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Introduction

This is the second part of our book on Differential Geometry and Mathematical
Physics. It is based on our teaching of these subjects at the University of Leipzig to
students of physics and of mathematics and on our research in gauge field theory
over many years.

As in Part I, let us start with some historical remarks. The concept of gauge
invariance first appeared in the famous papers [660] and [661] of Hermann Weyl
from the year 1918.1 In this work, Weyl extended Einstein’s principle of general
relativity by postulating that, additionally, the scale of length can vary smoothly
from point to point in spacetime. In more detail, Weyl’s basic idea was to develop a
purely infinitesimal geometry. Behind that concept was his belief that ‘a true
infinitesimal geometry should, however, recognize only a principle for transferring
the magnitude of a vector to an infinitesimally close point …’, see page 25 in [660].
In this context, the notion of connection appeared for the first time in the mathe-
matical literature.2 In a modern geometric language, he was led to a generalization
of Riemannian geometry characterized by a pair consisting of a conformal
Riemannian structure and a connection in a line bundle over spacetime. Weyl
proposed to identify the connection form with the electromagnetic gauge potential
and, consequently, its curvature with the electromagnetic field tensor. Thus, he
obtained a unification of general relativity with electromagnetism. However, it
quickly became clear that this model was not compatible with basic physical
principles. It was Einstein who observed that if this theory was correct, then the
behaviour of clocks would depend on their history. This is in contradiction with
empirical evidence.3 Although this model did not survive, the gauge principle did
though. In 1929 Weyl proposed to apply it to quantum mechanics. He recognized

1In these papers, the term ‘gauge invariance’ appears in German as ‘Maßstab-Invarianz’.
2Of course, there were predecessors, notably Christoffel, Ricci and Levi-Civita. The latter had a
clear mathematical understanding of parallel transport and of the covariant derivative operator, but
up to our knowledge, he did not invent the term ‘connection’.
3See the postscript by Einstein in [660] and the author’s reply. This started a long discussion
between Weyl and Einstein. For further reference, see also [604] and [496].
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that it is the phase of the Schrödinger wave function which should be gauged, see
[663]. In more detail, the idea of Weyl was as follows: since only the absolute value
of the wave function has a physical interpretation, the wave function itself may be
multiplied by an arbitrary point-dependent phase factor.4 However, the transformed
wave function obviously does not satisfy the Schrödinger equation any more. In
order to restore invariance, Weyl proposed to replace the partial derivatives with
respect to space and time coordinates occurring in the Schrödinger equation by the
covariant derivatives obtained by adding to the partial derivatives the components
of the electromagnetic potential. This modified Schrödinger equation is invariant
under simultaneous gauge transformations of the wave function and of the
electromagnetic potential. This way, the first quantum mechanical model of a
U(1)-gauge theory was born.

The combination of this U(1)-gauge principle with the quantum theory of fields
led to Quantum Electrodynamics (QED). For an exhaustive historical introduction
to that theory we refer to Volume I of [654], see Sect. 1.2. The early contributions
to the development of QED date back to the late 1920s and are due to Dirac [152],
Weisskopf and Wigner [658], Jordan and Pauli [350], Jordan and Wigner [351] and
Heisenberg and Pauli [292]. In the 1930s, QED was studied intensively leading to a
further development of the formalism as well as to successful applications. This
period culminated in the famous Solvay report by Pauli in 1939, see [505]. Clearly,
the biggest puzzle was the emergence of infinities in various kinds of calculations.
Amongst a number of approaches to tackle this problem, in the end, the concept of
renormalization of the parameters of the theory became the widely accepted strat-
egy. In this spirit, in the late 1940s, Schwinger [579], Tomonaga [629] and
Feynman [194] brought QED to its final manifestly relativistic form.5

The first non-Abelian gauge theory was proposed by Yang and Mills in 1954,
see [685].6 Their work was based on the idea that the forces between the nucleons
were mediated by the exchange of pions and that the interaction was invariant under
the isospin group SU(2). In this model, the proton and the neutron form an isospin
doublet and the three charged states of the pion form a triplet in the adjoint rep-
resentation. Yang and Mills postulated the principle of local isotopic gauge
invariance. As a consequence, they were led to introduce an SU(2)-gauge potential.
They found the field equations of this system, proposed a generalization of the
Lorenz gauge fixing condition and made preliminary remarks on the quantum
theory of their model. The paper by Yang and Mills dealt with the special gauge
group SU(2) only, but from their presentation it was clear how to generalize the

4In the group theoretical language, such a transformation is given by a function on spacetime with
values in the Abelian group U(1).
5For this work, Feynman, Schwinger and Tomonaga received the Nobel Prize in Physics in 1965.
Initially, Feynman’s diagrammatic technique seemed quite different from the operator-based
approach of Schwinger and Tomonaga, but Dyson [171] showed that the two approaches were
equivalent.
6There was an earlier paper by Klein [378] written in the spirit of Kaluza-Klein theory which
already contained a non-Abelian gauge potential.
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model to an arbitrary non-Abelian gauge group, see [639] and [236]. It took over
ten more years before this seminal paper came into prominence. In 1964 Gell-Mann
and Ne’eman [235], [237] proposed SU(3) as the gauge group of strong interactions
and in the years 1964–1967 Brout and Englert [106], Higgs [298–300] and Kibble
[364] discovered a symmetry-breaking mechanism which gave a mass to some
components of the Yang–Mills field. Based on this work and on earlier work by
Glashow [247] and others, in the years 1967–1968 Weinberg [654] and Salam
[552] unified the electromagnetic and the weak interactions.7 At the beginning
of the 1970s, Gross and Wilczek [264], Politzer [513] and Weinberg [656] created
the theory of strong interactions called Quantum Chromodynamics. These theories
became the two basic building blocks of the standard model of elementary particle
physics.8

In the period just described, Weyl’s original ingenious understanding that the
gauge principle is closely related to the notion of connection did not play any role.9

The development of the theory of connections evolved in a completely separate way
as part of modern geometry and was generally unknown to the physics community.
In the beginning of the 1920s, on the basis of his deep expertise in Lie theory and
under the influence of Einstein’s theory of general relativity and of Klein’s Erlangen
programme, Élie Cartan started building a general theory of connections with
respect to various groups. In contrast to Weyl, who used the absolute differential
calculus of Levi-Civita and Ricci, Cartan relied on the calculus of differential forms.
In the context of what he called ‘generalized spaces’,10 Cartan developed the theory
of connections (including torsion) for various types of geometries (Riemannian,
Lorentzian, Weylian, affine, conformal, projective and others), see [115–120] and
further references in [130] and [568].11 The next step forward was taken at the
beginning of the 1940s by Ehresmann, a student of Cartan, who proposed to use
fibre bundles as the natural geometric structure allowing for a global description of
a connection, see [174–176] and [410] for further references.12 As a matter of fact,
the very notion of a fibre bundle existed already at that time. It was invented by
Seifert [584] as early as in 1932. In the 1930s and 1940s, the study of fibre bundles

7For this work, Glashow, Weinberg and Salam received the Nobel prize in 1979.
8For an exhaustive presentation of the history of the standard model see [657].
9However, inspired by the work of Einstein, Weyl, Yang, Mills and Utiyama, as early as in 1963,
Lubkin [411] made a first step towards the analysis of the geometric content of the gauge concept
in terms of connection theory in fibre bundles.
10A generalized space in the sense of Cartan is a space of tangent spaces such that two infinitely
near tangent spaces are related by an infinitesimal transformation of a given Lie group. Such a
structure clearly defines a connection. We note that the tangent space is an abstract notion here, it
may not coincide with the space of tangent vectors.
11The paper [130] by Chern and Chevalley contains a description of the work of Cartan as a whole.
The paper [568] by Scholz gives some interesting insight into the scientific interrelation between
Weyl and Cartan.
12The paper [410] by Libermann describes the influence of Ehresmann on the development of
modern differential geometry in detail.
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became a quickly developing field of topology.13 The main steps were taken by
Whitney [665, 666], Hopf and Stiefel [602], Hurewicz and Steenrod [330, 331],
Ehresmann and Feldbau (already cited above), Chern14 [126–129] and Pontryagin
[516]. This period culminated in the textbooks on the topology of fibre bundles by
Steenrod [599] and on the geometry of connections in fibre bundles by Nomizu
[491]. By that time, the theory of fibre bundles was settled as a classical field of
geometry and topology. It is beyond the scope of this introduction to describe the
further development of this field up until the present time.

The first full description of gauge theory in the language of fibre bundles and
connections was presented by Trautman in 1970 [630]. Thereafter, the study of the
geometric structure of gauge theories quickly became part of mathematical physics
and, within the next decade, quite a number of papers propagating this geometric
point of view have been written, see e.g. [161], [173] and [147]. This was related to
the fact that, at that time, mathematicians became excited about questions posed by
physicists, notably by the question of how to find all self-dual solutions of the
Yang–Mills equations. This problem was solved by Atiyah, Drinfeld, Hitchin and
Manin [36] using methods of algebraic geometry. In our eyes, this is one of the
most fascinating interactions of geometry and physics in the second half of the
twentieth century. Via the study of the moduli space of the solutions, it led to deep
new insight into the topology of differentiable four-manifolds, see [159]. In the
middle of the 1990s, guided by the study of the vacuum structure of N = 2
supersymmetric Yang–Mills theory, Seiberg and Witten [582, 583] arrived at a
U(1)-gauge model coupled to a spinor field. The investigation of this model gave a
new impetus to the study of the topology of differentiable four-manifolds. Within a
few months, many of the results obtained via instanton theory were reproved within
this new theory and new results, notably in the theory of symplectic manifolds,
were obtained. Yet another fruitful interaction of physics and geometry happened in
the theory of magnetic monopoles. The three fields of research just mentioned will
be discussed in some detail in Chaps. 6 and 7. By the end of the 1970s and the
beginning of the 1980s, geometrical and topological methods also started playing a
role in quantum gauge theory. This applies, in particular to the study of the Gribov
problem and to anomalies. Both of these aspects will be discussed in Chap. 9.
Moreover, starting from the beginning of the 1990s, a number of observations,
conjectures and results concerning the relevance of the stratified structure of the
gauge orbit space for quantum gauge theory appeared. This is one of our fields of
research, so we will discuss the structure of the gauge orbit stratification, together
with a concept how to implement it on quantum level, in detail in Chaps. 8 and 9.

We continue with a few remarks on the structure and the content of this volume.
This volume consists of three building blocks: in the first four chapters we present
the geometry and topology of fibre bundles, in Chap. 5 we study the theory of Dirac
operators and the remaining four chapters are devoted to gauge theory. In more

13See [434] for a history of the theory of fibre bundles.
14See [309] for a detailed description of his mathematical work.
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detail, in Chap. 1, we study principal and associated bundles and develop the theory
of connections. This includes elementary bundle reduction theory, the theory of
holonomy and the theory of invariant connections. In Chap. 2, we study linear
connections in the frame bundle of a manifold and their reductions. This leads us to
H-structures15 allowing for a unified view on possible geometric structures mani-
folds may be endowed with. From this perspective, Riemannian geometry occurs as
an important special example. In this context, we study compatible connections, the
relation of curvature and holonomy and we give an introduction to the theory of
symmetric spaces. Moreover, we present elementary Hodge theory and discuss
some aspects of 4-dimensional Riemannian manifolds. In Chap. 3, we study the
homotopy theory of fibre bundles. We prove the Covering Homotopy Theorem and
develop the concept of universal bundles. Using this tool, we prove the fundamental
classification theorem for principal bundles in terms of homotopy classes of map-
pings. We also include a discussion of universal connections. In Chap. 4, we
present the basics of the cohomology theory of fibre bundles. We study the
cohomology rings of characteristic classes for the classical groups, derive the
Whitney Sum Formula and the Splitting Principle and discuss the effect of field
restrictions and field extensions. Next, we present the characteristic classes in terms
of de Rham cohomology via the Weil homomorphism and discuss the related
genera. Finally, we discuss the concept of Postnikov tower and show how it may be
used to classify bundles over low-dimensional manifolds. Chap. 5 is devoted to the
study of Dirac operators. Given their great importance in gauge theory, we provide
the reader with a systematic and quite exhaustive presentation. We start with
Clifford algebras, spinor groups and their representations. Next, we discuss spin
structures, Dirac bundles and Dirac operators. Since we are going to use the
Atiyah–Singer Index Theorem in gauge theory a number of times, we give a full
proof of this theorem via the heat kernel method. In the remaining four chapters, we
present topics in gauge theory. Clearly, we had to make a choice here, that is, we
had to omit a number of interesting topics like, say, topological field theory. In
Chap. 6, we study pure gauge theories. We start by deriving the Yang–Mills
equations from the variational principle for the Yang–Mills action and show that
(anti-)self-dual solutions correspond to absolute minima of the action. We then
present a systematic study of instantons: we discuss the BPST-instanton family in
detail, present the ADHM-construction and give a partial proof that via that con-
struction one obtains all solutions. In our presentation, we limit our attention to the
base space S4 and to the gauge group G = SU(2). Next, we study the moduli space
and outline how it is used for the study of the topology of differentiable
4-manifolds. Finally, we present the classical stability analysis of the Yang–Mills
Equation and include a short discussion of non-minimal solutions. In Chap. 7, we
include matter fields. We start with the theory of Yang–Mills–Higgs models: we
discuss the Higgs mechanism, present a topological classification of static
finite-energy configurations and address the problem of constructing asymptotic as

15In the literature, the term G-structure is common as well.

Introduction xv



well as exact solutions to the Yang–Mills–Higgs equations. In particular, we focus
on magnetic monopole solutions including the Bogomolnyi–Prasad–Sommerfield
model. Next, we pass to the Seiberg–Witten model. We discuss the basic properties
of this model in detail and outline some of the topological consequences. Next, we
present the (classical) standard model of elementary particle physics in the geo-
metric language. In the remaining two sections, we give an introduction to the
method of dimensional reduction in the context of gauge theories including some of
our own results. Chap. 8 is devoted to the study of the gauge orbit stratification. In
the first part, we provide the reader with the classical geometrical and topological
results on that structure. In the second part, we present our own results on the
classification of gauge orbit types in some detail. For clearness of presentation, we
limit our attention to the case G = SU(n). The classification is in terms of char-
acteristic classes (fulfilling a number of algebraic relations) of certain reductions
of the principal bundle under consideration. We also show how to derive the natural
partial ordering of strata. Finally, in Chap. 9, we come to some elements of
quantum gauge theory with the main emphasis on those aspects which are related to
the structure of the classical gauge orbit space in one or the other way. In the first
part, we present the classical Faddeev–Popov path integral quantization procedure,
address the Gribov problem in the language of differential geometry and discuss the
classical results of Singer concerning the obstruction against the existence of a
global gauge fixing. Next, we discuss anomalies within the geometric setting. In the
second part, we present some of our results on non-perturbative quantum gauge
theory for (finite) lattice models in the Hamiltonian framework. We construct the
quantum model via canonical quantization, derive the field algebra and the
observable algebra of the system and discuss the Gauß law. Next, we explain how
to include the non-generic gauge orbit strata on the quantum level and discuss their
possible physical relevance for a toy model.

We assume that the reader is familiar with the calculus on manifolds as presented
in Chaps. 1–4 of Part I and with the theory of Lie groups and Lie group actions as
presented in Chaps. 5 and 6 of Part I. For the understanding of Chaps. 3 and 4, basic
knowledge in homotopy theory and some elements of algebraic topology are
needed. In Chap. 9, we use elements of the theory of C�-algebras. For the con-
venience of the reader we have added a number of appendices.

xvi Introduction



Chapter 1
Fibre Bundles and Connections

In this chapter, we present the basics of the theory of fibre bundles and connections.
In the first part, we discuss principal and asssociated bundles and the theory of
connections including the Koszul calculus. The text is illustrated by many examples
which will be taken up later on. In the second part, we focus on topics which are
particularly important in this book. We study bundle reductions, discuss the theory
of holonomy in some detail and analyze the transformation laws of connection and
curvature under bundle automorphisms. Finally, we present the theory of invariant
connections for the case of group actions which are not necessarily transitive on the
base manifold, that is, we go beyond the classical Wang Theorem.

1.1 Principal Bundles

In a gauge theory describing the fundamental interaction of elementary particles, the
interaction is assumed to be mediated by a gauge potential. In geometric terms, a
gauge potential is the local (spacetime) representative of a connection form, which
naturally lives on a principal fibre bundle over spacetime.

Let us recall the following definition from Sect. 6.5 of Part I.

Definition 1.1.1 (Principal bundle) Let (P,G, Ψ ) be a free Lie group action, letM
be a manifold and let π : P → M be a smooth mapping. The tuple (P,G,M, Ψ, π)

is called a principal bundle if for every m ∈ M there exists an open neighbourhood
U of m and a diffeomorphism χ : π−1(U) → U × G such that

1. χ intertwines Ψ with the G-action on U × G by translations1 on the factor G,
2. prU ◦χ(p) = π(p) for all p ∈ π−1(U).

1Left (right) translations if Ψ is a left (right) action.
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2 1 Fibre Bundles and Connections

For simplicity, we will sometimes use the short-hand notation P(M,G) or just P. If
not otherwise stated, we will consider right principal bundles. If there is no danger of
confusion, sometimeswewill simplywriteΨg(p) = p · g. For a right action, denoting

κ := prG ◦χ : π−1(U) → G, (1.1.1)

condition 1 can be rewritten as

κ(Ψa(p)) = κ(p)a, p ∈ π−1(U), a ∈ G . (1.1.2)

The group G is called the structure group of P. If G is fixed, P is referred to as a
principal G-bundle. The pair (U, χ) is called a local trivialization. A local trivial-
ization (U, χ) with U = M is called a global trivialization. If there exists a global
trivialization, then P is called trivial. The existence of local trivializations implies
that π is a surjective submersion. Hence, by Proposition I/1.7.6, the subsets π−1(m),
m ∈ M, are embedded submanifolds, called the fibres of P. They are diffeomorphic
to the group manifold G.

Remark 1.1.2 Let (P,G, Ψ ) be a free proper Lie group action. Let M be the orbit
space, equipped with the smooth structure provided by Corollary I/6.5.1, and let π :
P → M be the natural projection to orbits. Every tubular neighbourhood of an orbit
defines a local trivialization over a neighbourhood of the corresponding point ofM.
Hence, the Tubular Neighbourhood Theorem I/6.4.3 implies that (P,G,M, Ψ, π) is a
principal bundle. Conversely, if (P,G,M, Ψ, π) is a principal bundle, then (P,G, Ψ )

is a free proper Lie group action, M is diffeomorphic to the orbit space P/G and π

corresponds, via this diffeomorphism, to the natural projection to orbits. �

We will also need the general notion of fibre bundle.

Definition 1.1.3 (General fibre bundle) Let E andM be manifolds and let π : E →
M be a smooth surjection. The triple (E,M, π) is called a fibre bundle if there
exists a manifold F such that the following holds. Every m ∈ M admits an open
neighbourhood U and a diffeomorphism χ : π−1(U) → U × F fulfilling prU ◦χ =
π . The manifold F is called the typical fibre of π .

