.

> # Now, for the GAM, the following computation will generate the functions

> # f1(x1) and f2(x2):

> # GAM step-by-step:
> xx1 <- x1
> xx2 <- x2
>

> plot((x1+x2),y, main='y as sum of x1 and x2')
> # Outputting Figure 5.21 GAM-1
> plot(x1,(y-x2), main='(y - x2) versus x1')
> # Outputting: Figure 5.22 GAM-2
> dev.copy2eps(file="plots1.eps")

> plot(xx1,(y-xx2),main='(y - f2(x2)) versus f1(x1)')
> # Outputting: Figure 5.23 GAM-3
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> plot(xx2,(y-xx1),main='(y - f1(x1)) versus f2(x2)')
> # Outputting: Figure 5.24 GAM-4
> plot((xx1+xx2),y-(xx1+xx2),asp=1,main='Residuals')
> # Outputting: Figure 5.25 GAM-5

> plot(x1,xx1,main=’Transformation of x1’)
> lines(x1[order(x1)],xx1[order(x1)],col=’red’)
> # Outputting: Figure 5.26 GAM-6
> plot(x2,xx2,main=’Transformation of x2’)
> lines(x2[order(x2)],xx2[order(x2)],col=’blue’)
> # Outputting: Figure 5.27 GAM-7
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 Review Questions for Section 5.2

1. (a) What is Bayesian biostatistics?
(b) Express Bayes’s theorem in probabilistic terms.

2. (a) What is Bayesian inference?
(b) Express Bayesian inference in probabilistic terms.

3. (a) What is survival analysis?
(b) Briefly explain the following terms: survival time, survival data, censored surviv-

al time, and censored data.
4. (a) What is the K–M procedure in survival analysis?

(b) Using probability theory, derive an expression for the probability of a case sub-
ject surviving to time t.

5. In a typical K–M plot of surviving case subjects, what is represented by
(a) a vertical segment?
(b) a horizontal segment?
(c) +?
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6. (a)  In survival analysis, what is the Cox regression model (also known as propor-
tional hazards)?

(b) In the Cox regression model, what is meant by instantaneous failure rate, 
baseline hazard function, and proportional hazards regression?

7. In the K–M procedure, explain the usages of the following R functions:
(a) Surv()
(b) survfit()
(c) survdiff()
(d) surv_test()

8. In the Cox regression model, explain the usages of the following R functions:
(a) survfit()
(b) coxph()
(c) cox.zph()

9. (a) What is meant by the inverse Bayes formula (IBF)?
(b) What are the advantages of using the IBF in biostatistical modeling?

10. (a)  In the CRAN package grofit, which was developed for fitting growth curves, 
explain the usages of the following R functions: gcFitModel(), gcFitSpline(), 
and drBootSpline().

(b) In the CRAN package gam, which was developed for generalized additive mod-
eling, explain the usages of the R function gam() and the use of a gam.object.

 Exercises for Section 5.2

1. A study by Gehan, reported by Daniel (2005), attempted to find the optimum dos-
age of the pain-killing drug lignocaine (LC), which was introduced by injection with 
propofol (PF) into the case subjects. A total of 310 case subjects were involved, and 
these case subjects were allocated to four categories according to the LC dosage:

Group A = subjects receiving no LC
Groups B, C, and D = subjects receiving 0.1, 0. 2, and 0.4 mg/kg LC mixed 

with PF, respectively
The degree of pain experienced by the case subjects was categorized from 0 
(no pain) to 3 (most severe). The following table records the case subjects cross- 
classified by dosage level and pain score:

Group Total

Pain Score A B C D

0 49 73 58 62 242

1 16 7 7 8 38

2 8 5 6 6 25

3 4 1 0 0 5

Total 77 77 86 71 76 310

(a) Compute the following probabilities and explain their meanings:
  (i) P(2 ∩ A)
  (ii) P(B ∪ 3)
(iii) P(0 | C)
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(b) Is each of the following equations true? Why or why not?
  (i) P(A ∩ 3) = P(3 ∩ A)
  (ii) P(1 ∪ D) = P(D ∪ 1)
(iii) P(B ∩ D) = 0

2. In a clinical trial, the case subjects are divided into two groups (0 = Control, 
1 =  Treatment).5 The probability that an adverse outcome will occur in the control 
group is P0, and in the treatment group is P1. These case subjects are placed 
alternately into the two groups, and their outcomes are independent. Using the 
theory of probability, Bayes’s theorem, or another formula, show that the probability 
that the first adverse event will occur in the control group is

P0/(P0 + P1 − P0 × P1)

Proof:
Define:

 ■  The sample space to consist of all possible infinite sequences of patient 
 outcomes

 ■  Event E1—first subject (allocated to the control arm) suffers an adverse 
 outcome

 ■  Event E2—first subject (allocated to the control arm) does not suffer an ad-
verse outcome, but the second patient (allocated to the treatment arm) does 
suffer an adverse outcome

 ■ Event E0—neither of the first two subjects suffers an adverse outcome
 ■ Event F—first adverse event occurs on the control arm

To answer this question, you are required to find P(F).

The events E1, E2, and E0 partition, so, by the theorem of total probability, 
P(F) = P(F|E1)P(E1) + P(F|E2)P(E2) + P(F|E0)P(E0). Also, P(E1) = P0, 

P(E2) = (1 − P0) P1, P(E0) = (1 − P0) (1 − P1), and P(F|E1) = 1, P(F|E2) = 0.

Finally, because after two nonadverse outcomes the allocation process 
 effectively restarts, one has P(F|E0) = P(F). Hence:

P(F) = (1 × P0) + (0 × (1 − P0) P1) + (P(F) × (1 − P0) (1 − P1))

= P0 + (1 − P0) (1 − P1) P(F),

which may be rearranged to give P(F) = P0/(P0 + P1 − P0 P1), as required.
3. The K–M procedure using R.

Using the following R code segment, the K–M procedure may be applied to the 
melanom dataset in the package ISwR:
> install.packages("survival")
> library(survival)
> ls("package:survival")
> install.packages("ISwR")
> library(ISwR)
> ls("package:ISwR")

5 Worked examples 1: Total probability and Bayes’ theorem. Available at www2.imperial.ac.uk/~ayoung/
m2s1/WorkedExamples1.pdf

http://www2.imperial.ac.uk/~ayoung/m2s1/WorkedExamples1.pdf
http://www2.imperial.ac.uk/~ayoung/m2s1/WorkedExamples1.pdf
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> data(melanom)
> attach(melanom)
> melanoma
> names(melanom)
> survfit(Surv(days,status==1)~1,data=melanom)
> plot(survfit(Surv(days,status==1)~1,data=melanom))

> # Outputting: Figure 5.28.
> summary(survfit(Surv(days,status==1)~1,data=melanom))
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FIGURE 5.28 K–M plot for the melanom dataset.

(a) Describe, in your own words, the meaning and purpose of each of the R com-
mands in the preceding code segment.

(b) Suggest alternative R commands that could achieve the same results.
(c) Enter the R environment and run the code segment to obtain Figure 5.28.
(d) Suggest R commands to add labels to the axes in, and a suitable title for, 

 Figure 5.28.
4. The Cox regression model (proportional hazards) using R.

Using the following R code segment, the Cox regression model procedure may 
be applied to the cancer dataset in the package survival:

> install.packages("survival")
> library(survival)
> ls("package:survival")
> data(cancer)
> attach(cancer)
> cancer
> lfit6 <- survreg(Surv(time, status)~pspline(age, df=2), cancer)
> plot(cancer$age, predict(lfit6), xlab="Age", ylab="Spline
+ prediction")
> title("Cancer Data")
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> # Outputting: Figure 5.29.
> fit0 <- coxph(Surv(time, status) ~ ph.ecog + age, cancer)
> fit1 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,3),
+ cancer)
> fit3 <- coxph(Surv(time, status) ~ ph.ecog + pspline(age,8),
+ cancer)
> fit0
> fit1
> fit3
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FIGURE 5.29 Cox regression model for the cancer dataset.

(a) Describe, in your own words, the meaning and purpose of each of the R 
 commands in the preceding code segment.

(b) Suggest alternative R commands that could achieve the same results.
(c) Enter the R environment and run the code segment to obtain Figure 5.29.
(d) Following the command > ls("package:survival"): Is the dataset cancer 

included in the package survival?
(e) Following the command > cancer: How many cases are included in this 

 dataset?
5. More on the K–M procedure using R.

Using the following R code segment, the K–M procedure may be applied to 
the heart dataset in the CRAN package survival. (Before generating plots, some 
preprocessing is performed to get this dataset in proper form for the event.
history function. You need to create one line per subject and sort by time under 
 observation, with those experiencing an event coming before those tied with 
 censoring time.)

> install.packages("survival")
> library(survival)
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> ls("package:survival")
> data(heart)
> heart

> # Creation of the event.history version of the heart dataset (called heart.one):
> heart.one <- matrix(nrow=length(unique(heart$id)), ncol=8)
> for(i in 1:length(unique(heart$id)))

+ {
+ if(length(heart$id[heart$id==i]) == 1)
+ heart.one[i,] <- as.numeric(unlist(heart[heart$id==i, ]))
+ else if(length(heart$id[heart$id==i]) == 2)
+ heart.one[i,] <- as.numeric(unlist(heart[heart$id==i,][2,]))
+ }

> heart.one[,3][heart.one[,3] == 0] <- 2

> # Converting censored events to 2, from 0

> if(is.factor(heart$transplant))
+ heart.one[,7] <- heart.one[,7] - 1

> ## Getting back to correct transplantation coding

> heart.one <-
+ as.data.frame(heart.one[order(unlist(heart.one[,2]),
+ unlist(heart.one[,3])),])
> names(heart.one) <- names(heart)

> # Back to usual censoring indicator:

> heart.one[,3][heart.one[,3] == 2] <- 0

> # Note: transplant says 0 (for no transplants) or 1 (for one transplant)

> # and event = 1 is death, while event = 0 is censored.
> # Plot a single K–M curve from the heart data, fi rst creating

> # a survival object

> heart.surv <- survfit(Surv(stop, event) ~ 1, data=heart.one,
+ conf.int = FALSE)
> # Traditional K–M curve
> # postscript('ehgfig3.ps', horiz=TRUE)
> # omi <- par(omi=c(0,1.25,0.5,1.25))
> plot(heart.surv, ylab='estimated survival probability',
+ xlab='observation time (in days)')
> title('Kaplan-Meier curve for Stanford data', cex=0.8)

> Outputting: Figure 5.30.
(a) Describe, in your own words, the meaning and purpose of each of the R 

 commands in the preceding code segment.
(b) Suggest alternative R commands that could achieve the same results.
(c) Enter the R environment and run the code segment to obtain Figure 5.30.

6. More on the Cox regression model using R.
Using the following R code segment, the Cox regression model procedure may 

be applied to the veteran dataset on cancer, using the program plot.cox.zph in 
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the CRAN package survival. The program displays a graph of the scaled Schoen-
feld residuals, along with a smooth curve, developed for a graphical test of propor-
tional hazards:

> install.packages("survival")
> library(survival)
> ls("package:survival")
> data(veteran)
> attach(veteran)
> veteran
> vfit <- coxph(Surv(time,status) ~ trt + factor(celltype) +
+ karno + age, data=veteran, x=TRUE)
> temp <- cox.zph(vfit)
>  plot(temp, var=5) # Look at the Karnofsky score; this is an old way of doing 

the plot.

> plot(temp[5]) # New way with subscripting:

> abline(0, 0, lty=3)

> # Add the linear fi t as well:

> abline(lm(temp$y[,5] ~ temp$x)$coefficients, lty=4, col=3)
> title(main="VA Lung Study")

> Outputting: Figure 5.31.
(a) Describe, in your own words, the meaning and purpose of each of the R com-

mands in the preceding code segment.
(b) Suggest alternative R commands that could achieve the same results.
(c) Enter the R environment and run the code segment to obtain Figure 5.31.
(d) Following the command > ls("package:survival"): Is the dataset veteran 

included in the package survival?

0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500 1,000

Observation time (days)

K–M curve for stanford data

E
st

im
at

ed
 s

ur
vi

va
l p

ro
ba

bi
lit

y

1,500

FIGURE 5.30 K–M survival plot for the cancer dataset.



5.2 Typical Statistical Inference in Biostatistics: Bayesian Biostatistics 311

(e) Following the command > veteran: How many cases are included in this 
dataset?

(f) What is the green line in Figure 5.31?
7. More on survival analysis: The Cox regression model, based on cumulative resi-

dues, using R.
Using the following R code segment, apply the Cox regression model pro-

cedure, based on cumulative residues, to the Mayo Clinic pbc [primary biliary 
cirrhosis (PBC) or cirrhosis of the liver] dataset. These data were obtained from 
clinical trials in case subjects with PBC of the liver, conducted between 1974 and 
1984. PBC is an autoimmune disease of the liver marked by the slow, progressive 
destruction of the small bile ducts within the liver. When these ducts are damaged, 
bile builds up in the liver and over time damages the tissue, which may lead to 
scarring, fibrosis, and cirrhosis. Cirrhosis is a consequence of chronic liver disease 
characterized by replacement of liver tissue by fibrosis, scar tissue, and regenera-
tive nodules (lumps that occur as a result of a process in which damaged tissue is 
regenerated), leading to loss of liver function. Cirrhosis is most commonly caused 
by alcoholism, hepatitis B and C, and fatty liver disease, but also has many other 
possible causes. Some cases are idiopathic, (i.e., of unknown cause). Recent stud-
ies have shown that it may affect up to 1 in 3,000 people, and the gender ratio is at 
least 9:1 (female to male).

A total of 424 PBC patients, all referred to the Mayo Clinic during that 10-year 
interval, met eligibility criteria for the randomized placebo controlled trial of the 
drug D-penicillamine. The first 312 cases in the dataset participated in the random-
ized trial, and the data for these cases are largely complete. The additional 112 
cases did not participate in the clinical trial but consented to have their basic mea-
surements recorded and to be followed for survival. Six of those cases were lost to 
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FIGURE 5.31 Cox regression model for the modifi ed cancer dataset.
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follow-up shortly after diagnosis, so the data here are for an additional 106 cases, 
as well as the 312 randomized participants, totaling 106 + 312 = 418 cases:

> install.packages("gof")
> library(gof)
> ls("package:gof")
> cumres
> example(cumres)
> install.packages("survival")
> library(survival)
> ls("package:survival")
> data(pbc)
> attach(pbc)
> pbc
> ## PBC example

> fit.cox <- coxph(Surv(time,status==2) ~ age + edema + bili +
+ protime, data=pbc)
> system.time(pbc.gof <- cumres(fit.cox,R=2000))
> par(mfrow=c(2,2))
> plot(pbc.gof, ci=TRUE, legend=NULL)

> # Outputting: Figure 5.32.
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(a) Describe, in your own words, the meaning and purpose of each of the R com-
mands in the preceding code segment.

(b) Suggest alternative R commands that could achieve the same results.
(c) Enter the R environment and run the code segment to obtain Figure 5.32.
(d) Following the command > ls("package:survival"): Is the dataset pbc included 

in the package survival?
(e) Following the command > pbc: How many cases are included in this dataset?

8. An example of application of the inverse Bayes formula (Ng & Tong, 2010)
One criticism of the Monte Carlo simulation technique for generating random 

samples from univariate and multivariate distributions concerns when to reject a 
selection. A recognized method is the Rubin proposal of a noniterative sampling 
procedure: the sampling/importance resampling (SIR) method. For simulation 
from a density defined in the unit interval, let r be a known positive integer, and X ~ 
f (x), where:

 f(x) = p sinr(px)/B[½, (r + 1)/q], 0 < x < 1 (5.2-46)

and B is the beta function.
Based on Equation (5.2-46), the following R code segment computes f (x) 

when r = 6, for a skew beta density B(x|2, 4), as the importance sampling density 
g(x). Figure 5.33(A) shows the importance weight w(x) = f(x)/B(x|2, 4). The algo-
rithm sets J = 200,000 and m = 20,000 to obtain Figure 5.33(B), which shows that 
the histogram entirely recovers the target density function f(x).
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FIGURE 5.33 Output of the SIR method for noniterative sampling.

Here is the requisite R code segment:

> J = 200000
> m = 20000
> # Function name: IBF2.2.SIR(J=200,000, m=20,000)

> # *************** Input ****************************
> # J = 200,000 is the sampling size in the SIR method

> # m = 20,000 is the resampling size in the SIR method

> # ************************************************
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> # Aim: Plotting Figures 5.33(A) and 5.33(B)

> r <- 6
> a <- 2
> b <- 4
> x <- seq(0, 1, 0.01)
> x

[1] 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
[16] 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29
[31] 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44
[46] 0.45 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59
[61] 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74
[76] 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89
[91] 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

>
> cc <- (gamma(0.5) * gamma((r + 1)/2))/gamma(0.5 * r + 1)
> fx <- (pi * (sin(pi * x))^r)/cc
> gx <- dbeta(x, a, b)

> #--------------------------------------------------------
> xJ <- rbeta(J, a, b)
> w <- (sin(pi * xJ))^r/dbeta(xJ, a, b)
> p <- w/sum(w)
> xsample <- sample(xJ, m, prob = p, replace = F)
> #------------------- (a) --------------------------------

> par(pty = "s")
> par(mfrow = c(1, 2))
> plot(x, fx, type = "l", lty = 1, ylim = c(0, 4), xlab = "",
+ ylab = "", main = "(a)")
> lines(x, gx, type = "l", lty = 4)
> text(0.65, 3, "f(x)", cex = 1.8)
> text(0.22, 2.5, "g(x)", cex = 1.8)

> # Outputting: Figure 5.33(A).
> #------------------ (b) ---------------------------------
> hist(xsample, probability = T, ylim = c(0, 4), xlab = " ",
+ breaks = seq(0, 1, 0.01), ylab = "", main = "(b)")
> lines(x, fx, type = "l", lty = 1) # Outputting: Figure 5.33(B).

(a) The target density f(x), as defined by Equation (5.2-46), with r = 6 and g(x) = 
B(x|2, 4).

(b) The histogram of f(x) as obtained by using the SIR method, with J = 200,000 
and m = 20,000.

(c) Describe, in your own words, the meaning and purpose of each of the R com-
mands in the preceding code segment.

(d) Suggest alternative R commands that could achieve the same results.
(e) Enter the R environment and run the code segment to obtain Figure 5.33.
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(f) Repeat the computation for varying values of J (greater and less than 200,000) 
and m (greater and less than 20,000).

(g) How do these new results differ from the results of the first computation? Ex-
plain.

9. Applying the function with() in the CRAN package base.
The function with() evaluates an R expression in an environment constructed 

from data, possibly modifying the original data. Starting with the package gamair,1 
the following example uses a short R code segment to illustrate the simple appli-
cability of gam modeling (from the package gamair). gam is used to model the 
average air temperature (in degrees Fahrenheit) in Cairo, Egypt, from January 1, 
1995, to May 21, 2005 (Wood, 2006).

Usage:
data(cairo)

Format:
A data frame with 6 columns and 3,780 rows. The columns are:

 ■ month Month of year from 1 to 12
 ■ day.of.month Day of month, from 1 to 31
 ■ year Year, starting 1995
 ■ temp Average temperature (degrees Fahrenheit)
 ■ day.of.year Day of year from 1 to 366
 ■ time Number of days since January 1, 1995

Source: Wood (2006), pp. 321–324.

The R computation is based on data(cairo) with the statement: 
 (cairo,plot(time,temp,type="l")

The following R code segment may be used:

> install.packages("gamair") # Installing package gamair
> library(gamair)
> ls("package:gamair")
character(0)

> data(cairo)

> # The author was visiting this ancient Egyptian city at the time of writing

> # the fi rst draft of this portion of the book!

> # Source: http://www.engr.udayton.edu/weather/citylistWorld.htm

> attach(cairo)

> cairo # Inspecting the data frame cairo

> # Outputting: A data frame with 6 columns and 3780 rows.

month day.of.month year temp day.of.year time

1 1 1 1995 59.2 1 1
2 1 2 1995 57.5 2 2
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3 1 3 1995 57.4 3 3
4 1 4 1995 59.3 4 4
5 1 5 1995 58.8 5 5
……………………………………………………………………………………
……………………………………………………………………………………

3790 5 17 2005 78.1 137 3790
3791 5 18 2005 79.9 138 3791
3792 5 19 2005 82.7 139 3792
3793 5 20 2005 83.5 140 3793
3794 5 21 2005 76.9 141 3794
>
> # The function with():
> ls("package:base")

 [1] "-" "-.Date" "-.POSIXt" "!"
 [5] "!.hexmode" "!.octmode" "!=" "$"
……………………………………………………………………………………
[1169] "while" "with" "with.default" "withCallingHandlers"
……………………………………………………………………………………
[1197] "xtfrm.Surv" "xzfile" "zapsmall"
> # Listing 1199 fi les

> with

function (data, expr, ...)
UseMethod("with")
<bytecode: 06DB2644>
<environment: namespace:base>

> with(cairo,plot(time,temp,type="l"))
> # Outputting: Figure 5.34.
(a) Describe, in your own words, the meaning and purpose of each of the R com-

mands in the preceding code segment.
(b) Suggest alternative R commands that could achieve the same results.
(c) Enter the R environment and run the code segment to obtain Figure 5.34.
(d) Following the command > ls("package:base"):

  (i) Is the function with() included in the package base?
(ii) How many files are included in this package?

10. More about gam (generalized additive models): The R function vis.gam() and 
visualization of gam objects.

The CRAN package mgcv (gcv = generalized cross validation) contains 
functions for generalized additive modeling and generalized additive mixed 
 modeling. The term GAM is taken to include any GLM estimated by  quadratically 
penalized (possibly quasi-) likelihood maximization. A Bayesian approach to 
confidence/ credible interval calculation is provided. Linear functional (i.e., functions 
of functions) of smooths, penalization of parametric model terms, and linkage of 
 smoothing parameters are all supported.
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Consider the following R code segment:

> install.packages("mgcv")
> library(mgcv)
> help("mgcv-package")
> ls("package:mgcv")
> set.seed(0)
> n <- 200; sig2 <- 4
> x0 <- runif(n, 0, 1); x1 <- runif(n, 0, 1)
> x2 <- runif(n, 0, 1)
> y <- x0^2 + x1*x2 + runif(n,-0.3,0.3)
> g <- gam(y~s(x0,x1,x2))
> old.par <- par(mfrow=c(2,2))
> # display the prediction surface in x0, x1 ....

> vis.gam(g,ticktype="detailed",color="heat",theta=-35)
> vis.gam(g,se=2,theta=-35)
> # with twice standard error surfaces

> vis.gam(g, view=c("x1","x2"),cond=list(x0=0.75))
> # different view

> vis.gam(g, view=c("x1","x2"),cond=list(x0=.75), theta=210,
+ phi=40, too.far=.07)

> # Outputting: Figure 5.35.
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FIGURE 5.34 Generalized additive model gamair() for daily temperature data for Cairo, Egypt.
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>
> # ..... areas where there is no data are not plotted

>
> # contour examples....
> vis.gam(g, view=c("x1","x2"),plot.type="contour",color="heat")
> vis.gam(g, view=c("x1","x2"),plot.type="contour",
+ color="terrain")
> vis.gam(g, view=c("x1","x2"),plot.type="contour",color="topo")
> vis.gam(g, view=c("x1","x2"),plot.type="contour",color="cm")
> # Outputting: Figure 5.36.
>
> par(old.par)
> # Examples with factor and "by" variables:

> fac <- rep(1:4,20)
> x <- runif(80)
> y <- fac+2*x^2+rnorm(80)*0.1
> fac <- factor(fac)
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FIGURE 5.35 Contour plots of prediction and standard error surfaces using vis.gam().
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> b <- gam(y~fac+s(x))
> vis.gam(b,theta=-35,color="heat") # factor example

> # Outputting: Figure 5.37.
>
> z <- rnorm(80)*0.4
> y <- as.numeric(fac)+3*x^2*z+rnorm(80)*0.1
> b <- gam(y~fac+s(x,by=z))
> vis.gam(b,theta=-35,color="heat",cond=list(z=1))
> # “by” variable example

> # Outputting: Figure 5.38.
>
> vis.gam(b,view=c("z","x"),theta= 35)
> # plot against by variable

> # Outputting: Figure 5.39.
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FIGURE 5.36 Contour plots of contour surfaces using vis.gam().
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(a) Describe, in your own words, the meaning and purpose of each of the R com-
mands in the preceding code segment.

(b) Suggest alternative R commands that could achieve the same results.
(c) Enter the R environment and run the code segment to obtain Figure 5.39.
(d) Following the command > ls("package:mgcv"): How many files are listed 

under the package mgcv?
(e) mgcv is a useful piece of software. Following the command > mgcv: Inspect 

the code for this function.
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FIGURE 5.37 Contour plots of surfaces using vis.gam() with factor.
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 Case–Control Studies 
and Cohort Studies in 
Epidemiology

 INTRODUCTION

A case–control study is a class of epidemiologic observational study. An observa-
tional study is one in which the case subjects are not randomized to the exposed or 
unexposed groups, but rather are observed in order to determine both their expo-
sure and their outcome status. The exposure status is thus not determined by the 
researcher.

The case–control study may be considered an observational epidemiologic 
study of people with the disease of interest—the case group—together with a suit-
able control group of persons without the disease (the comparison group or reference 
group). The investigation seeks the potential relationship of a suspected risk factor 
(or an attribute of the disease) by comparing the diseased and nondiseased subjects 
with regard to how frequently the risk factor is present in each of the two groups. 
A case–control study is frequently contrasted with cohort studies, wherein exposed 
and unexposed subjects are observed until they develop an outcome of interest.

A cohort is a group of people who share a common characteristic within a 
defi ned period (e.g., the members of the cohort underwent a certain medical pro-
cedure, were exposed to a drug, or were born in a certain period). For example, the 
group of people who were born in a particular period form a birth cohort: the Baby 
Boomers (those who were born after 1946 and before 1964) are one such group. 
The comparison group may be another cohort of subjects who have had little or no 
exposure to the substance under investigation, or may be the general population 
from which the cohort is drawn (but otherwise similar), and so on. Moreover, sub-
groups within the cohort may be compared with each other.

A cohort study is a form of longitudinal study (itself a type of observational 
study) used in epidemiologic investigations1. It is an analysis of risk factors under-
taken by following a group of case subjects who do not have the disease and uses 
correlations to determine the absolute risk of a subject contracting the disease of 
interest. It is one of several types of clinical study designs and should be compared 
with a cross-sectional study. Cohort studies are generally concerned with the life 
histories of segments of populations, as well as the individual people who consti-
tute these segments.

1 Cohort studies in epidemiology: http://en.wikipedia.org/wiki/Cohort_study

SIX
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Randomized controlled trials (RCTs) are considered a superior methodology 
in the hierarchy of evidence in therapy because they restrict the potential for any 
biases by randomly assigning one case-subject pool to an intervention and another 
subject pool to nonintervention (or a placebo). This minimizes the chance that the 
incidence of confounding variables will differ between the two groups. Cohort stud-
ies can be conducted either prospectively or retrospectively. A more detailed exam-
ination of RCTs is presented in Chapter 7.