The details of the following example are left to the reader (Exercise 1.1.1).

Example 1.1.4

1. LetM be amanifold, letG be aLie group and let prM : M × G → M be the natural
projection. Then, (M × G,G,M, Ψ, prM), with Ψ given by right translation ofG
on the second factor ofM × G, is a principal bundle, called the product principal
bundle. It is obviously trivial.

2. Let (P,G,M, Ψ, π) be a principal bundle and let U ⊂ M be open. Define PU :=
π−1(U) and take the restrictions πU : PU → U of π and ΨU : PU × G → PU of
Ψ . By intersection, any local trivialization of P induces a local trivialization of
PU . Thus, (PU ,G,U, ΨU , πU) is a principal G-bundle over U.
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3. Let P1(M1,G1) and P2(M2,G2) be principal bundles. Then, the direct product
P1 × P2 carries the structure of a principal (G1 × G2)-bundle over M1 × M2.

4. Let G be a Lie group and let H ⊂ G be a closed subgroup. Consider the free
action ofH onG by right translation. By Example I/6.3.8/3, this action is proper.
Thus, Remark 1.1.2 implies that G carries the structure of a principal H-bundle
over the homogeneous space G/H.2 �

Definition 1.1.5 Let (P,G,M, Ψ, π) be a principal bundle. A section of P is a
smooth mapping s : M → P such that π ◦ s = idM . A local section of P over an
open subset U ⊂ M is a section of the principal bundle PU .

Proposition 1.1.6 Local trivializations of P are in one-to-one correspondence with
local sections. In particular, a principal bundle is trivial iff it admits a global section.

Proof If χ : P → M × G is a global trivialization, then we set s(m) := χ−1(m,1),
where 1 is the unit element in G. This is a smooth global section of P. Conversely,
given a global section s : M → P, for every point p ∈ P there exists a unique group
element κ(p) such that p = Ψκ(p)(s(π(p))). This defines a smooth mapping κ : P →
G, which fulfils κ(Ψa(p)) = κ(p) a. Thus, (M, π × κ) is a global trivialization. �

Next, we introduce the notion of morphism of principal bundles.

Definition 1.1.7 (Morphism) Let (P1,G1,M1, Ψ
1, π1) and (P2,G2,M2, Ψ

2, π2) be
principal fibre bundles.

1. A morphism from P1 to P2 is a pair of mappings (ϑ, λ), where ϑ : P1 → P2

is smooth and λ : G1 → G2 is a homomorphism of Lie groups such that for all
g ∈ G1

ϑ ◦ Ψ 1
g = Ψ 2

λ(g) ◦ ϑ. (1.1.3)

2. A morphism (ϑ, λ) is called an isomorphism if ϑ is a diffeomorphism and λ is an
isomorphism of Lie groups. In particular, an isomorphism of a principal bundle
onto itself is called an automorphism.

We note that, by Definition I/6.6.1, a morphism of principal bundles P1 and P2 is a
morphism of the Lie group actions (P1,G1, Ψ

1) and (P2,G2, Ψ
2).

Remark 1.1.8 (Special morphisms)

1. By condition (1.1.3), ϑ maps fibres to fibres. Thus, it induces a mapping ϑ̃ :
M1 → M2 such that the following diagram commutes.

P1
ϑ ��

π1

��

P2

π2

��
M1

ϑ̃ �� M2

2This statement also follows from Theorem I/5.7.2 and Remark I/5.7.3.
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By local triviality, ϑ̃ is smooth. We say that ϑ projects to ϑ̃ , or that ϑ covers ϑ̃ .
If (ϑ, λ) is an isomorphism, then ϑ̃ is a diffeomorphism. Given isomorphisms
ϑ1 : P1 → P2 and ϑ2 : P2 → P3, we have (Exercise 1.1.3)

(ϑ2 ◦ ϑ1)
∼ = ϑ̃2 ◦ ϑ̃1,

(
ϑ−1
1

)∼ = ϑ̃−1
1 . (1.1.4)

2. If the principal bundles P and Q have the same base manifoldM and if ϑ̃ = idM ,
then (ϑ, λ) is said to be vertical. If P and Q have the same structure group G
and if λ = idG, then ϑ is called a G-morphism. By local triviality, every vertical
G-morphism is a diffeomorphism and hence an isomorphism.

3. If ϑ̃ and λ are injective immersions, then ϑ is an injective immersion, too. In this
case, P1 is called a subbundle of P2.

(a) If, additionally, ϑ̃ and λ are embeddings, then P is called an embedded
subbundle. In this case, P1 may be identified with the image of the morphism
ϑ in P2.

(b) If, additionally, M1 = M2 = M and ϑ̃ = idM , then P1 is referred to as a λ-
reduction or, simply, a reduction of P2. In this case, one says that G1 is a
reduction of the structure groupG2. Two reductions are said to be equivalent
if they differ by a vertical automorphism of P. �

Remark 1.1.9 (Pullback of principal bundles)

1. In complete analogy to vector bundles, see Sect. 2.6 of Part I, given a principal
G-bundle P over M with canonical projection π , we define its pullback by a
smooth mapping ϕ : N → M:

ϕ∗P := {(y, p) ∈ N × P : ϕ(y) = π(p)} .

This is a principal G-bundle over N and the canonical projection N × P → P
restricts to a morphism ϕ∗P → P covering ϕ. One can show the following (Exer-
cise 1.1.4).

(a) If P is vertically isomorphic to some principalG-bundleQ overM, then f ∗P
is vertically isomorphic to f ∗Q.

(b) If ψ : K → N is a further smooth mapping, then ψ∗(ϕ∗P) is vertically iso-
morphic to (ϕ ◦ ψ)∗P.

(c) Let ϑ : P → Q be a principal G-bundle morphism covering ϑ̃ : M → N .
The induced mapping

P → ϑ̃∗Q, p �→ (
π(p), ϑ(p)

)
,

is a vertical isomorphism and ϑ decomposes into the composition of this
isomorphism with the natural principal G-bundle morphism ϑ̃∗Q → Q.

2. The following is an important special class of pullback bundles. Let P1(M,G1)

and P2(M,G2) be principal bundles. By Example 1.1.4/3, P1 × P2 carries the

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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structure of a principal (G1 × G2)-bundle overM × M. LetΔ : M → M × M be
the diagonal embedding. Then, Δ∗(P1 × P2) is a principal bundle with structure
group G1 × G2 over M. It will be denoted by P1 ×M P2 and will be called the
fibre product of P1 and P2.3 �

In complete analogy with vector bundles, principal fibre bundles can be character-
ized and studied in terms of transitionmappings associated with a chosen covering of
the base manifold. Let there be given a principal bundle P(M,G). By definition, one
can choose a countable open covering {Ui}i∈I ofM such that there exists a system of
local trivializations

χi : π−1(Ui) → Ui × G.

The collection {(Ui, χi)}i∈I will sometimes also be called a bundle atlas of P. Let
κi : π−1(Ui) → Gbe the corresponding systemofmappings definedby (1.1.1). Then,

κi(Ψa(p)) · κj(Ψa(p))
−1 = κi(p) · a · a−1 · κj(p)

−1 = κi(p) · κj(p)
−1,

that is, themappingsπ−1(Ui ∩ Uj) 
 p → κi(p) · κj(p)−1 ∈ G are constant on fibres.
Thus, they induce smooth mappings

Ui ∩ Uj 
 m �→ ρij(m) := κi(p) · κj(p)
−1 ∈ G, p ∈ π−1(m), (1.1.5)

which are called the transition mappings of P. They fulfil

ρij(m) = ρik(m) · ρkj(m), m ∈ Ui ∩ Uj ∩ Uk . (1.1.6)

This condition implies, in particular,

ρii(m) = 1, m ∈ Ui,

ρij(m) = (ρji(m))−1, m ∈ Ui ∩ Uj.

Proposition 1.1.10 Let M be a manifold and let G be a Lie group. Then, for every
countable open covering {Ui}i∈I of M and every system of smooth mappings ρij :
Ui ∩ Uj → G fulfilling condition (1.1.6) there exists a principal G-bundle over M
admitting a system of local trivializations with transition mappings {ρij}.
Proof Take the topological direct sum

X :=
⊔

i∈I
Ui × G.

3Some authors call it the spliced product [83].
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We define
(i,m, g) ∼ (i′,m′, g′) iff m′ = m, g′ = ρii′(m) · g,

which, by condition (1.1.6), yields an equivalence relation on X. We denote by
P = X/ ∼ the topological quotient and by pr : X → P the canonical projection.
Since X admits a countable basis, P admits a countable basis, too. Moreover, it is
easy to show that P is Hausdorff, see Exercise 1.1.2. We endow P with the structure
of a principal G-bundle. For that purpose, we define

Ψ : P × G → P, Ψ ([(i,m, a)], b) := [(i,m, a · b)].

Clearly, this definition does not depend on the choice of the representative (i,m, a).
Thus, Ψ defines a topological right group action, which is obviously free. By con-
struction, [(i,m, a)] = [(i′,m′, a′)] impliesm′ = m. Thus,we candefine a continuous
mapping

π : P → M, π([(i,m, a)]) := m.

Since the Ui cover M, π is surjective. Let pri be the restriction of pr to Ui × G. By
construction, for every i ∈ I , it defines a bijection

pri : Ui × G → π−1(Ui).

WeendowPwith the structure of a differentiablemanifold by observing thatπ−1(Ui)

is an open subset and by postulating that pri be a diffeomorphism for every i ∈ I .
With respect to this differentiable structure, the action Ψ is smooth. Finally, putting

χi := pr−1
i : π−1(Ui) → Ui × G

we get a system of local trivializations whose transition mappings coincide with
the mappings ρij. Moreover, by the definition of Ψ , the induced mappings κi :
π−1(Ui) → G fulfil condition (1.1.2). �

Our next aim is to show that vertical isomorphism classes of principal G-bundles
overM can be labelled in terms of the first Čech cohomology ofM. Thus, letP1 andP2

be isomorphic principalG-bundles overM via a morphism (ϑ, λ). Let {(Ui, χ
1
i )} and{(Ui, χ

2
i )} be local trivializations and let {ρ1

ij} and {ρ2
ij} be the corresponding transition

mappings of P1 and P2, respectively. Here, again without loss of generality, we have
assumed that both trivializations are associated with one and the same covering of
M. Let m ∈ Ui ∩ Uj. Since p ∈ π−1

1 (m) implies ϑ(p) ∈ π−1
2 (m), using (1.1.5), we

obtain

ρ2
ij(m) = κ2

i (ϑ(p)) κ2
j (ϑ(p))−1

= (
κ2
i (ϑ(p))

(
κ1
i (p)

)−1) (
κ1
i (p)

)(
κ1
j (p)

)−1 (
κ2
j (ϑ(p))

(
κ1
j (p)

)−1)−1
.

Since, for every a ∈ G, we have
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κ2
i (ϑ(Ψa(p)))

(
κ1
i (Ψa(p))

)−1 = κ2
i (ϑ(p))

(
κ1
i (p)

)−1
,

we can define a smooth mapping

ρi : Ui → G, ρi(m) := κ2
i (ϑ(p))

(
κ1
i (p)

)−1
, p ∈ π−1(m).

Thus, for every m ∈ Ui ∩ Uj, we obtain

ρ2
ij(m) = ρi(m) ρ1

ij(m) ρj(m)−1. (1.1.7)

To summarize, if the principal G-bundles P1 and P2 are vertically isomorphic, then
there exists a family of smooth mappings ρi : Ui → G such that their transition
mappings are related by (1.1.7).

It turns out that the converse is also true.

Theorem 1.1.11 Two principal G-bundles overM are vertically isomorphic iff there
exists a family of smooth mappings ρi : Ui → G such that the corresponding transi-
tion mappings fulfil (1.1.7).

Proof It remains to show that condition (1.1.7) implies thatP1 andP2 are isomorphic.
Thus, let there be given a family of mappings {ρi}i∈I fulfilling (1.1.7). In the above
notation, we define

ϑi : π−1
1 (Ui) → π−1

2 (Ui), ϑi := (
χ2
i

)−1 ◦ (idM ×ρi) ◦ χ1
i

for every i ∈ I . Obviously, this is a family of diffeomorphisms fulfilling π2(ϑi(p)) =
π1(p), p ∈ π−1

1 (Ui). By (1.1.5), we have

χα
j ◦ (χα

i

)−1 = idM ×ρα
ji , α = 1, 2.

Using this and condition (1.1.7), we obtain ϑi = ϑj on π−1
2 (Ui ∩ Uj) for every pair

(i, j) such that Ui ∩ Uj �= ∅. Thus, the family {ϑi}i∈I defines a diffeomorphism ϑ :
P1 → P2 fulfilling π2 ◦ ϑ = π1. By (1.1.2), it also fulfils the equivariance property
(1.1.3). We conclude that ϑ is a vertical isomorphism of principal G-bundles. �

Remark 1.1.12 (Čech cohomology) The systems of mappings {ρi} and {ρij} are,
respectively, referred to as a 0-cocyle and a 1-cocyle onM with values inG, relative to
a chosen coveringU = {Ui}i∈I . Formula (1.1.7) defines an equivalence relation in the
set of 1-cocycles. The corresponding set of equivalence classes H1

Č (U,G) is referred
to as the first cohomology set H1

Č (U,G) in the sense of Čech, relative to a chosen
covering. The set of open coverings of M forms a directed system with respect to
refinement, that is,U ≤ V if eachVα ∈ V is contained in someUi ∈ U. By restriction,
we get a mapping H1

Č (U,G) → H1
Č (V,G). The cohomology set H1

Č (M,G) is the
direct limit of the sets H1

Č (U,G) with respect to the restriction mappings, as U runs
through all open coverings of M, cf. [304] for further details.
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Note that there is a distinguished element 1 ∈ H1
Č (M,G), given by the constant

1-cocycle. More precisely, for any open covering, we put ρij(m) = 1 for every pair
(i, j). Note, however, that H1

Č (M,G) is in general not a group. �

Using this terminology, Theorem 1.1.11 can be reformulated as follows.

Corollary 1.1.13 The vertical isomorphism classes of principal G-bundles over M
are in one-one correspondence with the elements of the cohomology set H1

Č (M,G).
Thereby, the product bundle M × G corresponds to the distinguished element. �

We close this section with a number of examples. All of them will be taken up again
later on.

Example 1.1.14 (Frame bundle of a manifold) Let M be an n-dimensional mani-
fold. A linear n-frame at m ∈ M is an ordered basis u = (u1, . . . , un) of the tan-
gent space TmM. Let L(M) be the set of all linear n-frames on M. For an n-frame
u = (u1, . . . , un) at m ∈ M and an element a = (aij) ∈ GL(n, R), the ordered set
ua := ui aij is again an n-frame. Thus, we get a right action of GL(n, R) on L(M),

Ψ : L(M) × Gl(n, R), Ψ (u, a) := ua,

which is obviously free. Clearly, the orbit space of this action is M and the corre-
sponding canonical projection π : L(M) → M coincides with the mapping which
assigns to an n-frame u at m ∈ M the point m.

Let (U, ϕ) be a local chart of M. Then, on U, every basis vector ui belonging to
u = (u1, . . . , un) ∈ π−1(U) can be represented by ui = (ui)ϕ,j∂

ϕ

j , that is, locally u

is given by the matrix uϕ = (
(ui)ϕ,j

) ∈ Gl(n, R). Thus,

χ : π−1(U) → U × GL(n, R), χ(u) := (π(p), uϕ) (1.1.8)

is a bijection fulfilling prU ◦χ = π . By the definition ofΨ , it also fulfils the equivari-
ance property (1.1.2). We equip L(M) with a differentiable structure by postulating
that all the mappings (1.1.8) be diffeomorphisms. Then, (L(M),GL(n, R),M, Ψ, π)

is a principal fibre bundle and the family of mappings (1.1.8) forms a system of local
trivializations. �

Example 1.1.15 (Frame bundle of a vector bundle) Let E be a K-vector bundle of
rank k over M, where K = R, C or H. Let Lm be the set of bases in the fibre Em.
Then,

L(E) :=
⋃

m∈M
Lm

carries the structure of a principal fibre bundle overM with structure groupGL(k, K).
The details are analogous to the previous example and are, therefore, left to the reader
(Exercise 1.1.5). �
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Definition 1.1.16 Let E be a K-vector bundle of rank k overM, where K = R, C or
H. We say that E is endowed with a fibre metric h, if there exists a non-degenerate
inner product4 on each fibre π−1(m) of E depending smoothly on m. The pair (E, h)
will be called (pseudo-)Riemannian for K = R and Hermitean for K = C or H.

Remark 1.1.17 Every vector bundle over a manifold admits a fibre metric. This can
be easily shown using a partition of unity of the base manifold (Exercise 1.1.6).
Moreover, note that a fibre metric in the tangent bundle of a manifoldM is the same
as a (pseudo-)Riemannian metric on M. �

Example 1.1.18 For K = R, C or H, let E be a K-vector bundle of rank k over M
endowed with a fibre metric h. Let Om be the set of h-orthonormal bases in the fibre
Em. Then,

O(E) :=
⋃

m∈M
Om

carries the structure of a principal fibre bundle over M with structure group being
the isometry group of the metric. Details are left to the reader (Exercise 1.1.5).

In the special case where K = R and E is the tangent bundle of an n-dimensional
Riemannian manifold M, this construction yields the orthonormal frame bundle
O(M) of M with the structure group O(n). If M is in addition oriented, the sub-
set O+(M) ⊂ O(M) of ordered orthonormal frames is a reduction to the subgroup
SO(n) ⊂ O(n).

As an example, consider M = Sn, realized as the unit sphere in R
n+1. Since for

x ∈ Sn, the tangent space TxSn may be identifiedwith the subspace of vectors inR
n+1

orthogonal to x, every orthonormal frame in TxSn complements x to an orthonormal
basis in R

n+1. Since every such basis corresponds to an orthogonal transformation,
we obtain a mapping O(Sn) → O(n + 1). We leave it to the reader to check that this
mapping is an isomorphism of principal O(n)-bundles, where O(n) acts on O(n + 1)
by right translation via the blockwise embedding O(n) → O(n + 1) defined by the
decomposition R

n+1 = R ⊕ R
n (Exercise 1.1.8). Clearly, this isomorphism restricts

to an isomorphism of principal SO(n)-bundles between O+(Sn) with respect to the
standard orientation (pointing outwards) and SO(n + 1). �

Definition 1.1.19 The principal bundleL(E) constructed inExample 1.1.15 is called
the frame bundle of E. The principal bundle O(E) constructed in Example 1.1.18 is
called the orthonormal frame bundle of E. More precisely, it is called the bundle of
orthogonal, unitary and symplectic frames for, respectively, K = R, C and H.

For the following two examples, the reader should recall the notion of projective
space, cf. Example I/1.1.15.