 6.1 THEORY AND ANALYSIS OF CASE–CONTROL STUDIES

Research and investigations in epidemiology and the health sciences make wide 
use of case–control studies. Such studies can identify factors that may contribute to 
a medical condition by comparing case subjects who have that disease/condition 
(the cases) with subjects who do not have the disease/condition but are otherwise 
similar (the controls).2

A practical advantage of the case–control study is that it is relatively inexpen-
sive. Also, this type of study can be (and frequently is) undertaken by individual 
researchers, small teams, or single facilities.

Use of the case–control study has led to a considerable number of scientifi c 
advances and signifi cant discoveries. In the annals of epidemiology, an outstanding 
success of this type of study was the demonstration of the relationship between the 
occurrence of lung cancer and the use of tobacco products by Richard Doll et al., who 
demonstrated a statistically signifi cant association between the two in a large case–
control study (Doll, Petro, Boreham, & Sutherland, 2004). Though opponents correctly 
point out that this type of study cannot by itself prove causation, the eventual results of 
cohort studies confi rmed the causal link that the case–control studies had suggested: 
tobacco smoking is a cause of about 87% of all lung cancer mortality in the United States.

 Advantages and Limitations of Case–Control Studies

Case–control studies tend to be less costly to carry out than prospective cohort stud-
ies, and they have the potential to be shorter in duration. Another advantage is the 
greater statistical power of this type of study in several situations; cohort studies 
often require a suffi cient number of disease events to accrue before they can provide 
much information.

However, case–control studies are observational in nature and thus do not pro-
vide the same level of evidence as RCTs. The results may be confounded by various 
factors to the extent that they give answers that are the opposite of those of better 
studies. It may also be more diffi cult to establish the timeline of exposure to disease 
outcome in the setting of a case–control study than within a prospective cohort 
study design. In the latter, the exposure is ascertained before the case subjects are 
followed over time to ascertain their outcome status.

2 Case–control studies in epidemiology: http://en.wikipedia.org/wiki/Case-control_study

http://en.wikipedia.org/wiki/Case-control_study
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The most important drawback to case–control studies relates to the diffi culty 
of obtaining reliable information about an individual’s exposure status over time. 
Case–control studies are therefore placed low in the hierarchy of evidence. Never-
theless, many high-quality and reliable case–control studies have been carried out 
and have produced useful results.

 Analysis of Case–Control Studies

Case–control studies were initially analyzed by testing whether there were signifi -
cant differences between the proportion of exposed subjects among cases and con-
trols. If the disease outcome of interest is rare, the odds ratio of exposure may be 
used to estimate the relative risk. Moreover, the odds ratio of exposure can be used 
to estimate the incidence rate ratio of exposure directly, without the need for the 
rare disease assumption.

The following is an example of a case–control study where R computations were 
used to analyze the datasets.

 ■ Example 6.1: A case–control study on the effi cacy of BCG vaccination against 
tuberculosis (TB)

The Bacillus Calmette-Guerin (BCG) vaccine is widely used against tuberculosis (TB). 
Developed in the 1930s, it is made of a live, weakened strain of Mycobacterium bovis.

Colditz et al. (1994) reported data from 13 clinical trials of the BCG vaccine, each 
investigating its effi cacy in the treatment of TB. The number of case subjects suffering 
from TB with or without BCG vaccination was recorded. The dataset also contains 
the values of two other variables for each study: the geographic latitude of the place 
where the study was undertaken and the year of publication. These two variables may 
be used to investigate any heterogeneity among the studies.

Source of Dataset:
 Colditz, G. A., Brewer, T. F., Berkey, C. S., Wilson, M. E., Burdick, E., Fineberg, H. 
V., & Mosteller, F. (1994). Effi cacy of BCG vaccine in the prevention of tuberculosis: 
Meta-analysis of the published literature. Journal of the American Medical Association, 
271(2), 698–702.

The following R code segment may be used to compute a case–control study 
based on the available dataset:

> install.packages("HSAUR")
> # Taken from A Handbook of Statistical Analyses Using R (Everitt & Hothorn, 2006)
> library(HSAUR)
Loading required package: lattice
Loading required package: MASS
Loading required package: scatterplot3d
Warning messages:
1: package 'HSAUR' was built under R version 2.13.2
2: package 'scatterplot3d' was built under R version 2.13.2
> ls("package:HSAUR") # Noting the dataset BCG in the package HSAUR



326 6. CASE–CONTROL STUDIES AND COHORT STUDIES IN EPIDEMIOLOGY

  [1] "agefat" "aspirin" "BCG" "birthdeathrates"
  [5] "bladdercancer" "BtheB" "clouds" "CYGOB1"
  [9] "epilepsy" "Forbes2000" "foster" "gardenflowers"
[13] "GHQ" "heptathlon" "HSAURtable" "Lanza"
[17] "mastectomy" "meteo" "orallesions" "phosphate"
[21] "pistonrings" "planets" "plasma" "polyps"
[25] "polyps3" "pottery" "rearrests" "respiratory"
[29] "roomwidth" "schizophrenia" "schizophrenia2" "schooldays"
[33] "skulls" "smoking" "students" "suicides"
[37] "toothpaste" "voting" "water" "watervoles"
[41] "waves" "weightgain" "womensrole"
> data(BCG)
# Dataset Format -
# A data frame with 13 observations on the following 7 variables:
# Study An identifi er of the study.
# BCGTB The number of subjects suffering from TB after a BCG vaccination.
# BCGVacc The number of subjects who were vaccinated with BCG.
# NoVaccTB  The number of subjects suffering from TB who did not receive 

BCG vaccination.
# NoVacc The total number of subjects without BCG vaccination.
# Latitude Geographic position of the place the study was undertaken.
# Year The year the study was undertaken. 
> BCG # Inspecting the dataset

Study BCGTB BCGVacc NoVaccTB NoVacc Latitude Year
1 1 4 123 11 139 44 1948
2 2 6 306 29 303 55 1949
3 3 3 231 11 220 42 1960
4 4 62 13598 248 12867 52 1977
5 5 33 5069 47 5808 13 1973
6 6 180 1541 372 1451 44 1953
7 7 8 2545 10 629 19 1973
8 8 505 88391 499 88391 13 1980
9 9 29 7499 45 7277 27 1968

10 10 17 1716 65 1665 42 1961
11 11 186 50634 141 27338 18 1974
12 12 5 2498 3 2341 33 1969
13 13 27 16913 29 17854 33 1976

> attach(BCG)
> boxplot(BCG$BCGTB/BCG$BCGVacc, # Two boxplots on BCG
+ BCG$NoVaccTB/BCG$NoVacc,
+ names = c("BCG Vaccination", "No BCG Vaccination"),
+ ylab = "Percent BCG cases")
> # Outputting: Figure 6.1.
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FIGURE 6.1 Boxplots for case–control study on the effi cacy of BCG vaccination in preventing TB.

Biostatistical Decision and Conclusion: A comparison of the two boxplots in 
Figure 6.1 clearly shows that the percentages of TB cases for the group with no 
BCG vaccination are several times higher than for the group with BCG vaccination. 
Hence, a reasonable preliminary conclusion is that populations receiving BCG vac-
cination will be less likely to contract TB.

Remarks:

1. In the data frame BCG, the data information has been categorized in terms of 
seven variables: “Study”, “BCGTB”, “BCGVacc”, “NoVaccTB”, “NoVacc”, 
“Latitude”, and “Year”.

2. This dataset lends itself to ready analysis using the function boxplot(), distin-
guishing the groups with BCG vaccination from the groups without the BCG 
vaccination:
> boxplot(BCG$BCGTB/BCG$BCGVacc,
+ BCG$NoVaccTB/BCG$NoVacc, …

The use of this function immediately provided the graphical representation 
of the dataset in Figure 6.1.

3. Thus, in the analysis of data from case–control studies, the preparation of the 
data frame is important to the direct analysis of the dataset.

4. Further boxplot()-type analyses may be undertaken with such datasets.

 Review Questions for Section 6.1

1. (a) What is a case–control study?
(b) Give an example of a case–control study in epidemiology or the health 

 sciences.
2. What are the main limitations of a case–control study? Explain and give examples.
3. (a)  Can a case–control study and a cohort study be undertaken simultaneously in 

epidemiology? If so, how? What are the advantages of this approach?
(b) Provide an example of this approach.
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 Exercises for Section 6.1

1. In Example 6.1, what are the functions of the following R code segment used in 
analyzing the dataset BCG?
> boxplot(BCG$BCGTB/BCG$BCGVacc, # Two boxplots on BCG
+ BCG$NoVaccTB/BCG$NoVacc,
+ names = c("BCG Vaccination", "No BCG Vaccination"),
+ ylab = "Percent BCG cases")

2. The function boxplot() was used in the sample analysis. What are some other R 
functions that could produce similar results?

3. If the two boxplots in Figure 6.1 were to be plotted separately, what R code seg-
ments would you use? Demonstrate the results.

4. In the CRAN package coxphf (Cox regression with Firth’s penalized likelihood), 
the data file breast contains the breast cancer dataset used by Heinze and 
Schemper (2001). This dataset contains information on 100 breast cancer patients, 
including survival time, survival status, tumor stage, nodal status, grading, and 
cathepsin-D tumor expression.

Describe what the following R code segment achieves for this dataset:
> data(breast)
> fit.breast <-
+ coxphf(data=breast,Surv(TIME,CENS)~T+N+G+CD)
> summary(fit.breast)

5. Execute the R code segment in Exercise 3. Comment on the results.
6. In the CRAN package survival, the data file bladder contains a clinical dataset 

with information on 340 case subjects.
(a) Download this dataset.
(b) Describe what the following R code segment achieves for this dataset:
# Fit a stratifi ed model, clustered on patients
> bladder1 <- bladder[bladder$enum < 5, ]
> coxph(Surv(stop, event) ~ (rx + size + number) *
+ strata(enum) + cluster(id), bladder1)

7. Execute the R code segment in Exercise 5. Comment on the results.

 6.2 THEORY AND ANALYSIS OF COHORT STUDIES

A cohort is a group of case subjects who share a common experience or characteris-
tic (e.g., are exposed to a drug or vaccine or pollutant, or undergo a certain medical 
procedure, or are born) within a defi ned period. A group of people who were born 
on a given day, or in a particular period, form a birth cohort. The comparison group 
may be the general population from which the cohort is drawn, or it may be another 
cohort of persons thought to have had little or no exposure to the substance under 
investigation, but otherwise similar. Alternatively, subgroups within the cohort 
may be compared with each other.

Cohort study data can help determine risk factors for contracting new diseases 
because such a study is a longitudinal observation of the individual through time, 
in which data are collected at regular intervals, thus reducing recall error. A cohort 
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study may provide evidence refuting the existence of a suspected association 
between cause and effect. In contrast, failure to refute a hypothesis strengthens con-
fi dence in that hypothesis. Prospective longitudinal cohort studies between disease 
and exposure thus help in the study of causal associations, though distinguishing 
true causality usually requires further corroboration from other sources.

Importantly, the defi ned cohort cannot be a group of people who already have the dis-
ease. The cohort must be identifi ed before the appearance of the disease under inves-
tigation. The investigation follows, for a period of time, a group of case subjects 
who do not have the disease and notes who develops the disease.

Generally, cohort studies are expensive to conduct, are sensitive to attrition, and 
require extensive follow-up to generate useful data. However, the quality of the 
results from long-term cohort studies are substantially superior to those obtained 
from retrospective or cross-sectional studies. Prospective cohort studies yield the most 
reliable results in observational epidemiology. They enable a wide range of exposure–
disease associations to be studied.

For example, some cohort studies track groups of children from birth, and record 
a wide range of information about them. The value of a cohort study often depends 
on the researchers’ capacity to stay in touch with all members of the cohort; some 
studies have continued for decades.

 An Important Application of Cohort Studies

An example of an epidemiologic question that can be answered by the use of a 
cohort study is: Does exposure to X (say, smoking) associate with outcome Y (say, 
lung cancer)?

Such a study would recruit a group of smokers and a group of nonsmokers (the 
unexposed group), follow them for a set period of time, and note differences in the 
incidence of lung cancer between the groups at the end of this time. The groups are 
matched in terms of many other variables, such as economic status and other health 
status, so that the variable being assessed, the independent variable (in this case, 
smoking) may be isolated as the cause of the dependent variable (in this case, lung 
cancer). In this example, a statistically signifi cant increase in the incidence of lung 
cancer in the smoking group as compared to the nonsmoking group is evidence in 
favor of the hypothesis. However, rare outcomes, such as lung cancer, are generally 
not studied by using cohorts; instead, case–control studies are used.

 Clinical Trials

A great deal of medical research undertakes shorter-term clinical trial studies. Such 
studies typically follow two groups of patients for a period of time and compare an 
endpoint or outcome measure between the two groups.

 Randomized Controlled Trials

An RCT is a superior methodology in the hierarchy of evidence because it limits the 
potential for bias by randomly assigning one case-subject pool to an  intervention 
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and another case-subject pool to a placebo, thus minimizing the chance that the 
incidence of confounding variables will differ between the two groups. However, 
it is sometimes not ethical or practical to perform an RCT to resolve a clinical ques-
tion. For example, if one already has reasonable evidence that smoking causes lung 
cancer, persuading a group of nonsmokers to take up smoking in order to test this 
hypothesis would generally be considered unethical.

 Cohort Studies for Diseases of Choice and Noncommunicable Diseases 
(Handysides & Landless, 2012)

In 2011, the United Nations Secretary General, addressing the global crises caused 
by the rapid growth of noncommunicable diseases (NCDs)—which are mostly pre-
ventable diseases—stated: “Our collaboration is more than a public health necessity. 
NCDs are a threat to development. NCDs hit the poor and vulnerable particularly 
hard, and drive them deeper into poverty” (Handysides & Landless, 2012). The out-
look has been grim owing to the rapidly increasing incidence of NCDs worldwide, 
with poorer and emerging countries facing the greatest challenges.

Globally, although continuing efforts are being directed toward communicable 
and infectious diseases (such as malaria, TB, gastroenteritis, AIDS, HIV, etc.), the 
NCDs are increasing rapidly. They are both a major cause of preventable deaths and 
major contributors to loss of productivity and poverty. NCDs include:

 ■ Heart diseases
 ■ Stroke
 ■ Cancer
 ■ Chronic respiratory diseases
 ■ Diabetes

These affect all communities and people. Their main risk factors are similar world-
wide and are well known, including the use and effects of:

 ■ Tobacco, in all its forms (including secondhand smoke)
 ■ Alcohol, in all its forms
 ■ Excessive salt and sugar in the diet
 ■ Foods high in trans and saturated fats
 ■ Obesity
 ■ Physical inactivity

From the viewpoint of biostatistics, it is clear that the establishment of the cause-
and-effect relationship between these risk factors and NCDs may be approached 
using cohort studies. Such a study would compare any cohorts who engaged in 
lifestyles that include one or more of the main risk factors previously listed, and 
compare their respective incidences of NCDs.

SOME WELL-KNOWN COHORT STUDIES

Two cohort studies that have been going on for more than 50 years are the Fram-
ingham Heart Study and the National Child Development Study (reported in 
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the International Journal of Epidemiology). The latter study compares two cohorts: 
the “Millennium Cohort Study” (United States) and the “King’s Cohort” (United 
 Kingdom).

The largest cohort study in women is the Nurses’ Health Study. Started in 1976, 
it is tracking more than 120,000 nurses and has been analyzed for many different 
conditions and outcomes.

The largest cohort study in Africa is the Birth to Twenty study, which began in 
1990 and tracks a cohort of more than 3,000 children born in the weeks following 
Nelson Mandela’s release from prison.

The Adventist Health Studies (AHS-1 and AHS-2) have enrolled between 30,000 
and 100,000 case subjects.

In all these investigations, exposed and unexposed subjects are observed until 
they develop an outcome of interest. An insightful analytical approach is to use the 
tools of survival analysis (e.g., the Kaplan–Meier [K–M] procedure, the Cox regres-
sion model, or proportional hazards plots), all of which may be executed in the R 
environment (see Chapter 5). The following are some typical examples.

 ■ Example 6.2: Cohort studies using the Cox regression model and the K–M proce-
dure to analyze a secondhand tobacco smoke dataset

Tammemagi, Neslind-Dudas, Simoff, and Kvale (2004) reported on the role of comor-
bidity and treatment for smoking and lung cancer survival of 1,155 case subjects. The 
sample consisted of 470 women (41%), 685 men (59%), 462 Blacks (40%), and 693 
Whites (60%). The objective was to determine whether smoking independently predicts 
survival in patients with lung cancer or whether an existent effect is mediated through 
comorbidity and/or treatment.

Study Approach:

Cox proportional hazards analysis was used to study the cohort of 1,155 patients with lung 
cancer diagnosed at the Henry Ford Health System between 1995 and 1998, inclusive.

Results:

 ■ Adjusted for the baseline covariates of age, gender, illicit drug use, adverse symp-
toms, histology, and stage, the hazard ratio (HR) for smoking (current vs. former/
never) was 1.37 (95% CIs [1.18, 1.59]; p < .001).

 ■ Adjusted for the baseline covariates and for 18 deleterious comorbidities, the HR 
for smoking was 1.38 (95% CIs [1.18, 1.60]; p < .001), indicating that the hazard-
ous effect of smoking was not mediated by comorbidity. Current smoking was 
inversely associated with treatment (any surgery and/or chemotherapy and/or 
radiation therapy vs. none; odds ratio, 0.73; 95% CIs [0.55, 0.98]; p = .03).

 ■ Adjusted for baseline covariates, comorbidities, and treatment, the HR for current 
smoker versus former/never was 1.26 (95% CIs [1.08, 1.47]; p = .003), a decline 
of 30.7% that was explained by treatment (HR for any treatment vs. none: 0.40; 
95% CIs [0.33, 0.48]; p < .001).

The median survival for current smokers was 0.76 years (95% CIs [0.67, 0.89]), and 
for former/never smokers was 1.01 years (95% CIs [0.89, 1.15]). See Figure 6.2.
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FIGURE 6.2 K–M survival plot for 1,155 case subjects with lung cancer, stratifi ed by smoking 
status.

Conclusions:

Current smoking at diagnosis is an important independent predictor of shortened lung 
cancer survival. The fact that this effect was not explained by sociodemographic and 
exposure factors, adverse symptoms, histology, stage, comorbidity, and treatment 
suggests that it may be mediated through direct biological effects.

 ■ Example 6.3: Cohort study using Cox proportional regression model

In the CRAN package coxrobust, the function coxr() is available for effi ciently and 
robustly fi tting the Cox proportional hazards regression model in its basic form, where 
explanatory variables are time independent with one event per subject. The method is 
based on a smooth modifi cation of the partial likelihood.

The approach is to maximize an objective function that is a smooth modifi cation of 
the partial likelihood. Observations with excessive values of

L(T)exp(b′Z)

where:
L = the cumulated hazard,
b = vector of parameters and b′ = transpose of b
Z = some explanatory variables, and
T = possibly censored survival time,
are down-weighted. Both L and b are iteratively robustly estimated.

Numerical results are supported by the function plot(), a graphical tool, which in a 
series of fi ve graphs compares how well data are correlated by the estimated propor-
tional hazards model with nonrobust (in black) and robust methods (in green):
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 ■ The fi rst graph shows the standardized difference of two estimated survival func-
tions, one using the Cox model and the other using the K–M estimator.

 ■ The other four graphs show the same differences for four strata, defi ned by the 
quartiles of the estimated linear predictor.

Comparison of estimation results, along with analysis of the graphs, may yield very 
detailed information about the model fi t.

Usage:

coxr(formula, data, subset, na.action, trunc = 0.95, 
 f.weight = c("linear",  "quadratic", "exponential"), 
 singular.ok = TRUE, model = FALSE)

Arguments:

formula  A formula object, with the response on the left of a ~ operator and the 
terms on the right. The response must be a survival object as returned by 
the function Surv().

data  A data frame for interpreting the variables named in the formula, or in the 
subset.

subset  Expression saying that only a subset of the rows of the data should be 
used in the fi t.

na.action  A missing-data fi lter function, applied to the model.frame after any sub-
set argument has been used.

trunc  Roughly, a quantile of the sample T
i
exp( b′Z

i
); determines the trimming 

level for the robust estimator.
f.weight Type of weighting function; default is “quadratic”.
singular.ok  logical value indicating how to handle collinearity in the model matrix. If 

TRUE, the program will automatically skip over columns of the X matrix 
that are linear combinations of earlier columns. In this case, the coeffi -
cients for such columns will be NA, and the variance matrix will contain 
zeros. For ancillary calculations, such as the linear predictor, the missing 
coeffi cients are treated as zeros.

model  A logical value indicating whether the model frame should be included as 
a component of the returned value.

The following R code segment may be used to compute a cohort study based on 
two available datasets:

1. lung—the lung cancer data at Mayo Clinic
2. veteran—the Veteran’s Administration lung cancer data

> # Using lung, the lung cancer data at Mayo Clinic
> install.packages("coxrobust")
> library(coxrobust)
Loading required package: survival
Loading required package: splines
> ls("package:coxrobust")
[1] "coxr"  "gen_data"  "plot.coxr"  "print.coxr"
> data(lung)
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> attach(lung)
> lung

inst time status age Sex ph.ecog ph.karno p a t .
karno

meal.
cal

wt.loss

1 3 306 2 74 1 1 90 100 1175 NA
2 3 455 2 68 1 0 90 90 1225 15
3 3 1010 1 56 1 0 90 90 NA 15
4 5 210 2 57 1 1 90 60 1150 11
5 1 883 2 60 1 0 100 90 NA 0

224 1 188 1 77 1 1 80 60 NA 3
225 13 191 1 39 1 0 90 90 2350 -5
226 32 105 1 75 2 2 60 70 1025 5
227 6 174 1 66 1 1 90 100 1075 1
228 22 177 1 58 2 1 80 90 1060 0

> #use the lung cancer data at Mayo Clinic to
> #compare results of nonrobust and robust estimation
> result <- coxr(Surv(time, status) ~ age + sex + ph.karno +
+ meal.cal + wt.loss, data = lung)
> result # Outputting:
Call: 
coxr(formula = Surv(time, status) ~ age + sex + ph.karno + 
 meal.cal + wt.loss, data = lung)

Partial likelihood estimator
         coef exp(coef) se(coef) p

age 1.25e-02 1.013 0.011686 0.2844
sex −4.73e-01 0.623 0.197557 0.0166
ph.karno −9.64e-03 0.990 0.0071260 1764
meal.cal −8.96e-05 1.000 0.000245 0.7146
wt.loss −2.82e-03 0.997 0.006989 0.6868

Wald test=11.6 on 5 df, p=0.0408

Robust estimator
         coef exp(coef) se(coef) p

age 0.004927 1.005 0.013755 0.720210
sex −0.839739 0.432 0.261861 0.001342
ph.karno −0.033673 0.967 0.009986 0.000746
meal.cal −0.000397 1.000 0.000336 0.236812
wt.loss −0.008365 0.992 0.009398 0.373400
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Extended Wald test=23.3 on 5 df, p=0.000292
> plot(result)
Waiting to confirm page change... # Outputting Figure 6.3.
>
> # Outputting: Figure 6.4.
>
# Using veteran—the Veteran’s Administration lung cancer data
> data(veteran)
> attach(veteran)
The following object(s) are masked from 'lung': age, status, time
> veteran

trt celltype time status karno diagtime age prior
1 1 squamous 72 1 60 7 69 0
2 1 squamous 411 1 70 5 64 10
3 1 squamous 228 1 60 3 38 0
4 1 squamous 126 1 60 9 63 10
5 1 squamous 118 1 70 11 65 10
133 2 large 133 1 75 1 65 0
134 2 large 111 1 60 5 64 0
135 2 large 231 1 70 18 67 10
136 2 large 378 1 80 4 65 0
137 2 large 49 1 30 3 37 0

> # Use the Veteran’s Administration Lung Cancer Data
> # to compare results of nonrobust and robust estimation
> result <- coxr(Surv(time,status) ~ age + trt + celltype + karno
+ diagtime + prior, data = veteran)
> result
Call: coxr(formula = Surv(time, status) ~ age + trt + celltype + karno 

 + diagtime + prior, data = veteran)
Partial likelihood estimator

coef exp(coef) se(coef) p
age −0.008739 0.991 0.00931 3.48e-01
trt 0.289208 1.335 0.20757 1.64e-01
celltypesmallcell 0.855501 2.353 0.27517 1.88e-03
celltypeadeno 1.188162 3.281 0.30092 7.87e-05
celltypelarge 0.392164 1.480 0.28260 1.65e-01
karno −0.032808 0.968 0.00551 2.64e-09
diagtime 0.000191 1.000 0.00913 9.83e-01
prior 0.007261 1.007 0.02323 7.55e-01

Wald test=62.2 on 8 df, p=1.71e-10
Robust estimator
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coef exp(coef) se(coef) p
Age −0.01184 0.988 0.01336 3.75e-01
Trt 0.20132 1.223 0.24286 4.07e-01
Celltypesmallcell 1.14056 3.129 0.43445 8.66e-03
Celltypeadeno 1.22137 3.392 0.49300 1.32e-02
Celltypelarge 0.20405 1.226 0.46553 6.61e-01
Karno −0.04230 0.959 0.00687 7.26e-10
Diagtime −0.00489 0.995 0.00981 6.18e-01
Prior 0.01335 1.013 0.03447 6.98e-01

Extended Wald test=62 on 8 df, p=1.9e-10
> plot(result)
Waiting to confirm page change. # Outputting Figure 6.5.
> # Outputting: Figure 6.6.
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FIGURE 6.3 Cohort study using lung (the lung cancer data at Mayo Clinic). Standardized difference 
of two estimated survival functions, one via the Cox model and the other via the K–M estimator: 
nonrobust (black) and robust (green).

 Cohort Studies and the Lexis Diagram3 in the 
Biostatistics of Demography

Demographic biostatistics dealing with the study of human populations often 
make use of a Lexis diagram (named after economist Wilhelm Lexis). This two- 
dimensional diagram represents events (such as deaths or births) that happen to 

3 Lexis diagram: http://en.wikipedia.org/wiki/Lexis_diagram

http://en.wikipedia.org/wiki/Lexis_diagram
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 individuals belonging to different cohorts. Calendar time is usually represented on 
the horizontal axis, and age is represented on the vertical axis. For example, the 
death of an individual in 1988 at age 83 is represented by the point (1988, 83); the 
cohort of all persons born in 1937 is represented by a diagonal line starting at (1937, 
0) and continuing through (1938, 1), (1939, 2), (1940, 3), …, (2000, 63), …, (2012, 75), 
…, (2037, 100), and so on.

An example of a typical Lexis diagram is shown in Figure 6.7.

 Review Questions for Section 6.2

1. (a) In epidemiologic investigations, what is a cohort? Give an example.
(b) What are cohort studies, as used in research and investigations in epidemiolo-

gy and health sciences? Give an example of a typical cohort study.
2. (a)  “The cohort cannot be defined as a group of people who already have the 

disease.” Explain.
(b) “A cohort study may be a time-consuming task and may be very expensive to 

conduct.” Explain.
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3. (a)  “Cohort studies are suitable for investigations in diseases of choice and non-
communicable diseases.” Explain.

(b) Name five diseases that are suitable for investigation by cohort studies.
4. (a)  Name five well-known examples of cohort studies, each involving thousands of 

case subjects.
(b) Name two approaches in survival analysis that are suitable for cohort studies.

5. (a) What is a Lexis diagram?
(b) “A Lexis diagram may be suitable for analysis in cohort studies.” Explain.

 Exercises for Section 6.2

1. In Example 6.3, what are the functions of the following R code segment used in 
analyzing the dataset lung?
> result <- coxr(Surv(time, status) ~ age + sex + ph.karno +
+ meal.cal + wt.loss, data = lung)

2. In place of the function coxr() used in the analysis, what are some other R func-
tions that may produce similar results?

3. In Example 6.3, what are the functions of the following R code segment used in 
analyzing the dataset veteran?
> result <- coxr(Surv(time,status) ~ age + trt + celltype + karno
+ diagtime + prior, data = veteran)
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FIGURE 6.7 A typical Lexis diagram for demographic biostatistics.
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4. In place of the function coxr() used in the analysis from Question 3, what are 
some other R functions that may produce similar results?

5. In the CRAN package survival, the function survfit() computes the predicted sur-
vival function for a Cox proportional hazards model. Its general usage form is
> survfit(formula, newdata,
+ se.fit=TRUE, conf.int=.95,
+ individual=FALSE,
+ type,vartype,
+ conf.type=c("log","log-log","plain","none"),
+ censor=TRUE, id, ...)

What is the meaning of each of the arguments in the function survfit()? (HINT: 
Go to the CRAN website and locate the survfit.coxph{survival} page for the defini-
tions of the arguments of this function.)

6. Within the CRAN package survival, the following R code segment fits a K–M model 
for the dataset aml, and then plots the K–M curve:
> fit <- survfit(Surv(time, status) ~ x, data = aml)
> plot(fit, lty = 2:3)
> legend(100, .8, c("Maintained", "Nonmaintained"), lty = 2:3)
(a) What are the functions of this R code segment used in analyzing the dataset 

aml?
(b) Run the preceding code segment in an R environment.
(c) Describe the results.

7. Within the CRAN package survival, the following R code segment fits a Cox pro-
portional hazards model for the dataset ovarian (for a 60-year-old case subject), 
and then plots the model curve:
> fit <- coxph(Surv(futime, fustat) ~ age, data = ovarian)
> plot(survfit(fit, newdata=data.frame(age=60)),
+ xscale=365.25, xlab = "Years", ylab="Survival")
(a) What are the functions of this R code segment used in analyzing the dataset 

ovarian?
(b) Run the preceding code segment in an R environment.
(c) Describe the results.

8. Within the CRAN package survival, the following R code segment fits a K–M model 
(for time to progression/death for patients with monoclonal gammopathy), for the 
dataset mgus1, and then plots the model competing risk curves for cumulative 
incidence:
> fit1 <- survfit(Surv(stop, event=='progression') ~1,
+ data=mgus1, subset=(start==0))
> fit2 <- survfit(Surv(stop, status) ~1, data=mgus1,
+ subset=(start==0), etype=event)
> # Competing Risks:
> # CI curves are plotted from 0 upward, rather than
> # from 1 downward
> plot(fit2, fun='event', xscale=365.25, xmax=7300,
+ mark.time=FALSE,
+ col=2:3, xlab="Years post diagnosis of MGUS")
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> lines(fit1, fun='event', xscale=365.25, xmax=7300,
+ mark.time=FALSE, conf.int=FALSE)
> text(10, .4, "Competing Risk: death", col=3)
> text(16, .15,"Competing Risk: progression", col=2)
> text(15, .30,"KM:prog")
(a) What are the functions of this R code segment used in analyzing the dataset 

mgus1?
(b) Run the preceding code segment in an R environment.
(c) Describe the results.

9. The CRAN package survrec.
A migrating myoelectric complex [or migrating motor complex (MMC)] is a 

wave of bioelectric activity that sweeps through the intestines in a regular cycle 
during fasting. These complexes help trigger peristaltic waves, which facilitate 
movement of indigestible substances (fiber and foreign bodies) from the stomach, 
through the small intestine, past the ileocecal sphincter, and into the colon. The 
MMC originates in the stomach roughly every 80 minutes between meals and is 
responsible for the stomach rumbling experienced when hungry. The MMC lasts 
for approximately 15 minutes. It also serves to transport bacteria from the small 
intestine to the large intestine and to inhibit the migration of colonic bacteria into 
the terminal ileum. The MMC may be partially regulated by motilin; it is initiated in 
the stomach as a response to vagal stimulation and does not directly depend on 
extrinsic nerves.

In the CRAN package survrec, the function mlefrailty.fit() is a survival func-
tion estimator for correlated recurrence time data under a gamma frailty model 
using the maximum likelihood criterion. The resulting object of class survfitr may be 
plotted by the function plot.survfitr() before it is returned.

The usage form of this function mlefrailty.fit() is
mlefrailty.fit(x,tvals, lambda=NULL, alpha=NULL, alpha.min, alpha.max, 
tol=1e-07, maxiter=500,alpha.console=TRUE)

for which the arguments are:

x A survival recurrent event object.

tvals Vector of times where the survival function can be estimated.

lambda Optional vector of baseline hazard probabilities at t (see details 
in survrec package). Default is numdeaths/apply(AtRisk,2,-
sum).

alpha Optional parameter of shape and scale for the frailty distri-
bution. If this parameter is unknown, it is estimated via an 
 expectation-maximization (EM) algorithm. A seed is  calculated 
to obtain the convergence of this algorithm (see details in 
 survrec package).

alpha.min Optional left bound of the alpha parameter; used to obtain a 
seed to estimate the alpha parameter. Default value is 0.5.

alpha.max Optional right bound of the alpha parameter; used to obtain a 
seed to estimate the alpha parameter. Default value is the max-
imum of distinct times of events.
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tol Optional tolerance of the EM algorithm used to estimate the 
alpha parameter. Default is 10e − 7.

maxiter Optional maximum number of iterations of the EM algorithm 
used to estimate the alpha parameter. Default is 500.

alpha.console If TRUE prints in the console, the program estimates initial value 
for alpha and the alpha estimate via the EM algorithm; if FALSE, 
it does not.

Remarks:

1. A common choice of frailty distribution is a gamma distribution with shape and 
scale parameters set equal to an unknown parameter α. The common marginal 
survival function may be expressed as

 F(t) = [α/(α + Λ0(t))]
α (6.1)

The parameter α controls the degree of association between interoccur-
rence times within a unit. It may be shown that the estimation of α and α0 can 
be obtained via maximization of the marginal likelihood function and the EM 
 algorithm.

To obtain a good convergence, fi rst α is estimated. This estimation is used 
as an initial value in the EM procedure, and it is carried out by maximization of 
the profi le likelihood for α. In this case, the arguments of the function mlefrailty.
fit(), called alpha.min and alpha.max, are the boundaries of this maximization. 
The maximum is obtained using the golden section search method.

2. Value: If the convergence of the EM algorithm is not obtained, the initial value of 
α can be used as an alpha.min argument and recalculated.
n Number of units or subjects observed.
m Vector of number of recurrences in each subject (length n).
failed Vector of number of recurrences in each subject (length n*m). 

Vector ordered (e.g., times of fi rst unit, times of second unit, ..., 
times of n-unit).

censored Vector of times of censorship for each subject (length n).
numdistinct Number of distinct failure times.
distinct Vector of distinct failure times.
status 0 0 if the estimation can be provided; 1 if not, depending on 

whether alpha could be estimated.
alpha Parameter of gamma frailty model.
lambda Estimates of the hazard probabilities at distinct failure times.
survfunc Vector of survival estimated in distinct times.
tvals Copy of argument.
MLEAttvals Vector of survival estimated in tvals times.
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The following R code segment may be used to compute a cohort study based 
on the available dataset:

> install.packages(“survrec”)
> library(survrec)
Loading required package: boot
Attaching package: 'boot'
The following object(s) are masked from 'package:lattice': melanoma
The following object(s) are masked from 'package:survival': aml
> ls("package:survrec")
[1] "is.Survr" "mlefrailty.fit" "psh.fit" "q.search"
[5] "surv.search" "survdiffr" "survfitr" "Survr"
[9] "wc.fit"
> data(MMC)
> attach(MMC)
The following object(s) are masked from 'colon':
id, time
The following object(s) are masked from 'bladder (position 15)':
event, id
The following object(s) are masked from 'bladder (position 16)'’:
event, id
The following object(s) are masked from 'lung':
time
> MMC # Displaying data of 99 case subjects.

id time Event group
1 1 112 1 Males
2 1 145 1 Males
3 1 39 1 Males
97 19 66 1 Females
98 19 100 1 Females
99 19 4 0 Females

>
> fit <- mlefrailty.fit(Survr(MMC$id,MMC$time,MMC$event))
Needs to Determine a Seed Value for Alpha
Seed Alpha: 20.02853
Alpha estimate= 10.17623
> fit
> plot(fit)

(a) What are the functions of this R code segment used in analyzing the dataset 
MMC?

(b) Run the preceding code segment in an R environment.
(c) Describe the results.
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 Randomized Trials, Phase 
Development, Confounding 
in Survival Analysis, and 
Logistic Regressions

 7.1 RANDOMIZED TRIALS (STANLEY, 2007)1

A randomized trial (RT) or randomized controlled trial (RCT) is a specifi c type 
of scientifi c experiment, and it is the preferred design for a clinical trial in epide-
miology. RTs are used to test the effi cacy of various types of interventions within 
a case-subject population. They may also provide an opportunity to gather useful 
information about adverse effects, such as drug reactions.

The key distinguishing feature of the usual RT is that study case subjects, after
assessment of eligibility and recruitment, but before the intervention to be studied 
begins, are randomly allocated to receive one or the other of the alternative treat-
ments under the study. Random allocation in real trials is complex, but conceptu-
ally, the process is like tossing a coin. After randomization, the two groups of subjects 
are followed in exactly the same way; the only differences between the care they receive 
(e.g., in terms of procedures, tests, outpatient visits, follow-up calls, etc.) should be 
those intrinsic to the treatments being compared. The most important advantage of 
proper randomization is that it minimizes allocation bias in the assignment of treat-
ments, thereby balancing both known and unknown prognostic factors.

 Classifi cations of RTs by Study Design

One way to classify RTs is by study design, in which the four major categories are:

Parallel group—in which each participant is randomly assigned to a group and 
all the participants in the group receive (or do not receive) an intervention.

Crossover—in which, over time, each participant receives (or does not receive) an 
intervention in a random sequence.

Cluster—in which preexisting groups of participants (e.g., cities, social associa-
tions) are randomly selected to receive (or not receive) an intervention.

Factorial—in which each participant is randomly assigned to a group that receives 
(or does not receive) a particular combination of interventions. For example:

 ■ Group A receives Vitamin X and Vitamin Y.
 ■ Group B receives Vitamin X and Placebo Y.

1 Randomized controlled trial (RCT). Retrieved from http://en.wikipedia.org/wiki/Randomized
_controlled_trial.

SEVEN

http://en.wikipedia.org/wiki/Randomized_controlled_trial.
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 ■ Group C receives Placebo X and Vitamin Y.
 ■ Group D receives Placebo X and Placebo Y.

An analysis of the 616 RTs indexed in PubMed during December 2006 found that 
78% were parallel-group trials, 16% were crossover, 2% were split-body, 2% were 
cluster, and 2% were factorial.1

RTs may also be classifi ed by effi cacy (the effectiveness of the test) or by hypoth-
esis (superiority vs. noninferiority vs. equivalence, according to the corresponding 
statistical signifi cance).

 Randomization

The following are all advantages of proper randomization in an RT:

 ■ It eliminates bias in treatment assignment, specifi cally selection bias and con-
founding.

 ■ It facilitates blinding (masking) of the identity of treatments from investiga-
tors, participants, and assessors.

 ■ It permits the use of probability theory to express the likelihood that any dif-
ference in outcome between treatment groups merely indicates chance.

In randomizing case subjects, one may choose from two processes:

1. Choose a randomization procedure to generate an unpredictable sequence of allo-
cations; this may be a simple random assignment of patients to any of the groups 
at equal probabilities.

2. Choose allocation concealment, which refers to the stringent precautions taken to 
ensure that the group assignments of case subjects are not revealed before they 
are defi nitively allocated to their respective groups.

Nonrandom “systematic” methods of group assignment, such as alternating sub-
jects between one group and the other, can cause limitless contamination possibili-
ties and a breach of allocation concealment.

RANDOMIZATION PROCEDURES

An ideal randomization procedure achieves the following goals:

 ■ Equal group sizes. This ensures adequate statistical power, especially in 
 subgroup analyses.

 ■ Low selection bias. The procedure should not allow an investigator to predict the 
next subject’s group assignment by examining which group has been  assigned 
the fewest subjects up to that point.

 ■ Low probability of confounding. This implies a balance in covariates across 
groups.

No single randomization procedure can meet all these goals in every circumstance, 
so, for a given investigation, epidemiologists should choose a procedure based on 
its merits and the nature of the investigation.
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SIMPLE RANDOMIZATION

Simple randomization is a commonly used intuitive procedure, similar to repeated 
fair coin tossing; it is also known as complete or unrestricted randomization. It is 
robust against both selection and accidental biases. Its main drawback is the possi-
bility of imbalanced group sizes in small RTs. It is recommended only for RTs with 
more than 200 subjects.

RESTRICTED RANDOMIZATION

To balance group sizes in smaller RTs, some form of restricted randomization is 
 recommended. Some major types of restricted randomization used in RT are:

 ■ Permuted-block randomization, in which a block size and allocation ratio 
(number of subjects in one group versus the other group) are specifi ed, and 
subjects are allocated randomly within each block. For example, a block size 
of 16 and an allocation ratio of 3:1 would lead to random assignment of 12 
subjects to one group and 4 to the other. This type of randomization can be 
combined with stratifi ed randomization (e.g., by center in a multicenter trial) 
to ensure good balance of participant characteristics in each group. A special 
case of permuted-block randomization is random allocation, in which the entire 
sample is treated as one block. A disadvantage of permuted-block randomiza-
tion is that even if the block sizes are large and randomly varied, the procedure 
may still fall prey to selection bias. Another disadvantage is that proper analy-
sis of data from permuted-block RCTs requires stratifi cation by blocks.

 ■ Adaptive biased-coin randomization, in which the probability of being 
assigned to a group decreases if the group is overrepresented and increases if 
the group is underrepresented. The methods are thought to be less affected by 
selection bias than permuted-block randomization.

RANDOMIZED TRIALS WITH BLINDING

An RT may be blinded (or masked) by restricting the procedures used to those that 
prevent study case subjects, caregivers, outcome assessors, and all others partic-
ipating or involved in the study from knowing which intervention was received. 
However, unlike allocation concealment, blinding sometimes may be inappropriate 
or impossible to perform in an RT. For example, if an RT involves a treatment in 
which active participation of the case subject is necessary (e.g., physical therapy), 
participants cannot be blinded to the intervention.

Historically, blinded RT have been classifi ed as single-blind, double-blind, or 
triple-blind. Currently, it is preferred that these additional categories be avoided; 
since 2010, authors and editors reporting blinded RT have been directed to discuss 
it as follows: “If blinding is used, then the report should identify who [was] blinded 
after assignment to interventions (e.g., participants, care providers, those assess-
ing outcomes) and how the blinding was undertaken” (Blanchard, 2012; Moreira, 
Araujo, & Machado, 2012; Sigler & Stemhagen, 2011).

RCTs without blinding are referred to as unblinded or open. In 2008, a study con-
cluded that the results of unblinded RTs tended to be biased toward benefi cial effects 
only if the outcomes were subjective rather than objective. For example, in an RT of 
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treatments for multiple sclerosis, unblinded neurologists (but not the blinded neu-
rologists) felt that the treatments were benefi cial. In practice, although the partici-
pants and providers involved in an RT are often unblinded, it is desirable and often 
possible to blind the assessor or obtain an objective source to evaluate outcomes.

 Biostatistical Analysis of Data from RTs

The types of statistical methods used in RTs depend on the characteristics of the 
data.

 ■ For dichotomous (binary) outcome data, logistic regression and other meth-
ods may be used (e.g., to predict sustained virological responses after receipt 
of treatment for hepatitis C).

 ■ For continuous outcome data, analysis of covariance may be used to test the 
effects of predictor variables (e.g., for changes in blood lipid levels after receipt 
of treatment for acute coronary syndrome).

 ■ For time-to-event outcome data that may be censored, survival analysis is 
appropriate (e.g., Kaplan–Meier [K–M] estimators and Cox proportional haz-
ards models for time to coronary heart disease [CHD] after receipt of hormone 
replacement therapy in menopause).

 Biostatistics for RTs in the R Environment

At the CRAN website, support for randomized clinical trials is available in terms 
of project design, monitoring, and analysis. To access these sources from the R envi-
ronment:

Select the Help/CRAN home page
Select the “Search/An R site search” option, and enter “Randomized Clinical 

 Trials”

This selection calls up many available sources, including the following.

(1) CRAN Task View: Clinical Trial Design, Monitoring, and Analysis (score: 3)
Author: Unknown
Date: Wed, 25 Apr 2012 02:57:32
CRAN Task View: Clinical Trial Design, Monitoring, and Analysis CRAN 

packages
Related links: ClinicalTrials task view information maintainer: Ed Zhang
Contact: Ed.Zhang.jr@gmail.com
Version: 201

From http://fi nzi.psych.upenn.edu/views/ClinicalTrials.html (23,531 bytes), 
one may select the appropriate methodologic supports for the biostatistics of RTs, 
including project design, monitoring, and analysis. CRAN packages are available in 
the following areas of RT:

 ■ Design and monitoring
 ■ Design and analysis

mailto:Ed.Zhang.jr@gmail.com
http://finzi.psych.upenn.edu/views/ClinicalTrials.html
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 ■ Analysis for specifi c designs
 ■ Analysis in general
 ■ Meta-analysis

The following examples are typical.

 ■ Example 7.1: RTs’ project design using package samplesize: Determination of 
sample size

The CRAN package samplesize computes the sample size for the Student’s t-test, with 
equal and nonequal variances; and for the Wilcoxon–Mann–Whitney test for categorical 
data, with and without ties.

For sample size for an independent Student’s t-test with unequal group size, use 
the function n.indep.t.test.eq(), with default parameters:

n.indep.t.test.neq(power = 0.8, alpha = 0.95, mean.diff = 0.8,
  sd.est = 0.83, k = 0.5)

controlled by the following variable parameters as arguments:

power required power 1-beta
alpha required Level I-error 1-alpha
mean.diff required minimum difference between group means
sd.est standard deviation in groups
k n_2 = n_1*k
n_1 sample size of group 1
n_2 sample size of group 2
N total sample size: N=n_1 + n_2

The following R code segment may be used to compute sample sizes for a randomized 
clinical trial using this CRAN package:

> install.packages("samplesize")
> library(samplesize)
> ls("package:samplesize")
[1] "n.indep.t.test.eq" "n.indep.t.test.neq" "n.paired.t.test"
[4] "n.welch.test" "n.wilcox.ord"
> n.indep.t.test.eq(power = 0.8, alpha = 0.95, mean.diff = 0.8,
+  sd.est = 0.83) # For two samples of equal size:
[1] "sample.size:" "29"
> # Going for a test with a high biostatistical power, say, power = 0.95
> n.indep.t.test.eq(power = 0.95, alpha = 0.95, mean.diff = 0.8,
+  sd.est = 0.83)
[1] "sample.size:" "49"
> # And for two samples of unequal size
> n.indep.t.test.neq(power = 0.8, alpha = 0.95, mean.diff = 0.8,
+ sd.est = 0.83) # At 0.8 power
[1] "sample.size:" "32" "sample.size n.1:" "21.3"
[5] "sample.size n.2:" "10.7"
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> n.indep.t.test.neq(power = 0.95, alpha = 0.95, mean.diff = 0.8,
+ sd.est = 0.83) # And at 0.95 power
[1] "sample.size:" "55" "sample.size n.1:" "36.7"
[5] "sample.size n.2:" "18.3"
Remark:
For higher biostatistical power, larger samples are needed.

 Review Questions for Section 7.1

1. (a) What is an RT in the context of an epidemiologic investigation?
(b) What are the advantages of RT in a study such as a clinical trial?

2. (a) What is restricted randomization?
(b) Explain the following terms: permuted-block randomization, adaptive 

 biased-coin randomization.
3. In the biostatistical analysis of data from RTs, three characteristics of the data are 

expected. Name them and briefly explain each characteristic.
4. CRAN packages are available to analyze data from RTs. In which five areas of RTs 

are these packages applicable?

 Exercises for Section 7.1

1. For worked Example 7.1,
(a) Explain the function of each line of the R code segment for the computation.
(b) Rerun this code segment in the R environment.

2. In the CRAN package CRTSize, the function n4means() may be used to provide sam-
ple size estimation information. For instance, it can compute the number of case sub-
jects needed for a cluster RT with continuous outcome. The following R code segment 
is used where the outcome is continuous (e.g., blood pressure or weight). Note that if 
the results suggest that a small number of clusters is required, an iterative procedure 
will include the t distribution instead of the normal critical value for alpha, iterating until 
convergence. For this function n4means(), the following specification applies:

Description:
This function provides detailed sample-size estimation information to determine 
the number of subjects that must be enrolled in a cluster RT to compare two means.

Usage:
n4means(delta, sigma, m, ICC, alpha=0.05, power=0.8, AR=1, two.tailed=TRUE, 
digits=3)
Arguments:
delta The minimum detectable difference between population means.
sigma The standard error of the outcome.
m The anticipated average (or actual) cluster size.
ICC The anticipated value of the intraclass correlation coeffi cient, r.
AR The allocation ratio: AR=1 implies an equal number of subjects per 

treatment and control group (maximum effi ciency), AR > 1 implies 
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that more subjects will be enrolled in the control group (e.g., in the 
case of a costly intervention), and AR < 1 implies that more subjects 
will be enrolled in the treatment group (rarely used).

alpha The desired Type I error rate.
power The desired level of power, recall power = 1 − Type II error.
two.tailed Logical value. If TRUE, calculations are based on a two-tailed Type I 

error; if FALSE, a one-sided calculation is performed.
digits Number of digits to round calculations.

Value:
nE The minimum number of subjects required in the experimental group.
nC The minimum number of subjects required in the control group.
delta The minimum detectable difference between population means.
sigma The standard error of the outcome.
alpha The desired Type I error rate.
power The desired level of power, recall power = 1 − Type II error.
AR The allocation ratio.

The following R code segment is available to undertake the computation:

> install.packages("CRTSize")
> library(CRTSize)
> ls("package:CRTSize")
 [1] "fixedMetaAnalMD" "fixedMetaAnalRROR"
 [3] "n4incidence" "n4means"
 [5] "n4meansEB" "n4meansMeta"
 [7] "n4props" "n4propsEB"
 [9] "n4propsMeta" "print.fixedMetaAnalMD"
[11] "print.fixedMetaAnalRROR" "print.n4incidence"
[13] "print.n4means" "print.n4meansEB"
[15] "print.n4meansMeta" "print.n4props"
[17] "print.n4propsEB" "print.n4propsMeta"
[19] "summary.fixedMetaAnalMD" "summary.fixedMetaAnalRROR"
[21] "summary.n4incidence" "summary.n4means"
[23] "summary.n4meansEB" "summary.n4meansMeta"
[25] "summary.n4props" "summary.n4propsEB"
[27] "summary.n4propsMeta"
> n4means(delta=10, sigma=1, m=25, ICC=0.05,
+  alpha=0.05, power=0.80);
> # Outputting:

The required sample size is a minimum of 1 cluster of size 25 in the Experi-
mental Group and a minimum of 1 cluster (size 25) in the Control Group.
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(a) Explain the function of each line of the R code segment for this computation.
(b) Rerun this code segment in the R environment.
(c) Recalculate the estimation of cluster sizes for a biostatistical power of 0.90.
(d) Comment on the results.

3. The CRAN package randomSurvivalForest describes random survival forests 
for right-censored and competing risks survival data (Gerds, Cai, & Schum-
acher, 2008; Graf, Schmoor, Sauerbrei, & Schumacher, 1999).

The outputs of the function plot.ensemble() in this package are ensemble 
survival curves and ensemble estimates of mortality.

This approach is applicable to competing risk analyses, but the plots are 
nonevent specifi c. For event-specifi c curves, and for a more comprehensive 
analysis, use competing.risk in such cases.

The following R code segment is available to undertake the computation, 
using the dataset veteran in the CRAN package survival:

> install.packages("randomSurvivalForest")
> library(randomSurvivalForest)
randomSurvivalForest 3.6.3
Type rsf.news() to see new features, changes, and bug fixes.
> ls(package:randomSurvivalForest) # Listing the contents:

 [1] "competing.risk" "find.interaction" "impute.rsf"
 [4] "max.subtree" "plot.ensemble" "plot.error"
 [7] "plot.proximity" "plot.rsf" "plot.variable"
[10] "pmml2rsf" "predict.rsf" "print.rsf"
[13] "randomSurvivalForest" "rsf" "rsf.news"
[16] "rsf2pmml" "rsf2rfz" "varSel"
[19] "vimp"

Warning message:
In ls(package:randomSurvivalForest) :
'package:randomSurvivalForest' converted to character string
> install.packages("survival")
> library(survival)
Loading required package: splines
> ls("package:survival") # Listing the contents:

[1] "aareg" "aml" "attrassign"
[4] "basehaz" "bladder" "bladder1"
[7] "bladder2" "cancer" "cch"

[10] "cgd" "clogit" "cluster"
[13] "colon" "cox.zph" "coxph"
[16] "coxph.control" "coxph.detail" "coxph.fit"
[19] "dsurvreg" "format.Surv" "frailty"
[22] "frailty.gamma" "frailty.gaussian" "frailty.t"
[25] "heart" "is.na.coxph.penalty" "is.na.ratetable"
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[28] "is.na.Surv" "is.ratetable" "is.Surv"
[31] "jasa" "jasa1" "kidney"
[34] "labels.survreg" "leukemia" "logan"
[37] "lung" "match.ratetable" "mgus"
[40] "mgus1" "mgus2" "nwtco"
[43] "ovarian" "pbc" "pbcseq"
[46] "pspline" "psurvreg" "pyears"
[49] "qsurvreg" "ratetable" "ratetableDate"
[52] "rats" "ridge" "stanford2"
[55] "strata" "Surv" "survConcordance"
[58] "survdiff" "survexp" "survexp.mn"
[61] "survexp.us" "survexp.usr" "survfit"
[64] "survfitcoxph.fit" "survobrien" "survreg"
[67] "survreg.control" "survreg.distributions" "survreg.fit"
[70] "survregDtest" "survSplit" "tcut"
[73] "tobin" "tt" "untangle.specials"
[76] "veteran"

> data(veteran, package = "randomSurvivalForest")
> v.out <- rsf(Surv(time, status) ~ ., veteran, ntree = 1000)
> data(veteran, package = "randomSurvivalForest")
> v.out <- rsf(Surv(time, status) ~ ., veteran, ntree = 1000)
> plot.ensemble(v.out)
> # Outputting: Figure 7.1: randomSurvivalForest-1
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Four plots are produced (from top to bottom, left to right):

(1) Ensemble survival function for each individual. The thick red line is overall 
ensemble survival; the thick green line is the Nelson–Aalen estimator.

(2) Comparison of the population ensemble survival function to the Nelson–
Aalen estimator.