4In our convention, for K = C or H, the inner product is assumed to be anti-linear in the first and
linear in the second component.
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Example 1.1.20 (Complex Hopf bundle) Consider the natural free action of U(1) on
C

2 given by

Ψ : C
2 × U(1) → C

2, Ψ ((z1, z2), e
iα) := (eiαz1, e

iαz2).

Since the embedded submanifold

S3 = {(z1, z2) ∈ C
2 : |z1|2 + |z2|2 = 1}

is invariant under Ψ , we have an induced free action of U(1) on S3. Since the Lie
group U(1) is compact, this action is proper. Thus, by Corollary I/6.5.1, the orbit
space S3/U(1) admits a unique differentiable structure such that the canonical pro-
jection π : S3 → S3/U(1) is a submersion. According to Example I/6.5.4, the orbit
space endowed with this smooth structure coincides with the 1-dimensional complex
projective space CP1. Finally, the Tubular Neighbourhood Theorem I/6.4.3 implies
the existence of local trivializations. Thus, the above action Ψ defines on S3 the
structure of a principal U(1)-bundle over CP1. This bundle is called the complex
Hopf bundle. For later purposes, we construct a system of local trivializations.

(a) LetU1 := CP1 \ {π(0, 1)}. Then,π−1(U1) = {(z1, z2) ∈ S3 : z1 �= 0}. Thus, we
can define

χ1 : π−1(U1) → U1 × U(1), χ1(z1, z2) :=
(

π(z1, z2),
z1
|z1|

)
.

Then, κ1(z1, z2) = z1
|z1| . Obviously, κ1 is smooth and U(1)-equivariant, that is,

κ1((z1e
iα, z2e

iα)) = z1
|z1|e

iα.

Thus, χ1 is a local trivialization.
(b) Analogously, we put U2 := CP1 \ {π(1, 0)}. Then, π−1(U1) = {(z1, z2) ∈ S3 :

z2 �= 0} and we define

χ2 : π−1(U2) → U2 × U(1), χ2(z1, z2) :=
(

π(z1, z2),
z2
|z2|

)
.

Thus, κ2(z1, z2) = z2
|z2| and χ2 is also a local trivialization.

Since U1 ∪ U2 = CP1, the collection {(Ui, χi)}i=1,2 defines a system of local
trivializations. Its transition mapping ρ12 : U1 ∩ U2 → U(1) is given by

ρ12(π(z1, z2)) = κ1(z1, z2)κ2(z1, z2)
−1 = z1

|z1|
(

z2
|z2|

)−1

.

�
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Remark 1.1.21

1. We show that CP1 is diffeomorphic to the 2-sphere. For that purpose, consider
the smooth mapping

S3 
 (z1, z2) �→ (2z1z2, |z1|2 − |z2|2) ∈ C × R.

Since
(|z1|2 − |z2|2)2 + |2z1z2|2 = (|z1|2 + |z2|2)2 = 1,

its image is contained in S2 ⊂ C × R. Thus, it induces a smooth mapping f :
S3 → S2. Since f is U(1)-invariant, it induces a mapping f̃ : CP1 → S2. The
local triviality of the Hopf bundle implies that f̃ is smooth. It remains to show
that f̃ is invertible and that the inverse mapping is smooth. For that purpose, we
put V+ := S2 \ {(0, 1)} and define

g+ : V+ → C
2, g+(z, t) :=

(
z√

2(1 − t)
,

√
1 − t

2

)

.

Since the image of g+ is contained in S3, it induces a smoothmapping g+ : V+ →
S3. Compositionwithπ then yields a smoothmapping g̃+ := π ◦ g : V+ → CP1.
We continue g̃+ to a mapping g̃ : S2 → CP1 by setting g̃(0, 1) := [(1, 0)]. Then,
g̃ ◦ f̃ = idCP1 and f̃ ◦ g̃ = idS2 , see Exercise 1.1.7. Thus, g̃ is inverse to f̃ . It
remains to show smoothness of g̃ at the point (0, 1). This is left to the reader, see
Exercise 1.1.7.

2. The Hopf bundle is clearly nontrivial, because otherwise S3 would have to be
diffeomorphic to S2 × U(1). This fact can be also read off from the transition
mappings as follows: it is enough to prove that ρ12 is not homotopic to the
constant mapping U1 ∩ U2 
 π(z1, z2) �→ 1 ∈ U(1). To show this, it is enough
to find a continuous path t �→ γ (t) in U1 ∩ U2 such that the path ρ12 ◦ γ in U(1)
is not contractible to a point. We put

γ̃ (t) :=
(

1√
2
e

1
2 it,

1√
2
e− 1

2 it

)
, t ∈ [0, 2π ],

and γ (t) := π(γ̃ (t)). Clearly, γ is continuous and its image is contained in
U1 ∩ U2. We have ρ12(γ (t)) = eit , with t running from 0 to 2π . Obviously, this
path is not contractible inU(1) showing that theHopf bundle is nontrivial, indeed.
By construction, U1 ∩ U2 is homeomorphic to S1 × (0, 1) and the path γ runs
through the S1-factor exactly once. Since ρ12 ◦ γ also runs through U(1) ∼= S1

exactly once, the mapping degree of ρ12 is 1. Later on, we will see that the
mapping degree of the transition mapping yields a useful tool for the study of
isomorphism classes of principal bundles over spheres.
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3. In complete analogy to the Hopf bundle, the natural action of U(1) on C
n yields

principal U(1)-bundles over the complex projective spaces CPn−1.5 �
Example 1.1.22 (Quaternionic Hopf bundle) Recall the skew fieldH of quaternions,
cf. Remark I/1.1.13.Consider the natural right action of the classical Lie group6 Sp(1)
of quaternions of norm 1 on H

2,

Ψ : H
2 × Sp(1) → H

2, Ψ ((q1,q2),u) = (q1u,q2u).

Clearly, Ψ is free and leaves the embedded submanifold

S7 = {(q1,q2) ∈ H
2 : ‖ q1 ‖2 + ‖ q2 ‖2= 1}

invariant. Thus, it induces a right free action on S7. Since Sp(1) is compact, this action
is proper. By the same arguments as in Example 1.1.20, the sphere S7 endowed with
the above action carries the structure of a principal Sp(1)-bundle over the quater-
nionic projective space HP1. This bundle is called the quaternionic Hopf bundle. By
Example I/5.1.10, the Lie group Sp(1) is isomorphic to the special unitary group
SU(2) and, by completely analogous arguments as in Remark 1.1.21/1, the base
manifold HP1 is diffeomorphic to S4 via the mapping (B.1). Thus, the quaternionic
Hopf bundle may be viewed as a principal SU(2)-bundle over S4. Let π : S7 → S4

be the canonical projection. Again, in complete analogy to the complex Hopf bun-
dle, one constructs a system of local trivializations {(Ui, χi)}i=1,2 as follows: take
U1 = HP1 \ {π(0, 1)} and U2 = HP1 \ {π(1, 0)} and define

χ1(q1,q2) :=
(

π(q1,q2),
q1

‖ q1 ‖
)

, χ2(q1,q2) :=
(

π(q1,q2),
q2

‖ q2 ‖
)

.

(1.1.9)
�

Remark 1.1.23

1. Using the criterion given in Remark 1.1.21/2, one can prove that the quaternionic
Hopf bundle is nontrivial (Exercise 1.1.9/c).

2. The construction of the quaternionic Hopf bundle obviously generalizes to the
case of the natural action of Sp(1) on H

n. This way one obtains a family of
principal Sp(1)-bundles with bundle space S4n−1 and base space HPn−1. �

Example 1.1.24 (Stiefel bundles) Recall from Example I/5.7.5 that the Stiefel mani-
fold SK(k, n), withK = R, C orH, is the set of k-frames inK

n which are orthonormal
with respect to the standard scalar product

〈x, y〉 :=
n∑

i=1

xiyi.

5Sometimes, they are also called Hopf bundles.
6For the terminology, see Example I/1.2.6.
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As shown there, SK(k, n) aquires its manifold structure by identifying it with the
homogeneous space obtained by taking the quotient of the isometry group UK(n) of
the scalar product with respect to the stabilizer UK(n − k) of a chosen frame, that is,

SK(k, n) ∼= UK(n)/UK(n − k). (1.1.10)

Here,

UK(n) =

⎧
⎪⎨

⎪⎩

O(n) if K = R,

U(n) if K = C,

Sp(n) if K = H.

Correspondingly, consider the Graßmann manifold GK(k, n), which is the set of
k-dimensional subspaces of K

n, cf. Example I/5.7.6. One has

GK(k, n) ∼= UK(n)/(UK(n − k) × UK(k)). (1.1.11)

Clearly, UK(k) acts smoothly on SK(k, n). By Corollary I/6.5.3, this action is free and
proper. Thus, by the arguments given in Remark 1.1.2, SK(k, n) carries the structure
of a principal fibre bundle over GK(k, n) with structure group UK(k). The principal
bundles so obtained are called, respectively, the real, complex andquaternionicStiefel
bundles. �

Remark 1.1.25 Consider the special case SK(1, n). Then, one has the following dif-
feomorphisms (Exercise 1.1.10):

SK(1, n) ∼= Sdn−1, GK(1, n) ∼= KPn−1, (1.1.12)

with d = dimR K. Thus, Sn−1, S2n−1 and S4n−1 carry the structure of principal fibre
bundles with structure groups O(1), U(1) and Sp(1) and base spaces RPn−1, CPn−1

and HPn−1, respectively. They are isomorphic to the real, complex and quaternionic
Stiefel bundles with k = 1, respectively. In particular, the Hopf bundles of Examples
1.1.20 and 1.1.22 coincide with the Stiefel bundles SK(1, 2)withK = C andK = H,
respectively. �

Example 1.1.26 (Universal Covering) Consider the universal covering space M̃ of
a manifoldM. Then, M̃ is a principal fibre bundle overM whose (discrete) structure
group is the first homotopy group π1(M) (Exercise 1.1.12). �

Exercises

1.1.1 Prove the statements of Example 1.1.4.

1.1.2 Complete the proof of Proposition 1.1.10 by showing that P is Hausdorff.
Hint. By elementary set topology, it is enough to prove that pr is open and that the
graph of the equivalence relation is closed in X × X.
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1.1.3 Prove Eq. (1.1.4).

1.1.4 Prove the assertion of point 1 of Remark 1.1.8.

1.1.5 Construct the principal bundle structures for Examples 1.1.15 and 1.1.18.

1.1.6 Prove the statement of Remark 1.1.17.

1.1.7 Complete the arguments in Remark 1.1.21/1.
Hint. Consider V− := S2 \ {(0,−1)} and define a second mapping

g− : V− → C
2 g−(z, t) :=

(√
1 + t

2
,

z√
2(1 + t)

)

.

Show that g− induces a smooth mapping g̃− : V− → CP1 and prove that g̃�V− = g̃−.

1.1.8 Prove that the mapping O(Sn) → O(n + 1) constructed in Example 1.1.18 is
an isomorphism of principal O(n)-bundles.

1.1.9 Consider the quaternionic Hopf bundle defined in Example 1.1.22.

(a) By analogous arguments as in Remark 1.1.21/1, show that the base manifold
HP1 is diffeomorphic to S4.

(b) Show that the mappings defined in (1.1.9) yield a system of local trivializations.
(c) Using the criterion given in Remark 1.1.21/2, prove that the quaternionic Hopf

bundle is nontrivial.
Hint. The group manifold of SU(2) is diffeomorphic to S3.

1.1.10 Prove the statements made in Remark 1.1.25.

1.1.11 Construct systems of local trivializations for the Stiefel bundles.

1.1.12 Prove the statement of Example 1.1.26.

1.2 Associated Bundles

First, we recall the notion of associated bundle from Sect. 6.5 in Part I. Let
(P,G,M, Ψ, π) be a principal bundle and let (F,G, σ ) be a left Lie group action.
Let σ̌ be the right action associated with σ ,

σ̌ : F × G → F, (f , a) �→ σ̌a(f ) := σa−1(f ).

Since the G-action Ψ on P is free, the direct product action Ψ × σ̌ is free, too.
According to Remark I/6.3.9/2, it is proper. Thus, by Corollary I/6.5.1, the orbit
space

http://dx.doi.org/10.1007/978-94-024-0959-8_6
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P ×G F := (P × F)/G

inherits a unique smooth structure. Since the natural projection P × F → P is
equivariant, it induces a smooth surjective mapping

πF : P ×G F → P/G = M, πF([(p, f )]) = π(p) .

This endows P ×G F with a natural bundle structure. Finally, the local triviality of P
induces the local triviality of this bundle. To see this, recall from Proposition 1.1.6
that (local) trivializations ofP are in one-to-one correspondencewith (local) sections.
Thus, let s : U → P be a local section corresponding to a local trivialization (U, χ)

of P. Then, the mapping

U × F → π−1
F (U), (m, f ) �→ [(s(m), f )]

is a diffeomorphism projecting to the identical mapping on U. The inverse map-
ping ξ : π−1

F (U) → U × F yields a local trivialization of P ×G F. Thus, we have
constructed a fibre bundle over M with typical fibre F.

Definition 1.2.1 The fibre bundle (P ×G F,M, πF) is said to be associated with the
principal bundle (P,G,M, Ψ, π) and the G-manifold (F, σ ).

The proof of the following observation is left to the reader (Exercise 1.2.1).

Proposition 1.2.2 For given principal bundles P1(M1,G1) and P2(M2,G2) and rep-
resentations (F1,G1, σ1) and (F2,G2, σ2), let (ϑ, λ) be amorphism fromP1 to P2 and
let T : F1 → F2 be a homomorphism of the representations σ1 and σ2. Then, ϑ × T :
P1 × F1 → P2 × F2 induces a vector bundle morphism P1 ×G1 F1 → P2 ×G2 F2

projecting to ϑ̃ . �

This proposition applies, in particular, to the case where F1 = F2 and T = id.

Remark 1.2.3

1. Let us express the local trivialization (U, ξ) constructed above explicitly in terms
of the local trivialization (U, χ). As usual, denote κ = prG ◦χ and let s be the
associated local section of P. Recall that, for any p ∈ π−1(U), we have p =
Ψκ(p)s(π(p)). Using this, we calculate

ξ([(p, f )]) = ξ([(Ψκ(p)s(m), f )]) = ξ([(s(m), σκ(p)f )]) = (m, σκ(p)f ),

with m = π(p). Since π(p) = πF([(p, f )]), we obtain

ξ([(p, f )]) = (πF([(p, f )]), σκ(p)f ). (1.2.1)

2. The natural projection ι : P × F → P ×G F induces for every p ∈ P a mapping
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ιp : F → P ×G F, ιp(f ) := [(p, f )] (1.2.2)

whose image is contained in the fibre over π(p). Moreover, since

ιΨa(p)(f ) = [(Ψa(p), f )] = [(Ψa(p), σa−1 ◦ σa(f ))] = [(p, σa(f ))],

ιp is equivariant,
ιΨa(p) = ιp ◦ σa. (1.2.3)

From these properties it is clear that, viewed as a mapping from F to the fibre
over π(p), ιp is bijective. Finally, from (1.2.1) we read off

pr2 ◦ξ ◦ ιp = σκ(p), (1.2.4)

for any local trivialization (U, ξ) such that π(p) ∈ U. Since this is a diffeomor-
phism of F, we conclude that ιp is a diffeomorphism identifying F with the fibre
π−1
F (π(p)).

3. Let {(Ui, χi)} be a system of local trivializations of P and let {ρij} be the corre-
sponding system of transition mappings. Let {(Ui, ξi)} be the induced system of
local trivializations of P ×G F. Let us find the corresponding system of transition
mappings. For m ∈ Ui ∩ Uj, f ∈ F and p ∈ π−1(m), we calculate

ξi ◦ ξ−1
j (m, f ) = ξi([(p, σκj(p)−1(f ))]) = (m, σκi(p) ◦ σκj(p)−1(f )).

Since ρij(m) = κi(p)κj(p)−1, we obtain

ξi ◦ ξ−1
j (m, f ) = (m, σρij(m)(f )), (1.2.5)

that is, the transition mappings of P ×G F are given by σρij : Ui ∩ Uj → Diff(F).
Then, in complete analogy to Proposition 1.1.10, one can reconstruct P ×G F
from the transition mappings σρij . �

Example 1.2.4

1. Let P(M,G) be a principal fibre bundle and let H ⊂ G be a closed subgroup.
Then, by Theorem I/5.6.8, H is an embedded Lie subgroup of G. Consider the
action ofG on the homogeneous spaceG/H by left translation. Then, P ×G G/H
is an associated bundle over M with typical fibre being a transitive G-manifold.
One can show the following, see Exercise 1.2.2:

(a) As a fibre bundle overM, the associated bundle P ×G G/H is isomorphic to
the quotient P/H, endowed with the natural fibre bundle structure induced
from P.

(b) P may be viewed as a principal H-bundle over P ×G G/H.

2. Let P(M,G) be a principal bundle, let E = P ×G F be an associated bundle and
let ϕ : N → M be a smooth mapping of manifolds. Consider the pullback bundle
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ϕ∗E,
ϕ∗E

π2 ��

π1

��

E

πF

��
N

ϕ �� M

In this notation, ϕ∗E = {(y, e) ∈ N × E : ϕ(y) = πF(e)}. It is easy to show that
the mapping

ϕ∗E → ϕ∗P ×G F, (y, [(p, f )]) �→ [((y, p), f )] (1.2.6)

is well defined and an isomorphism of fibre bundles (Exercise 1.2.3). Thus, ϕ∗E
is naturally associated with ϕ∗P.

3. Consider the fibre product P1 ×M P2 of two principal bundles P1(M,G1) and
P2(M,G2), cf. Remark 1.1.9/2. Let (Fi,Gi, σi), i = 1, 2, be Lie group represen-
tations and let Ei = Pi ×Gi Fi be associated vector bundles. Taking the tensor
product representation σ1 ⊗ σ2 : G1 × G2 → Aut(F1 ⊗ F2) ofG1 × G2, defined
by

(σ1 ⊗ σ2)(g1,g2) (f1 ⊗ f2) := (σ1)g1(f1) ⊗ (σ2)g2(f2), (1.2.7)

we can build the associated bundle (P1 × P2) ×(G1×G2) (F1 ⊗ F2) over M × M.
We take the pullback of this bundle under the diagonal mapping

Δ : M → M × M.

Using point 2, we obtain

Δ∗ ((P1 × P2) ×(G1×G2) (F1 ⊗ F2)
) = (P1 ×M P2) ×(G1×G2) (F1 ⊗ F2).

It is easy to show that this bundle is isomorphic to the tensor product E1 ⊗ E2

(Exercise 1.2.4), that is, E1 ⊗ E2 is naturally associated with the fibre product
P1 ×M P2. Moreover, one can prove [472] that every finite-dimensional irre-
ducible representation of G1 × G2 is equivalent to the tensor product of irre-
ducible representations ofG1 andG2, that is, by the above constructionwe exhaust
all finite-dimensional irreducible representations of G1 × G2. �

Let P be a principal G-bundle over M and let λ : G → H be a Lie group homo-
morphism. Consider the associated bundle

P[λ] := P ×G H, (1.2.8)

where G acts on H by left translations via λ. Since left and right translations on
H commute, the action of H on P × H by right translation on the second factor
descends to a free right action of H on P[λ]. Clearly, this action turns P[λ] into a
principal H-bundle over M, called the principal H-bundle associated with P via λ.
The proof of the following proposition is left to the reader (Exercise 1.2.5).
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Proposition 1.2.5 (Associated principal bundles) Let λ : G → H be a Lie group
homomorphism and let P,P1,P2 be principal G-bundles over, respectively, M,

M1,M2.

1. If ϑ : P1 → P2 is a morphism of principal G-bundles, then the mapping

P1
[λ] → P2

[λ], [(p, a)] �→ [(
ϑ(p), a

)]

is a morphism of principal H-bundles having the same projection as ϑ .
2. If f : N → M is a smooth mapping, then the induced mapping

f ∗(P[λ]) → (f ∗P)[λ],
(
m, [(p, a)]) �→ [(

(m, p), a
)]

is a vertical isomorphism.
3. For i = 1, 2, let Gi and Hi be Lie groups and let λi : Gi → Hi be Lie group

homomorphisms. By restriction, the rearrangement

(P1 × P2) × (H1 × H2) → (P1 × H1) × (P2 × H2)

induces a vertical isomorphism (P1 × P2)
[λ1×λ2] ∼= P1

[λ1] × P2
[λ2]. �

Next, we study the structure of the set of smooth sections Γ ∞(P ×G F). For that
purpose, let HomG(P,F) be the set of smooth equivariant mappings Φ̃ : P → F,

Φ̃ ◦ Ψa = σa−1 ◦ Φ̃ . (1.2.9)

Proposition 1.2.6 For every Φ̃ ∈ HomG(P,F), there exists a unique element Φ ∈
Γ ∞(P ×G F) such that the following diagram commutes.

P
(idP,Φ̃) ��

π

��

P × F

ι

��
M

Φ �� P ×G F

(1.2.10)

The assignment Φ̃ �→ Φ defines a bijection from HomG(P,F) onto Γ ∞(P ×G F).

Proof For Φ̃ ∈ HomG(P,F), we define

Φ(m) := [(p, Φ̃(p))], (1.2.11)

where p ∈ π−1(m). This is a well-defined section of P ×G F, because the equivari-
ance property (1.2.9) implies

[(Ψa(p), Φ̃(Ψa(p)))] = [(Ψa(p), σa−1Φ̃(p))] = [(p, Φ̃(p))]
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for all a ∈ G. By definition of Φ, the above diagram commutes. Conversely, since

Φ(m) = [(p, Φ̃(p))] = ιpΦ̃(p),

Φ̃ can be uniquely reconstructed from Φ. �

Proposition 1.2.6 applies, in particular, to the case where F = Q is a principal G-
bundle7 and thus yields a bijective correspondence between morphisms P → Q of
principal G-bundles and sections of P ×G Q. In the special case where P and Q have
the same base manifold M, this correspondence can be refined to describe vertical
morphisms as follows. The direct product mapping πP × πQ : P × Q → M × M
defined by the projections πP : P → M and πQ : Q → M descends to a surjective
submersion

πP ×G πQ : P ×G Q → M × M . (1.2.12)

This is a fibre bundle with typical fibre G: given local trivializations (UP, χP) of P
and (UQ, χQ) of Q, one can check that the mapping χP ×G χQ defined by

π−1
P (UP) × π−1

Q (UQ)
χP×χQ ��

��

UP × UQ × G × G

idUP × idUQ ×μ

��
(πP ×G πQ)−1(UP × UQ)

χP×GχQ �� UP × UQ × G

withμ(a, b) = ab−1 is a diffeomorphism. LetP ×G,M Q denote the restriction8 of the
fibre bundle (1.2.12) to the diagonalM ⊂ M × M. Then, P ×G,M Q is an embedded
submanifold of P ×G Q and the induced projection P ×G,M Q → M coincides with
the restriction of the associated bundle projection P ×G Q → M to this submanifold.
Thus,P ×G,M Q is an embedded vertical subbundle of the associated bundleP ×G Q.

Corollary 1.2.7 By restriction, the bijection between G-morphisms P → Q and
sections of the associated bundle P ×G Q induces a bijection between vertical G-
morphisms P → Q and sections of the vertical subbundle P ×G,M Q.

Proof Let ϑ : P → Q be a G-morphism. Proposition 1.2.6 assigns to ϑ a section s
of P ×G Q via s(m) = [(p, ϑ(p)

)], where p ∈ π−1
P (m). We compute

(πP ×G πQ) ◦ s(m) = (
m, ϑ̃(m)

)
.

Thus, ϑ̃ = idM iff s takes values in the submanifold P ×G,M Q ⊂ P ×G Q, and hence
is a section in the vertical subbundle P ×G,M Q. �

7Clearly, the definition of associated bundle carries over to right G-manifolds F.
8Defined by the pullback via the diagonal mapping M → M × M.
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For the remainder of this section, we assume that F is a finite-dimensional vector
space carrying a representation of the structure group G.

Proposition 1.2.8 Let P(M,G) be a principal G-bundle and let (F,G, σ ) be a Lie
group representation. Then,

1. the associated bundle P ×G F is a vector bundle,
2. the bijection between HomG(P,F) and Γ ∞(P ×G F) given by Proposition 1.2.6

is an isomorphism of vector spaces.
3. If ϑ : P1 → P2 is a morphism of principal G-bundles with projection ϑ̃ , then the

mapping
P1 ×G F → P2 ×G F, [(p, f )] �→ [(

ϑ(p), f
)]

is a morphism of vector bundles with projection ϑ̃ .
4. If f : N → M is a smooth mapping, then the induced mapping

f ∗(P ×G F) → (f ∗P) ×G F,
(
m, [(p, f )]) �→ [(

(m, p), f
)]

is a vertical vector bundle isomorphism.

Proof 1. We endow the fibres of P ×G F with a vector space structure by requiring
that the diffeomorphisms ιp be linear (and thus vector space isomorphisms) for all p ∈
P. Since the mappings σa are vector space automorphisms, formula (1.2.3) implies
that for every pair of points p, p′ belonging to the same fibre, ιp′ is linear iff ιp is
linear. Thus, this vector space structure is well defined. Now, let (U, χ) be a local
trivialization of P, let s be the corresponding local section of P and let (U, ξ) be the
corresponding local trivialization of P ×G F. We have to show that, with respect to
the above defined linear structure, the induced mappings

pr2 ◦ξ�
π

−1
F (m)

: π−1
F (m) → F, m ∈ U,

are linear. Using (1.2.4) and κ(s(m)) = 1, we obtain

pr2 ◦ξ ◦ ιs(m)(f ) = σκ(s(m))(f ) = f .

Thus, pr2 ◦ξ�
π

−1
F (m)

= ι−1
s(m) and the assertion follows.

2. This is an immediate consequence of the linearity of ιp.
3 and 4. This is analogous to points 1 and 2 of Proposition 1.2.5. �

Remark 1.2.9

1. By definition of ιp, the linear structure on the fibre through [(p, f )] ∈ P ×G F is
given as follows:

λ1[(p, f1)] + λ2[(p, f2)] = [(p, λ1f1 + λ2f2)], λ1, λ2 ∈ R.
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Thus, to calculate the sum of two elements one has to choose representatives with
the same p.

2. Let E be a K-vector bundle of rank k over M, where K = R, C or H, and let
L(E) be its principal GL(k, K)-bundle of linear frames, cf. Example1.1.15. Let
Lm be the set of bases sm = (s1, . . . , sk) in the fibre Em. Clearly, the vector bundle
E is associated with L(E), that is, there exists a vector bundle isomorphism
L(E) ×GL(k,K) K

k ∼= E, given by

[((s1, . . . , sk), x)] �→
k∑

i=1

xisi.

This shows that any vector bundle may be viewed as a bundle associated with a
principal bundle. If E carries a fibre metric, we have an analogous isomorphism
betweenE and the bundleO(E) ×UK(k) K

k associatedwith the orthonormal frame
bundle O(E), cf. Definition 1.1.19, via the standard representation of UK(k) on
K

k . �

In the sequel, we denote E = P ×G F. Since E is a vector bundle, we can form the
tensor product

∧k
(T∗M) ⊗ E and we may consider sections of this bundle.

Definition 1.2.10 A section in
∧k

(T∗M) ⊗ E is called a differential k-form on M
with values in E. The vector space of these sections will be denoted by Ωk(M,E).

Since
∧0

(T∗M) = M × R and (M × R) ⊗ E = E, we may identify Ω0(M,E) with
Γ ∞(E). In analogy to the case of sections, elements of Ωk(M,E) may be viewed as
differential forms on P.

Definition 1.2.11 Let P(M,G) be a principal bundle and let (F,G, σ ) be a finite-
dimensional representation of G. A differential k-form α̃ on P with values in F is
called horizontal of type σ if it is annihilated by any vector tangent to the fibres and
if it fulfils

Ψ ∗
a α̃ = σa−1 ◦ α̃

for every a ∈ G. The vector space of horizontal k-forms of type σ will be denoted
by Ωk

σ,hor(P,F).

Correspondingly, the space of ordinary horizontal differential k-forms on P will be
denoted by Ωk

hor(P).

Proposition 1.2.12 To every element α̃ ∈ Ωk
σ,hor(P,F) there corresponds a unique

element α ∈ Ωk(M,E) such that the following diagram commutes.

∧k
(TP)

pr×α̃ ��

�kπ ′

��

P × F

ι

��∧k
(TM)

α �� E
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Here, pr : ∧k
(TP) → P denotes the natural projection. The assignment α̃ �→ α

defines a vector space isomorphism from Ωk
σ,hor(P,F) onto Ωk(M,E).

Proof Let m ∈ M and Xi ∈ TmM, i = 1, . . . , k. Choose p ∈ P fulfilling π(p) = m
and Yi ∈ TpP such that π ′(Yi) = Xi. We define

αm(X1, . . . ,Xk) := ιp ◦ α̃p(Y1, . . . ,Yk). (1.2.13)

We must show that this definition does neither depend on the choice of p nor on the
choice of the Yi. Thus, take p′ = Ψa(p) and tangent vectors Y ′

i at p
′ which also project

onto the Xi. Then, there exist vertical vectors Zi ∈ Tp′P such that Y ′
i = Ψ ′

a(Yi) + Zi
and we obtain

ιp′ ◦ α̃p′(Y ′
1, . . . ,Y

′
k) = ιΨa(p) ◦ α̃Ψa(p)(Ψ

′
a(Y1) + Z1, . . . , Ψ

′
a(Yk) + Zk)

= ιp ◦ σa ◦ (Ψ ∗
a α̃

)
p (Y1, . . . ,Yk)

= ιp ◦ α̃p(Y1, . . . ,Yk).

Here, we have used (1.2.3) together with the horizontality and equivariance of α̃.
Bijectivity and linearity of the assignment α̃ �→ α follow from the bijectivity and
linearity of ιp. �

Note that, conversely, we have

α̃p = ι−1
p ◦ (π∗α)p . (1.2.14)

The following is left to the reader (Exercise 1.2.6).

Remark 1.2.13 Let α ∈ Ωk(M,E), let β ∈ Ω l(M) and let α̃ and β̃ be the corre-
sponding horizontal forms on P with values in F and in R, respectively. Clearly,
β̃ = π∗β. Then,

β̃ ∧ α̃ = β̃ ∧ α .

Thus, the direct sums

Ω∗(M,E) =
∞⊕

k=0

Ωk(M,E) and Ω∗
σ,hor(P,F) =

∞⊕

k=0

Ωk
σ,hor(P,F)

carry the structure of modules over the Cartan algebra Ω∗(M). �

We close this section by giving the local description of the above notions. Let
(U, χ) be a local trivialization of P, let κ : P → G be the corresponding equivariant
mapping and let s : U → P be the associated local section. We define the local
representative of α̃ ∈ Ωk

σ,hor(P,F) by

α̃χ := s∗α̃. (1.2.15)
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This is a k-form on U with values in F. The following proposition shows that a
horizontal form of type σ may be reconstructed from its local representatives.

Proposition 1.2.14 Let α̃ ∈ Ωk
σ,hor(P,F) and let α̃χ be its representative in a local

trivialization (U, χ) given by (1.2.15). Then, for every p ∈ π−1(U), we have

α̃p = σκ(p)−1 ◦ (π∗α̃χ )p. (1.2.16)

Proof By the equivariance of α̃, for every p ∈ π−1(U) und Yi ∈ TpP, we obtain

σκ(p) ◦ α̃p(Y1, . . . ,Yk) =
(
Ψ ∗

κ(p)−1 α̃
)

p
(Y1, . . . ,Yk)

= α̃Ψκ(p)−1 (p)(Ψ
′
κ(p)−1(Y1), . . . , Ψ

′
κ(p)−1(Yk)).

Since Ψκ(p)−1(p) = s(π(p)), we have Ψ ′
κ(p)−1(Yi) ∈ Ts(π(p))P and

π ′
(
Ψ ′

κ(p)−1(Yi) − s′ ◦ π ′(Yi)
)

= 0.

Thus, using the horizontality of α̃, in the above formula we may replace the tangent
vectors Ψ ′

κ(p)−1(Yi) by s′ ◦ π ′(Yi). This yields

σκ(p) ◦ α̃p(Y1, . . . ,Yk) = α̃s(π(p)) (s′ ◦ π ′(Y1), . . . , s′ ◦ π ′(Yk))
= (π∗(s∗α̃))p(Y1, . . . ,Yk),

and, thus, the assertion. �

Remark 1.2.15

1. Let {(Ui, χi)}i∈I be a system of local trivializations of P and let (Uj, χj) and
(Uk, χk) be elements of this system fulfilling Uj ∩ Uk �= ∅. Then, (1.2.16) and
(1.1.5) imply

α̃
χj
m = σρjk(m)α̃

χk
m , m ∈ Uj ∩ Uk .

It is easy to show that a system of k-forms {α̃χi}i∈I fulfilling these relations defines
a unique element of Ωk

σ,hor(P,F) with local representatives α̃χi (Exercise 1.2.7).
2. Let α be the k-form on M with values in E corresponding to α̃ and let (U, ξ) be

the local trivialization of E induced by (U, χ) via (1.2.1). We define the local
representative of α by

αξ = pr2 ◦ξ ◦ α�U . (1.2.17)

Using (1.2.13), (1.2.16) and (1.2.1), we calculate

αm(X1, . . . ,Xk) = [(
s(m), α̃χ

m(X1, . . . ,Xk)
)] = ξ−1

(
m, α̃χ

m(X1, . . . ,Xk)
)

(1.2.18)
for m ∈ U and Xi ∈ TmM. Thus, αξ = α̃χ as expected.
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3. In particular, for a section Φ ∈ Γ ∞(E) we denote ϕ := Φξ = Φ̃χ . This is a
function on U with values in F. Here, the reconstruction formulae read

Φ(m) = [(s(m), ϕ(m))], Φ̃(p) = σκ(p)−1ϕ(π(p)),

for any m ∈ U and p ∈ π−1(U). �

Exercises

1.2.1 Prove Proposition 1.2.2.

1.2.2 Prove the assertions of Example 1.2.4/1.
Hint. To prove point (a), show that the mapping

i : P ×G G/H → P/H, i([(p, gH)]) := [Ψg(p)]

is bijective. To prove point (b), construct local trivializations of P ×G G/H from
local trivializations of the principal G-bundle P → M and of the principal H-bundle
G → G/H.

1.2.3 Prove that formula (1.2.6) defines a vector bundle isomorphism.

1.2.4 Prove the statements of Example 1.2.4/3.

1.2.5 Prove Proposition 1.2.5.

1.2.6 Prove the statements of Remark 1.2.13.

1.2.7 Prove the statement of Remark 1.2.15/1.

1.3 Connections

The notion of connection will play a fundamental role throughout this book, because
it yields the mathematical model for a gauge potential.

To start with, we recall the notion of Killing vector field, cf. Sect. 6.2 of Part I.
Given a Lie group action (P,G, Ψ ), every element A of the Lie algebra g ofG defines
a vector field A∗ via the flow Ψexp(tA), that is,

(A∗)p = d

dt �0
Ψexp(tA)(p) = Ψ ′

p(A) .

A∗ is called the Killing vector field generated by A.

http://dx.doi.org/10.1007/978-94-024-0959-8_6
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Now, consider a principal fibre bundle (P,G,M, Ψ, π). We denote the vertical
distribution spanned by the Killing vector fields of the G-action by V and call Vp ⊂
TpP the vertical subspace of TpP at p ∈ P.

Lemma 1.3.1 The vertical distribution V has the following properties.

1. It is equivariant, that is, VΨa(p) = Ψ ′
a(Vp).

2. The mapping
ψ : P × g → V , (p,A) �→ Ψ ′

p(A)

is an isomorphism of vector bundles. In particular, the mappings Ψ ′
p : g → Vp

are isomorphisms of vector spaces.
3. For every p ∈ P, the vertical subspace Vp coincides with the tangent space of the

fibre at p and, thus, with ker(π ′
p).

Proof 1. This follows from Proposition I/6.2.2/1.
2. By construction, ψ is a surjective vertical morphism of vector bundles. Since

Ψ is a free action, Proposition I/6.2.2/3 implies that ψ is injective. Thus, the tangent
mappingψ ′ is bijective at any point and, consequently, the InverseMapping Theorem
I/1.5.7 implies that the inverse mapping is smooth.

3. This is an immediate consequence of the Orbit Theorem I/6.2.8. �

Since, by definition, V is spanned by the Killing vector fields, to prove VΨa(p) =
Ψ ′
a(Vp) it is enough to study the transport of a Killing vector field underΨ . One finds

Ψ ′
aA∗(p) = (

Ad
(
a−1

)
A
)
∗ (Ψa(p)) . (1.3.1)

Also note that, by point 2 of Lemma 1.3.1, as a vector bundle, V is trivial.
Now, we can define the notion of connection.

Definition 1.3.2 (Connection on a principal fibre bundle) Let (P,G,M, Ψ, π) be a
principal fibre bundle. A connection on P is a distribution9 Γ on P such that

1. Γp ⊕ Vp = TpP for all p ∈ P,
2. ΓΨa(p) = Ψ ′

a(Γp) for all p ∈ P and a ∈ G.

Γp is called the horizontal subspace at p.

A connection on a principal bundle will be often referred to as a principal connection.

Remark 1.3.3

1. By point 1, every tangent vector Xp ∈ TpP admits a unique decomposition into a
horizontal component hor Xp ∈ Γp and a vertical component ver Xp ∈ Vp,

Xp = hor Xp + ver Xp. (1.3.2)

9As in Part I, distributions are assumed to be smooth without notice.
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Since both Γ and V are smooth, the mappings hor : TP → Γ and ver : TP → V
are smooth. Thus, if X is a smooth vector field on P, then both hor X and ver X
are smooth vector fields, too.