(3) Brier score (0 = perfect, 1 = poor, and 0.25 = guessing) stratifi ed by ensemble 
mortality. Based on the method described in Gerds et al. (2008), in which the 
censoring distribution is estimated using the K–M estimator. Stratifi cation is 
into four groups corresponding to the 0–25, 25–50, 50–75, and 75–100 percen-
tile values of mortality. The red line is the overall (nonstratifi ed) Brier score.

(4) Plot of mortality versus observed time. Points in blue correspond to events; 
points in black are censored observations.

> plot(v.out) # Outputting: Figure 7.2: randomSurvivalForest-2
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FIGURE 7.2 randomSurvivalForest-2.

0.
40

0.
38

0.
36

E
rr

or
 r

at
e

0.
34

0.
32

0.
30

0 200 400

Number of trees

600 800 1000

Karno

Celltype

Age

Trt

Prior

Diagtime

0.00 0.05

Variable importance

0.10

>
> # plot of ensemble survival for a single individual
> surv.ensb <- t(exp(-v.out$oob.ensemble))
> plot(v.out$timeInterest, surv.ensb[, 1])
> # Outputting: Figure 7.3: randomSurvivalForest-3
>
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FIGURE 7.3 randomSurvivalForest-3: plot of ensemble survival for a single individual.

(a) Explain the function of each line of the R code segment for this computation.
(b) Rerun this code segment in the R environment.
(c) Recalculate the estimation of cluster sizes for another dataset from the 

CRAN package survival. Comment on the results.

4. To obtain the survival effects of variables, the R function plot.variable(), in 
the CRAN package randomSurvivalForest (rSF), may be used to create plots 
of ensemble mortality, predicted survival, or predicted survival time against a 
given x variable. Marginal and partial plots may also be created. Either mor-
tality, relative frequency of mortality, predicted survival, or predicted survival 
times is plotted on the vertical axis (y-value) against x variables on the hori-
zontal axis.

 ■ The choice of x variables can be specifi ed using predictor names.
 ■ The choice of y-value is controlled by type.

 There are four different choices:
(1) ‘mort’ is ensemble mortality.
(2) ‘rel.freq’ is standardized mortality.
(3) ‘surv’ is predicted survival at a given time point.
(4) ‘time’ is the predicted survival time.

For continuous variables, points are colored with blue, corresponding to 
events, and black, to censored observations. Ensemble mortality should be inter-
preted in terms of the total number of deaths. For example, if i has a mortality value 
of 100, then if all individuals were the same as i, the expected number of deaths 
would be 100. If type="rel.freq", then mortality values are divided by an adjusted 
sample size, defi ned as the maximum of the sample size and the maximum mor-
tality value. Standardized mortality values do not indicate total deaths, but rather 
relative mortality.
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Partial plots are created when partial=TRUE. Interpretations for these are different 
from those for marginal plots. The partial value for a variable X, evaluated at X = x, is

f x n f x xi
i

n

( ) ( / ) ( ; ),=
=
∑1 0

1

where f is the predicted value; and, for each individual i, xi,o represents the value 
for all other variables other than X. For continuous variables, red points are used to 
indicate partial values; dashed red lines represent an error bar of +/− two standard 
errors. A black dashed line indicates the lowest estimate of the partial values. For dis-
crete variables, partial values are indicated using boxplots with whiskers extending 
approximately two standard errors from the mean. Standard errors are provided only 
as a guide and should be interpreted with caution. Partial plots can be slow. Setting 
type="time" can improve matters. You should also try setting npts to a smaller number.

For competing risk analyses, plots correspond to unconditional values (i.e., they 
are nonevent specifi c). Use competing.risk for event-specifi c curves and for a more 
comprehensive analysis in such cases.

The usage formula for this function is

plot.variable(x, plots.per.page = 4, granule = 5, sorted = TRUE,
  type = c("mort", "rel.freq", "surv", "time")[1],
  partial = FALSE, predictorNames = NULL,
  npred = NULL, npts = 25, subset = NULL,
  percentile = 50, …)

in which the arguments are

x An object of class (rsf, grow) or (rsf, predict).
plots.per.page Integer value controlling page layout.
granule Integer value controlling whether a plot for a specifi c variable should be 
given as a boxplot or a scatter plot. Larger values coerce boxplots.
sorted  Should variables be sorted by importance values (applies only if impor-

tance values are available)?
type Select the type of value to be plotted on the vertical axis.
partial Should partial plots be created?
predictorNames Character vector of x variables to be plotted. Default is all.
npred Number of variables to be plotted. Default is all.
npts Maximum number of points used when generating partial plots for contin-
uous variables.
subset  Indexes indicating which rows of the predictor matrix are to be used. (Note: 

This applies to the processed predictor matrix, predictors of the object.)
Default is to use all rows.

percentile Percentile of follow-up time used for plotting predicted survival.
... Further arguments passed to or from other methods.

The following R code segment is available to undertake the computation using 
the dataset veteran in the CRAN package survival:

> install.packages("randomSurvivalForest")
> library(randomSurvivalForest)
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> ls(package:randomSurvivalForest)
>
> install.packages("survival")
> library(survival)
> ls("package:survival")
>
> # Some examples applied to veteran data.
> data(veteran, package = "randomSurvivalForest")
> v.out <- rsf(Surv(time,status) ~ ., veteran, nsplit = 10,
+  ntree = 1000)
>
> plot.variable(v.out, plots.per.page = 3)

Warning message:
In bxp(list(stats = c(28.3583161744737, 56.5401467687752, 78.2666123470398):
some notches went outside hinges (‘box’): maybe set notch=FALSE))

> # Outputting: Figure 7.4: rSF-1
>
> plot.variable(v.out, plots.per.page = 2,
+  predictorNames = c("trt", "karno", "age"))
> # Outputting: Figure 7.5: rSF-2
> plot.variable(v.out, type = "surv", npred = 1, percentile = 50)
> # Outputting: Figure 7.6: rSF-3
> plot.variable(v.out, type = "rel.freq", partial = TRUE,
+ plots.per.page = 2, npred=3)
> # Outputting: Figure 7.7: rSF-4

(a) Explain the function of each line of the R code segment for this computation.
(b) Rerun this code segment in the R environment.
(c) Recalculate the estimation of cluster sizes for another dataset from the 

CRAN package survival. Comment on the results.

5. Repeat the computation as in Exercise 4, but this time, use the dataset pbc, as 
follows:

>
> install.packages("randomSurvivalForest")
> library(randomSurvivalForest)
> ls(package:randomSurvivalForest)
>
> install.packages("survival")
> library(survival)
> ls("package:survival")
>
> # Fast partial plots using 'time' type.
> # Top 8 predictors from PBC data
> data(pbc, package = "randomSurvivalForest")
> pbc.out <- rsf(Surv(days,status) ~ ., pbc, ntree=1000,nsplit=3)
> plot.variable(pbc.out, type = "time", partial = TRUE, npred=8)
> # Outputting: Figure 7.8: rSF-5
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(a) Explain the function of each line of the R code segment for this computation.
(b) Rerun this code segment in the R environment.
(c) Rerun this code segment in the R environment, but use the following output 

command:

> plot.variable(pbc.out, type = "time", partial = TRUE, npred=16)

to output Figure 7.9: rSF-6. Comment on the results.

 7.2  PHASE DEVELOPMENT (CALVERT & PLUMMER, 2008; SIGLER & 
STEMHAGEN, 2011)

In the United States, as well as in many other countries around the world, the pro-
cess of developing a new drug to meet a particular health need consists of many 
defi nitive stages or phases. Typically, these developmental phases are as summa-
rized in Table 7.1.

In all phases, improper or inadequate study sample size is a common clinical 
trial design fl aw.

 Phase 0 or Preclinical Phase

During this initial phase, the drug is generally being tested in vitro (cells, test tubes) 
or in vivo (animals). The developer applies for governmental permission to enter 
into clinical testing. The procedure for applying for permission will depend on the 
country. For example, in the United States, an Investigational New Drug (IND) 
application must be granted before clinical trials can begin.

The term preclinical encompasses all studies undertaken before clinical trials 
are started. This includes research programs, from which the most promising com-
pounds are selected for further development.

The concept of a phase 0 trial is relatively new. There is now a slowly increasing 
trend toward basing early clinical trial designs on pharmacokinetic and pharmaco-
dynamic endpoints that have been developed in preclinical investigations. In gen-
eral, trial designs use pharmacodynamic endpoints and targeted agents.

TABLE 7.1 Phases of Drug Development

PHASE OR STAGE OBJECTIVES

Phase 0 or preclinical Animal toxicology studies

Phase I Clinical pharmacology studies

Phase II Dose–response studies

Phase III Determination of effi cacy and safety

Phase IV Determination of safety of product for use in a population
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 Phase I

The objectives of Phase I include basic determinations of safety and effi cacy and 
the initial discovery and description of the pharmacokinetics. In this phase, the 
fi rst trials of a new therapy or medication are undertaken, usually conducted using 
healthy male volunteers. Case subjects (patients) may be evaluated instead of vol-
unteers in Phase I trials in order to treat immediately life-threatening and serious 
conditions for which no comparable or satisfactory alternative therapy is available 
(in the United States, this is called Treatment IND status). Also, expanded access 
programs allow the use of case subjects for whom standard therapy is ineffective or 
contraindicated; if such persons are ineligible to enter the trials, they may receive 
investigational drugs in parallel with controlled trials.

 Phase II

This phase seeks to provide a measure of effi cacy in addition to short-term tolera-
bility. Phase II studies are conducted in case subjects who have the disease or con-
dition that the drug is intended to treat. Moreover, Phase II study objectives include 
determining the minimum dose that is maximally effective or that is suffi ciently 
effective without undue toxicity.

In some trials, using research and development insight, a Phase II program may 
combine some Phase I and Phase II trials:

 ■ Phase IIA—Pilot or feasibility trials
 ■ Phase IIB—Well-controlled, pivotal trials

 Phase III

The purpose in Phase III is to confi rm effi cacy and monitor adverse reactions from 
long-term use. In Phase III studies, a drug is tested under conditions more closely 
resembling those under which the drug would be used if approved for marketing. 
The goal is to gather the additional information about effi cacy and tolerability that 
is necessary for evaluating the overall risk–benefi t relationship of the drug and to 
provide an adequate basis for physician labeling.

Approval/disapproval decisions are based on the results of adequate and 
well-controlled (pivotal) studies. To be considered pivotal, a study must meet at least 
the following four Food and Drug Administration (FDA)–defi ned criteria:

 ■ Be controlled using placebo or a standard therapy.
 ■ Have a double-blind design when such a design is practical and ethical.
 ■ Be randomized.
 ■ Be of adequate size.

 Pharmacoepidemiology: A Branch of Epidemiology

Pharmacoepidemiology is the study of the uses and effects, both adverse and benefi -
cial, of drugs in populations. A typical example of the work of  pharmacoepidemiology 
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is the Anti-Epileptic Drug (AED) Pregnancy Registry, an observational cohort study 
or registry of women who become pregnant while on AEDs. The registry records 
birth outcomes and investigates whether adverse birth outcomes vary with use of 
specifi c AEDs. Because the information is primarily collected prospectively, this 
study is a prospective cohort study.

A prospective cohort study follows, over time, a group of similar case subjects 
(cohorts) who differ with respect to certain factors under study, to determine how 
these factors affect rates of a certain outcome. For example, one might follow a 
cohort of young (under 30 years of age) truck drivers whose smoking habits vary, 
to test the hypothesis that the 20-year incidence rate of lung cancer will be high-
est among heavy smokers, followed by moderate smokers, and then nonsmok-
ers. Prospective studies are important for research on the etiology of diseases and 
disorders in humans because, for ethical reasons, people cannot be deliberately 
exposed to suspected risk factors in controlled experiments. Prospective cohort 
studies are typically ranked higher in the hierarchy of evidence than retrospective 
cohort studies.

A retrospective cohort study generally looks back at events that already have 
taken place. In medicine, retrospective study usually refers to reviewing (looking 
back at) a patient’s medical history or lifestyle.

One of the advantages of prospective cohort studies is they can help determine 
risk factors for being infected with a new disease. This is possible because they con-
sist of longitudinal observations over time, and the collection of results is done at 
regular time intervals, minimizing recall error.2

Pharmacoepidemiologists must make appropriate comparisons between 
treated and untreated patients. Among the challenges include channeling bias, 
where groups treated by Drug x versus Drug y are different in ways that predict 
outcome. This error is a constant consideration that has driven the development of 
approaches such as propensity scores to minimize channeling bias.

 Some Basic Tests in Epidemiologic Phase Development

In this section, worked examples of computational procedures using R illustrate:

 ■ Testing for the presence of a specifi c response in drug treatments
 ■ Testing for the cross-classifi cation of data
 ■ Estimation of pharmacokinetic parameters

 ■ Example 7.2: Test for the presence of bacteria after drug treatments

Between 1999 and 2000, in a health investigation in the Northern Territory of Australia, 
tests were undertaken to assess the effects of a drug on 50 children with a history of 
otitis media. These case subjects were randomized either to take the drug or to take a 
placebo, and also to receive active encouragement to comply with the drug regimen. 
The presence of Haemophilus infl uenzae was checked at weeks 0, 2, 4, 6, and 11. 
(A total of 30 of the checks were missing and are not included in the data frame.)

2 http://en.wikipedia.org/wiki/pro- and retro-spective cohort study.

http://en.wikipedia.org/wiki/pro- and retro-spective cohort study.
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This data frame, called bacteria, has 220 rows and the following 6 columns:

Y Presence or absence: a factor with levels n and y.
ap Active/placebo: a factor with levels a and p.
hilo High/low compliance: a factor with levels hi and lo.
week Numeric: week of test.
ID Case-subject ID: a factor.
Trt A factor with levels placebo, drug, and drug+, a recording of ap and hilo.

The following R code segment may be used to perform the analysis:

> install.packages("MASS")
> library(MASS)
> ls("package:MASS")

[1] "abbey" "accdeaths" "addterm"
[4] "Aids2" "Animals" "anorexia"
[7] "area" "as.fractions" "bacteria"
[10] "bandwidth.nrd" "bcv" "beav1"
[13] "beav2" "biopsy" "birthwt"
[16] "Boston" "boxcox" "cabbages"
[19] "caith" "Cars93" "cats"

[163] "waders" "whiteside" "width.SJ"
[166] "write.matrix" "wtloss"

> install.packages("survival")
> library(survival)
Loading required package: splines
>
> data(bacteria)
> attach(bacteria)
The following object(s) are masked _by_ ‘.GlobalEnv’: y
> bacteria

y ap hilo week ID trt
1 y p hi  0 X01 placebo
2 y p hi  2 X01 placebo
3 y p hi  4 X01 placebo
4 y p hi 11 X01 placebo
5 y a hi  0 X02 drug+

219 n a hi  6 Z26 drug+
220 y a hi 11 Z26 drug+
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>
> contrasts(bacteria$trt) <- structure(contr.sdif(3),
+ dimnames = list(NULL, c("drug", "encourage")))
> ## fi xed effects analyses
> summary(glm(y ~ trt * week, binomial, data = bacteria))

Call: glm(formula = y ~ trt * week, family = binomial, data = bacteria)

Deviance Residuals:

Min 1Q Median 3Q Max
−2.2144 0.4245 0.5373 0.6750 1.0697

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.97548 0.30053 6.573 4.92e-11***
Trtdrug −0.99848 0.69490 −1.437 0.15075
Trtencourage 0.83865 0.73482 1.141 0.25374
Week −0.11814 0.04460 −2.649 0.00807 **
trtdrug:week −0.01722 0.10570 −0.163 0.87061
trtencourage:week −0.07043 0.10964 −0.642 0.52060 ---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1) Null deviance: 217.38 
on 219 degrees of freedom Residual deviance: 203.12 on 214 degrees of free-
dom AIC: 215.12 Number of Fisher Scoring iterations: 4

> summary(glm(y ~ trt + week, binomial, data = bacteria))
Call: glm(formula = y ~ trt + week, family = binomial, data = bacteria)

Deviance Residuals:

Min 1Q Median 3Q Max
−2.2899 0.3885 0.5400 0.7027 1.1077

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.96018 0.29705 6.599 4.15e-11 ***
trtdrug −1.10667 0.42519 −2.603 0.00925 **
trtencourage 0.45502 0.42766 1.064 0.28735
week −0.11577 0.04414 −2.623 0.00872 **---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1) Null deviance: 217.38 
on 219 degrees of freedom Residual deviance: 203.81 on 216 degrees of free-
dom AIC: 211.81 Number of Fisher Scoring iterations: 4
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> summary(glm(y ~ trt + I(week > 2), binomial, data = + bacteria))
Call: glm(formula = y ~ trt + I(week > 2), family = binomial, data = bacteria)

Deviance Residuals:

Min 1Q Median 3Q Max
−2.4043 0.3381 0.5754 0.6237 1.0051

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.2479 0.3560 6.315 2.71e-10 ***
trtdrug −1.1187 0.4288 −2.609 0.00909 **
trtencourage 0.4815 0.4330 1.112 0.26614
I(week > 2)TRUE −1.2949 0.4104 −3.155 0.00160 **---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1) Null deviance: 217.38 on 
219 degrees of freedom Residual deviance: 199.18 on 216 degrees of freedom 
AIC: 207.18 Number of Fisher Scoring iterations: 5

> # conditional random-effects analysis
> library(survival)
> bacteria$Time <- rep(1, nrow(bacteria))
> coxph(Surv(Time, unclass(y)) ~ week + strata(ID), + data = bacteria, method = 

“exact”)

Call: coxph(formula = Surv(Time, unclass(y)) ~ week + strata(ID), data = bacteria, 
method = "exact")

Coef exp(coef) se(coef) z p
week −0.163 0.85 0.0547 −2.97 0.003

Likelihood ratio test=9.85 on 1 df, p=0.0017 n= 220, number of events= 177

>
> coxph(Surv(Time, unclass(y)) ~ factor(week) + strata(ID), + data = bacteria, 

method = "exact")
Call: coxph(formula = Surv(Time, unclass(y)) ~ factor(week) + strata(ID), data = 
bacteria, method = "exact")

coef exp(coef) se(coef) z p
factor(week)2 0.198 1.219 0.724 0.274 0.780
factor(week)4 −1.421 0.242 0.667 −2.131 0.033
factor(week)6 −1.661 0.190 0.682 −2.434 0.015
factor(week)11 −1.675 0.187 0.678 −2.471 0.013

Likelihood ratio test=15.4 on 4 df, p=0.00385 n= 220, number of events= 177
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> coxph(Surv(Time, unclass(y)) ~ I(week > 2) + strata(ID),
+ data = bacteria, method = "exact")

Call: coxph(formula = Surv(Time, unclass(y)) ~ I(week > 2) + strata(ID), data = 
bacteria, method = "exact")

  coef exp(coef) se(coef) z p
I(week > 2)TRUE −1.67 0.188 0.482 −3.47 0.00053

Likelihood ratio test=15.2 on 1 df, p=9.93e-05 n= 220, number of events= 177
>
> # PQL glmm analysis
> library(nlme)
> summary(glmmPQL(y ~ trt + I(week > 2), random = ~ 1 | ID,
+ family = binomial, data = bacteria))
iteration 1
iteration 2
iteration 3
iteration 4
iteration 5
iteration 6
Linear mixed-effects model fit by maximum likelihood

Data: bacteria

AIC BIC logLik
NA NA NA

Random effects:
Formula: ~1 | ID

(Intercept) Residual
StdDev: 1.410637 0.7800511

Variance function:
Structure: fixed weights
Formula: ~invwt
Fixed effects: y ~ trt + I(week > 2)

Value Std.Error DF t-value p-value
(Intercept) 2.7447864 0.3784193 169 7.253294 0.0000
trtdrug −1.2473553 0.6440635 47 −1.936696 0.0588
trtencourage 0.4930279 0.6699339 47 0.735935 0.4654
I(week > 2)TRUE −1.6072570 0.3583379 169 −4.485311 0.0000

Correlation:
   (Intr)  trtdrg trtncr
trtdrug  0.009
trtencourage  0.036 −0.518
I(week > 2)TRUE −0.710   0.047 −0.046
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Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

−5.1985361 0.1572336 0.3513075 0.4949482 1.7448845

Number of Observations: 220
Number of Groups: 50
>

 Review Questions for Section 7.2

1. (a)  Name an area in epidemiology in which process development is usually under-
taken in several phases.

(b) In such a process, what are the usual developmental phases? Briefly describe 
each phase.

2. (a)  Contrast a prospective cohort study with a retrospective cohort study, giving an 
example of each.

(b) What is pharmacoepidemiology? If a cohort study is undertaken in this area of 
epidemiology, is it prospective or retrospective? Why?

3. Describe, and give examples of, some testing procedures likely to be used in a 
typical epidemiologic phase development?

4. For epidemiologic phase development, access the CRAN package MASS and 
select two R functions for testing the presence of a specific response in drug treat-
ment. Demonstrate their usage by suitable worked examples.

5. For epidemiologic phase development, access the CRAN package PK and select 
two R functions for estimating pharmacokinetic parameters in process phase devel-
opment. Demonstrate their usage by suitable illustrative examples.

 Exercises for Section 7.2

1. CRAN offers a number of packages, designed for pharmacokinetics data analysis, 
that are suitable for phase development support. These are:
(a) PK, PKfit, PKtools, and nlmeODE. PK supports basic pharmacokinetic func-

tions and uses noncompartmental analysis methods; the other three mainly 
support modeling methods.

(b) The packages MASS and drc, which support the analysis of dose responses.
(c) The package lattice, for trellis graphics.

For a given task in phase development analysis, one may search for a suitable R 
function appropriate for the task by starting within the R environment as follows:

(i) Starting from the “Help” option, select “CRAN home page” from the 
drop-down menu. You will be taken to the CRAN page.

(ii) On the CRAN page, among the left-side options, select “Search.” You 
will be taken to the CRAN search page.

(iii) On the CRAN search page, select “R site search”; you will be taken to 
the CRAN R site search page.

(iv) Finally, enter the subject of interest into the “Query” box and select 
“Search.”
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(d) If the phase development task at hand is to test for a particular biochemical 
substance in each case subject after a certain drug treatment, use the preced-
ing steps to find an R function in CRAN that is suitable for the task.

(e) Compare the result with the choice in Example 7.2.
2. Besides CRAN, there are other source platforms for biostatistical software that 

uses R; two of them are Bioconductor and PBSmodelling. They may be accessed 
from the following sources:
(i) For Bioconductor

 ■ Start from the Internet website http://bioconductor.org
 ■ Select “Install.”
 ■ Select “Software” from the table of software releases.

(ii) For PBSmodelling (Schnute, Couture-Beil, Haigh, & Kronlund, 2011)

The R package PBSmodelling contains software to facilitate the design, test-
ing, and operation of computer models. The initials PBS refer to the Pacific Biolog-
ical Station, a major fisheries laboratory on Canada’s Pacific Coast in Nanaimo, 
British Columbia. Initially designed for fisheries scientists, this package has broad 
potential application in many scientific fields. PBSmodelling focuses particularly 
on tools that make it easy to construct and edit a customized graphical user inter-
face appropriate for a particular application. (The package is also available from 
CRAN.)

Repeat Exercise 1, using an appropriate R function from Bioconductor.
3. Repeat Exercise 1, using an appropriate R function from PBSmodelling.
4. In the CRAN package PKtools (Blanchard, 2012), which supports computations 

for WinBUGS, NONMEM V, NLME, and others, the R function diagtrplot() creates 
a trellis plot of the observed concentrations and predicted values versus time by 
subject. Its usage format is

diagtrplot(x,level,xvarlab,yvarlab,pages,...)

for which the arguments are

x  Variable identifying the clustering variable.
level Level of mixed model (p—population, i—individual).
xvarlab Label for x variable.
yvarlab Label for y variable.
pages Number of pages to print; “1” prints fi rst-page additional arguments to 

be passed to lower-level functions.

The following R code segment illustrates an application of this package:

> install.packages("PKtools")
> library(PKtools)
Loading required package: lattice
Loading required package: nlme
Loading required package: R2HTML
Loading required package: xtable
> ls("package:PKtools")

http://bioconductor.org
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[1] "AICcomp" "bugs" "coVar.id" "desc" "diagplot"
[6] "diagtrplot" "HTMLtools" "indEst" "lonecpmt" "obvsprplot"

[11] "paramEst" "pk" "PKtools.AIC" "residplot" "RunNLME"
[16] "RunNM" "RunWB" "sonecpmt" "tex" "trplot" 

> library(nlme)
> data(Theoph)
> Theoph <- Theoph[Theoph$Time!=0,]
> id <- as.numeric(as.character(Theoph$Subject))
> dose <- Theoph$Dose
> time <- Theoph$Time
> conc <- round(sqrt(Theoph$conc),4)
> Theo <- data.frame(cbind(id,dose,time,conc))
> names(Theo) <- c("id","dose","time","conc")
> wt.v <- Theoph$Wt
> data <- list(pkvar = Theo, cov = wt.v)
> nameData <- list(covnames = c("wt"),
+  yvarlab = "Sqrt(Theop. Conc.) (mg/L)",
+  xvarlab = "Time since dose (hrs)",
+  reparams = c("Cl"),
+  params = c("Ka","V", "Cl"),
+  tparams = c("log(Ka)","log(V)","log(CL)"))
> model.def <- list(fixed.model=lKa+lV+lCl~1,
+  random.model=lCl~1,
+  start.lst=c(lKa=.3,lV=-.6,lCl=-3),
+  form=conc~sonecpmt(dose, time,
+  lV, lKa, lCl),
+  control=nlmeControl(returnObject=FALSE))
> MM<-RunNLME(inputStructure=model.def,data=data,
+  nameData=nameData)
> diagtrplot(x=MM,level="p", xvarlab=nameData$xvarlab,
+  yvarlab=nameData$xvarlab, pages=1)
> # Outputting: Figure 7.10.

(a) Explain the function of each line of the R code segment for this computation.
(b) Rerun this code segment in the R environment.
(c) Compare and comment on the R code: predicted values versus observed val-

ues of this dataset.

5. R computations for pharmacokinetics of indomethacin.
The CRAN package nlmeODE (Tornoe, 2012) (nonlinear mixed-effects modeling 

using ordinary differential equations) actually combines two packages: nlme and Ode-
solve, for mixed-effects modeling using differential equations. The following R code 
segment models the pharmacokinetics of indomethacin using this CRAN package:

> install packages("nlmeODE")
package odesolve successfully unpacked and MD5 sums checked
package nlmeODE successfully unpacked and MD5 sums checked
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> library(nlmeODE)
Loading required package: odesolve
odesolve is deprecated! Use the solvers in deSolve instead.
odesolve will be removed from CRAN by the end of 2012.
Loading required package: nlme
Loading required package: lattice

> ls("package:nlmeODE")
[1] "nlmeODE"
>

###################################
### Pharmacokinetics of Indomethacin ###
###################################

> data(Indometh)
> Indometh # Outputting the data frame Indometh for inspection:
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FIGURE 7.10 Using CRAN package PKtools.
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Grouped Data: conc ~ time | Subject

Subject time Conc
1 1 0.25 1.50
2 1 0.50 0.94
3 1 0.75 0.78
4 1 1.00 0.48
5 1 1.25 0.37
64 6 5.00 0.13
65 6 6.00 0.10
66 6 8.00 0.09

>
> TwoComp <- list(DiffEq=list(
+ dy1dt = ~ -(k12+k10)*y1+k21*y2,
+ dy2dt = ~ -k21*y2 + k12*y1),
+ ObsEq=list(
+ c1 = ~ y1,
+ c2 = ~ 0),
+ States=c("y1","y2"),
+ Parms=c("k12","k21","k10","start"),
+ Init=list("start",0))
> IndomethModel <- nlmeODE(TwoComp,Indometh)
> Indometh.nlme <- nlme(conc ~
+ IndomethModel(k12,k21,k10,start,time,Subject),
+ data = Indometh, fixed=k12+k21+k10+start~1,
+ random = pdDiag(start+k12+k10~1),
+ start=c(k12=-0.05,k21=-0.15,k10=-0.10,start=0.70),
+ control=list(msVerbose=TRUE),
+ verbose=TRUE)

0: −12.615270: −0.785113 −1.41611 −0.440966
1: −12.615270: −0.785095 −1.41627 −0.440425
2: −12.615270: −0.785095 −1.41627 −0.440425

**Iteration 1
LME step: Loglik: 57.22393, nlm iterations: 2 reStruct parameters:

Subject1 Subject2 Subject3
−0.7850948 −1.4162729 −0.4404247

PNLS step: RSS = 0.4128427

fixed effects: −0.0331751 −0.115947 −0.111574 −0.717857
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iterations: 7
Convergence:

fixed reStruct
0.5071548 0.2703262

0: −11.974429: −0.766570 −1.43832 −0.347128
1: −11.974429: −0.766340 −1.43872 −0.345577
2: −11.974429: −0.766497 −1.43869 −0.345660
3: −11.974430: −0.766594 −1.43863 −0.346103
4: −11.974430: −0.766487 −1.43861 −0.346124
5: −11.974430: −0.766513 −1.43851 −0.346167
6: −11.974430: −0.766544 −1.43859 −0.346197
7: −11.974430: −0.766527 −1.43858 −0.346173
8: −11.974430: −0.766529 −1.43857 −0.346176

**Iteration 2
LME step: Loglik: 56.58309, nlm iterations: 8 reStruct parameters:

Subject1 Subject2 Subject3
−0.7665286 −1.4385742 −0.3461758

PNLS step: RSS = 0.4128658
fixed effects:−0.0331751 −0.115947 −0.111574 0.717857 iterations: 1
Convergence:

Fixed reStruct
0.000000000 0.002752387

0: −11.974430: −0.766529 −1.43857 −0.346176
1: −11.974430: −0.766529 −1.43857 −0.346176

**Iteration 3
LME step: Loglik: 56.58309, nlm iterations: 1 reStruct parameters:

Subject1 Subject2 Subject3
−0.7665286 −1.4385745 −0.3461757

PNLS step: RSS = 0.4128658 fixed effects:-0.0331751 -0.115947 -0.111574 0.717857 
iterations: 1
Convergence:

fixed reStruct
0.00000e+00 3.03061e-08

> plot(augPred(Indometh.nlme,level=0:1))
> # Outputting: Figure 7.11.
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FIGURE 7.11 Pharmacokinetics of indomethacin by nlmeODE.

(a) Explain the function of each line of the R code segment for this computation.
(b) Rerun this code segment in the R environment, replacing the last command of 

the code segment with the following:

> plot(augPred(Indometh.nlme))

and then rerun the entire code segment. Comment on the new resulting plot.

 7.3 CONFOUNDING IN SURVIVAL ANALYSIS

In survival analysis (see Chapter 5, Section 5.2), as well as in most epidemiologic 
investigations, one must be concerned with how to characterize the association 
between two variables (usually an outcome in response to an exposure) (Children’s 
Mercy Hospital, 2000). A typical example is wanting to test whether the total cho-
lesterol level (the outcome) of a case subject is associated with alcohol consumption 
(the exposure). However, previous research data appear to indicate that the case 
subject’s smoking status has a profound effect on this relationship. In this situation, 
epidemiologists may consider the smoking status of the case subject to be a poten-
tial confounder in this relationship because the smoking status of the case subject 
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tends to be closely associated with heavy alcohol consumption, and is also related 
to cholesterol levels among people who are not heavy alcohol users.

A confounder is defi ned as an epidemiologic variable that is:

 ■ associated with the exposure variable,
 ■ associated, independently, with the outcome variable, and
 ■ not in a direct causal path between exposure and disease.

This concept is illustrated in Figure 7.12.

Exposure ===> Outcome 

(Cause) (Effect)
↔ ↔↔ ↔

Confounders
 (Confounding associations) 

FIGURE 7.12 A schematic view of confounding in epidemiology.

In this representation:

 ■ The single-headed broken arrow denotes an epidemiologic causality.
 ■ The double-headed solid arrows denote associations with confounders.

The goal of the analysis is to determine the epidemiologic causality while adjusting 
for the effects of all confounding associations.

 Biostatistical Approaches for Controlling Confounding

In epidemiologic investigations, confounding may be controlled by using experi-
mental controls or combined experimental and analytical controls.

EXPERIMENTAL CONTROLS OF CONFOUNDING

Ways to modify an epidemiologic study design to actively exclude or control con-
founding variables include3:

 ■ Case–control studies. This approach assigns confounders to both groups—cas-
es and controls—equally. For example, when studying the cause of myocardial 
infarct, the age of the case subjects may be considered a probable confounding 
variable. Suppose the investigator attempts to match each 59-year-old infarct 
patient with a healthy 59-year-old “control” person. (In case–control studies, 
the variables matched most often are age and gender.)

Drawback: Case–control studies are feasible only when it is easy to fi nd 
controls; that is, persons for whom all known potential confounding factors are 
the same as for the case subject. For example, a case–control study investigator 

3 Confounding. Retrieved from http://en.wikipedia.org/wiki/Confounding

http://en.wikipedia.org/wiki/Confounding
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is trying to fi nd the cause of a given disease in a person who is (a) 39 years old, 
(b) Chinese American, (c) from North Dakota, (d) a dedicated tennis player, (e) 
a vegan or a vegetarian, and (f) working as a fi refi ghter. A theoretically perfect 
control would be a person who, in addition to not having the disease being in-
vestigated, also matches all six of these characteristics and has no diseases that 
the case subject does not also have. Obviously, fi nding such a control (let alone 
enough of them to make a control group) would be a real challenge!

 ■ Cohort studies. This approach makes close matching more practical by con-
trolling admission of certain age groups or a certain gender into the study pop-
ulation, thus creating a cohort of people who share similar characteristics and 
making all cohorts comparable regarding the possible confounding variable. 
For example, if age and gender are thought to be confounders, only males 30 to 
40 years of age would be admitted to a cohort study that intends to assess the 
myocardial infarct risk in cohorts that are either physically active or inactive.

Drawback: In cohort studies, the overexclusion of input data may lead 
biostatisticians to defi ne too narrowly the set of similarly situated persons for 
whom they can claim the study to be useful; other persons to whom the causal 
relationship does in fact apply may lose the opportunity to benefi t from the 
study’s recommendations. Similarly, overstratifi cation of input data within a 
study may reduce the sample size in a given stratum to the point where gener-
alizations drawn from observations of the members of that stratum alone may 
not be statistically signifi cant.

 ■ Double blinding. This approach conceals the experiment group member-
ship of the participants from the trial population and the observers. When 
participants are prevented from knowing whether or not they are receiving 
treatment, any likely placebo effects should be the same for the control and 
treatment groups. When the observers are prevented from knowing the par-
ticipants’ membership, there should be no bias from researchers treating the 
groups differently or from interpreting the outcomes differently.

 ■ Randomized controlled trial (RCT). In this approach, the study population 
is divided randomly in order to reduce the chances of self-selection by partic-
ipants or bias by the study designers. Before the experiment starts, the tes-
ters will assign the members of the participant pool to their groups (control, 
intervention, and parallel), using a randomization process such as the use of a 
random number generator. For example, in a study on the effects of exercise, 
the conclusions would be less valid if participants were given a choice as to 
whether they wanted to belong to the control group (which would not ex-
ercise) or the intervention group (which would take part in an exercise pro-
gram). The study would then capture other variables besides exercise, such as 
pre-experiment health levels and motivation to adopt healthful activities. The 
experimenter may choose case subjects who are more likely to show the results 
that the study hopes to fi nd or may interpret subjective results (more energetic, 
more positive attitude) in a way favorable to the experimenter’s preferences.

 ■ Stratifi cation. To explain stratifi cation, let us return to the previous exam-
ple in which the investigation is examining the causes of myocardial infarct. 
Physical activity is thought to reduce the occurrence of myocardial infarct, 
and age is assumed to be a possible confounder. Thus, the data sampled are 
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then  stratifi ed by age group; this means that the association between activity 
and infarct will be analyzed per age group. If the different age groups (or age 
strata) yield very different risk ratios, age must be viewed as a confounding 
variable. Some statistical tools, among them Mantel–Haenszel (M–H) methods, 
can account for stratifi cation of datasets (see Example 7.3).

Of these fi ve approaches to exclude or control confounding, the fi rst four have 
been discussed previously (see Sections 6.1 and 6.2 in Chapter 6, and Section 7.1). 
The last approach, stratifi cation, is discussed later in this section.

COMBINED EXPERIMENTAL AND ANALYTICAL CONTROL OF 
CONFOUNDING (FITZMAURICE, 2004)4

Generally, two approaches are used to constrain and curb confounding, and to 
adjust the data analysis for the effects of confounding: analysis by stratifi cation or 
the use of regression modeling. Both approaches are discussed and illustrated in 
this subsection.

ADJUSTMENT OF CONFOUNDING BY STRATIFICATION. Stratifi cation is an established 
and effective way to adjust for confounding in the analysis of cause-and-effect 
(exposure-and-outcome) experimental data. Consider the following hypothetical 
dataset from an investigation into the association between taking vitamin E supple-
ments and the risk of the occurrence of CHDs, shown in Figure 7.13.

CHD

Present Absent

Yes: 60 601

Vitamin E

Supplement No: 78 461

FIGURE 7.13 Association between vitamin E supplementation and the risk of CHD (hypothetical 
data frame).

This dataset has been taken from 1,200 case subjects between the ages of 40 and 
45 years who were CHD-free at the start of the study; they were followed for 20 
years. Over the 20-year follow-up period, those who developed CHD were iden-
tifi ed. The case subjects were classifi ed according to their use of vitamin E supple-
ments (the “exposure” variable).

Analysis of the data shown in Figure 7.13 indicates that:

O1 = The odds of CHD for those who used vitamin E supplements are 60/601
 = 0.100 (rounded); and
O2 = The odds of CHD for those who did not use vitamin E supplements are 78/461
 = 0.169 (rounded).

4 Dealing with confounding in the analysis. Retrieved from www.iarc.fr/en/publications/pdfs-
online/epi/cancerepi/CancerEpi-14.pdf

http://www.iarc.fr/en/publications/pdfsonline/epi/cancerepi/CancerEpi-14.pdf
http://www.iarc.fr/en/publications/pdfsonline/epi/cancerepi/CancerEpi-14.pdf
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This apparent association may be expressed in terms of the odds ratio (OR):

OR = O1/O2 = 0.100/0.169 = 0.592

This estimated OR may imply that the odds of developing CHD are reduced by 
almost 50%; that is, the odds of developing CHD are nearly halved by taking vitamin 
E supplementation. However, a potential problem with this analysis and conclusion 
is that these two groups may differ in ways other than their use of vitamin E supplements.

Suppose that we would prefer to consider the associated risk factors. Then

R1 = The risk of CHD for those who used vitamin E supplements is 60/(60 + 601)
 = 60/661 = 0.091

and

R2 = The risk for those who did not use vitamin E supplements is 78/(78 + 461)
 = 78/539 = 0.145

giving a risk ratio of

RR = R1/R2 = 0.091/0.145 = 0.628

and implying a substantially lower risk, in substantial agreement with the previous 
result.

As an example of confounding, the case subjects who used vitamin E supple-
ments may be much less likely to smoke, in which case there must be some concern 
that the association observed in Figure 7.13 is due, at least in part, to the confound-
ing effects of smoking (smoking is a well-established and major risk factor for CHD). 
To deal with this possibility, one may stratify (classify into groups with similar and 
defi nitive characteristics) the data in Figure 7.13 according to whether a case subject 
is a smoker. See Figure 7.14.

Smokers:

CHD

Present Absent

Yes: 13 48

Vitamin E

Supplement No: 59 240

Nonsmokers:

CHD

Present Absent

Yes: 47 553

Vitamin E

Supplement No: 19 221

FIGURE 7.14 The results stratifi ed by smoking history: association between vitamin E 
supplementation and the risk of CHD (hypothetical data frame).
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From these stratifi ed data, the odds of succumbing to CHD among the class 
who use vitamin E supplementation, relative to the class who do not, may now be 
calculated separately for smokers and for nonsmokers.

For the smokers, the estimated OR is

OR (Smokers) = (13/48)/(59/240) = 0.271/0.246 = 1.097

For the nonsmokers, the estimated OR is

OR (Nonsmokers) = (47/533)/(19/221) = 0.088/0.086 = 1.023

These results seem to indicate that, after controlling for the effects of smoking his-
tory, there is little or no evidence of an association between vitamin E supplementa-
tion and the risk of suffering CHD.

It should not escape attention that this apparently paradoxical result is due 
to the fact that the vitamin E supplementation group contains signifi cantly fewer 
smokers: 360 (= 13 + 48 + 59 + 240), which is only 30% of the total case-subject pop-
ulation of 1,200. Thus, 70% of the total test population are nonsmokers, who had a 
lower risk of succumbing to CHD.

The foregoing additional analysis, based on the stratifi ed data in Figure 7.14, 
demonstrates an effective technique for adjusting the effects of confounding in the 
initial analysis. In this approach, known as stratifi cation, the confounding effect 
is controlled via stratifi cation on levels of the potential confounder (which, in this 
example, is smoking history of the case subjects). In particular, confounding is con-
trolled when the association of interest is included within distinct groups, or strata, 
made up of subjects who are otherwise homogeneous relative to the confounding 
variable.

At this point, it should be apparent that one factor that may have an important 
bearing on the analysis is the sample sizes, as well as the relative sample sizes of the 
various strata within the total population. This issue may be addressed using the 
MH method of stratifi cation.

THE MH METHOD OF STRATIFICATION. The MH method of stratifi cation computes 
a pooled summary measure of association by taking a weighted average of the 
stratum-specifi c estimates, using weights proportional to the sample size within 
each stratum. These weights are inversely proportional to the variances of the stra-
tum-specifi c estimates of the OR, thus giving greater weight to the more precise 
estimates.

Consider the pooled estimate of the OR. Let there be K stratifi cation levels, with 
each level taking a separate stratifying variable: K = 2 for the dataset in Figure 7.14. 
The data may then be summarized in terms of K 2x2 contingency tables. In each 
table, the four internal cells contain frequency counts of the number of case sub-
jects having a particular combination of the two variables. Figure 7.15 shows such a 
generic table in which the rows correspond to an exposure (in this instance, vitamin 
E supplementation), and the columns correspond to disease status (in this instance, 
presence or absence of CHD).
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DISEASE 

Present Absent 

Yes:

Exposure (Cause) 

No:

ak

ck

bk

dk

FIGURE 7.15 Stratum-specifi c 2x2 contingency table for MH analysis.

The MH formula for the pooled estimate of the OR, derived from a series of 2x2 
contingency tables, is

 ORMH = {∑K
k=1(ak dk)/nk}/{∑K

k=1(bk ck)/nk} (7.1)

where nk is the total number of observations in the kth table (nk =ak + bk + ck + dk) and 
the summation in Equation (7.1) is taken over the K levels of the stratifi cation vari-
able. For example, the MH pooled estimate of the OR based on the data from the 
two contingency tables in Figure 7.14 is calculated as follows:

ORMH = {(13 × 240)/360 + (47 × 221)/840}/{(48 × 59)/360 + (553 × 19)/840}
 = (7.333 + 12.365)/(7.867 + 12.508)
 = 19.698/20.375
 = 0.967

As expected for these data, the pooled estimate of the OR is about 1.0, indicating 
that there is no evidence of association between vitamin E supplementation and the 
risk of succumbing to CHD, after controlling for the effects of smoking history.

Moreover, a confi dence interval (CI) for the adjusted OR may be calculated. 
The limits of the 95% CI for the adjusted OR are in the range of [0.14, 6.33], which 
includes the null value of 1.0 for the OR. This approximate 95% CI for the ln ORMH 
is estimated:

95% CI (ln ORMH) = (ln 0.95) ± 1.96 × 0.967
 = − 0.05 ± 1.96 × 0.967
 = − 0.05 ± 1.895
 = − 1.945 to 1.845

An approximate 95% CI for the ORMH may be obtained by taking antilogarithms:

95% CI [ORMH] = [e1.945, e1.845]

 = [0.14, 6.33]

The last result may be obtained via computations using the following R code 
 segment:

> exp(-1.945)
[1] 0.1429872
> exp(1.845)
[1] 6.3281
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Remarks:

1. When assessing the evidence for an association between two variables, the effect 
of confounders (measured or otherwise) must always be considered. If unad-
justed, confounding may lead to unacceptable conclusions: a causal effect may 
be suggested where none exists, or a true effect may be hidden. Each erroneous 
conclusion may lead to an incorrect interpretation or diagnosis.

2. Because of these error possibilities, confounding that cannot be controlled for in 
the study design should be adjusted in the analysis. The MH procedure, espe-
cially when performed by computer, provides a weighted average of the uncon-
founded, stratum-specifi c estimates of association.

3. When there are many potential confounders, resulting in strata with too few sub-
jects to make meaningful comparisons, stratifi cation may be much less attractive.

4. This leads to an alternative approach for adjusting for confounding in the anal-
ysis: examine the exposure effect in a regression model for the dependence of 
disease outcome on the exposure of interest and any potential confounders. This 
approach is discussed in the next subsection.

ADJUSTMENT OF CONFOUNDING BY REGRESSION MODELING (McNamee, 2005). As an 
introduction to regression analysis, consider the case of two variables measured on 
 continuous scales, with the object of investigating the infl uence of one variable on 
another. Here, regression analysis is used to begin the application of confounder  control.

 ■ Example 7.3: Adjusting confounding by regression modeling

Step 1: Starting with a simple basic model

In a given population, the investigators consider 160 nonsmoking case subjects. Vari-
able are age and the decline with age in the forced expiratory volume (FEV) in 1 second 
(FEV). The data on both variables, age and FEV, have been gathered from a cross-plot 
of the data, as shown in Figure 7.16.

Least squares regresion line
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FIGURE 7.16 Relationship between FEV and age in 160 male nonsmokers.
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Based on this data, a model of the relationship in the population may be proposed, 
where the model is specifi ed by a model form or model equations. If a linear relation-
ship is considered, the model would have the general form:

 Model 1: FEV = a + b(Age) + r (7.2)

The three unknown quantities in this model—a, b, and r—may be estimated in the 
analysis.

Recall that in analytical or coordinate geometry, the general equation for a straight 
line in the X–Y plane is

 y = m
1
x + b

1
 (7.3)

where m
1
 is the slope or gradient of the straight line, and b

1
 is the ordinate (y-value) of 

the intercept of the straight line with the y-axis: b = y (at x = 0).
The model in which r is ignored (by setting r = 0) is a description of the relation-

ship between “age” and the mean “FEV” among people of a given age. r is a random 
component assumed to vary from person to person. Inclusion of this term in the model 
allows recognition of the fact that people of the same age are not all the same, and 
thus their individual FEV values will vary about the mean for that age. Random variation 
is unpredictable, but it may be described by a statistical distribution. With continuous 
variables such as FEV, the random component is often assumed to have a normal dis-
tribution with a mean of zero.

Statistical methods may then be used to estimate the regression coeffi cients, a and 
b, and s(r), the standard deviation of r, from a data sample. Thus, in the least squares 
estimation method, the rationale is to choose values for a and b that minimize s(r) in the 
dataset. Application of this method to the data in Figure 7.16 gives estimates of:

a = 5.58 L
b = − 0.03 L/y of age, and
s(r) = 0.46 L

Hence, the “fi tted” model is

 FEV = 5.58 − 0.039(Age) + r (7.4)

Table 7.2 presents a typical output from a biostatistical computer program that fi ts 
Model 1 to the data, including 95% CI for a and b, and p values for tests of signifi cance. 
In each test, the null hypothesis is that the true value of the coeffi cient is zero. Thus, if 
b = 0, then age would have no effect on FEV. In this case, both the signifi cance test and 
the 95% CI suggest that b < 0.

TABLE 7.2 Typical Computer Output From Fitting Model 1 to the Data Estimation of Model 1 
Coeffi cients (From Data in Figure 7.16)

FEV COEFFICIENT STD ERROR T STATISTIC PROBABILITY 95% CI

Age b = − 0.0301 0.0032 − 9.52 < 0.001 − 0.0363 to − 0.0238

Constant a = 5.5803 0.1440 38.75 < 0.001 5.2960 to 5.8647

Mean Square Error, s(r) = 0.464 L.
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Remarks:

1. In Example 7.3, Model 1 is a linear model, which assumes that the mean FEV 
declines by a fi xed amount, −0.0301 liters (30.1 milliliters), per year in age.

2. Note that linearity was assumed, not proven, and that the biostatistical analysis 
simply estimated the coeffi cients of an assumed linear model.

3. Additional postestimation regression diagnostic methods (such as the analysis of 
residuals and various quantitative measures for identifying infl uential observations) 
are available to assess the goodness of fi t. Thus, one may take the modeling to a 
higher level, as illustrated in the next worked example.

Step 2: Extending the basic model with additional dependent variables: 
 Further adjusting confounding by regression modeling

It is thought that, for each case subject, the body height and the smoking history (the 
number of cigarettes smoked per day) may affect the FEV. Modifying Regression Model 
1, Equation (7.2), to include these additional variables, and assuming that each depen-

dent variable has a linear relationship with FEV, and that the joint effect of the three 

dependent variables (factors) is the sum of their separate effects, one may write:

 Model 2: FEV = a + b(Age) + c(Height) + d(Cigarettes) + r (7.5)

With this model and the same dataset, a standard statistical analysis would pro-
duce estimates of the coeffi cients a, b, c, and d, and s(r); the 95% CIs; and the null 
hypothesis test for each coeffi cient.

One may postulate that because FEV measures volumes, it should be expected 
that FEV will vary as the cube of height (Height)3, and this should be factored in for 
Model 2, to give Model 3:

 Model 3: FEV = a + b(Age) + c(Height)3 + d(Cigarettes) + e(Group) + r (7.6)

However, regression analysis may help which model form is more suitable, linear or cubic.
One may also consider if the magnitude of the effect of smoking should vary with 

age; this interactional effect is known as effect modifi cation. To that end, one might 
postulate an additional product term combining Age and Cigarettes. This would modify 
Model 2 to give Model 4:

 Model 4: FEV = a + b(Age) + c(Height)3 + d(Cigarettes)  
 + e(Age)(Cigarettes) + f(Group) + r (7.7)

Again, this will be followed by analysis to evaluate the coeffi cients: a, …, f, r. Clearly, 
one must decide how far this process should be taken.

Another general method available is the generalized additive model (GAM) (Hastie 
& Tibshirani, 1990; Wood, 2006), which takes the following form:

 Model 5: GAM:  g(E[FEV]) = a
0
+ f

1
(Age) + f

2
(Height) + f

3
(Cigarettes) + 

 f
4
(Group) + f

m
(x

m
) (7.8)

This model specifi es a distribution (such as a normal distribution or a binomial distri-
bution) and a link function g relating the expected value of the distribution to the m 
predictor variables, as well as attempts to fi t functions f

i
(x

i
) to satisfy Equation (7.8).
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The functions f
i
(x

i
) may be fi tted using parametric or nonparametric means, thus 

providing the potential for better fi ts to data than other methods. However, the method 
is very general.

 Using Regression Modeling for Controlling Confounding

In this approach to control confounding, the objective of the regression modeling is 
to discover the effect of the exposure on the disease, while controlling or adjusting 
for the others. The steps in the process are as follows:

1. Begin with a model equation in which the right side includes the terms repre-
senting the exposure and the potential confounders.

2. Next, enter the variable with the most biostatistically signifi cant relationship to 
the health outcome into the model.

3. Next, a second variable is chosen from the remainder on the basis that it adds the 
most “signifi cance” to the model created in the previous step.

4. Continue this process until additional variables would not increase signifi cance 
in the model.

It is entirely possible, when using available biostatistical packages, that differ-
ent automated procedures may result in different selections for the same dataset. 
As no biostatistical algorithm alone can identify all confounders, epidemiologic 
judgment based on subject-matter knowledge will be needed to complete the deci-
sion process. In other words, automated selection procedures should not be used to 
identify confounders, as these procedures may lead to inappropriate inclusions or 
exclusions in a model.

FURTHER MODIFICATIONS FOR CONTROLLING CONFOUNDING BY 
REGRESSION MODELING

A number of modifi cations have been developed and practiced to further control 
confounding by regression modeling. Some examples follow.

BY COMPARING GROUPS. When one is only able to classify the case subjects into 
groups such as low, medium, and high, the exposure is categorical. Such variables 
may be classifi ed as predictors on the right side of a model equation. For example, 
consider a case with the two categories Exposed and Unexposed, based on the pre-
ceding example for FEV in two groups, in which one plans to adjust the comparison 
for age, height, and smoking. The dataset contains a variable “Group,” which takes 
the value of 1 if the case subject is exposed, and 0 if the case subject is not exposed. 
Model 2 of Equation (7.5) can then be modifi ed to:

 Model 6: FEV = a + b(Age) + c(Height) + d(Cigarettes) + e(Group) + r (7.9)

in which the coeffi cient e is of primary interest. It represents the effect of increasing 
the variable Group by one unit—assuming that the model is correct and all other 
variables are held constant. It is the mean difference in FEV between being exposed 
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(Group = 1) and unexposed (Group = 0) when Age, Height, and Cigarettes were the 
same for each group.

LOGISTIC REGRESSION MODELS FOR DISEASE OUTCOMES. In the same epidemiologic 
investigation, if the outcome measure is the absence or presence of some respira-
tory sickness, it calls for a dichotomous variable with corresponding values 0 (for 
absence of disease) and 1 (for presence of disease).

The probability p of disease is then a function of Age, Cumulative Pack-Years of 
Cigarette Smoking, and Exposure Concentration, for which a model may be:

 Model 7: ln{p/(1 – p)} = a + b(Age) + c(Pack-Years) + d(Concentration) (7.10)

This is a logistic regression model. The term logistic represents the form of the 
left side of Equation (7.10). The random component is assumed to have a binomial 
distribution.

POISSON REGRESSION MODELS FOR DISEASE OUTCOMES. For incidence investiga-
tions in which the follow-up duration varies among the case subjects, a logistic 
regression model is not appropriate. In such investigations, the basic parameter of 
interest is the

 
Incidencedensity rate

Numberof casesof disease
Person Timeof o

=
−

Y
bbservationT  

The Poisson regression model is well suited for studying these rates.
Consider an occupational cohort study with two exposure groups under scru-

tiny for lung cancer over many years. A suitable Poisson regression model, with pre-
dictors Age, cigarette Pack-Years, and exposure Group, may take the following form:

 Model 8: ln(T) = a + b(Age) + c(Pack-Years) + d(Group) + r (7.11)

Because the random component of the model is assumed to follow a Poisson distri-
bution, this model is called a Poisson regression model.