2. For a given connection Γ , the restriction of π ′ to the horizontal subspace Γp

yields an isomorphism of Γp and Tπ(p)M. Thus, every vector field X onM admits
a unique horizontal lift, that is, a vector field Xh on Pwith values in the horizontal
distribution which is π -related to X. It is obtained by applying the inverse of the
above isomorphism pointwise toX. By construction,Xh isΨ -invariant. The proof
of smoothness of Xh is left to the reader (Exercise 1.3.1). Conversely, every Ψ -
invariant horizontal vector field on P is the horizontal lift of a vector field on
M.

3. Every connection on a principal bundle P induces a connection on any bundle
associated with P. Indeed, let Γ be a connection on the principal bundle P(M,G)

and let E = P ×G F be an associated bundle. For f ∈ F, we define

ιf : P → E, ιf (p) = [(p, f )].

This mapping has the following properties:

ιf ◦ Ψa = ισa(f ), πF ◦ ιf = π. (1.3.3)

The horizontal subspace at e = [(p, f )] ∈ E is defined by

Γ E
e := ι′f (Γp). (1.3.4)

By the first relation in (1.3.3), the right hand side of this equation does not depend
on the choice of the representative (p, f ) of e. Since p �→ Γp is a smooth distribu-
tion, e �→ Γ E

e is smooth, too. We show that this distribution is complementary to
the canonical vertical distribution e �→ VE

e , where V
E
e denotes the tangent space

to the fibre at e ∈ E. By the second equation in (1.3.3), ι′f (Vp) is contained in VE
e

and π ′
F(Γ E

e ) = π ′(Γp) = TmM, where m = πF(e). Thus, we have a direct sum
decomposition,

TeE = VE
e ⊕ Γ E

e .

The horizontal distribution e �→ Γ E
e will be referred to as the connection on E

induced by Γ . In particular, the restriction of the tangent mapping π ′
F to Γ E

e
defines an isomorphism from Γ E

e onto TmM and, thus, every tangent vector X ∈
TmM admits a unique horizontal lift Xh

e ∈ Γ E
e . By (1.3.4), it is given by

Xh
e = ι′f (X

h
p ), (1.3.5)

where Xh
p is the unique horizontal lift of X to the point p of P. �
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Since, by point 2 of Lemma 1.3.1, Ψ ′
p : g → Vp is a vector space isomorphism, with

every connection we may associate a g-valued 1-form on P.

Definition 1.3.4 (Connection form) Let (P,G,M, Ψ, π) be a principal bundle and
let Γ be a connection on P. The 1-form ω on P with values in g defined by

ωp(X) := (Ψ ′
p)

−1(ver X), p ∈ P , X ∈ TpP, (1.3.6)

is called the connection form of Γ .

As an immediate consequence of this definition, we obtain the following formula of
the horizontal component of a tangent vector X ∈ TpP:

hor X = X − Ψ ′
p(ω(X)). (1.3.7)

Proposition 1.3.5 Let (P,G,M, Ψ, π) be a principal bundle and let Γ be a con-
nection on P. Then, the connection form ω of Γ is smooth and has the following
properties.

1. ker(ωp) = Γp for all p ∈ P,
2. ω(A∗) = A for all A ∈ g,
3. Ψ ∗

a ω = Ad
(
a−1

) ◦ ω for all a ∈ G.

Proof By Lemma 1.3.1, we may decompose the mapping TP 
 X �→ ω(X) ∈ g as
follows:

TP
ver→ V

ψ−1→ P × g
pr2→ g.

This shows that ω is smooth. Assertions 1 and 2 are immediate consequences of the
definition of ω. It remains to prove assertion 3. By point 1, it is enough to apply both
sides of the equation to a Killing vector field. Using (1.3.1), we obtain

〈Ψ ∗
a ω,A∗〉 = 〈ω,Ψa∗A∗〉 =

〈
ω,

(
Ad

(
a−1

)
A
)

∗
〉
= Ad

(
a−1

)
A = Ad

(
a−1

)
〈ω,A∗〉.

�

Proposition 1.3.6 Every g-valued 1-form ω on P fulfilling the conditions 2 and 3 of
Proposition 1.3.5 uniquely defines a connection Γ .

Proof We put Γp := ker(ωp). Now, the defining properties of the horizontal distrib-
ution p �→ Γp follow directy from the properties of ω (Exercise 1.3.2). �

Proposition 1.3.7 Every principal fibre bundle admits a connection.

Proof Let (P,G,M, Ψ, π) be a principal fibre bundle, let {Ui}i∈I be a countable,
locally finite covering ofM and let {fi}i∈I be a subordinate partition of unity. Choose
a system of local trivializations {(Ui, χi)}i∈I of P, associated with this covering. At
every point χ−1

i (m,1), m ∈ M, we define a subspace Γχ−1
i (m,1) of Tχ−1

i (m,1)P by
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Γχ−1
i (m,1) := (

χ ′
i

)−1
T(m,1) (Ui × {1}) . (1.3.8)

Clearly, Γχ−1
i (m,1) is complementary to Vχ−1

i (m,1). If we transport this subspace with
Ψ ′
a, a ∈ G, to the remaining points of the fibre over m, for every m ∈ Ui, then we

obtain a connection on the trivial principal G-bundle π−1(Ui). Let us denote the
corresponding connection form by ω̃i. We define the following family of g-valued
1-forms on P:

(ωi)p :=
{
0 p /∈ π−1(Ui)

(π∗fi) ω̃i p ∈ π−1(Ui) .

Since {supp(fi)} is locally finite, ω := ∑
i ωi is a well-defined smooth 1-form on P

with values in g. It remains to show that ω fulfils conditions 2 and 3 of Proposition
1.3.5.
Condition 2. For p ∈ P and A ∈ g, we have

ωp(A∗(p)) =
∑

i∈I
(ωi)p(A∗(p)) =

∑

i∈I∗
(ωi)p(A∗(p)) ,

where I∗ ⊂ I contains exactly those indices for which π(p) ∈ Ui. Since every ω̃i is
a connection form, for i ∈ I∗, we obtain

(ωi)p(A∗(p)) = fi(π(p))(ω̃i)p(A∗(p)) = fi(π(p))A.

Now,
∑

i∈I∗ fi(π(p)) = ∑
i∈I fi(π(p)) = 1 implies ωp(A∗(p)) = A .

Condition 3. It is enough to verify this condition for every ωi restricted to π−1(Ui).
SinceΨ ∗

a ((π∗fi) ω̃i) = (π∗fi)
(
Ψ ∗
a ω̃i

)
and since all ω̃i share property 3, the assertion

follows. �

Remark 1.3.8 By thedefiningproperties 2 and3of a connection form, cf. Proposition
1.3.5, the difference of two connection forms is a horizontal 1-form of type Ad. Thus,
the set of connections of a principal fibre bundle carries the structure of an infinite-
dimensional affine space with the translation vector space given by Ω1

Ad,hor(P, g).
This space will play a crucial role in gauge theory. �

Remark 1.3.9 ByRemark 1.3.3/3, a principal connectionΓ induces a connectionΓ E

on every associated bundle E = P ×G F. If (F,G, σ ) is a Lie group representation
and, thus, E is a vector bundle, then the canonical vertical subspace VE

e may be
naturally identified with the fibre through e ∈ E. In more detail, since in this case the
mapping ιp, given by (1.2.2), is a vector space isomorphism between F and the fibre
EπF (p), the tangent mapping ι′p is a vector space isomorphism between Tf F ∼= F and
VE
e , where e = [(p, f )]. Thus, for any Z ∈ VE

e , there exists an element v ∈ F such
that Z = ι′p(v). Via ιp, the vector v may be identified with the element [(p, v)] in the
fibre EπF (p). Thus, the above mentioned identification is given by

VE
e → E, Z �→ ιp ◦ (ι′p)

−1(Z) .
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We conclude that in the case of an associated vector bundle E, endowed with an
induced connection Γ E , we have an analogue of the connection form ω:

ωE : TE → E, ωE(X) := ιp ◦ (ι′p)
−1(Xv), (1.3.9)

where X = Xv + Xh is the decomposition of X ∈ TeE with respect to Γ E . Clearly,
ωE is a vector bundle morphism. It is called the connection mapping induced from
ω. Using ιf ◦ Ψp = ιp ◦ σf , one easily finds the following relation between ω and ωE

(Exercise 1.3.3):
ωE ◦ ι′f (X) = ιp ◦ σ ′(ω(X))f , X ∈ TpP. (1.3.10)

Here, σ ′ ≡ dσ : g → End(F) is the representation of the Lie algebra g of G induced
from σ . The assignment X → σ ′(ω(X)) defines a 1-form on Pwith values in End(F)

which will be denoted by σ ′(ω). �
It turns out that a connection on P(M,G) is uniquely characterized in terms of its

local representatives on the base space M. Let s : U → π−1(U) be a local section.
The local representative of a connection form ω on P is defined by

A := s∗ω. (1.3.11)

Remark 1.3.10 Let (U, ϕ) be a local chart on M and let {ta} be a basis in g. Then,
the collection

{dϕμ1 ∧ · · · ∧ dϕμk ⊗ ta} (1.3.12)

yields a local frame in the bundle of g-valued k-forms on M. With respect to this
frame, the local representative A takes the form

A = A a
μ dϕμ ⊗ ta.

�
We show that ω may be reconstructed from A locally. For that purpose, recall
from the proof of Proposition 1.1.6 that a section s defines an equivariant mapping
κ : P → G by

Ψκ(p)(s ◦ π(p)) = p, p ∈ P. (1.3.13)

Proposition 1.3.11 Let (P,G,M, Ψ, π) be a principal bundle and let ω be a con-
nection form on P. Let U ⊂ M be open and let s : U → π−1(U) be a local section.
Let A be the local representative defined by (1.3.11). Then, for every p ∈ π−1(U),

ωp = Ad
(
κ(p)−1

)
(π∗A )p + (κ∗θ)p, (1.3.14)

with θ denoting the Maurer–Cartan form10 on G.

10See Definition I/5.5.11.
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Proof LetX ∈ TpP and let t �→ γ (t) be a curve representingX. Then, using (1.3.13),
we calculate

X = d

dt �0
γ (t)

= d

dt �0
Ψ
(
s ◦ π(γ (t)), κ(γ (t))

)

= (
Ψκ(p)

)′
s(π(p))

◦ (s ◦ π)′p(X) + (
Ψs(π(p))

)′
κ(p)

◦ κ ′
p (X).

Denoting the first and the second summand by Xs and Xv, respectively, we get a
decomposition X = Xs + Xv, where Xs is tangent to the submanifold Ψκ(p)(s(U))

and where Xv is vertical. We calculate

ωp(X
s) = (

Ψ ∗
κ(p)ω

)
s(π(p))

(
(s ◦ π)′p(X)

)

= Ad
(
κ(p)−1) (s∗ω)π(p)(π

′(X))

= Ad
(
κ(p)−1

)
(π∗A )p(X).

This yields the first summand in (1.3.14). On the other hand, by the definition of ω,

ωp(X
v) = (

Ψ ′
p

)−1 ◦ (Ψs(π(p))
)′
κ(p) ◦ κ ′

p(X).

Using the obvious identity Ψ −1
p ◦ Ψs(π(p)) ◦ Lκ(p) = idG, together with

(κ∗θ)p(X) = L′
κ(p)−1 ◦ κ ′

p(X),

we obtain ωp(Xv) = (κ∗θ)p(X). This proves (1.3.14). �

The following corollary is immediate (Exercise 1.3.4).

Corollary 1.3.12 Let P be a principal G-bundle and let ω be a connection form
on P. Let {(Ui, χi)} be a system of local trivializations of P with corresponding
equivariant mappings {κi}, local sections {si} and transition mappings {ρij}. Let

Ai = s∗i ω.

Then, for any pair (i, j) such that Ui ∩ Uj �= ∅, the local representatives Ai and Aj

are related as follows:

(
Aj
)
m = Ad

(
ρij(m)−1) ◦ (Ai)m + (

ρ∗
ijθ
)
m

, m ∈ Ui ∩ Uj. (1.3.15)
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Conversely, any system of Lie algebra-valued 1-forms {Ai} fulfilling (1.3.15) defines
a unique connection form ω with local representatives {Ai}. �

Next, let us discuss the transformation properties of connections under principal
bundle morphisms.

Proposition 1.3.13 Let (ϑ, λ) be a morphism of the principal bundles P1(M1,G1)

and P2(M2,G2) such that the induced mapping ϑ̃ : M1 → M2 is a diffeomorphism.
Let Γ 1 be a connection on P1 and let ω1 be its connection form.

1. There exists a unique connectionΓ 2 onP2 such thatϑ ′ maps horizontal subspaces
of Γ 1 to horizontal subspaces of Γ 2.

2. The connection form ω2 of Γ 2 fulfils ϑ∗ω2 = dλ ◦ ω1, where dλ : g1 → g2 is the
induced homomorphism of Lie algebras. Moreover, ϑ∗Ω2 = dλ ◦ Ω1.

We call Γ 2 the image of Γ 1 under the morphism (ϑ, λ).11

Proof Denote the right group actions and the canonical projections in Pi, i = 1, 2,
by Ψ i and πi, respectively.

1. We define a distribution Γ 2 on P2 as follows. Since ϑ̃ is surjective, for a
given p2 ∈ P2, we can choose a pair (p1, a) ∈ P1 × G2 such that p2 = Ψ 2

a (ϑ(p1))
and define

Γ 2
p2 := (

Ψ 2
a

)′ ◦ ϑ ′ (Γ 1
p1

)
,

where Γ 1
p1 is the horizontal subspace of Γ 1 at p1. By (1.1.3), this definition does not

depend on the choice of the pair (p1, a). We prove that Γ 2 is a connection on P2.
First, we calculate

(
Ψ 2
b

)′ (
Γ 2
p2

) = (
Ψ 2
b

)′ ◦ (Ψ 2
a

)′ ◦ ϑ ′ (Γ 1
p1

) = (
Ψ 2
ab

)′ ◦ ϑ ′ (Γ 1
p1

) = Γ 2
Ψ 2
b (p2)

,

becauseΨ 2
b (p2) = Ψ 2

ab(ϑ(p1)). Thus, Γ 2 isG2-equivariant. To prove that Γ 2 is com-
plementary to the vertical distribution V 2 on P2, by local triviality of the bundles,
it is enough to show that the restriction of π ′

2 : TP2 → TM2 to Γ 2 yields pointwise
isomorphisms of vector spaces. Thus, consider the mapping π ′

2 : Γ 2
p2 → Tπ2(p2)M2.

ByG-equivariance of Γ 2, we may assume p2 = ϑ(p1). Then, from ϑ̃ ◦ π1 = π2 ◦ ϑ ,
we have

ϑ̃ ′
π1(p1) ◦ (π1)

′
p1 = (π2)

′
p2 ◦ ϑ ′

p1 .

Since, by assumption, ϑ̃ is a diffeomorphism and Γ 1 is a connection, ϑ̃ ′ and π ′
1 are

both isomorphisms of vector spaces. Thus, π ′
2 : Γ 2

p2 → Tπ2(p2)M2 is an isomorphism,
too. We conclude that Γ 2 is a connection. By construction, it is unique.

2. The first assertion is equivalent to

(ω2)ϑ(p1)

(
ϑ ′(X)

) = dλ
(
(ω1)p1 (X)

)
,

11It is also common to speak of the push forward or the transport of Γ 1 by the morphism (ϑ, λ).
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for any p1 ∈ P1 and X ∈ Tp1P1. Since ϑ ′ maps horizontal vectors to horizontal vec-
tors, it is enough to prove this equality for vertical vectors, that is, for values of
Killing vector fields. Thus, let A∗ be the Killing vector field generated by A ∈ g1.
Since, for any a ∈ G1,

ϑ ◦ Ψ 1
p1(a) = ϑ ◦ Ψ 1

a (p1) = Ψ 2
λ(a) ◦ ϑ(p1) = Ψ 2

ϑ(p1) ◦ λ(a),

we obtain

(ω2)ϑ(p1)

(
ϑ ′(A∗)p1

) = (ω2)ϑ(p1)

((
Ψ 2

ϑ(p1)

)′ ◦ dλ(A)
)

= dλ(A).

Now, the assertion follows from the fact that A = ω1(A∗). It remains to prove the
second statement: for X,Y ∈ TpP, we calculate

ϑ∗Ω̃(X,Y) = dω̃
(
horω̃ ◦ϑ ′(X), horω̃ ◦ϑ ′(Y)

)

= dω̃
(
ϑ ′ ◦ horω(X), ϑ ′ ◦ horω(Y)

)

= d(ϑ∗ω̃) (horω(X), horω(Y))

= d(dλ ◦ ω) (horω(X), horω(Y))

= dλ ◦ dω (horω(X), horω(Y))

= dλ ◦ Ω(X,Y) .

�

Proposition 1.3.13 immediately implies the following.

Corollary 1.3.14 For a Lie group homomorphism λ : H → G and a principal H-
bundle Q, let P := Q[λ]. Then, any connection Γ Q on Q induces a unique connection
Γ P on P. The corresponding connection forms are related via

ϑ∗ωP = dλ ◦ ωQ,

where ϑ : Q → P is the corresponding bundle morphism. �

The induced connection Γ P is often referred to as the λ-extension of Γ Q.
Since the proof of the following proposition is by arguments similar to those in

the proof of Proposition 1.3.13, we leave it to the reader, see Exercise 1.3.5.

Proposition 1.3.15 Let (ϑ, λ) be a morphism of the principal bundles P1(M1,G1)

and P2(M2,G2) such that λ : G1 → G2 is an isomorphism. Let Γ 2 be a connection
on P2 and let ω2 be its connection form.

1. There exists a unique connectionΓ 1 onP1 such thatϑ ′ maps horizontal subspaces
of Γ 1 to horizontal subspaces of Γ 2.

2. The connection form ω1 of Γ 1 fulfils ϑ∗ω2 = dλ ◦ ω1 and ϑ∗Ω2 = dλ ◦ Ω1. �
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We call Γ 1 the connection induced by Γ 2 via the morphism (ϑ, λ).

Corollary 1.3.16 Under theassumptions ofProposition1.3.15, additionally, assume
G1 = G2 = G and let λ be the identical automorphism. Then, ω1 = ϑ∗ω2. This
means, in particular:

1. The pullback of a connection form under an automorphism of a principal bundle
is a connection form.

2. For a principal bundle P(M,G) and a mapping f : N → M, every connction in
P induces a connection on the pullback bundle f ∗P. �

Remark 1.3.17

1. Proposition 1.3.13 remains true under the weaker assumptions that ϑ̃ be a sur-
jective submersion and that M1 and M2 have the same dimension. Similarly, in
Proposition 1.3.15, it suffices to assume that dλ be an isomorphism of Lie alge-
bras.

2. From the proof of Proposition 1.3.13 we read off the following. Let (ϑ, λ) be a
morphism of the principal bundles P1(M1,G1) and P2(M2,G2). For i = 1, 2, let
ωi be a connection form onPi and letΩi be its curvature form. Ifϑ∗ω2 = dλ ◦ ω1,
then ϑ∗Ω2 = dλ ◦ Ω1.