 Confounding and Collinearity

WHAT IS COLLINEARITY? (CHILDREN’S MERCY HOSPITAL, 2000)

In biostatistics, collinearity occurs when there is a near-perfect linear relationship 
among some or all of the independent variables in a regression model. (It is also 
known as ill-conditioning, near-collinearity, or multicollinearity.) This situation may 
result in some redundancy or overlap among these variables. 

Collinearity may appear as a very high correlation between two independent 
variables. Another type of collinearity has several of the variables add up to some-
thing that is very close to a constant value.

Collinearity may cause a loss in biostatistical power, making interpretation 
more diffi cult. The following example shows confounding owing to simple collin-
earity between two apparently independent variables.
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 ■ Example 7.4: An example of collinearity5

This example shows that for continuous variables, confounding may occur owing to 
two variables being collinear with a third, as shown by the following R code segment:

> # Create a fi rst dependent variable x1 (rounding off to one decimal place):
> x1 <- round(rnorm(1000, mean = 0, sd=1), 1)
> # Next, create a second dependent variable x2 (accurate to one decimal place):
> x2 <- round(rnorm(1000, mean = 5, sd=3), 1)
> # Finally, create a third independent variable x3 that is a direct function of
> # x1 and x2:
> x3 <- 5*x1 + 3*x2
> # Now, create a binary outcome variable that depends on all three variables.
> # Note that the probability of the binomial is an R function inv.logit().
> y <- rbinom(1000, 1, exp(x1 + 3*x2 -5 * x3)/(1+ exp(x1 + 3*x2 -5 * x3)))
> collinear.dat <- data.frame(x1=x1, x2=x2, x3=x3, y=y)
> pairs(collinear.dat) # Outputting: Figure 7.17.
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FIGURE 7.17 Confounding and collinearity: high correlation is obvious, but assessing perfect 
collinearity requires further analysis.

> # Further analysis for collinearity
> output <- glm(y ~ x1 + x2 + x3, data = collinear.dat,
+  family=binomial)

Warning message:
glm.fit: fitted probabilities numerically 0 or 1 occurred

5 www.medicine.mcgill.ca/epidemiology/Joseph/courses/EPIB-621/main.html

http://www.medicine.mcgill.ca/epidemiology/Joseph/courses/EPIB-621/main.html
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> # Apparently R has detected collinearity; note the warning message below:
> summary(output) # Outputting:
Call: glm(formula = y ~ x1 + x2 + x3, family = binomial, data = collinear.dat)

Deviance Residuals:

Min 1Q Median 3Q Max
−2.122 0.000 0.000 0.000 1.815

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.8332 1.2312 0.677 0.49858
x1 −22.2919 6.9281 −3.218 0.00129 **
x2 −12.0320 3.7462 −3.212 0.00132 **
x3 NA NA NA NA
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 517.564 on 999 degrees of freedom Residual deviance: 18.205 on 
997 degrees of freedom AIC: 24.205

Number of Fisher Scoring iterations: 14
> # x3 has now been eliminated; other variables also are reasonably estimated.
> # To obtain the CIs automatically, rerun the model without x3, using the
> # built-in R function confint():
> output <- glm(y~x1+x2, data=collinear.dat.family = binomial)
> # Outputting:
Warning message:
glm.fit: fitted probabilities numerically 0 or 1 occurred

> # This message points to strong results, but not collinearity.
> confint(output)
Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) −1.351273 3.736777
x1 −41.218618 −12.389357
x2 −22.278406 −6.683552

There were 36 warnings (use warnings() to see them)
> # Checking a few fi tted values:
> output$fitted[1:5]

1 2 3 4 5
9.999559e-01 2.220446e-16 2.220446e-16 2.220446e-16 2.220446e-16

> # Note: Some values are close to zero, while others are higher.
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 Review Questions for Section 7.3

1. (a) In epidemiologic investigations, what is a confounder or confounding variable?
(b) Give two examples of such investigations and the associated confounders.

2. Name two biostatistical approaches for controlling confounding in epidemiologic 
investigations, and briefly describe each approach, giving examples.

3. If confounding is not properly adjusted, what are the possible consequences for the 
analytical results of an epidemiologic study? Give some examples.

4. Describe the commonly available combined experimental and analytical controls of 
confounding, and give examples.

5. Describe the MH method of stratification, and give an example of how it is used in 
controlling confounding.

6. Describe the use of regression modeling for the purpose of adjusting confounding 
in a biostatistical investigation. Give an example.

7. Write out five possible regression models suitable for adjusting confounding in 
public health studies, and give examples of their use.

8. (a) What is collinearity? Give an example.
(b) How can the function confint() be used for testing collinearity?

9. (a)  In survival analysis of longitudinal data, how does confounding affect the 
 computation?

(b) How may confounding be adjusted in such analysis?
10. (a)  In using the Cox proportional hazards regression model to fit a dataset, how 

are the data adjusted for confounding effects?
(b) If the same dataset were to be analyzed using the K–M plot, how does one 

control the confounding effects?

 Exercises for Section 7.3

1. Survival analysis: receiver operating characteristic (ROC) curves in R.
The ROC curve (shown in Figure 7.18) is a tool used in prediction and clas-

sification. It shows the trade-off between sensitivity and specificity—for a range of 
thresholds applied to an explanatory variable—to predict a binary outcome deci-
sion. The sensitivity versus specificity relationship is usually plotted, with the area 
under the curve often being used as a measure of discriminatory performance: 
1 = perfect and 0.5 = no better than a random guess.

The R function survivalROC(), in the CRAN package survivalROC, creates 
time-dependent ROC curves from censored survival data, using the K–M or 
 nearest-neighbor estimation (NNE) method of Heagerty, Lumley, and Pepe (2000).

The usage formula for the function survivalROC() is
survivalROC(Stime, status, marker, entry = NULL, predict.time,
  cut.values = NULL, method = "NNE",
  lambda = NULL, span = NULL,
  window = "symmetric")

for which the arguments are

Stime Event time or censoring time for subjects.

status Indicator of status; 1 if death or event, 0 otherwise.
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marker Predictor or marker value.

entry Entry time for the subjects.

predict.time Time point of the ROC curve.

cut.values Marker values to use as a cutoff for calculation of sensitivity 
and specificity.

method Method for fitting joint distribution of (x, t), either of K–M or 
NNE; the default method is NNE.

lambda Smoothing parameter for NNE.

span Span for the NNE; need either lambda or span for NNE.

window Window for NNE, either symmetric or asymmetric.

Suppose that you have censored survival data along with a baseline marker 
value and you would like to see how well the marker predicts the survival time for 
the subjects in the dataset. In particular, suppose that you have survival times in 
days and you want to see how well the marker predicts 1-year survival (predict.
time = 365 days). The function roc.KM.calc() returns the unique marker values 
TP (True Positive), FP (False Positive), K–M survival estimate corresponding to 
the time point of interest (predict.time), and AUC [area under (ROC) curve] at the 
time point of interest.

The function survivalROC() returns a list of the following items:

cut.values Unique marker values for calculation of TP and FP.

TP True positive corresponding to the cutoffs in x.
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FIGURE 7.18 An ROC curve.
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FP False positive corresponding to the cutoffs in x.

predict.time Time point of interest.

Survival K–M survival estimate at predict.time.

AUC Area under the ROC curve at time predict.time.

Using the dataset mayo, the following R code segment is used to generate an 
ROC curve as in Figure 7.18, using the NNE method:

> install.packages("survivalROC")
> library(survivalROC)
> ls("package:survivalROC")

[1] "survivalROC" "survivalROC.C"

> data(mayo)

mayo

time Censor mayoscore5 mayoscore4
1 41 1 11.251850 10.629450
2 179 1 10.136070 10.185220
3 334 1 10.095740 9.422995

……………………………………………………………………..

………………………………………………………………..……

312 533 0 6.115321 6.902997

> nobs <- NROW(mayo)
> nobs

[1] 312
> cutoff <- 365
>
> ## MAYOSCORE 4, METHOD = NNE:
> Mayo4.1= survivalROC(Stime=mayo$time,
+ status=mayo$censor,
+ marker = mayo$mayoscore4,
+ predict.time = cutoff,span = 0.25*nobs^(-0.20) )
> plot(Mayo4.1$FP, Mayo4.1$TP, type="l", xlim=c(0,1),
+ ylim=c(0,1),
+ xlab=paste( "FP", "\n", "AUC = ",round(Mayo4.1$AUC,3)),
+ ylab="TP",main="Mayoscore 4, Method = NNE \n Year = 1")
> abline(0,1)
> # Outputting: Figure 7.19.
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FIGURE 7.19 An ROC curve for dataset mayo using survivalROC(); method = NNE (nearest 
neighbor estimation).

(a) Explain the function of each line of the R code segment for this computation.
(b) Rerun this code segment in the R environment.
(c) Comment on the resulting plot.

2. Survival analysis: ROC curves in R. Again, using the dataset mayo, the following R 
code segment is used to generate an ROC curve (Figure 7.20), but using the K–M 
method:

>
> ## MAYOSCORE 4, METHOD = KM:
> Mayo4.2= survivalROC(Stime=mayo$time,
+ status=mayo$censor,
+ marker = mayo$mayoscore4,
+ predict.time = cutoff, method="KM")
> plot(Mayo4.2$FP, Mayo4.2$TP, type="l", xlim=c(0,1),
+ ylim=c(0,1),
+ xlab=paste("FP", "\n", "AUC = ,round(Mayo4.2$AUC,3)),
+ ylab="TP",main="Mayoscore 4, Method = KM \n Year = 1")
> abline(0,1)
> # Outputting: Figure 7.20.

(a) Explain the function of each line of the R code segment for this computation.
(b) Rerun this code segment in the R environment.
(c) Comment on the resulting plot.
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FIGURE 7.20 The ROC curve for dataset mayo using survivalROC(); method = Kaplan–Meier 
(K–M).

3. Survival analysis and confounding: CRAN package NestedCohort for survival 
analysis of epidemiologic investigations nested within cohorts (Katki & Mark, 2008, 
2009).

This package contains R functions that undertake survival analysis (K–M and 
Cox models) for epidemiologic investigations nested within cohorts; these functions 
are used for estimating hazard ratios, estimating survival probabilities, and stan-
dardizing for confounders. The function NestedCohort() is particularly appropriate 
for evaluating survival probabilities and known risks.

In the following worked example, the observations consisted of the esoph-
ageal cancer outcome and survival time on all case subjects, along with known 
confounders. The main investigational interest centered on the effect of the con-
centrations of various metals, especially zinc, on this cancer. However, measuring 
the effect of the concentrations required esophageal biopsy tissue and a costly 
measurement technique, and it was difficult and expensive to measure concentra-
tions on all the case subjects. Hence, the investigators measured concentration of 
zinc (along with copper, nickel, iron, calcium, and sulfur) on a selected sample of 
the cohort. This sample oversampled the cases and those with advanced baseline 
histologies (i.e., those most likely to become cases), as these were considered the 
most informative case subjects. Because of availability and cost constraints, less 
than 30% of the cohort could be sampled.

In this example, the function NestedCohort() provides adjusted hazard ratios, 
standardized survival probabilities, and population-attributable risks (PARs) for the 
effect of zinc on the cancer. In particular, in this example, the function nested.km() 
is used to estimate and fit the K–M survival curves to the nested cohort data.
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The R code segment for the analysis is as follows:

> install.packages("NestedCohort")
> library(NestedCohort)

Loading required package: survival
Loading required package: splines
Loading required package: MASS

> ls("package:NestedCohort")

[1] "nested.coxph" "nested.km" "nested.stdsurv"

> data(zinc)
> attach(zinc)
> zinc # Examining the details of the dataset.:

id8 Sex agepill agestr smoke drink anyhist
1 10100012 Female 53 51<=Age<=60 Never Never <NA>
2 10100123 Female 54 51<=Age<=60 Never Never <NA>
3 10300066 Male 54 51<=Age<=60 Never Ever <NA>

………………………………………………………………………………………….....….

……………………………………………………………………………………………….

440 32500344 Female 57 51<=Age<=60 Never Never No Family
History

basehist dysp1 dysp2 mildysp moddysp
1 Normal 1 0 Worst isn’t mild Worst isn’t moderate
2 Normal 1 0 Worst isn’t mild Worst isn’t moderate
3 Normal 1 0 Worst isn’t mild Worst isn’t moderate

………………………………………………………………………………………………

………………………………………………………………………………………………

440 Normal 1 0 Worst isn’t mild Worst isn’t moderate

Sevdysp ec01 futime01 zincset pcent
1 Worst isn’t severe 0 5980 Unobserved Elements NA
2 Worst isn’t severe 0 5980 Unobserved Elements NA
3 Worst isn’t severe 0 5980 Unobserved Elements NA

440 Worst isn’t severe 1 3973 Observed Elements −0.02219326
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Scent cacent fecent nicent cucent
1 NA NA NA NA NA
2 NA NA NA NA NA
3 NA NA NA NA NA

440 0.187727832 −1.08682017 0.662201065 −0.787517392 0.811040423

zncent pqt sqt caqt feqt niqt cuqt znqt pq1 pq2 pq3 pq4 sq1 sq2 sq3
1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

440 0.680324598 2 3 1 4 2 3 3 0 1 0 0 0 0 1

sq4 caq1 caq2 caq3 caq4 feq1 feq2 feq3 feq4 niq1 niq2 niq3 niq4 cuq1 cuq2
1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

440 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0

cuq3 cuq4 znq1 znq2 znq3 znq4 stdagepill znquartiles observed
1 NA NA NA NA NA NA −0.1818182 <NA> 0
2 NA NA NA NA NA NA 0.0000000 <NA> 0
3 NA NA NA NA NA NA 0.0000000 <NA> 0

440 1 0 0 0 1 0 0.5454545 Q3 1

> str(zinc)
'data.frame' : 431 obs. of 61 variables:
$ id8 :  int 10100012 10100123 10300066 10400038 10400106 10400245 

   10500252 10500267  10800011  10800049 ...
$ sex : Factor w/ 2 levels "Female","Male": 1 1 2 2 2 1 1 1 2 2 ...
$ agepill : int 53 54 54 44 44 43 49 48 41 61 ...
$ agestr :  Factor w/ 3 levels "Age<=50","51<=Age<=60",..: 2 2 2 1 1 1 1 1 1 3 

...
$ smoke : Factor w/ 2 levels "Never","Ever": 1 1 1 1 1 1 1 1 1 2 ...
$ drink : Factor w/ 2 levels "Never","Ever": 1 1 2 2 1 1 1 1 2 2 ...
$ anyhist :  Factor w/ 2 levels "No Family History",..: NA NA NA NA NA NA NA 

NA NA NA ...
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$ basehist : Factor w/ 7 levels "Normal","Esophagitis",..: 1 1 1 1 3 2 1 1 1 1 ...
$ dysp1 : int 1 1 1 1 3 2 1 1 1 1 ...
$ dysp2 : int 0 0 0 0 1 0 0 0 0 0 ...
$ mildysp : Factor w/ 2 levels "Worst isn’t mild",..: 1 1 1 1 2 1 1 1 1 1 ...
$ moddysp : Factor w/ 2 levels "Worst isn’t moderate",..: 1 1 1 1 1 1 1 1 1 1 ...
$ sevdysp : Factor w/ 2 levels "Worst isn’t severe",..: 1 1 1 1 1 1 1 1 1 1 ...
$ ec01 : num 0 0 0 0 0 0 0 0 0 0 ...
$ futime01 : int 5980 5980 5980 5980 5980 3404 5980 5980 5980 5980 ...
$ zincset : Factor w/ 2 levels "Unobserved Elements",..: 1 1 1 1 1 1 1 1 1 1 ...

$ pcent : num NA NA NA NA NA NA NA NA NA NA ...
$ scent : num NA NA NA NA NA NA NA NA NA NA ...
$ cacent : num NA NA NA NA NA NA NA NA NA NA ...
$ fecent : num NA NA NA NA NA NA NA NA NA NA ...
$ nicent : num NA NA NA NA NA NA NA NA NA NA ...
$ cucent : num NA NA NA NA NA NA NA NA NA NA ...
$ zncent : num NA NA NA NA NA NA NA NA NA NA ...
$ pqt : int NA NA NA NA NA NA NA NA NA NA ...
$ sqt : int NA NA NA NA NA NA NA NA NA NA ...
$ caqt : int NA NA NA NA NA NA NA NA NA NA ...
$ feqt : int NA NA NA NA NA NA NA NA NA NA ...
$ niqt : int NA NA NA NA NA NA NA NA NA NA ...
$ cuqt : int NA NA NA NA NA NA NA NA NA NA ...
$ znqt : int NA NA NA NA NA NA NA NA NA NA ...
$ pq1 : int NA NA NA NA NA NA NA NA NA NA ...
$ pq2 : int NA NA NA NA NA NA NA NA NA NA ...
$ pq3 : int NA NA NA NA NA NA NA NA NA NA ...
$ pq4 : int NA NA NA NA NA NA NA NA NA NA ...
$ sq1 : int NA NA NA NA NA NA NA NA NA NA ...
$ sq2 : int NA NA NA NA NA NA NA NA NA NA ...
$ sq3 : int NA NA NA NA NA NA NA NA NA NA ...
$ sq4 : int NA NA NA NA NA NA NA NA NA NA ...
$ caq1 : int NA NA NA NA NA NA NA NA NA NA ...
$ caq2 : int NA NA NA NA NA NA NA NA NA NA ...
$ caq3 : int NA NA NA NA NA NA NA NA NA NA ...
$ caq4 : int NA NA NA NA NA NA NA NA NA NA ...
$ feq1 : int NA NA NA NA NA NA NA NA NA NA ...
$ feq2 : int NA NA NA NA NA NA NA NA NA NA ...
$ feq3 : int NA NA NA NA NA NA NA NA NA NA ...
$ feq4 : int NA NA NA NA NA NA NA NA NA NA ...
$ niq1 : int NA NA NA NA NA NA NA NA NA NA ...
$ niq2 : int NA NA NA NA NA NA NA NA NA NA ...
$ niq3 : int NA NA NA NA NA NA NA NA NA NA ...
$ niq4 : int NA NA NA NA NA NA NA NA NA NA ...
$ cuq1 : int NA NA NA NA NA NA NA NA NA NA ...
$ cuq2 : int NA NA NA NA NA NA NA NA NA NA ...
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$ cuq3 : int NA NA NA NA NA NA NA NA NA NA ...
$ cuq4 : int NA NA NA NA NA NA NA NA NA NA ...
$ znq1 : int NA NA NA NA NA NA NA NA NA NA ...
$ znq2 : int NA NA NA NA NA NA NA NA NA NA ...
$ znq3 : int NA NA NA NA NA NA NA NA NA NA ...
$ znq4 : int NA NA NA NA NA NA NA NA NA NA ...
$ stdagepill : num -0.182 0 0 -1.818 -1.818 ...
$ znquartiles :  Factor w/ 4 levels "Q1","Q2","Q3",..: NA NA NA NA NA NA NA NA 

NA NA ...
$ observed : num 0 0 0 0 0 0 0 0 0 0 ...

>
> mod <- nested.km(survfitformula =
+  "Surv(futime01,ec01==1)~znquartiles",
+ samplingmod = "ec01*basehist", exposureofinterest = "Q4",
+ data = zinc)

Risk Differences vs. znquartiles=Q4 by time 5980

Risk Difference StdErr 95% CI Left 95% CI Right
Q4 - Q1 0.2817534 0.10416236 0.07759516 0.4859116
Q4 - Q2 0.0555103 0.07565667 −0.09277677 0.2037974
Q4 - Q3 0.1068147 0.08073547 −0.05142680 0.2650562

> summary(mod)

Call: survfit(formula = as.formula(survfitformula), data = data, 
weights = 1/p.i.h.a.t.,

na.action = na.omit, type = "fl")

308 observations deleted due to missingness
  znquartiles=Q1

Time n.risk n.event survival std.err lower 95% CI upper 95% CI
1037 59.8 1.42 0.977 0.0235 0.840 0.997
4143 44.4 1.42 0.946 0.0388 0.789 0.987
5189 41.1 1.37 0.915 0.0514 0.736 0.975

…………………………………………………………………………….…..……

………………………………………………………………………………….…..

5893 59.8 1.57 0.633 0.0862 0.441 0.775
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  znquartiles=Q2

Time n.risk n.event survival std.err lower 95% CI upper 95% CI
1038 116.9 1.57 0.987 0.0133 0.909 0.998
1064 115.3 4.51 0.949 0.0260 0.864 0.981
1070 110.8 2.33 0.929 0.0324 0.830 0.971

……………………………………………………………………………..………..

…………….………………………………………………………………...………

4139 63.5 1.37 0.859 0.0520 0.718 0.933

  znquartiles=Q3

time n.risk n.event survival std.err lower 95% CI upper 95% CI
318 125.1 1.20 0.990 0.00948 0.934 0.999
733 123.9 1.20 0.981 0.01340 0.926 0.995
1001 122.7 1.37 0.970 0.01759 0.907 0.991

…………………………………………………………………………………….

…………………………………………………………………………………….

5351 64.6 1.42 0.808 0.05800 0.662 0.896

  znquartiles=Q4

Time n.risk n.event survival std.err lower 95% CI upper 95% CI
1037 59.8 1.42 0.977 0.0235 0.840 0.997
4143 44.4 1.42 0.946 0.0388 0.789 0.987
5189 41.1 1.37 0.915 0.0514 0.736 0.975

> plot(mod, ymin = 0.6, xlab = "Time in days",
+  ylab = "Survival probabilities",
+  main = "Survival Analysis by Quartile of Zinc",
+  lty = 1:4)
> legend(1000,0.7, c("Q1", "Q2", "Q3", "Q4"), lty=1:4)
> # Outputting: Figure 7.21.

(a) Explain the function of each line of the R code segment for this computation.
(b) Rerun this code segment in the R environment.
(c) Comment on the resulting plot (Figure 7.21).
(d) In this analysis, how is confounding adjusted?
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FIGURE 7.21 K–M survival analysis curves for cancer survival by each quartile of zinc, standardized 
for confounders.

4. Survival analysis: The CRAN package survivalBIV (bivariate distribution function) 
(Moreira et al, 2012).

The CRAN package survivalBIV estimates the bivariate distribution function for 
sequentially ordered events under univariate censoring. This package contains a 
number of R functions designed for special applications in survival analysis. Some 
of these applications are illustrated here.
(a) A conditional Kaplan–Meier (CK–M) estimator: bivCKM(). This function pro-

vides estimates for the bivariate distribution function for the CK–M estimator, 
and has a usage formula of the form:

bivCKM(object, t1, t2, conf = FALSE, n.boot = 1000,
conf.level = 0.95, method.boot = "percentile")

with the following arguments:

object An object of class survBIV.
t1  The first time for obtaining estimates for the bivariate distribution 

 function; if missing, 0 will be used.
t2  The second time for obtaining estimates for the bivariate distribu-

tion function; if missing, the maximum of time2 will be used.
Conf Provides point-wise confidence bands; defaults to FALSE.
n.boot The number of bootstrap samples; defaults to 1,000 samples.
conf.level Level of confidence; defaults to 0.95 (corresponding to 95%).
method.boot  Method used to compute bootstrap CIs. Possible options are “per-

centile” and “basic”; defaults to “percentile.”
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The following R code segment illustrates the use of this function when applied to 
the dataset bladderBIV (contained in the package survivalBIV):

> install.packages("survivalBIV")
> library(survivalBIV)
Loading required package: prodlim
Loading required package: KernSmooth
KernSmooth 2.23 loaded
Copyright M. P. Wand 1997-2009

> ls("package:survivalBIV")

[1] "bivCKM" "bivIPCW" "bivKMPW"
[4] "bivKMW" "bladderBIV" "corrBIV"
[7] "dgpBIV" "is.survBIV" "plot.survBIV"
[10] "summary" "survBIV" "survBIV"

> data("bladderBIV")
> bladderBIV_obj <- with(bladderBIV, survBIV(time1, event1,
+ time2, event2))
> bivCKM(object = bladderBIV_obj, t1 = 5, t2 = 20)
0.1920702
> #or
> bladderBIV_obj <- survBIV(bladderBIV$time1,
+  bladderBIV$event1, bladderBIV$time2,
+  bladderBIV$event2)
> bivCKM(object = bladderBIV_obj, t1 = 5, t2 = 20, conf = TRUE,
+ conf.level = 0.9)

5% 95%
0.1920702 0.1185156 0.2657545

(a) Explain the function of each line of the R code segment for this computation.
(b) Rerun this code segment in the R environment.
(c) Comment on the results.
(d) Another R function in this package is bivIPCW(), which provides estimates for 

the bivariate distribution function for the inverse probability of censoring weight-
ed (IPCW) estimator. The following R code segment applies this function to the 
same dataset bladderBIV:

> data("bladderBIV")
> bladderBIV_obj <- with(bladderBIV, survBIV(time1, event1,
+  time2, event2))
> bivIPCW(object = bladderBIV_obj, t1 = 5, t2 = 20,
+  method.cens = "prodlim")

Run this R code segment, and comment on the result:

0.1868247
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> #or
> bladderBIV_obj <- survBIV(bladderBIV$time1,
+   bladderBIV$event1, bladderBIV$time2,
+   bladderBIV$event2)
> bivIPCW(object = bladderBIV_obj, t1 = 5, t2 = 20,
+      conf = TRUE, conf.level = 0.9,
+ method.boot = "basic")

5% 95%
0.1866335 0.1105516 0.2646384

> data("bladderBIV")
> bladderBIV_obj <- with(bladderBIV, survBIV(time1, event1,
+  time2, event2))
> bivKMPW(object = bladderBIV_obj, t1 = 5, t2 = 20)
0.1897386
> #or
> bladderBIV_obj <- survBIV(bladderBIV$time1,
+  bladderBIV$event1, bladderBIV$time2,
+  bladderBIV$event2)
> bivKMPW(object = bladderBIV_obj, t1 = 5, t2 = 20,
+  conf = TRUE, conf.level = 0.9)

5% 95%
0.1897386 0.1202276 0.2619701

> data("bladderBIV")
> bladderBIV_obj <- with(bladderBIV, survBIV(time1, event1,
+  time2, event2))
> bivKMW(object = bladderBIV_obj, t1 = 5, t2 = 20)
0.1921058
> # or
> bladderBIV_obj <- survBIV(bladderBIV$time1,
+  bladderBIV$event1, bladderBIV$time2,
+  bladderBIV$event2)
> bivKMW(object = bladderBIV_obj, t1 = 5, t2 = 20,
+  conf = TRUE, conf.level = 0.9)