3. Consider the special case of the fibre product bundle P1 ×M P2 = Δ∗(P1 × P2),
cf. Remark 1.1.9/2. Let (πi, λi) : P1 ×M P2 → Pi, i = 1, 2, be the natural prin-
cipal bundle homomorphisms defined by restriction of the canonical projections
pri : P1 × P2 → Pi to P1 ×M P2. The corresponding Lie group homomorphisms
λi : G1 × G2 → Gi are given by the canonical projections onto the first and the
second component, respectively. Let Γ1 and Γ2 be connections on P1 and P2,
respectively, and let ω1 and ω2 be the corresponding connection forms. Then,

ω = pr∗1 ω1 + pr∗2 ω2

is obviously a connection form on P1 × P2.12 Now, by Corollary 1.3.16, ϑ∗ω
is the unique connection on Δ∗(P1 × P2) = P1 ×M P2 induced from ω, where
ϑ : P1 ×M P2 → P1 × P2 is the induced morphism. It is given by

ϑ∗ω = π∗
1ω1 + π∗

2ω2. (1.3.16)

�
We close this section with a number of examples. All of them are related to the

Maurer-Cartan form θ of a Lie groupG. By Remark I/5.5.12/2, we have θa = a−1da,
a ∈ G. Thus, θ is left invariant and right equivariant under the action ofG by left and
right translations, respectively. Clearly, the right equivariance property reads

R∗
aθ = Ad(a−1) ◦ θ.

12The first summand takes values in the Lie algebra g1 of G1 and the second takes values in the Lie
algebra g2 of G2. The embedding mappings gi → g1 ⊕ g2 are omitted.
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Example 1.3.18 (Canonical connection of the product bundle) Consider the product
bundle P = M × G, cf. Example 1.1.4/1. Take the connection Γ defined by (1.3.8)
with χ being the identical mapping. The connection form corresponding to Γ is
given by

ω = pr∗G θ,

where prG : M × G → G denotes the canonical projection. Details are left to the
reader (Exercise 1.3.7). �

Example 1.3.19 (Reductive homogeneous space) LetG be aLie group and letH ⊂ G
be a closed subgroup. Then, by Example 1.1.4/3,G carries the structure of a principal
H-bundle over the homogeneous space G/H. Assume, additionally, that G/H is
reductive, that is, the Lie algebra g of G admits a vector space decomposition

g = h ⊕ m

such that Ad(H)m ⊂ m. Here, h denotes the Lie algebra of H. If G is semisimple,
thenm can be chosen to be the orthogonal complement to h in the sense of the Killing
form (Exercise 1.3.6).

Clearly, the vertical subspace at a ∈ G is given by L′
a(h). Since for any a ∈ G,

we have TaG = L′
a(h) ⊕ L′

a(m), the left invariant distribution a �→ Γa := L′
a(m) on

G is complementary to the canonical vertical distribution. Using the reductivity, it is
easy to show that Γ is right H-equivariant. Thus, Γ defines a connection on G. The
corresponding connection form is given by

ω0 = prh ◦θ, (1.3.17)

where prh is the canonical projection onto the first summand of the above reductive
decomposition. Details are left to the reader (Exercise 1.3.7). �

Example 1.3.20 (Canonical connection on the Stiefel bundle) Recall the Stiefel bun-
dles

SK(k, n) ∼= UK(n)/UK(n − k) → GK(k, n) ∼= UK(n)/(UK(n − k) × UK(k))

discussed in Example 1.1.24. Denote the Lie algebra of the isometry group UK(i) by
uK(i), i = k, n − k, n. Since UK(n − k) and UK(k) act in complementary orthogonal
subspaces of K

n, the direct sum of their Lie algebras is a Lie subalgebra of uK(n)
and we have a direct sum decomposition

uK(n) = uK(k) ⊕ m.

Here, m = uK(n − k) ⊕ n and n is the orthogonal complement of

uK(k) ⊕ uK(n − k) ⊂ uK(n)
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with respect to the Killing form. The restriction of the adjoint representation
Ad(UK(k)) acts on uK(n − k) trivially and leaves the subspace n invariant. Thus,
the above decomposition is reductive. As in Example 1.3.19, we put

ωc := pruK(k) ◦ θ. (1.3.18)

Clearly, ωc is a uK(k)-valued 1-form on UK(n). Since ωc is invariant under the
UK(n − k)-action on UK(n), it descends to a uK(k)-valued 1-form on SK(k, n)which
we denote by the same symbol. We claim that ωc is a connection form. To prove
this, we have to check the defining conditions 2 and 3 of Proposition 1.3.5. To check
condition 2, note that the Killing vector field of the right UK(k)-action on UK(n)
generated by A ∈ uK(k) coincides with A viewed as a left invariant vector field,

(A∗)a = d

dt �0
(a exp(tA)) = aA, a ∈ UK(n).

Since the right actions ofUK(k) andUK(n − k)onUK(n) commute, theKilling vector
field of the right UK(k)-action on SK(k, n) generated by A ∈ uK(k)may be identified
with A∗. Now, condition 2 follows from the defining equation of the Maurer-Cartan
form, θ(A) = A. Condition 3 follows immediately from the right UK(n)-equivariance
of θ . The connection defined by ωc is called the canonical or universal13 connection
of the Stiefel bundle. By left invariance of the Maurer-Cartan form, the canonical
connection is invariant under left translations of UK(n).

We give an explicit description of ωc in terms of matrix-valued functions: let
{e1, . . . , en} be the standard basis in K

n. If we choose the k-frame u0 = (e1, . . . , ek),
then the subgroups UK(k) and UK(n − k) are given in block matrix form by an upper
diagonal (k × k)-block and by a lower diagonal ((n − k) × (n − k))-block in UK(n),
respectively. Let a ∈ UK(n) and let aij be the corresponding (n × n)-matrix with
respect to the standard basis. Since a†a = 1, ωc is represented by a (k × k)-valued
1-form on SK(k, n),

(ωc)αβ = (a†)α j da
j
β,

where α, β = 1, . . . k and j = 1, . . . , n. Denoting by u the matrix-valued function
which assigns to the k-frame uα = ajαej the (n × k)-matrix ajα , we obtain

ωc = u†du. (1.3.19)

Since a†a = 1, we have u†u = 1k . �

Remark 1.3.21 In the above realization, the horizontal vectors of ωc at the point

p0 =
[
1k

0

]
∈ SK(k, n) are given by matrices of the form

[
0 −T †

T 0

]
, where T is an

arbitrary ((n − k) × n)-matrix (Exercise 1.3.8). �

13This name will be explained in Sect. 3.8.

http://dx.doi.org/10.1007/978-94-024-0959-8_3
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For later purposes, let us consider the following special case.

Example 1.3.22 (Canonical connection on the Hopf bundle) As noted in Remark
1.1.25, the Hopf bundles of Examples 1.1.20 and 1.1.22 coincide with the Stiefel
bundles SK(1, 2) → GK(1, 2) with K = C and K = H, respectively. First, consider
the complex Hopf bundle. In the notation of the above example, we have

u =
[
z1
z2

]
∈ C

2, |z1|2 + |z2|2 = 1,

and thus the canonical connection is given by

ωc = z1 dz1 + z2 dz2. (1.3.20)

It takes values in the Lie algebra u(1) = iR of U(1). In complete analogy, for the
quaternionic Hopf bundle, we have

u =
[
q1
q2

]
∈ H

2, |q1|2 + |q2|2 = 1,

and the canonical connection is given by

ωc = q1 dq1 + q2 dq2. (1.3.21)

It takes values in the Lie algebra sp(1) of Sp(1). �

Example 1.3.23 In contrast to the complexHopf bundle, consider the product bundle
P = S2 × U(1) endowed with the canonical connection of Example 1.3.18. In the
parameterization z = eiα of U(1), the canonical connection form is ω = dα. �

Exercises

1.3.1 Prove that the horizontal lift of a vector field, defined in Remark 1.3.3/2, is
smooth. Moreover, show the following: if Xh and Yh are horizontal lifts of X and Y ,
respectively, then

(a) Xh + Yh is the horizontal lift of X + Y ,
(b) for any f ∈ C∞(M), the vector field (π∗f )Xh is the horizontal lift of fX.
(c) the horizontal component of [Xh,Yh] is the horizontal lift of [X,Y ].
1.3.2 Complete the proof of Proposition 1.3.6.

1.3.3 Prove formula (1.3.9).

1.3.4 Prove Corollary 1.3.12.
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1.3.5 Prove Proposition 1.3.15.
Hint. Since λ is an isomorphism, dλ is an isomorphism of Lie algebras. Use this fact
to define the connection Γ 1 via its connection form putting ω1 := (dλ)−1 ◦ ϑ∗ω2.

1.3.6 Show the following. If G is a semisimple Lie group and if H is a closed sub-
group, theng = h ⊕ h⊥ defines a reductive decomposition.Here,h⊥ is the orthogonal
complement of h in g with respect to the Killing form.

1.3.7 Complete the proof of the statements made in Examples 1.3.18 and 1.3.19.

1.3.8 Prove the statement of Remark 1.3.21.

1.4 Covariant Exterior Derivative and Curvature

The following notion plays a basic role in the theory of connections.

Definition 1.4.1 (Covariant exterior derivative) Let P be a principal bundle and
let F be a finite-dimensional vector space. The covariant exterior derivative14 of an
F-valued differential k-form α on P with respect to a connection Γ is the differential
(k + 1)-form with values in F defined by

Dωα(X0, . . . ,Xk) := dα(hor X0, . . . , hor Xk), X0, . . . ,Xk ∈ X(P).

By definition,Dω fulfils the same product rule as the ordinary exterior derivative and
Dωα is horizontal. Moreover, as will be shown, Dω preserves the symmetry type of
any horizontal form.

We wish to derive an explicit formula for the covariant exterior derivative. For
that purpose, we need the following.

Lemma 1.4.2 Let P(M,G) be a principal bundle with a connection Γ , let A∗ be a
Killing vector field on P, let X ∈ X(P) be horizontal and let Y ∈ X(M). Then, [A∗,X]
is horizontal and [A∗,Yh] = 0.

Proof For any p ∈ P, we have

[A∗,X]p = (L A∗ X)p = d

dt �0

(
(Ψexp(−tA))∗X

)
p .

Since X is horizontal, (Ψexp(−tA))∗X is horizontal for all t. Thus, [A∗,X] is horizontal,
too. To prove the second statement, recall that the horizontal lift Yh is G-invariant,
that is, the curve t �→ (

(Ψexp(−tA))∗Yh
)
p is constant and equal to Yh

p . This yields the
assertion. �

Recall from Remark 1.3.9 that σ ′(ω) is a 1-form on P with values in End(F).

14Or covariant exterior differential.
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Proposition 1.4.3 Let P(M,G) be a principal bundle, let (F,G, σ ) be a finite-
dimensional representation and let ω be a connection form on P.

1. The covariant exterior derivative Dω of a horizontal F-valued k-form on P of
type σ is a horizontal (k + 1)-form of type σ .

2. Let α̃ ∈ Ωk
σ,hor(P,F). Then,

Dωα̃ = dα̃ + σ ′(ω) ∧ α̃, (1.4.1)

where

(σ ′(ω) ∧ α̃)p(X0, . . . ,Xk) :=
k∑

i=0

(−1)iσ ′(ωp(Xi))
(
α̃p(X0,

Xi�. . .,Xk)
)
,

with p ∈ P and X0, . . . ,Xk ∈ TpP.

Proof 1. Let α̃ ∈ Ωk
σ,hor(P,F). By definition of the covariant exterior derivative,

Dωα̃ is an F-valued horizontal (k + 1)-form. For X0, . . . ,Xk ∈ X(P), we calculate

(Ψ ∗
a Dωα̃) (X0, . . . ,Xk) = Dωα̃ (Ψa ∗X0, . . . , Ψa ∗Xk)

= dα̃ (horΨa ∗X0, . . . , horΨa ∗Xk)

= dα̃ (Ψa ∗ hor X0, . . . , Ψa ∗ hor Xk)

= d(Ψ ∗
a α̃) (hor X0, . . . , hor Xk)

= d(σa−1 ◦ α̃) (hor X0, . . . , hor Xk)

= σa−1 ◦ Dωα̃ (X0, . . . ,Xk) .

This shows that Dωα̃ is of type σ .
2. Since each of the vectorsX0, . . . ,Xk ∈ TpPmay be decomposed into a vertical

and a horizontal part, it is enough to consider the following cases:
(a) Let all vectors Xi be horizontal. Then, ω(Xi) = 0 and formula (1.4.1) follows
from Definition 1.4.1.
(b) Let one of the vectors Xi, say X0, be vertical and let the remaining vectors be
horizontal. Then, there exists an element A ∈ g such that X0 = Ψ ′

p(A) and a family of
vector fields Y1, . . . Yk ∈ X(M) such that their horizontal lifts Yh

i at p coincide with
the vectors X1, . . . ,Xk . Then,

Dωα̃(X0, . . . ,Xk) = 0, (σ ′(ω) ∧ α̃)(X0, . . . ,Xk) = σ ′(A)(α̃(X1, . . . ,Xk)).

Using Proposition I/4.1.6, Lemma 1.4.2, the horizontality of α̃ and the G-invariance
of the horizontal lifts Yh

i , we calculate
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(dα̃)p(X0, . . . ,Xk) = (A∗)p(α̃(Yh
1 , . . . ,Yh

k ))

= d

dt �0
α̃Ψexp(tA)(p)(Y

h
1 , . . . ,Yh

k )

= d

dt �0
α̃Ψexp(tA)(p)(Ψ

′
exp(tA)(X1), . . . , Ψ

′
exp(tA)(Xk))

= d

dt �0

(
Ψ ∗
exp(tA)α̃

)

p
(X1, . . . ,Xk)

= d

dt �0
σexp(−tA)α̃p(X1, . . . ,Xk)

= −σ ′(A)(α̃p(X1, . . . ,Xk)).

Thus, in this case, the right hand side of (1.4.1) also vanishes.
(c) Let at least two of the vectors Xi be vertical and let the remaining vectors be
horizontal. Then,

Dωα̃(X0, . . . ,Xk) = 0, (σ ′(ω) ∧ α̃)(X0, . . . ,Xk) = 0,

and it remains to show that dα̃(X0, . . . ,Xk) = 0. Since the commutator of verti-
cal vector fields is vertical, the assertion follows from Proposition I/4.1.6 and the
horizontality of α̃. �

Remark 1.4.4 In particular, the covariant exterior derivative of an equivariant map-
ping Φ̃ ∈ HomG(P,F) is given by

DωΦ̃ = dΦ̃ + σ ′(ω) ◦ Φ̃. (1.4.2)

Clearly, this is an immediate consequence of formula (1.4.1). The following inde-
pendent proof gives some additional insight.

(DωΦ̃)p(X) = (dΦ̃)p(hor X)

= (dΦ̃)p(X − Ψ ′
p(ω(X)))

= (dΦ̃)p(X) − (Ψ ′
p(ω(X)))p(Φ̃)

= (dΦ̃)p(X) − d

dt �0

(
Φ̃ ◦ Ψexp(tω(X))(p)

)

= (dΦ̃)p(X) − d

dt �0

(
σexp(−tω(X)) ◦ Φ̃

)
(p)

= (dΦ̃)p(X) + σ ′(ω(X)) ◦ Φ̃(p).

�

Definition 1.4.5 Let P be a principal G-bundle, let E = P ×G F be associated with
P and letω be a connection on P. An element α̃ ∈ Ωk

σ,hor(P,F)will be called parallel
with respect to ω if
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Dωα̃ = 0. (1.4.3)

Next, recall that the ordinary exterior derivative d fulfils d ◦ d = 0. In sharp contrast,
Dω ◦ Dω does not vanish in general. This non-vanishing property is closely related
to the notion of curvature.

Definition 1.4.6 (Curvature form) Let P be a principal bundle and let ω be a con-
nection form on P. The curvature form of ω is defined by

Ω := Dωω.

By definition, Ω is horizontal. Moreover, by point 3 of Proposition 1.3.5,

Ψ ∗
a Ω = Ad

(
a−1) ◦ Ω, a ∈ G. (1.4.4)

Thus, the curvature form is a g-valued horizontal 2-form on P of type Ad.

Remark 1.4.7

1. By definition, we have Ω(X,Y) = dω(X,Y) for any pair of horizontal vector
fields X and Y . Using Proposition I/4.1.6 and the defining equation (1.3.6), we
obtain

ver([X,Y ])p = −Ψ ′
p(Ω(X,Y)). (1.4.5)

By the Frobenius Theorem, we conclude that the horizontal distribution Γ defin-
ing the connection form ω is integrable iff the curvature form Ω vanishes. A
connection with vanishing curvature is said to be flat.

2. Since Ω is a horizontal 2-form of type Ad, by Proposition 1.2.12, it may be
viewed as a 2-form on M with values in the associated bundle

Ad(P) := P ×G g, (1.4.6)

which will be referred to as the adjoint bundle of P. �

Remark 1.4.8

1. Below, we will often deal with the exterior product of Lie algebra-valued forms.
According to Remark I/4.1.10/2, the exterior product of a k-form α with an l-form
β on a manifold M, both with values in a Lie algebra g, is defined as follows:

[α, β](X1, . . . ,Xk+l)

= 1

k! l!
∑

σ∈Sk+l

sign(σ )
[
α(Xσ(1), . . . ,Xσ(k)), β(Xσ(k+1), . . . ,Xσ(k+l))

]

(1.4.7)
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for X1, . . . ,Xk+l ∈ X(M). If the Lie algebra g is a subalgebra of the associative
algebra gl(n, K), then one can work with the associative wedge product α ∧ β as
well. The latter is defined by (1.4.7) with the Lie product on the right hand side
replaced by the associative product inherited from gl(n, K). Clearly, then [α, β]
may be expressed in terms of the associative wedge product (Exercise 1.4.1),

[α, β] = α ∧ β + (−1)kl+1β ∧ α. (1.4.8)

2. Clearly, point 1 applies, in particular, to horizontal forms on a principal bundle
P(M,G) with values in g. On the other hand, note that the vector space isomor-
phisms (1.2.2) identifying gwith the fibres of the adjoint bundle Ad(P) transport
the Lie algebra structure from g to the fibres of Ad(P). Thus, for elements of
Ωk(M,Ad(P)) we have a natural commutator denoted in the same way. This
remark applies, of course, to any vector bundle whose fibres carry the structure
of a Lie algebra. �

Proposition 1.4.9 (Structure Equation) Let P be a principal bundle, let ω be a
connection form on P and let Ω be its curvature form. Then,

dω = −1

2
[ω,ω] + Ω. (1.4.9)

Proof We evaluate both sides of (1.4.9) on vector fields X,Y ∈ X(P). By (1.4.7), we
have 1

2 [ω,ω](X,Y) = [ω(X), ω(Y)]. Clearly, it is enough to consider the following
three cases:

1. X and Y are horizontal. Then, ω(X) = ω(Y) = 0 and

Ω(X,Y) = dω(hor X, hor Y) = dω(X,Y) .