5% 95%
0.1921058 0.1180276 0.2656078

> # Example for the bivariate exponential distribution:
> dgpBIV(n = 100, corr = 1, dist = "exponential",
+  model.cens = "uniform",
+ cens.par = 3, dist.par = c(1, 1), to.data.frame = TRUE)
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time1 event1 time2 event2
1 0.0005895626 1 0.75564858 1
2 0.6982030278 1 0.23072713 1
3 0.0558737679 1 0.85410701 1
4 0.6485372734 1 0.52543358 0
5 0.6713170423 0 0.00000000 0
6 0.8790889907 1 0.03043959 1
7 0.6068865498 1 0.10316399 1
8 0.0975181995 1 0.95176635 1
9 0.7997097191 0 0.00000000 0
10 0.2697271148 0 0.00000000 0
11 0.4367546837 0 0.00000000 0
12 0.2809143670 1 1.17781751 0
13 1.2135338530 1 0.10468994 1
14 1.4306760170 1 0.56626825 0
15 0.1780562948 0 0.00000000 0
16 0.3228512866 1 0.99409678 0
17 0.3177933234 1 0.99625677 0
18 0.2284733959 1 0.23741045 0
19 0.5274914715 1 0.30927187 1
20 0.2926479652 1 0.87673844 1
21 0.5181994882 1 0.84130949 1
22 1.6557341524 1 0.84904600 0
23 0.2561566898 1 0.02706028 1
24 1.0438891871 1 0.69471175 0
25 0.1166925130 0 0.00000000 0
26 0.2389276870 1 0.93371568 1
27 0.9899928542 1 1.72177471 0
28 0.2674041729 1 0.04035089 1
29 0.0177538705 0 0.00000000 0
30 0.7928811121 1 0.11645234 1
31 0.4532970815 1 0.81096417 1
32 0.9278468457 0 0.00000000 0
33 0.3206757427 1 0.27408256 1
34 0.2955963112 1 0.25176147 0
35 0.4530449047 1 0.12346276 1
36 1.9161922988 0 0.00000000 0
37 0.8300401610 0 0.00000000 0
38 0.2012449917 1 0.25938102 1
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39 0.3447902738 1 0.02007339 1
40 0.9947645486 1 0.45997132 0
41 0.2069979079 1 0.28359194 1
42 0.5122642969 0 0.00000000 0
43 0.6378745642 1 0.06128698 1
44 1.9400842474 0 0.00000000 0
45 0.6603214571 0 0.00000000 0
46 0.6634516153 0 0.00000000 0
47 0.1856409729 1 0.23703461 1
48 0.9697090527 0 0.00000000 0
49 0.3939246334 1 0.12125044 0
50 0.0515332760 1 0.07251975 1
51 2.0156175639 0 0.00000000 0
52 1.2559016843 1 0.04350289 0
53 1.3967063204 1 0.18671369 1
54 0.9279630573 1 0.08916433 0
55 0.8164238634 1 0.05462287 1
56 0.0245129673 0 0.00000000 0
57 0.5157781137 1 0.26861503 1
58 0.3728056342 1 0.07303738 0
59 0.6157245501 1 0.41411110 0
60 0.4798975375 1 0.36525051 1
61 0.7601117366 0 0.00000000 0
62 0.4095801464 1 0.87768139 1
63 0.6044178131 1 0.04452789 0
64 0.0403524034 0 0.00000000 0
65 0.8983658056 0 0.00000000 0
66 0.4816842741 1 0.09519841 0
67 0.0310373344 1 0.36791676 1
68 0.9049734917 1 0.26968932 1
69 1.0606460375 1 1.37214910 1
70 0.1874751560 1 0.54789536 1
71 0.2055806991 1 0.94832239 1
72 1.8742257392 0 0.00000000 0
73 2.5159698048 1 0.26259136 1
74 2.6107399651 1 0.01456952 0
75 0.6080606624 0 0.00000000 0
76 2.2104980203 0 0.00000000 0
77 0.6895901640 0 0.00000000 0
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78 0.1329671829 0 0.00000000 0
79 0.1822175515 1 0.13577832 1
80 0.6162270399 1 0.31167067 1
81 1.1962075245 0 0.00000000 0
82 1.0517517613 1 0.30542583 0
83 0.2711551202 1 0.93749705 0
84 0.4736238314 1 0.42495908 1
85 0.1668557518 0 0.00000000 0
86 0.4283004184 1 0.13572692 1
87 1.4244481432 1 0.25146951 1
88 0.2768717642 1 0.27988718 1
89 0.0087164905 1 0.03962044 1
90 2.4277168578 0 0.00000000 0
91 0.2097113177 0 0.00000000 0
92 0.0021386391 1 0.16532315 1
93 0.6734751035 1 1.46594482 0
94 1.8577060935 0 0.00000000 0
95 0.1409383491 0 0.00000000 0
96 0.7416686579 1 0.83971735 1
97 2.0469178744 0 0.00000000 0
98 0.5584133468 1 0.58440127 0
99 2.0667516228 1 0.07517950 1
100 0.2160539478 0 0.00000000 0

> # Example for the bivariate Weibull distribution:
> dgpBIV(n = 100, corr = 1, dist = "weibull", model.cens =
+ "exponential",
+ cens.par = 0.08, dist.par = c(2, 7, 2, 7))

$data

time1 event1 time2 event2 Stime
1 1.388147729 0 0.0000000 0 1.388147729
2 0.743709478 0 0.0000000 0 0.743709478
3 4.311593760 1 2.2516124 0 6.563206116
4 4.470056068 0 0.0000000 0 4.470056068
5 5.997286522 0 0.0000000 0 5.997286522
6 0.005249357 0 0.0000000 0 0.005249357
7 2.609313119 0 0.0000000 0 2.609313119
8 7.146119245 1 0.3176864 0 7.463805680
9 6.447898338 1 5.9024270 1 12.350325305
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10 4.169294109 1 4.2948521 1 8.464146250
11 8.247212600 1 4.7068117 0 12.954024341
12 3.595728674 1 6.0022950 1 9.598023643
13 10.117623649 1 3.7784823 0 13.896105950
14 8.209468634 0 0.0000000 0 8.209468634
15 7.006549462 1 9.0528632 1 16.059412663
16 6.835012301 1 2.7363197 0 9.571331956
17 8.472035429 1 3.5261148 0 11.998150183
18 2.849277534 1 8.8820817 1 11.731359253
19 3.051419189 1 6.6459485 1 9.697367718
20 6.553231439 1 0.7711965 1 7.324427896
21 11.004396078 1 6.2054960 1 17.209892032
22 2.567791299 1 7.7498997 0 10.317690996
23 4.204659119 1 10.1619853 1 14.366644423
24 7.360276219 0 0.0000000 0 7.360276219
25 2.734720899 0 0.0000000 0 2.734720899
26 2.904995325 1 6.7961131 1 9.701108398
27 11.153064089 1 1.6165403 1 12.769604432
28 6.035556386 1 1.7032070 1 7.738763414
29 7.222186275 1 7.4833385 1 14.705524741
30 5.468072242 0 0.0000000 0 5.468072242
31 12.965649468 1 3.1403897 1 16.106039130
32 3.061703269 1 0.7260095 0 3.787712725
33 3.751140080 1 9.1630566 0 12.914196669
34 1.680568964 1 3.8075400 0 5.488108939
35 4.353856486 1 6.9240779 1 11.277934414
36 0.572074048 0 0.0000000 0 0.572074048
37 6.673796084 1 5.2544671 1 11.928263191
38 7.689879433 1 7.5970093 1 15.286888712
39 10.583878851 1 2.0478638 0 12.631742695
40 4.089472140 0 0.0000000 0 4.089472140
41 11.093751137 1 0.9952871 0 12.089038279
42 0.756349065 0 0.0000000 0 0.756349065
43 2.838233864 0 0.0000000 0 2.838233864
44 5.285847816 0 0.0000000 0 5.285847816
45 5.899664003 1 5.8729714 1 11.772635387
46 5.924026349 1 1.2014802 1 7.125506594
47 2.294302556 1 5.7817984 1 8.076100916
48 7.228772283 1 0.8191344 0 8.047906647
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49 6.849679163 1 4.2819505 1 11.131629712
50 6.960093893 1 6.7772215 0 13.737315346
51 3.703865355 1 13.3599371 1 17.063802422
52 2.978508038 0 0.0000000 0 2.978508038
53 0.632452127 0 0.0000000 0 0.632452127
54 4.437267513 0 0.0000000 0 4.437267513
55 11.433835033 0 0.0000000 0 11.433835033
56 0.026654385 0 0.0000000 0 0.026654385
57 4.366620830 1 4.6884216 1 9.055042468
58 2.086997694 0 0.0000000 0 2.086997694
59 4.386038504 1 4.1407420 0 8.526780544
60 0.166223885 0 0.0000000 0 0.166223885
61 5.881654616 1 4.8989473 1 10.780601869
62 4.387691111 0 0.0000000 0 4.387691111
63 3.327461537 0 0.0000000 0 3.327461537
64 5.439083596 1 5.9484436 1 11.387527240
65 3.043832240 0 0.0000000 0 3.043832240
66 3.866050823 0 0.0000000 0 3.866050823
67 9.206512038 1 1.9021350 1 11.108647010
68 2.077167493 0 0.0000000 0 2.077167493
69 1.169742962 0 0.0000000 0 1.169742962
70 7.836676569 0 0.0000000 0 7.836676569
71 3.094922049 1 7.5165716 1 10.611493699
72 5.456891474 1 3.0843889 0 8.541280357
73 6.777679345 1 1.6365333 1 8.414212682
74 4.037906132 1 6.6897972 1 10.727703306
75 0.513964477 0 0.0000000 0 0.513964477
76 6.690673682 1 1.0181006 1 7.708774302
77 13.279659553 1 13.3269520 1 26.606611569
78 3.841746730 1 4.1038628 1 7.945609505
79 1.444641809 0 0.0000000 0 1.444641809
80 2.937351998 1 2.8168339 0 5.754185881
81 1.223288129 1 6.1965012 1 7.419789348
82 1.275968027 0 0.0000000 0 1.275968027
83 3.611468174 0 0.0000000 0 3.611468174
84 6.549168425 1 1.3645790 1 7.913747386
85 7.801177148 1 3.5133309 1 11.314508024
86 6.137463114 1 16.4784673 1 22.615930434
87 7.846500803 0 0.0000000 0 7.846500803
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88 3.163988848 1 9.5916571 1 12.755645964
89 2.120092746 1 6.5040954 1 8.624188137
90 0.664639455 0 0.0000000 0 0.664639455
91 3.582123312 0 0.0000000 0 3.582123312
92 0.886321417 0 0.0000000 0 0.886321417
93 6.554446964 1 0.3444679 0 6.898914900
94 5.485892578 1 2.4127827 1 7.898675250
95 0.434836076 0 0.0000000 0 0.434836076
96 3.084640881 1 3.4676929 0 6.552333769
97 7.621512087 1 12.4836850 1 20.105197113
98 3.049349878 0 0.0000000 0 3.049349878
99 7.862905945 1 9.2293236 1 17.092229502
100 0.869275234 0 0.0000000 0 0.869275234

attr(,"class")
[1] "survBIV"

>

5. Plot methods for a survBIV object.
The following R code segments provide the plots for the bivariate distribution 
 function and marginal distribution, such as those in Exercise 4:

> install.packages("survivalBIV")
> library(survivalBIV)

Loading required package: prodlim
Loading required package: KernSmooth
KernSmooth 2.23 loaded
Copyright M. P. Wand 1997-2009

> ls("package:survivalBIV")

[1] "bivC "bivIPCW" "bivKMPW"
[4] "bivKMW" "bladderBIV" "corrBIV"
[7] "dgpBIV" "is.survBIV" "plot.survBIV"

[10] "summary" "survBIV" "survBIV"

> data("bladderBIV")
> bladderBIV_obj <- with(bladderBIV, survBIV(time1, event1,
+  time2, event2))
>
> op <- par(mfrow = c(2, 2))
> plot(bladderBIV_obj, plot.marginal = TRUE, method = "CKM")
Waiting to confirm page change...
> plot(bladderBIV_obj, plot.marginal = TRUE, method = "IPCW")
> plot(bladderBIV_obj, plot.marginal = TRUE, method = "KMPW")
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> plot(bladderBIV_obj, plot.marginal = TRUE, method = "KMW")
> par(op)
> # Outputting: Figure 7.22 survivalBIV-1.

0

0.
0

0.
1

0.
2

E
st

im
at

ed
 m

ar
gi

na
l d

is
t. 

F
2(

t)

0.
3

0.
4

10 20

Time

CKM

30 40

0

0.
0

0.
1

0.
2

E
st

im
at

ed
 m

ar
gi

na
l d

is
t. 

F
2(

t)

E
st

im
at

ed
 m

ar
gi

na
l d

is
t. 

F
2(

t)

0.
3

0.
4

10 20

Time

KMWKMPW

30 40

0

0.
0

0.
1

0.
2

E
st

im
at

ed
 m

ar
gi

na
l d

is
t. 

F
2(

t)

0.
3

0.
4

0.
6

10 20

Time

IPCW

30 40 50 60

0

0.
0

0.
1

0.
2

0.
3

0.
4

10 20

Time

30 40

FIGURE 7.22 survivalBIV-1.

> plot(bladderBIV_obj, plot.marginal = TRUE,
+ plot.bivariate = TRUE, method = "CKM")

Waiting to confirm page change...
> # Outputting: Figure 7.23 survivalBIV-CKM-1.

Waiting to confirm page change...
> # Outputting: Figure 7.24 survivalBIV-CKM-2.

Waiting to confirm page change...
> # Outputting: Figure 7.25 survivalBIV-CKM-3.

> plot(bladderBIV_obj, plot.bivariate = TRUE, method = "IPCW")



7.3 Confounding in Survival Analysis 409

Waiting to confirm page change...
> # Outputting: Figure 7.26 survivalBIV-IPCW-1.
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Waiting to confirm page change...
> # Outputting: Figure 7.27 survivalBIV-IPCW-2.

> plot(bladderBIV_obj, plot.persp = TRUE, method = "KMPW")
Waiting to confirm page change...
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> # Outputting: Figure 7.28 survivalBIV-KMPW.

> plot(bladderBIV_obj, plot.contour = TRUE, method = "KMW")

Waiting to confi rm page change...
> # Outputting: Figure 7.29 survivalBIV-KMW.
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 7.4 LOGISTIC REGRESSIONS

In biostatistics, as well as in statistics, some outcomes take the form of a categorical 
dependent variable, which is a dependent variable that can take on a limited num-
ber of categories, based on one or more predictor variables.

A binomial or binary categorical dependent variable refers to the instance in 
which the observed outcome can have only two possible types, such as:

“Yes” versus “No”
“Pass” versus “Fail”
“Sick” versus “Well”
“Dead” versus “Alive”
“High” versus “Low”
“Probability = 1” versus “Probability = 0”

All of these may be represented by “1” versus “0.”
In contrast, a multinomial categorical dependent variable can have three or 

more possible types, such as:

“Better” versus “Unchanged” versus “Worse”
“High” versus “Medium” versus “Low”
“Size 4” versus “Size 3” versus “Size 2” versus “Size 1”

If the relative probability of each outcome is xi, then for possibility I, for the general 
case of n possible outcomes:

x1 + x2 + x3 + … + xn = 1
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To model the categorical dependent variables that have limited ranges, one 
approach is to use a logistic regression model analysis (Everitt & Hothorn, 2006; 
Daniel, 2005; Dalgaard, 2002). Chapter 3 presented linear regression analysis involv-
ing one, two, or several variables in Section 3.5.

For a univariate system, the simple linear regression model may be expressed 
by the equation:

 y = b0 + b1x + e (7.12A)

in which
x is the value independent variable X,
y is an arbitrary observed value of the continuous dependent variable Y,
b0 and b1 are the coeffi cients of the linear regression, and 
e is the error term.

In a linear regression, when the observed value of Y is my|x (the mean of a subset of 
Y values for a given value of X), the quantity e (the difference between the observed 
Y and the regression line) is zero. Equation (7.12) may thus be written as follows:

 my|x = b0 + b1x (7.13A)

or

 E(y|x) = b0 + b1x (7.14A)

In general, the right side of Equations (7.12A), (7.13A), and (7.14A) may have any 
value between negative infi nity and positive infi nity.

 Inappropriateness of the Simple Linear Regression When y Is a Categorical 
Dependent Variable

When y is a dichotomous variable (a simple categorical dependent variable having 
only two possible outcomes; e.g., “1” or “0”), the simple linear regression model 
just discussed is not appropriate because the mean (the expected value of Y) is the 
probability that Y = 1 and is therefore limited to the range of 0 to 1, inclusive. This 
contradicts the property shared by Equations (7.12A), (7.13A), and (7.14A); namely, 
that the right side may take any value.

 The Logistic Regression Model

In this model, one may let p be the probability that Y = 1:

 p = P(Y = 1) (7.15)

The ratio p/(1 – p) may be considered as follows:

(the probability of a Success for y)/(1 − the probability of a Success for y)
 = (the probability of a Success for y)/(the probability of a Failure for y)
 = the odds, p, of the Response 0 taking the value of 1.
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Thus, the ratio p/1 – p) can assume values between negative infi nity (− ∞) and pos-
itive infi nity (+ ∞), as is required by the right side of Equations (7.12), (7.13), and 
(7.14). Hence, one may rewrite it as

 log[p/(1 – p)] = b0 + b1x (7.16A)

This is known as the logistic regression model. The transformation of my|x (i.e., p) 
to log[p/(1 – p)] is known as the logit transformation. Equation (7.16A) may also 
be written as

 p = exp(b0 + b1x)/[1 + exp(b0 + b1x)], (7.17A)

in which exp is the inverse of the natural logarithm loge or ln.

 The Logit

The logit of the probability p is the log of the odds π of the response taking the value of 1:

 logit (p) = log[p/(1 – p)] (7.18)

This logistic regression model is commonly used in biostatistics, epidemiology, and 
the health sciences, particularly when a categorical dependent variable is investi-
gated. In epidemiologic analysis, it is commonly applied in attempts to model the 
probability (or the risk) that a case subject will acquire a particular disease during 
some specifi c duration in which the subject is exposed to conditions known to be 
associated with that disease.

For a multivariate system, the resultant equations corresponding to Equations 
(7.12A), (7.13A), (7.14A), (7.16A), and (7.17A) are, respectively:

 y = b0 + b1x1 + b2x2 + b3x3 + … + bnx + e (7.12B)

 my|x = b0 + b1x1 + b2x2 + b3x3 + … + bnxn (7.13B)

 E(y|x) = b0 + b1x + b2x2 + b3x3 + … + bnxn (7.14B)

 log[p/(1 – p)] = b0 + b1x + b2x2 + b3x3 + … + bnxn (7.16B)

 p = exp(b0 + b1x + b2x2 + b3x3 + … + bnxn)/

 [1 + exp(b0 + b1x + b2x2 + b3x3 +…+ bnxn] (7.17B)

 Logistic Regression Analysis

This class of analysis is usually performed using biostatistical models belonging to 
the class of generalized linear models (see Chapter 3, Section 3.5, on univariate, bivar-
iate, and multivariate data analysis). These models are generally characterized by the 
following elements:

1. a response distribution, such as the binomial and Poisson distributions, and
2. a link function that transfers the mean value to a scale where the relationship to 

other variables may be expressed as additive and linear. For logistic regression 
analysis, the link function is usually logit p, as given by Equation (7.18).
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For example, in the analysis of count data, the multiplicative Poisson model may be 
used, in which case the link function is log l, where l is the mean of the observed 
Poisson distribution.

All these models may be treated by the same algorithm, permitting the analyst 
to defi ne suitable link functions.

 Generalized Linear Models in R

This topic was presented in Chapter 3, Section 3.5 (which discussed univariate, 
bivariate, and multivariate data analysis), where it was shown that, in R, generalized 
linear models are applied using the function glm(), which is similar to the familiar 
function lm(). These two functions are also very similar in application, in that both 
functions use the same model formulas and extractor functions (such as summary(), 
etc.). However, the function glm() requires a designated generalized linear model, 
which may be achieved using the family argument within the function glm().

The following worked example illustrates practical logistic regressional model-
ing in biostatistical applications in epidemiology and public health.

 ■ Example 7.5: Logistic regression for predicting a binary-valued clinical variable 
using a binomial regression link

The data package faraway contains 124 sets of results of clinical investigations of a 
large number of case subjects regarding certain metabolic syndromes (such as diabe-
tes). Within this package is a dataset named pima containing the records of certain 
health conditions of 768 case subjects (each including the diagnosis of diabetes) and 
their corresponding body mass index (BMI) bmi.

(a) Using logistic regression, show that a diagnosis of diabetes in a case subject is 
signifi cantly linked to that case subject’s BMI.

(b) Estimate the probability for someone whose BMI is 35 to have diabetes.
(c) For someone in the 95% percentile probability of having diabetes, estimate the 

probability for that person to have a BMI of 35.

Solutions:
The following R code segment undertakes the computations for this example. First, call 
up the package faraway, and then examine the dataset pima:

R version 2.15.2 (2012-10-26) -- "Trick or Treat"
Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and 'citation()' on how to cite R or R 
packages in publications.
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Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an 
HTML browser interface to help.
Type 'q()' to quit R.

[Previously saved workspace restored]

First, examine the data fi le under investigation:

>
> install.packages("faraway")
Installing package(s) into ‘C:/Users/bertchan/Documents/R/win-library/2.15’
(as ‘lib’ is unspecified)
--- Please select a CRAN mirror for use in this session ---
trying URL ‘http://cran.stat.ucla.edu/bin/windows/contrib/2.15/faraway
_1.0.5.zip’

Content type 'application/zip' length 593494 bytes (579 Kb)
opened URL
downloaded 579 Kb
package 'faraway' successfully unpacked and MD5 sums checked

The downloaded binary packages are in
C:\Users\bertchan\AppData\Local\Temp\RtmpwPV84x\downloaded
_packages

> library(faraway)
> ls("package:faraway")

[1] "aatemp" "abrasion" "aflatoxin" "africa" "alfalfa" 
[6] "amlxray" "babyfood" "beetle" "bliss" "breaking"
[11] "broccoli" "cathedral" "chicago" "chiczip" "chmiss"
………………………………………………………………………..............……………

[71] "nes96" "oatvar" "odor" "ohio" "orings" 
[76] "ozone" "parstum" "peanut" "penicillin" "pima"
[81] "pipeline" "pneumo" "potuse" "prostate" "prplot"
………………………………………………………………………………….............…

[121] "wavesolder" "wbca" "weldstrength" "wheat"

> pima

pregnant Glucose diastolic triceps insulin bmi diabetes age test
1 6 148 72 35 0 33.6 0.627 50 1
2 1 85 66 29 0 26.6 0.351 31 0
3 8 183 64 0 0 23.3 0.672 32 1
………………………………………………………………………………………………

767 1 126 60  0  0 30.1  0.349 47 1
768 1 93 70 31  0 30.4  0.315 23 0

> pima$test

http://cran.stat.ucla.edu/bin/windows/contrib/2.15/faraway_1.0.5.zip
http://cran.stat.ucla.edu/bin/windows/contrib/2.15/faraway_1.0.5.zip
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[1] 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0
[38] 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0
[75] 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1

[112] 1 0 0 1 1 1 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
[149] 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0 0 0
[186] 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 1 1 1 1
[223] 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0
[260] 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 1 0 0
[297] 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 1
[334] 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 1
[371] 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 1
[408] 0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1
[445] 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
[482] 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0
[519] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0
[556] 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 0
[593] 1 0 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
[630] 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0
[667] 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 1 1
[704] 0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1
[741] 1 0 0 1 0 0 1 0 1 1 1 0 0 1 1 1 0 1 0 1 0 1 0 0 0 0 1 0
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(a) Correlating the dataset pima by a logistic regression function lr(), with bmi as 
the variable, and using a generalized linear model glm() with a binomial func-
tion binomial() as the link function:

> lr <- glm(f ~ bmi, family = binomial, data = pima)
To examine the critical computed results, call:

> summary(lr)
> # Outputting:

Call:
glm(formula = f ~ bmi, family = binomial, data = pima)

Deviance Residuals:

Min 1Q Median 3Q Max
−1.9209 −0.9178 −0.6838 1.2351 2.7244

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) −3.68641 0.40896 −9.014 < 2e-16 ***
bmi 0.09353 0.01205 7.761 8.45e-15 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 993.48 on 767 degrees of freedom
Residual deviance: 920.71 on 766 degrees of freedom
AIC: 924.71

Number of Fisher Scoring iterations: 4

Clearly, the bmi variable in the dataset is significant.

(b) To estimate the probability for someone whose BMI is 35 to have diabetes, you 
may use the logistic regression model to compute the probability that a case 
subject with an average BMI of 35 will test positive for a diagnosis of diabetes:

> predict(lr, type = "response", newdata = newdata)
> # Outputting:
  1
0.39823

Thus, according to this model, the calculated probability is 39.8%, or 
 nearly 40%, or 2 out of 5.

(c) For someone in the 95% percentile probability of suffering from diabetes, esti-
mate the probability of this case; that is, for a case subject whose BMI is 35.
> newdata1 <- data.frame(bmi = 35)
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> predict(lr, type = "response", newdata = newdata1)
> # Outputting:
  95%
0.6144066

Thus, according to this model’s calculated probability, a case subject 
with a BMI of 35 would have a probability of 61.4% (or approximately 2/3, 
or 2 out of 3) of being in the 95th percentile of those having a diagnosis of 
diabetes.

 Review Questions for Section 7.4

1. In logistic regression, is it advisable to use additive models for probabilities? Why 
or why not?

2. In logistic regression modeling, there are no error terms, and no variance parame-
ters as in the normal distribution. Why?

3. In logistic regression, can the parameters of the model be estimated by the method 
of maximum likelihood? Why or why not?

4. In logistic regression, the link function, which transfers the mean value to a scale 
where the relations to other variables can be described, is linear and additive. 
Show that this may be achieved using the following link function:

log p = log {p/(1 – p)}

5. In generalized linear models, the function predict() may be used to establish 
the probability of occurrence of certain events. Given a set of data of outcomes 
observed under a set of independent variable conditions, outline a procedure for 
using the function predict() to establish a predicted probability curve for any one 
of given independent variables.

6. (a) When should the logistic regression model be used?
(b) Define the terms odds and odds ratio. Give examples of each.

7. Suggest an example in epidemiology in which logistic regression analysis is appro-
priate:
(a) when the independent variable is continuous
(b) when the independent variable is discrete

8. If p = probability and o = odds, then

o = [p/(1 – p)]

and thus

p = [o/(1+ o)]

(a) What are the upper and lower limits for p? For o?
(b) What advantages does the use of p have? Why?
(c) What advantages does the use of o have? Why?
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9. In a system with n covariates, the corresponding logistic regression model may be 
expressed as

log(odds) = b0 + b1x1 + b2x2 + b3x3 + … + bnxn + e.

b1 may be considered as follows: A unit increase in x1, with x2, x3, …, xn held fixed, 
increases the log odds of success by b1 or increases the odds of success by a 
factor of exp(b1).

Write an expression for the “odds” when the dependences on the covariates 
are nonlinear.

10. For a given outcome, if the probability of
(a) “success” in the presence of Condition A is p1, and
(b) “failure” in the absence of Condition A is p2,

what is the meaning of the ratio p1/p2? Explain and give examples.

 Exercises for Section 7.4

1. Logistic regression models are often used to compute a survival curve for longi-
tudinal censored data. The following R code segment computes an estimate of a 
survival curve for censored data using either the K–M or the Fleming–Harrington 
method for computing the predicted survivor function. For competing risks data, it 
computes the cumulative incidence curve. This calls the survival package’s  survfit.
formula function with a different default value for conf.type (log–log basis). 
 Moreover, attributes of the event time variable are saved.

Usage:
survfit(formula, data, ...)