2. X is vertical and Y is horizontal. Then, ω(Y) = 0 and Ω(X, ·) = 0. Thus, the
right hand side of (1.4.9) vanishes. To calculate the left hand side, without loss of
generality, we may assume X = A∗ for some A ∈ g. Then, ω(A∗) = A and we obtain

dω(A∗,Y) = Y(ω(A∗)) − A∗(ω(Y)) − ω([A∗,Y ]) = −ω([A∗,Y ]) = 0,

because, according to Lemma 1.4.2, [A∗,Y ] is horizontal.
3. X and Y are vertical. Then,Ω(X,Y) = 0. Taking X = A∗ and Y = B∗, for some

A,B ∈ g, and using15 [A∗,B∗] = [A,B]∗, we calculate

dω(A∗,B∗) = −ω([A∗,B∗]) = −ω([A,B]∗) = −[A,B] = −[ω(A∗), ω(B∗)].

�

15See Proposition I/6.2.2/2.
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Remark 1.4.10

1. By (1.4.8), if g is a subalgebra of gl(n, K), then we can rewrite the Structure
Equation in terms of the associative wedge product,

dω = −ω ∧ ω + Ω.

2. Recall the transformation propertiesϑ∗ω2 = dλ ◦ ω1 andϑ∗Ω2 = dλ ◦ Ω1 under
some special principal bundle morphisms (ϑ, λ) as proved in Propositions
1.3.13/2 and 1.3.15/2. Note that, by the Structure Equation, the transformation
law for the curvature is an immediate consequence of the transformation law for
the connection. �

As an immediate consequence of the Structure Equation, we obtain the following.

Proposition 1.4.11 (Bianchi Identity) Let P be a principal bundle and let Ω be the
curvature form of a connection form ω on P. Then, Ω is parallel with respect to ω,

DωΩ = 0. (1.4.10)

Proof Clearly, it is enough to show that dΩ(X,Y ,Z) = 0 for arbitrary horizontal
vector fields X, Y and Z on P. Using the Structure Equation, we calculate

dΩ(X,Y ,Z) = 1

2
d
([ω,ω])(X,Y ,Z)

= X([ω(Y), ω(Z)]) − Y([ω(X), ω(Z)]) + Z([ω(X), ω(Y)])
− [ω([X,Y ]), ω(Z)] + [ω([X,Z]), ω(Y)] − [ω([Y ,Z]), ω(X)]

= 0,

because ω vanishes on horizontal vector fields. �

Remark 1.4.12 Let α̃ ∈ Ωk
Ad,hor(P, g). Since ad(ω) ∧ α̃ = [ω, α̃], Proposition 1.4.3

implies
Dωα̃ = dα̃ + [ω, α̃].

Thus, in particular, DωΩ = dΩ + [ω,Ω], and the Bianchi Identity (1.4.10) takes
the form

dΩ + [ω,Ω] = 0 . (1.4.11)

�

Applying Dω to equation (1.4.1), one finds the following (Exercise 1.4.3).

Proposition 1.4.13 Let α̃ ∈ Ωk
σ,hor(P,F). Then,

Dω ◦ Dωα̃ = σ ′(Ω) ∧ α̃. (1.4.12)

�
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This yields another geometric interpretation of the curvature form Ω . It measures
to which extent Dω ◦ Dω is non-vanishing when acting on a horizontal form. If the
connection is flat, then Dω ◦ Dω = 0.

We close this section by giving the local description of the above defined geometric
objects. First, let us find the local representative of the covariant exterior derivative
of α̃ ∈ Ωk

σ,hor(P,F). For simplicity, we will omit the indexω in the covariant exterior
derivative. By Proposition 1.4.3, Dα̃ is an element of Ωk+1

σ,hor(P,F). Thus, we read
off its local representative from (1.2.15):

(Dα̃)χ = s∗Dα̃. (1.4.13)

Let us calculate the right hand side of (1.4.13) for a 0-form Φ̃ explicitly. Formula
(1.4.2) implies

s∗(DΦ̃) = d(s∗Φ̃) + s∗(σ ′(ω) ◦ Φ̃).

For the second term, we calculate

(s∗σ ′(ω)Φ̃)m(X) =
(
σ ′(ω)Φ̃

)

s(m)
(s′X)

= σ ′ (ωs(m)(s
′X)

)
Φ̃(s(m))

= σ ′((s∗ω)m(X)
) (

s∗Φ̃
)

(m)

= σ ′ (Am(X)) ϕ(m),

where A = s∗ω is the local representative of ω and X ∈ TmM. Thus, denoting
(DΦ̃)χ = Dϕ, we have

Dϕ = dϕ + σ ′(A )ϕ. (1.4.14)

Here, σ ′(A ) is a 1-form on U with values in End(F). In the following remark, we
analyze formula (1.4.14) further.

Remark 1.4.14 If (U, κ) is a local chart, {ta} a basis in g and {eα} is a basis in F, we
can decompose

ϕ(x) = ϕα(x) eα , A = A a
μ dκμ ⊗ ta , Dϕ = Dμϕα dκμ ⊗ eα.

To determine the coefficient funtions Dμϕα , we compute

σ ′(A )ϕ = σ ′ (A a
μ dκμ ⊗ ta

)
ϕαeα

= (
A a

μ ϕα dκμ
) ⊗ (

σ ′(ta)eα

)

= A a
μ ϕασaα

β dκμ ⊗ eβ,
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with σaα
β representing the endomorphism σ ′(ta) in the basis {eα}. Using this and

denoting A α
μ β = σaβ

αA a
μ , we obtain

Dμϕα = ∂μϕα + A α
μ βϕβ . (1.4.15)

�

Next, let us discuss the local description of the curvature form. If s : U → π−1(U),
with U ⊂ M open, is a local section, then we define the local representative of Ω by

F := s∗Ω. (1.4.16)

LetA be the local representative ofωwith respect to the section s. Then, the Structure
Equation for ω implies

F = dA + 1

2
[A ,A ]. (1.4.17)

Remark 1.4.15

1. In complete analogy to Proposition 1.3.11 and Corollary 1.3.12, we have the local
reconstruction formula

Ωp = Ad
(
κ(p)−1) (π∗(F ))p, (1.4.18)

and the transformation law

(
Fj

)
m = Ad

(
ρij(m)−1

) ◦ (Fi)m , m ∈ Ui ∩ Uj, (1.4.19)

(Exercise 1.4.4).
2. With respect to the local frame in the bundle of g-valued k-forms on P given by

(1.3.12), F reads

F = 1

2
F a

μν dϕ
μ ∧ dϕν ⊗ ta,

and the Structure Equation takes the form

F a
μν = ∂μA

a
ν − ∂νA

a
μ + cabcA

b
μA

c
ν .

Here, cabc are the structure constants of g with respect to the basis {ta}. �

Exercises

1.4.1 Prove formula (1.4.8).
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1.4.2 Calculate the curvature of the canonical connections of the complex and
quaternionic Hopf bundles.

1.4.3 Prove Proposition 1.4.13.

1.4.4 Prove the statements of Remark 1.4.15/2.

1.5 The Koszul Calculus

In this section, we show that the notion of covariant exterior derivative with respect to
a connection on a principal bundle implies a calculus for covariant derivatives acting
as differential operators in the space of sections of any associated vector bundle.16

This is often referred to as the Koszul calculus.17

As above, letP(M,G) be a principal bundle, let (F,G, σ ) be a Lie group represen-
tation and let E = P ×G F be the associated vector bundle. Recall that, by Remark
1.3.3/3, a connection Γ on P induces a connection Γ E on E and the connection form
ω of Γ induces a connection mapping ωE : TE → E, given by (1.3.9). Using the
isomorphism between Ωk

σ,hor(P,F) and Ωk(M,E) provided by Proposition 1.2.12,
we can carry over the notion of covariant exterior derivative to Ωk(M,E).

Definition 1.5.1 Letα ∈ Ωk(M,E). The covariant exterior derivative dωα is defined
to be the image of Dωα̃ under the isomorphism Ωk+1

σ,hor(P,F) → Ωk+1(M,E), that
is,

d̃ωα := Dωα̃. (1.5.1)

By definition, for p ∈ π−1(m) and Xi ∈ TmM, Yi ∈ TpP fulfilling π ′(Yi) = Xi, we
have

(dωα)m(X1, . . . ,Xk+1) = ιp ◦ (Dωα̃)p(Y1, . . . ,Yk+1). (1.5.2)

Since Ω0(M,E) = Γ ∞(E) and Ω1(M,E) = Γ ∞(T∗M ⊗ E), dω restricted to 0-
forms yields a linear operator from Γ ∞(E) to Γ ∞(T∗M ⊗ E).

Definition 1.5.2 The linear operator

∇ω := (dω)�Ω0(M,E) : Γ ∞(E) → Γ ∞(T∗M ⊗ E)

is called the covariant derivative on E induced from ω.

By (1.5.2) and the definition of Dω, for any m ∈ M and any Φ ∈ Γ ∞(E), we have

(∇ωΦ)m(X) = ιp ◦ (DωΦ̃)p(Y) = ιp ◦ (Xh
p (Φ̃)), p ∈ π−1(m), (1.5.3)

16By Remark 1.2.9/2, in doing so we exhaust all finite-rank vector bundles.
17See [390].
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where Y ∈ TpP fulfilling π ′(Y) = X and Xh is the horizontal lift of X to P.
In the sequel, we assume that a connection has been chosen and, for simplicity,

we write ∇ instead of ∇ω.
Formula (1.5.3) implies a useful expression for the action of ∇ on local frames

of E. To derive it, recall that a local trivialization of a principal G-bundle P over M
induces a local trivialization of any associated bundleE = P ×G F. Correspondingly,
for a chosen basis {eα} of the typical fibre F, a local section s of P induces a local
frame {eα}, α = 1, . . . , p, of E via

eα(m) = ιs(m)(eα). (1.5.4)

Let ẽα : P → F be the equivariant mapping corresponding to eα . Then,

ẽα(s(m)) = eα. (1.5.5)

Proposition 1.5.3 Let P be a principal G-bundle overM endowedwith a connection
form ω, let E = P ×G F be an associated vector bundle and let ∇ be the covariant
derivative induced from ω. Let s be a local section of P and let {eα} be a local frame
of E induced from s. Then,

∇eα = A β
α eβ, (1.5.6)

where A = s∗ω is the local representative of ω and A β
α denotes its matrix with

respect to the basis {eα} of F, cf. Remark 1.4.14.
Proof Consider (1.5.3) for a point m ∈ M belonging to the domain of s. Since we
can take its right hand side at any point in the fibre over m, we calculate it at s(m)

and for Y we take the vector s′(X) which is tangent to the section s at s(m). Using
(1.4.2), (1.5.4) and (1.5.5), for any X ∈ TmM, we calculate

(∇eα)m(X) = ιs(m)

(
(D ẽα)s(m)(s

′(X))
)

= ιs(m)

(
(dẽα)(s′(X)) + σ ′(ω(s′(X))

)
ẽα(s(m))

)

= ιs(m)

(
d(s∗ẽα)(X) + σ ′(A (X))eα

)

= ιs(m)

(
A (X)βαeβ

)

= (
A (X)βαeβ

)
(m).

�

Proposition 1.5.4 For any f ∈ C∞(M) and Φ ∈ Γ ∞(E),

∇(fΦ) = df ⊗ Φ + f∇Φ. (1.5.7)

Proof Using Remark 1.2.13, for m ∈ M, X ∈ TmM and p ∈ π−1(m), we calculate
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(∇(fΦ))m(X) = ιp ◦ d(f̃Φ)p(X
h)

= ιp ◦ d(f̃ Φ̃)p(X
h)

= ιp ◦ ((df̃ ) Φ̃ + f̃ (dΦ̃))p(X
h)

= (df )m(X)Φ(m) + f (m)(∇Φ)m(X).

�

Equation (1.5.7) is called the Leibniz rule for ∇.

Remark 1.5.5

1. Combining Propositions 1.5.3 and 1.5.4 with Remark 1.4.14, for a local section
ϕ = ϕαeα of E, decomposed with respect to a local frame eα , we obtain

∇ϕ = dϕα ⊗ eα + A β
αϕαeβ. (1.5.8)

2. We have the following obvious generalization of Proposition 1.5.4 (Exercise
1.5.1). For α ∈ Ωk(M,E) and β ∈ Ω l(M),

dω(β ∧ α) = dβ ∧ α + (−1)lβ ∧ dωα. (1.5.9)

3. Let E be a K-vector bundle of rank k over M. By point 2 of Remark 1.2.9, E is
naturally associated with the bundle L(E) of linear frames, that is, there exists a
vector bundle isomorphism E ∼= L(E) ×GL(k,K) K

k . By definition, a connection
on E is a C-linear mapping ∇ : Γ ∞(E) → Γ ∞(T∗M ⊗ E) fulfilling the Leibniz
rule (1.5.7). Then, by the above correspondence, connections on E are in one-
to-one correspondence with connections on L(E). Thereby, the connection ∇
corresponding to the connection form ω coincides with the covariant derivative
defined by ω. Thus, the theory of connections on arbitrary vector bundles boils
down to the theory of covariant derivatives in associated vector bundles.

4. By point 3, Proposition 1.5.3 immediately extends to any vector bundle E
endowed with a connection. Then, P coincides with the L(E) and σ is the basic
representation of GL(n, K). �

The following proposition clarifies the relation of the covariant derivative with the
connection mapping, cf. Remark 1.3.9.

Proposition 1.5.6 For X ∈ X(M),

∇Φ(X) = ωE(Φ ′(X)).

Proof By the definition of ωE , we must decompose Φ ′(X) into its vertical and hori-
zontal parts. For that purpose, let t �→ γ (t) be an integral curve of X throughm ∈ M.
Then,

Φ ′Xm = d

dt �0
Φ ◦ γ (t).
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Choose a point p ∈ π−1(m) and take the integral curve t �→ γ h(t) through p of the
horizontal lift Xh of X to P. Then, (1.2.11) implies

Φ ◦ γ (t) = ι
(
γ h(t), Φ̃(γ h(t))

)

and, thus,

d

dt �0
Φ ◦ γ (t) = d

dt �0
ι
(
γ h(t), Φ̃(γ h(t))

)

= d

dt �0
ιΦ̃(p)

(
γ h(t)

) + d

dt �0
ιp

(
Φ̃(γ h(t))

)
.

For the first term, using (1.3.5), we have

d

dt �0
ιΦ̃(p)

(
γ h(t)

) = ι′
Φ̃(p)

Xh
p = Xh

Φ(m).

This is the horizontal component of Φ ′(X) at Φ(m). The second term reads

d

dt �0
ιp

(
Φ̃(γ h(t))

)
= ι′p

(
d

dt �0
Φ̃(γ h(t))

)
= ιp

(
Xh(Φ̃)

)
.

This is the vertical component of Φ ′(X) at Φ(m). Thus, by (1.3.9) and (1.5.3),

ωE(Φ ′(X)) = ιp ◦ Xh(Φ̃) = ∇Φ(X) .

�

Next, recall the notion of parallelity, cf. Definition 1.4.5. By (1.5.3), a section
Φ ∈ Γ ∞(E) is parallel iff ∇XΦ = 0 for all X ∈ X(M). Proposition 1.5.6 implies the
following.

Corollary 1.5.7 A section Φ ∈ Γ ∞(E) is parallel with respect to a connection Γ

iff im(Φ ′
m) ⊂ Γ E

Φ(m) for all m ∈ M. �

In the sequel, it will be often useful to view the covariant derivative as a differential
operator acting on sections: for every X ∈ X(M), the covariant derivative induces a
mapping

∇X : Γ ∞(E) → Γ ∞(E), ∇XΦ := ∇Φ(X). (1.5.10)

Proposition 1.5.8 For X,X1,X2 ∈ X(M), Φ,Φ1, Φ2 ∈ Γ ∞(E) and f ∈ C∞(M),

1. ∇X1+X2Φ = ∇X1Φ + ∇X2Φ,
2. ∇X(Φ1 + Φ2) = ∇X(Φ1) + ∇X(Φ2),
3. ∇fXΦ = f ∇XΦ,
4. ∇X(fΦ) = f ∇XΦ + X(f )Φ.
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Proof Points 1 and 2 are immediate consequences of the definition of ∇X . Using
Remark 1.2.13, together with (fX)h = f̃ Xh, we get

(∇Φ)m(fX) = ιp ◦ ((fX)h(Φ̃)) = ιp ◦ (f̃ Xh(Φ̃)) = f (m)(∇Φ)m(X),

for any p ∈ π−1(m). This proves point 3. Point 4 is an immediate consequence of
Proposition 1.5.4. �

Remark 1.5.9

1. By the locality property 3 of Proposition 1.5.8, for any pointm ∈ M, the value of
(∇XΦ)(m) depends only on the value of X at m and on the values of the section
Φ : M → E along any smooth curve representingXm. Thus, we obtain amapping
∇ : TM × Γ ∞(E) → E defined by

∇YmΦ = (∇XΦ)(m),

where X is an arbitrary extension of the tangent vector Ym ∈ TmM to a smooth
vector field on M. Sometimes, it is useful to view a covariant derivative in this
way.

2. The covariant derivative on a vector bundle E overM naturally induces covariant
derivatives on all tensor bundles over E: for the dual bundle E∗ we define

(∇E∗
X Φ∗)(Φ) := X(〈Φ∗, Φ〉) − 〈Φ∗,∇E

XΦ〉, (1.5.11)

where X ∈ X(M), Φ ∈ Γ ∞(E) and Φ∗ ∈ Γ ∞(E∗). Next, we extend ∇X to any
tensor product built fromE andE∗ by requiring that it be a derivation with respect
to the tensor product of sections.

3. Let E1 and E2 be vector bundles over M endowed with connections ∇1 and ∇2.
Then,

∇(s1 ⊗ s2) := (∇1s1) ⊗ s2 + s1 ⊗ (∇2s2), si ∈ Γ ∞(Ei), i = 1, 2, (1.5.12)

defines a connection on E1 ⊗ E2 called the tensor product connection.
In particular, let E1 and E2 be associated with the principal bundles P1(M,G1)

and P2(M,G2). Then, by Example 1.2.4/3, E1 ⊗ E2 is naturally associated with
the fibre productP1 ×M P2, cf. Remark 1.1.9/2. Ifω1 andω2 are connection forms
on P1 and P2, respectively, then the latter is endowed with the natural connection
form ϑ∗ω given by (1.3.16). If ∇1 and ∇2 are the covariant derivatives in E1 and
E2 induced from ω1 and ω2, respectively, then the covariant derivative induced
fromϑ∗ω coincideswith the tensor product connection∇1 ⊗ ∇2 (Exercise 1.5.2).