Arguments:

formula A formula object, which must have a Surv object as the response 
on the left of the ~ operator and, if needed, terms separated by + 
operators on the right. One of the terms may be a strata object. For 
a single survival curve, the right side should be ~ 1.

data A data frame in which to interpret the variables named in the 
 formula, subset and weights arguments.

... See survfit.formula
Details See survfit.formula for details.

Value An object of class "survfit". See survfit.object for details.

Methods defined for survfit objects are print, plot, lines, and points.

See also:
survfit.cph for survival curves from Cox models; print, plot, lines, coxph, Surv, 
strata.

Authors:
Thomas Lumley (tlumley@u.washington.edu); and Terry Therneau

mailto:tlumley@u.washington.edu
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 ■ Examples:

require(survival)
# fi t a Kaplan-Meier curve and plot it:
fit <- survfit(Surv(time, status) ~ x, data = aml)
plot(fit, lty = 2:3)
legend(100, .8, c("Maintained", "Nonmaintained"), lty = 2:3)

# fi t a Cox proportional hazards model and plot the
# predicted survival for a 60-year-old:
fit <- coxph(Surv(futime, fustat) ~ age, data = ovarian)
plot(survfit(fit, newdata=data.frame(age=60)),
  xscale=365.25, xlab = "Years", ylab="Survival")

# Here is the dataset from Turnbull.
# There are no interval censored subjects, only left-censored (status=3),
# right-censored (status 0), and observed events (status 1).

Time
1 2 3 4
Type of observation
death 12 6 2 3
losses 3 2 0 3
late entry 2 4 2 5

tdata <- data.frame(time =c(1,1,1,2,2,2,3,3,3,4,4,4),
  status=rep(c(1,0,2),4),
  n =c(12,3,2,6,2,4,2,0,2,3,3,5))
fit <- survfit(Surv(time, time, status, type='interval') ~1,
  data=tdata, weights=n)

# Time to progression/death for patients with monoclonal gammopathy:
Competing risk curves (cumulative incidence)
fit1 <- survfit(Surv(stop, event=='progression') ~1, data=mgus1, 
  subset=(start==0))
fit2 <- survfit(Surv(stop, status) ~1, data=mgus1, 
  subset=(start==0), etype=event)
# competing risks;
# CI curves are always plotted from 0 upward, rather than 1 down:
plot(fit2, fun='event', xscale=365.25, xmax=7300,
  mark.time=FALSE,col=2:3, xlab="Years post diagnosis
  of MGUS")
lines(fit1, fun='event', xscale=365.25, xmax=7300,
  mark.time=FALSE,conf.int=FALSE)
text(10, .4, "Competing Risk: death", col=3)
text(16, .15,"Competing Risk: progression", col=2)
text(15, .30,"KM:prog")
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The following R code segment undertakes the execution of this exercise:

>
> install.packages("rms")

Installing package(s) into 'C:/Users/bertchan/Documents/R/win-library/2.14'
(as 'lib' is unspecified)
--- Please select a CRAN mirror for use in this session ---
trying URL 'http://cran.stat.ucla.edu/bin/windows/contrib/2.14/rms_3.6-3.zip'
Content type 'application/zip' length 933733 bytes (911 Kb)
opened URL
downloaded 911 Kb

package 'rms' successfully unpacked and MD5 sums checked

The downloaded packages are in

C:\Users\bertchan\AppData\Local\Temp\RtmpyAfTbf\downloaded
_packages

> library(rms)

Loading required package: Hmisc
Loading required package: survival
Loading required package: splines
Hmisc library by Frank E Harrell Jr

Type library(help='Hmisc'), ?Overview, or ?Hmisc.Overview') 
to see overall documentation.

NOTE:Hmisc no longer redefines [.factor to drop unused levels 
when subsetting. To get the old behavior of Hmisc type 
dropUnusedLevels().

Attaching package: 'Hmisc'

The following object(s) are masked from 'package:survival': 
 untangle.specials
The following object(s) are masked from 'package:base': 
 format.pval, round.POSIXt, trunc.POSIXt, units

Attaching package: 'rms'
The following object(s) are masked from 'package:survival': 
 Surv

> ls("package:rms")

[1] "%ia%"
[2] ".rms"
[3] ".Surv"
[4] "AIC.rms" 
[5] "anova.rms" 

[205]  "Survival"

http://cran.stat.ucla.edu/bin/windows/contrib/2.14/rms_3.6-3.zip
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>
> require(survival)
> # fi t a Kaplan-Meier and plot it:
> fit <- survfit(Surv(time, status) ~ x, data = aml)
> plot(fit, lty = 2:3)
> legend(100, .8, c("Maintained", "Nonmaintained"), lty = 2:3)
> # Outputting: Figure 7.30.

Maintained
Nonmaintained

0

0.
0

0.
2

0.
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8

1.
0

50 100 150

FIGURE 7.30 Logistic regression, K–M survival plot.

(a) Note the ordinate (vertical axis) of the survival plot. In what way does this plot 
resemble a probability plot?

(b) Note the abscissa (horizontal axis) of the survival plot. What are the units for 
this axis?

(c) What other features of this survival plot are characteristic of a typical logistic 
regression plot?

(d) Do the two survival graphs on the survival plot intersect? Why or why not?
(e) In the survival plot, the “Maintained” plot is always above the “Nonmaintained” 

plot. Why?

2. Validation of Predicted Probabilities Using Logistic Regression: The Function val.
prob()

The function val.prob() may be used for validating predicted probabilities 
against binary events. Given a set of predicted probabilities p, or predicted log 
odds logit, and a vector of binary outcomes y that were not used in developing the 
predictions p or logit, the function val.prob() computes the following statistics and 
indexes:
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(1) Dxy rank correlation between p and y [2(C – 0.5), C = ROC area]. In curve 
comparison and analysis, the ROC is a metric for comparing the diagnostic 
performance of two or more diagnostic tests. The diagnostic performance of a 
test, or the accuracy of a test, is its ability to discriminate diseased cases from 
normal cases. When one considers the results of a particular test in two pop-
ulations, one population with a disease and the other population without the 
disease, one will rarely observe a perfect separation between the two groups; 
the distribution of the test results will most likely overlap.

(2) R-squared index.
(3) Discrimination index D (logistic model).
(4) Unreliability index U.
(5) χ2 with 2 degrees of freedom, and its p-value.
(6) Quality index Q.
(7) Brier score (average squared difference in p and y), its intercept, and its slope.
(8) Emax = maximum absolute difference in predicted and calibrated probabilities.
(9) The Spiegelhalter Z-test for calibration accuracy, and its two-tailed p-value. If 

pl = TRUE, the program plots a fitted logistic calibration curve and optionally a 
smooth nonparametric fit using lowess (p,y,iter=0) and grouped proportions 
versus mean predicted probability in group. If the predicted probabilities or 
logits are constant, the statistics are returned and no plot is produced.

 ■ Examples:

# Fit logistic model on 100 observations simulated from the
# actual model given by
# Prob(Y=1 given X1, X2, X3) = 1/(1+exp[-(-1 + 2X1)]),
# where X1 is a random uniform [0,1] variable. Hence, X2 and X3
# are irrelevant. After fi tting a linear additive model in X1, X2,
# and X3, the coeffi cients are used to predict Prob(Y=1) on a
# separate sample of 100 observations. Note that data splitting is
# an ineffi cient validation method unless n > 20,000.
set.seed(1)
n <- 200
x1 <- runif(n)
x2 <- runif(n)
x3 <- runif(n)
logit <- 2*(x1-.5)
P <- 1/(1+exp(-logit))
y <- ifelse(runif(n)<=P, 1, 0)
d <- data.frame(x1,x2,x3,y)
f <- lrm(y ~ x1 + x2 + x3, subset=1:100)
pred.logit <- predict(f, d[101:200,])
phat <- 1/(1+exp(-pred.logit))
val.prob(phat, y[101:200], m=20, cex=.5) # subgroups of 20 obs.
# Validate predictions more stringently by stratifying on whether
# x1 is above or below the median:
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v <- val.prob(phat, y[101:200], group=x1[101:200], g.group=2)
v
plot(v)
plot(v, flag=function(stats) ifelse(
stats[,'ChiSq2'] > qchisq(.95,2) |
stats[,'B ChiSq'] > qchisq(.95,1), '*', ' ') )
# Starts rows of statistics in plot corresponding to signifi cant
# miscalibration at the 0.05 level instead of the default, 0.01:
plot(val.prob(phat, y[101:200], group=x1[101:200], g.group=2),
col=1:3) # 3 colors (1 for overall)
# Weighted calibration curves
# plot(val.prob(pred, y, group=age, weights=freqs))

# Fit logistic model on 100 observations simulated from the
# actual model given by
# Prob(Y=1 given X1, X2, X3) = 1/(1+exp[-(-1 + 2X1)]),
# where X1 is a random uniform [0,1] variable. Hence, X2 and X3
# are irrelevant. After fi tting a linear additive model in X1, X2,
# and X3, the coeffi cients are used to predict Prob(Y=1) on a
# separate sample of 100 observations. Note that data splitting
# is an ineffi cient validation method unless n > 20,000.
set.seed(1)
n <- 200
x1 <- runif(n)
x2 <- runif(n)
x3 <- runif(n)
logit <- 2*(x1-.5)
P <- 1/(1+exp(-logit))
y <- ifelse(runif(n)<=P, 1, 0)
d <- data.frame(x1,x2,x3,y)
f <- lrm(y ~ x1 + x2 + x3, subset=1:100)
pred.logit <- predict(f, d[101:200,])
phat <- 1/(1+exp(-pred.logit))
val.prob(phat, y[101:200], m=20, cex=.5) # subgroups of 20 obs.

The following R code segment undertakes the execution of this exercise:

# Fit logistic model on 100 observations simulated from the
# actual model given by
# Prob(Y=1 given X1, X2, X3) = 1/(1+exp[-(-1 + 2X1)]),
# where X1 is a random uniform [0,1] variable. Hence, X2 and X3
# are irrelevant. After fi tting a linear additive model in X1, X2,
# and X3, the coeffi cients are used to predict Prob(Y=1) on a
# separate sample of 100 observations. Note that data splitting is
# an ineffi cient validation method unless n > 20,000.
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set.seed(1)
n <- 200
x1 <- runif(n)
x2 <- runif(n)
x3 <- runif(n)
logit <- 2*(x1-.5)
P <- 1/(1+exp(-logit))
y <- ifelse(runif(n)<=P, 1, 0)
d <- data.frame(x1,x2,x3,y)
f <- lrm(y ~ x1 + x2 + x3, subset=1:100)
pred.logit <- predict(f, d[101:200,])
phat <- 1/(1+exp(-pred.logit))
val.prob(phat, y[101:200], m=20, cex=.5) # subgroups of 20 obs.
>
# Validate predictions more stringently by stratifying on whether
# x1 is above or below the median:
v <- val.prob(phat, y[101:200], group=x1[101:200], g.group=2)
v
plot(val.prob(phat, y[101:200], group=x1[101:200], g.group=2),
col=1:3) # 3 colors (1 for overall)
# Weighted calibration curves:
# plot(val.prob(pred, y, group=age, weights=freqs)) val.
>
> # Fit logistic model on 100 observations simulated from the
> # actual model given by Prob(Y=1 given X1, X2, X3) =
> # 1/(1+exp[-(-1 + 2X1)]),
> # where X1 is a random uniform [0,1] variable. Hence, X2 and
> # X3 are irrelevant. After fi tting a linear additive model in X1,
> # X2, and X3, the coeffi cients are used to predict Prob(Y=1) on
> # a separate sample of 100 observations. Note that data
> # splitting is an ineffi cient validation method unless n > 20,000.
> set.seed(1)
> n <- 200
x1 <- runif(n)
> x2 <- runif(n)
> x3 <- runif(n)
> logit <- 2*(x1-.5)
> P <- 1/(1+exp(-logit))
> y <- ifelse(runif(n)<=P, 1, 0)
> d <- data.frame(x1,x2,x3,y)
> f <- lrm(y ~ x1 + x2 + x3, subset=1:100)
> pred.logit <- predict(f, d[101:200,])
> phat <- 1/(1+exp(-pred.logit))
> val.prob(phat, y[101:200], m=20, cex=.5) # subgroups of 20
> obs
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> # Outputting:

Dxy C (ROC) R2 D D:Chi-sq D:p
0.320528211 0.660264106 0.094994525 0.063901031 7.390103054 0.006558373

U U:Chi-sq U:p Q Brier Intercept
−0.019128530 0.087146981 0.957362194 0.083029561 0.231896346 0.052287214

Slope Emax S:z S:p Eavg
0.956517813 0.019247505 0.144009939 0.885492622 0.025838218

> # Validate predictions more stringently by stratifying on
> # whether x1 is above or below the median:
> v <- val.prob(phat, y[101:200], group=x1[101:200],
+  g.group=2)
> v
> # Outputting:

n Pavg Obs ChiSq ChiSq2 Eavg Eavg/P90 Med OR C B
[0.0131,0.526) 50 0.364 0.36 0.004 0.149 0.046 0.170 1.228 0.637 0.220
[0.5260,0.993] 50 0.590 0.62 0.195 1.902 0.058 0.213 1.083 0.514 0.244
Overall 100 0.477 0.49 0.073 0.088 0.026 0.065 1.084 0.660 0.232

B ChiSq B cal
[0.0131,0.526) 0.073 0.212
[0.5260,0.993] 0.327 0.230
Overall 0.021 0.230

Quantiles of Predicted Probabilities

0.01 0.025 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.975
[0.0131,0.526) 0.213 0.222 0.242 0.270 0.301 0.364 0.407 0.471 0.516 0.531
[0.5260,0.993] 0.397 0.411 0.444 0.488 0.535 0.601 0.650 0.668 0.715 0.748
Overall 0.216 0.243 0.271 0.292 0.365 0.479 0.598 0.654 0.668 0.714

0.99
[0.0131,0.526) 0.545
[0.5260,0.993] 0.764
Overall 0.750

> plot(v)
> # Outputting:

Group [0.0131,0.526) [0.5260,0.993] Overall
n 50 50 100
Pavg 0.364 0.590 0.477
Obs 0.36 0.62 0.49
ChiSq 0.0 0.2 0.1



428 7. RANDOMIZED TRIALS, PHASE DEVELOPMENT, CONFOUNDING IN SURVIVAL ANALYSIS

ChiSq2 0.1 1.9 0.1
Eavg 0.046 0.058 0.026
Eavg/P90 0.170 0.213 0.065
Med OR 1.228 1.083 1.084
C 0.637 0.514 0.660
B 0.220 0.244 0.232
B ChiSq 0.1 0.3 0.0
B cal 0.212 0.230 0.230

> # Outputting: Figure 7.31
> # Stars rows of statistics in plot corresponding to signifi cant
> # miscalibration at the 0.05 level instead of the default, 0.01:
> plot(val.prob(phat, y[101:200], group=x1[101:200],
+  g.group=2),
+  col=1:3) # 3 colors (1 for overall)
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FIGURE 7.31 Logistic regression: Validating predicted probabilities.

> # Outputting:

Group [0.0131,0.526) [0.5260,0.993] Overall
n 50 50 100
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Pavg 0.364 0.590 0.477
Obs 0.36 0.62 0.49
ChiSq 0.0 0.2 0.1
ChiSq2 0.1 1.9 0.1
Eavg 0.046 0.058 0.026
Eavg/P90 0.170 0.213 0.065
Med OR 1.228 1.083 1.084
C 0.637 0.514 0.660
B 0.220 0.244 0.232
B ChiSq 0.1 0.3 0.0
B cal 0.212 0.230 0.230

> # Outputting: Figure 7.32.
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FIGURE 7.32 Logistic regression: Validating predicted probabilities.

(a) The statement of this exercise indicated that eight criteria are computed by 
this methodology of using logistic regression to validate predicted probabilities. 
Review each of these eight criteria (start by searching the Internet for “Dxy rank 
correlation”).
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(b) Rank these eight criteria, starting with the most effective criterion, and give 
reasons for your ranking.

(c) In Figures 7.30 and 7.31, if the predicted probabilities were the same as the 
actual probabilities, then the predicted data points/lines would all be on the 
diagonal (45-degree) line. Comment on the accuracy of the computed predict-
ed probabilities.

(d) In both plots, it appears that the predictions are more accurate around the 
middle section, where the probability is at about 0.5. Comment on this feature 
of the logistic regression model as a predictive tool.

(e) Provide a rationale for application of the logistic regression model as a statis-
tical tool for prediction of successes (and failures) in applied probability prob-
lems in biostatistics and epidemiology.

3. Quasi-likelihood estimation.
In fitting generalized models with Poisson or binomial error distributions, it is possi-
ble to detect overdispersion by comparing the residual deviance with its degrees of 
freedom. The two quantities should be approximately equal for a well-fitting model. 
When the deviance is far larger than the degrees of freedom, it may be an indica-
tion of overdispersion.

One may deal with possible overdispersion by applying the quasi-likelihood 
procedure, which permits the estimation of the model parameters without a full 
knowledge of the error distribution of the response variable. The procedure may 
allow the calculation of j from the data (rather than assuming it to be unity for the 
Poisson and binomial distributions).

To apply the quasi-likelihood estimation to the colonic polyps data polyps3, the 
following R code segments may be used:

> install.packages("HSAUR")
> library(HSAUR)
> ls("package:HSAUR")
> polyps3
> polyps3_GLM_Quasi <- glm(number3m ~ treatment + age,
+  data = polyps3, family = quasipoisson() )
> summary(polyps3_GLM_Quasi)
Call:
glm(formula = number3m ~ treatment + age, family = quasipoisson(),
 data = polyps3)
Deviance Residuals:

Min 1Q Median 3Q Max
−11.3117 −5.0824 −2.7838 −0.4611 22.4333

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.72284 1.16148 4.927 9.36e-05 ***
Treatmentactive −1.19595 0.74361 −1.608 0.124
Age −0.07243 0.05145 −1.408 0.175
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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(Dispersion parameter for quasipoisson family taken to be 91.14169)

 Null deviance: 1603.1 on 21 degrees of freedom
Residual deviance: 1191.6 on 19 degrees of freedom AIC: NA

Number of Fisher Scoring iterations: 6
>

(a) Compare the regression coefficients for both explanatory variables: treatment 
and age.
(i) What are their values?
(ii) Is each value significant?

(b) Compare the estimated standard errors for both explanatory variables:

 treatment (0.74316) and age (0.05145)

with the previously calculated values for simple Poisson distribution:

 treatment (0.077891) and age (0.005389).

(c) It is evident that the dispersions for the quasi-likelihood case are much larger. 
Why?

(d) One explanation suggested for such overdispersion in the data is that colonic 
polyps may occur in clusters (i.e., they do not occur independently). Comment 
on this suggestion.

4. The functions predict() and predict.glm().
A useful biostatistical tool, based on logistic regression, is the function predict(), 
which has several variations, including the function predict.glm(). These are 
 documented in the CRAN package stats.

Each of these R functions may be used to compute predictions and to estimate 
standard errors (among other things) of the predictions from a fitted generalized 
linear model object.

Usage:

predict(object, newdata = NULL,
 type = c("link", "response", "terms"),
 se.fit = FALSE, dispersion = NULL, terms = NULL,
 na.action = na.pass, ...)

Arguments:

object A fitted object of class inheriting from "glm".
newdata Optionally, a data frame in which to look for variables with which 

to predict.

type The type of prediction required. The default is on the scale of the 
linear predictors; the alternative "response" is on the scale of the 
response variable.

se.fit A logical switch indicating if standard errors are required.

dispersion The dispersion of the generalized linear model fit to be assumed 
in computing the standard errors. If omitted, the result returned by 
summary applied to the object is used.
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terms With type="terms", by default all terms are returned. A character 
vector specifies which terms are to be returned.

na.action The function determining what should be done with missing val-
ues in newdata. The default is to predict NA.

... Further arguments passed to or from other methods.

Value:

If se = FALSE, a vector or matrix of predictions.
If se = TRUE, a list with components.

fit Predictions.

se.fit Estimated standard errors.

residual.scale A scalar giving the square root of the dispersion used in 
computing the standard errors.

glm, SafePrediction

Examples:
require(graphics)
## example from Venables and Ripley (2002, pp. 190–192.)
ldose <- rep(0:5, 2)
numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
sex <- factor(rep(c("M", "F"), c(6, 6)))
SF <- cbind(numdead, numalive=20-numdead)
budworm.lg <- glm(SF ~ sex*ldose, family=binomial)
summary(budworm.lg)

plot(c(1,32), c(0,1), type = "n", xlab = "dose",
 ylab = "prob", log = "x")
text(2^ldose, numdead/20, as.character(sex))
ld <- seq(0, 5, 0.1)
lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,
 sex=factor(rep("M", length(ld)), levels=levels(sex))),
 type = "response"))
lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,
 sex=factor(rep("F", length(ld)), levels=levels(sex))),
 type = "response"))

The following R code segment undertakes the execution of this example exercise:

>
> require(graphics)
>
> ## example from Venables and Ripley (2002, pp. 190–192.)
> ldose <- rep(0:5, 2)
> numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
> sex <- factor(rep(c("M", "F"), c(6, 6)))
> SF <- cbind(numdead, numalive=20-numdead)
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> budworm.lg <- glm(SF ~ sex*ldose, family=binomial)
> summary(budworm.lg)
Call:
glm(formula = SF ~ sex * ldose, family = binomial) Deviance Residuals:

Min 1Q Median 3Q Max
−1.39849 −0.32094 −0.07592 0.38220 1.10375

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) −2.9935 0.5527 −5.416 6.09e-08 ***
sexM 0.1750 0.7783 0.225 0.822
ldose 0.9060 0.1671 5.422 5.89e-08 ***
sexM:ldose 0.3529 0.2700 1.307 0.191

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 124.8756 on 11 degrees of freedom
Residual deviance: 4.9937 on 8 degrees of freedom

AIC: 43.104
Number of Fisher Scoring iterations: 4
>
> # Preparing the graph and the labels on the two axes:
> plot(c(1,32), c(0,1), type = "n", xlab = "dose",
+ ylab = "prob", log = "x")
> text(2^ldose, numdead/20, as.character(sex))
> ld <- seq(0, 5, 0.1)
>
> # Drawing the predict() line for males:
> lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,
+ sex=factor(rep("M", length(ld)), levels=levels(sex))),
+ type = "response"))
>
># Drawing the predict() line for females:
> lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,
+ sex=factor(rep("F", length(ld)), levels=levels(sex))),
+ type = "response"))
>
> # Outputting: Figure 7.33 predict()
>
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FIGURE 7.33 predict().

(a) In this program, when using the function predict(), at what stage is the linear 
regression function glm() introduced?

(b) What is the link function used in the model? Is this a good choice? Why or why 
not?

(c) How and when was the link function introduced into the model computation?
(d) Comment on the magnitudes and significances of the standard errors of the 

dependent variables for the regression.
(e) Suggest an effective approach for ascertaining these errors.

5. Logistic regression in survival analysis: chronic granulomatous disease (cgd) 
infection data.
In survival analysis, the K–M procedure is used to estimate the probability of 
surviving for a given duration of time. The computations consist of calculating the 
proportions of case subjects in a sample who survive for various durations of time. 
These sample proportions are then used as estimates of the probabilities of sur-
vival that one would expect to observe in the type of population represented by the 
test sample. In mathematical statistics, this approach is known as a nonparametric 
technique, in contrast to the common link functions (in which Poisson, binomial, or 
other probabilities are assumed) used in a basic logistic regression.

The cgd dataset in Fleming and Harrington (1991) is from a placebo- 
controlled RT of gamma interferon in chronic granulomatous disease (CGD). A 
total of 128 case subjects from 13 hospitals were followed for about a year. The 
number of case subjects per hospital ranged from 4 to 26. Each may have expe-
rienced more than one infection. The survival times (times to event) are the times 
between  recurrent CGD infections on each patient (i.e., gap times). Censoring 
occurred at the last observation for all patients except one, who experienced a 
serious infection on the date that the case subject left the study.
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Usage:
data(cgd)

Format:
The CGD dataset contains 15 columns and 203 rows. A brief description of the 
data columns is as follows:

Id Patient number for 128 case subjects.

Center Enrolling center number for 13 hospitals.

Random Date of randomization.

Treat Gamma-interferon treatment (rIFN-g) or placebo (Placebo).

Sex Sex of each case subject (male, female).

Age Age of each case subject at study entry, in years.

Height Height of each case subject at study entry, in centimeters.

Weight Weight of each case subject at study entry, in kilograms.

Inherit Pattern of inheritance (autosomal recessive, X-linked).

Steroids Using corticosteroids at times of study entry (1 = Yes, 0 = No).

Proylac Using prophylactic antibiotics at time of study entry (1 = Yes, 
0 = No).

hos.cat A categorization of the hospital region into four groups.

Tstart Start of each time interval.

Enum Sequence number. For each patient, the infection records are in 
sequence number order.

Tstop End of each time interval.

Status Censoring indicator (1 = uncensored, 0 = censored).

References:
Fleming and Harrington (1991).
Therneau and Grambsch (2001).

The following R code segment undertakes the execution of this example 
 exercise:

>
> install.packages("packHV")
> library(packHV)
Loading required package: WriteXLS
> ls("package:packHV")

[1] "compare" "convert_factor" "convert_zero_NA" "desc"
[5] "hist_boxplot" "IC_OR_glm" "IC_RR_coxph" c "multitable" 
[9] "plot_km" c "plot_mm" "plot_multi.table" ccc"plot_reg" 

> IC_OR_glm
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(Output Omitted)

> cgd
id center random treat sex age height weight

1 1 Scripps Institute 1989-06-07 rIFN-g female 12 147.0 62.0
2 1 Scripps Institute 1989-06-07 rIFN-g female 12 147.0 62.0
3 1 Scripps Institute 1989-06-07 rIFN-g female 12 147.0 62.0

203 135 Scripps Institute 1989-12-29 placebo female 3 96.0 13.1

inherit steroids propylac hos.cat tstart enum tstop status
1 autosomal 0 0 US:other 0 1 219 1
2 autosomal 0 0 US:other 219 2 373 1
3 autosomal 0 0 US:other 373 3 414 0

203 autosomal 0 1 US:other 0 1 227 0

>
> cgd$time=cgd$tstop-cgd$tstart
> plot_km(Surv(time,status)~sex,data=cgd,lwd=2,
+ col=c("black","red"))
> # Outputting: Figure 7.34.

0

0.
0

0.
2

0.
4S

ur
vi

va
l 0.

6
0.

8
1.

0

# at risk
Male 168 110 85 38

8
2
0202635Female

100

p=0.357

200

Time

300 400

FIGURE 7.34 Logistic regression: Survival analysis of cgd data. Plots: male (lower curve) and 
female (upper curve).
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(a) In survival analysis, what link function is used in the resultant logistic 
 regression?

(b) Looking at Figure 7.34, what may be concluded regarding the link functions for 
the two populations: male and female case subjects?

(c) If the “steps” of the survival curves were to be smoothed out, what type of link 
functions could be expected?

(d) In Figure 7.34, the red curve (for female case subjects) lies above the black 
curve (for male case subjects). How does this characteristic reflect on the 
 survival probabilities of these two cohorts?

(e) Since both curves show a decreasing slope with respect to time, what 
family of probability distribution curves may be used to model the survival 
process?
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