�

Next, recall that, as a consequence of Proposition 1.4.13, the square of the covari-
ant exterior derivative in general does not vanish and that this non-vanishing is
measured by the curvature of the connection under consideration. Let us find the
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counterpart of this fact within the Koszul calculus. For that purpose, recall that Ω is
a horizontal 2-form on P with values in g. Since σ ′ is a homomorphism from g to
End(F), σ ′(Ω) is a horizontal 2-form on P with values in End(F). Thus, by Proposi-
tion 1.2.12, to Ω there corresponds a 2-form onM with values in the endomorphism
bundle End(E):

R∇
m(X,Y) := ιp ◦ σ ′(Ωp(X

h,Yh)) ◦ ι−1
p , (1.5.13)

where m ∈ M, p ∈ π−1(m), X,Y ∈ TmM and Xh and Yh are the horizontal lifts of X
and Y to p, respectively.

Definition 1.5.10 The 2-form R∇ is called the curvature endomorphism form asso-
ciated with Ω .

Proposition 1.5.11 For any pair of vector fields X,Y ∈ X(M),

R∇(X,Y) = ∇X∇Y − ∇Y∇X − ∇[X,Y ]. (1.5.14)

Proof Let X,Y ∈ X(M) and let Xh,Yh be their horizontal lifts to P. Let p ∈ P. Using
(1.4.5), (1.5.3) and hor([Xh,Yh]) = [X,Y ]h, we calculate

Ψ ′
p(Ω(Xh,Yh))Φ̃(p) = − ver([Xh,Yh])p(Φ̃)

= −[Xh,Yh]p(Φ̃) + hor([Xh,Yh])p(Φ̃)

= −[Xh,Yh]p(Φ̃) + [X,Y ]hp(Φ̃)

= −Xh
p (Y

h(Φ̃)) + Yh
p (Xh(Φ̃)) + [X,Y ]hp(Φ̃)

= −ι−1
p ◦ (∇X∇YΦ − ∇Y∇XΦ − ∇[X,Y ]Φ

)
(m).

Now, the assertion follows from Ψ ′
p(A)(Φ̃) = −σ ′(A)Φ̃(p) for all A ∈ g. �

Remark 1.5.12

1. Viewing the covariant derivative as a linear mapping

∇ : X(M) → End(Γ ∞(E)), X �→ ∇X ,

we conclude that this mapping is a Lie algebra homomorphism iff the curvature
endomorphism form vanishes.

2. Formula (1.5.14) extends to sections in arbitrary tensor bundles T
k
l (E) over E,

where R∇(X,Y) acts on T
k
l (E) in the representation induced by σ ′ (Exercise

1.5.5). �

In Sect. 1.3, we have discussed in detail the transport of connections on prin-
cipal bundles under morphisms fulfilling some additional conditions, cf. Proposi-
tions1.3.13 and 1.3.15 and the associated corollaries. Clearly, the transported con-
nections induce covariant derivatives in the corresponding associated bundles. For
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later purposes, the pullback connectionwill be especially important. Thus,we discuss
it in some detail.

LetP(M,G) be a principal bundle, letN be amanifold, letϕ : N → M be a smooth
mapping and let ϕ∗P be the pullback bundle induced by ϕ. Let (F,G, σ ) be a Lie
group representation and let E = P ×G F be the corresponding bundle associated
with P. By Example 1.2.4/2, the pullback bundle ϕ∗E is naturally associated with
ϕ∗P via the vector bundle isomorphism

ϕ∗E → ϕ∗P ×G F, (y, [(p, f )]) �→ [((y, p), f )],

cf. (1.2.6). By point 2 of Corollary 1.3.16, every connection ω on P induces a con-
nection ϑ∗ω on the pullback bundle ϕ∗P. Here, ϑ : ϕ∗P → P is the induced bundle
morphism. If Γ E denotes the connection on E induced from ω, then the connection
Γ ϕ∗E on ϕ∗E induced from the pullback connection ϑ∗ω is given by

Γ ϕ∗E = (π ′
2)

−1(Γ E).

Using the obvious identification

T(y,e)ϕ
∗E ∼= π ′

1(T(y,e)ϕ
∗E) ⊕ π ′

2(T(y,e)ϕ
∗E),

we obtain

T(y,e)ϕ
∗E = {

(Y ,Z) ∈ TyN ⊕ TeE : ϕ′
y(Y) = (πF)′e(Z)

}
.

Thus, the decomposition of (Y ,Z) ∈ T(y,e)ϕ
∗E with respect to Γ ϕ∗E is given by

(Y ,Z) = (0,Zv) + (Y ,Zh), (1.5.15)

with Z = Zv + Zh being the decomposition with respect to Γ E .
Let us analyze the induced covariant derivative ∇ϑ∗ω. For that purpose, it is con-

venient to view the space of sections of ϕ∗E as follows.

Definition 1.5.13 In the above notation, a section of E along ϕ is a mapping φ :
N → E fulfilling

πF ◦ φ = ϕ.

The vector space of sections of E along ϕ is denoted by Γ ∞
ϕ (E).

Clearly, φ is a section of E along ϕ iff y �→ (y, φ(y)) is a section of ϕ∗E, that is,
Γ ∞(ϕ∗E) is canonically isomorphic to Γ ∞

ϕ (E).
Now, let Φ ∈ Γ ∞(ϕ∗E) and let Y ∈ X(N). Representing Φ by a section φ ∈

Γ ∞
ϕ (E) and using Proposition 1.5.6, together with (1.2.6), (1.5.15) and (1.3.9), we

calculate
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(∇ϑ∗ωΦ)(y,e)(Y) = ω
ϕ∗E
(y,e)

(
Φ ′(Y)

)

= ω
ϕ∗E
(y,e)

(
(Y , φ′(Y)

)

= ι(y,p) ◦ (ι′(y,p))
−1 (0, (φ′(Y))v

)

= (
y, ιp ◦ (ι′p)

−1(φ′(Y))v
)

= (
y, ωE

e (φ′(Y))
)
.

We see that, associated with ∇ϑ∗ω
Y , there is an operator

∇ϕ

Y : Γ ∞
ϕ (E) → Γ ∞

ϕ (E), ∇ϕ

Yφ := ωE(φ′(Y)). (1.5.16)

Definition 1.5.14 The operator ∇ϕ is called the covariant derivative along the map-
ping ϕ.

We have
∇ϑ∗ω

Y (idN ×φ) = idN ×∇ϕ

Yφ,

and, by construction,∇ϕ

Y inherits the properties listed in Proposition 1.5.8.Moreover,
it fulfils an obvious chain rule: for another mapping χ : L → N , the composition
φ ◦ χ is a section along ϕ ◦ χ and for X ∈ TL we have (Exercise 1.5.3)

∇ϕ◦χ

X (φ ◦ χ) = ∇ϕ

χ ′(X)φ. (1.5.17)

Exercises

1.5.1 Prove the statement of point 1 of Remark 1.5.5.

1.5.2 Prove the statements of Remarks 1.5.9/2 and 1.5.9/3.

1.5.3 Prove formula (1.5.17).

1.5.4 Using (1.4.12), calculate d2ω in terms of the curvature endomorphism form.

1.5.5 Prove point 2 of Remark 1.5.12.

1.6 Bundle Reduction

Recall from Sect. 1.1 that a morphism (ϑ, λ) of principal bundles Q(M,H) and
P(M,G) is called a λ-reduction or, simply, a reduction of P to H if Q is a subbundle
of P fulfilling ϑ̃ = idM . In that case, P is called λ-reducible to H and Q is called a
λ-reduction of P.

We start with giving two criteria for the reducibility of principal bundles. For the
following, recall the description of principal bundles in terms of transition mappings.
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Proposition 1.6.1 Let P(M,G) be a principal bundle and let λ : H → G be an
injective Lie group homomorphism. Then, P is λ-reducible iff there exists a covering
{Ui} of M and an associated 1-cocyle {ρij} of P with values in im(λ).

Proof Let Q(M,H) be a λ-reduction of P and let (ϑ, λ) be the corresponding mor-
phism. Let {(Ui, χ

Q
i )} be a bundle atlas of Q and let {τij} be the corresponding 1-

coycle. Since every local section s inQ defines a local section in P by ϑ ◦ s, each χ
Q
i

defines a local trivialization χP
i of P over Ui. Let κ

Q
i and κP

i be the equivariant map-
pings corresponding toχ

Q
i andχP

i , respectively.One can check thatλ ◦ κ
Q
i = κP

i ◦ ϑ .
Hence, the transition mappings of the family {χP

i } are given by

ρij(m) = κP
i (ϑ(q))κP

j

(
ϑ(q)

)−1 = λ(κ
Q
i (q))λ

(
κ
Q
j (q)

)−1 = λ
(
κ
Q
i (q)κQ

j (q)−1
)

and, thus,
ρij = λ ◦ τij for all i, j. (1.6.1)

Conversely, let {ρij} be the 1-cocyle associated with a bundle atlas {(Ui, χ
P
i )}.

Assume that it takes values in im(λ). Since λ is injective, the ρij define mappings
τij : Ui ∩ Uj → H via (1.6.1). Since injective Lie group homomorphisms are immer-
sions, cf. Corollary I/5.3.7, (H, λ) is a Lie subgroup. Since Lie subgroups are initial
submanifolds, cf. Proposition I/5.6.4, the τij are smooth. Moreover, the cocycle prop-
erty of {ρij} implies that of {τij}. According to Proposition 1.1.10, the 1-cocycle {τij}
defines a principalH-bundleQ overM. Let πQ : Q → M be the canonical projection
and let {(Ui, χ

Q
i )} be the bundle atlas ofQ constructed in the proof of this proposition.

For every i, we define a mapping

ϑi : π−1
Q (Ui) → π−1

P (Ui), ϑi := (
χP
i

)−1 ◦ (idUi ×λ) ◦ χ
Q
i ,

where πP : P → M is the canonical projection of P. By (1.6.1), we have ϑi = ϑj for
any pair (i, j) such that Ui ∩ Uj �= ∅. Thus, the family of mappings {ϑi} defines an
equivariant mapping ϑ : Q → P. By construction, (ϑ, λ) is a λ-reduction. �

The next proposition provides a criterion for reducibility in terms of equivariant
mappings.

Proposition 1.6.2 Let (P,G,M, Ψ, π) be a principal bundle and let (F,G, σ ) be a
transitive Lie group action. Let f ∈ F and let Gf ⊂ G be the stabilizer of f under the
action σ . Then, every equivariant mapping ϕ ∈ HomG(P,F) defines a reduction of
P to an embedded principal Gf -subbundle

Qf = {p ∈ P : ϕ(p) = f }. (1.6.2)

Conversely, every such reduction defines an element ϕ ∈ HomG(P,F).

Proof Let ϕ ∈ HomG(P,F) and let Qf be given by (1.6.2). Since σ is transitive and
ϕ is equivariant, ϕ is a submersion. Hence, by the Level Set Theorem, Qf = ϕ−1(f )
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is an embedded submanifold of P for all f ∈ F. Since for every q ∈ Qf and every
a ∈ Gf ,

ϕ(Ψa(q)) = σa−1(ϕ(q)) = σa−1 f = f ,

Qf is Gf -invariant. Thus, Ψ induces a free right action of Gf on Qf , denoted by
the same symbol. Since Gf is closed, cf. Proposition I/6.1.5, the induced action is
proper, cf. Proposition I/6.3.4. Hence, Qf is a principal Gf -bundle over the manifold
Qf /Gf . The natural inclusion mappings Qf → P and Gf → G define a principal
bundle morphism. Let ϑ̃ : Qf /Gf → M be the corresponding projection. It remains
to show that ϑ̃ is a diffeomorphism. By local triviality, it suffices to show that ϑ̃

is bijective. For that purpose, we show that Qf intersects every fibre of P and that
the intersections coincide with the Gf -orbits. For the first statement, let m ∈ M and
let p ∈ π−1(m). Since σ acts transitively, there exists an a ∈ G such that ϕ(p) =
σa(f ). Then, ϕ(Ψa(p)) = σa−1(ϕ(p)) = f , that is, Ψa(p) ∈ Qf . To prove the second
statement, let q1, q2 ∈ Qf and a ∈ G such that q2 = Ψa(q1). Then,

f = ϕ(q2) = ϕ(Ψa(q1)) = σa−1(ϕ(q1)) = σa−1(f ),

that is, a ∈ Gf . Thus, Qf is a reduction of P to the subgroup Gf .
Conversely, let there be given a reduction of P to Q ⊂ P with structure group

Gf ⊂ G andwith themorphismgiven by the natural inclusionmapping. Then,we take
the constant mapping ϕ : Q → F, ϕ(q) := f , and extend it to a mapping ϕ : P → F
by

ϕ(Ψa(q)) := σa−1(f ), a ∈ G, q ∈ Q .

This mapping is well defined: if Ψa1(q1) = Ψa2(q2) for q1, q2 ∈ Q, then a1a
−1
2 ∈ Gf

and thus
σa−1

2
(f ) = σa−1

1
◦ σa1a

−1
2

(f ) = σa−1
1

(f ).

By construction, ϕ is smooth and equivariant. �

Remark 1.6.3 The bundle reduction Qf depends on the choice of f ∈ F as follows:
for every f ′ ∈ F, there exists an a ∈ G such that f ′ = σa(f ). Then, for every q ∈ Qf ,
we have

ϕ(Ψa−1(q)) = σa(ϕ(q)) = σa(f ) = f ′.

Thus, Qf ′ = Ψa−1(Q). Moreover, the corresponding structure group is

Gf ′ = Gσa(f ) = aGf a
−1.

�

The following proposition characterizes the isomorphism classes of bundle reduc-
tions to a given structure group Gf .
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Proposition 1.6.4 Let ϕ ∈ HomG(P,F) and let ϑ be a vertical automorphism of
P. If ϕ defines the bundle reduction Qf , then ϕ ◦ ϑ defines the bundle reduction
ϑ−1(Qf ). In particular, two reductions to the structure group Gf are equivalent iff
the defining equivariant mappings are related by a vertical automorphism.

Proof The reduced bundle defined by ϕ ◦ ϑ is

{p ∈ P : ϕ ◦ ϑ(p) = f } = ϑ−1 ({p ∈ P : ϕ(p) = f }) = ϑ−1(Qf ).

�

Proposition 1.6.2 implies a useful characterization of reductions of a principal bun-
dle P(M,G) to a given closed subgroup H of G. To formulate it, we consider the
natural action of G on the homogeneous space G/H by left translation and build the
associated bundle P ×G G/H, cf. Example 1.2.4.

Corollary 1.6.5 The reductions of a principal G-bundle P to a closed subgroup H
of G are in one-to-one correspondence with the smooth sections of the associated
bundle P ×G G/H.

Proof By Proposition 1.2.6, the sections of P ×G G/H are in one-to-one correspon-
dence with the elements of HomG(P,F). Since G/H is a transitive G-manifold, we
can apply Proposition 1.6.2 with f = [1]. �

The proofs of the following example are left to the reader (Exercise 1.6.1).

Example 1.6.6

1. Let E be a K-vector bundle of rank k, where K = R, C, and let L(E) be its
frame bundle. Recall from Remark I/2.2.2/3 that E is called orientable iff it
admits a family of local trivializations whose transition mappings have positive
determinant. Equivalently,E is orientable iff it admits a nowhere vanishing section
of

∧kE∗ (the determinant line bundle of E). Thus, an orientation of E may be
viewed as a section of the associated bundle

L(E) ×GL(k,K) GL(k, K)/GL+(k, K),

where GL+(k, K) ⊂ GL(k, K) is the subgroup of elements with positive deter-
minant. Now, Corollary 1.6.5 implies that E is orientable iff L(E) is reducible to
GL+(k, K).

2. We take up Examples 1.1.15 and 1.1.18. Let E be a K-vector bundle of rank n,
where K = R, C, endowed with a fibre metric.

(a) LetK = R. A fibre metric may be viewed as a section of the associated bundle

L(E) ×GL(n,R) (Rn)∗
s⊗ (Rn)∗,
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where
s⊗ denotes the symmetric tensor product. By the Sylvester Theorem,

GL(n, R) acts transitively on the subspace S2(k,l)R
n ⊂ (Rn)∗

s⊗ (Rn)∗ consisting
of elements of rank n = k + l and signature (k, l) and the stabilizer of the element
η = 1k ⊕ (−1l) is O(k, l). Thus,

GL(n, R)/O(k, l) ∼= S2(k,l)R
n,

andE admits a fibre metric with signature (k, l) iff L(E) is reducible to a principal
O(k, l)-bundle. Clearly, the latter is the bundle of orthonormal frames O(E).
(b) LetK = C. A fibremetric may be viewed as a section of the associated bundle

L(E) ×GL(n,C) (Cn)∗
s⊗ (Cn)∗.

By the Sylvester Theorem, GL(n, C) acts transitively on the subset of non-

degenerate elements in (Cn)∗
s⊗ (Cn)∗ with stabilizer U(n). Thus, E admits a

Hermitean fibre metric iff L(E) is reducible to a principal U(n)-bundle, which
then coincides with the bundle of unitary frames U(E). �

The following proposition shows that principal bundle reductions do not change the
isomorphism class of associated vector bundles.

Proposition 1.6.7 Let (P,G,M, Ψ, π) be a principal bundle and let (F,G, σ ) be a
Lie group representation. Let Q be a reduction of P to the structure group H defined
by the morphism (ϑ, λ). Let (F,H, σ ◦ λ) be the associated Lie group representation
of H. Then, the associated vector bundles P ×G F and Q ×H F are isomorphic.

Proof Denote the H-action on Q by Ψ Q. The canonical projection of Q is given by
πQ = π ◦ ϑ . Consider the mapping

ψ : Q ×H F → P ×G F, ψ([(q, f )]) := [(ϑ(q), f )].

Since, for every h ∈ H,

ψ
([(Ψ Q

h (q), σλ(h−1)f )]
) = [(Ψλ(h)(ϑ(q)), σλ(h)−1 f )] = [(ϑ(q), f )],

themappingψ is well defined. By construction,ψ is fibre-preserving and the induced
mappingsψq of the fibres are linear. Finally, sinceψ projects to the identical mapping
ofM and since ψq ◦ ιQq = ιPϑ(q), the mapping ψ is bijective. As a consequence of the
Inverse Mapping Theorem, the inverse mapping ψ−1 is smooth. �

Given an injective Lie group homomorphismλ : H → G and a principalH-bundleQ,
we can form the associated principal G-bundle P = Q[λ]. Then, Q is a λ-reduction
of P and P is called a λ-extension of Q. By Corollary 1.3.14, the λ-extension of
a connection always exists. The case of a λ-reduction is slightly more involved.
Let us assume that G/H is a reductive homogeneous space. Then, in general, a
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principal bundle reduction induces a decomposition of a connection form into a pair
of geometrical objects.

Proposition 1.6.8 Let P(M,G) be a principal bundle, let H ⊂ G be a closed sub-
group and let Q(M,H) be a reduction of P given by the morphism (ϑ, iH) with
iH : H → G being the natural inclusion mapping. Assume that the Lie algebra g of
G admits a reductive decomposition

g = h ⊕ m,

with h denoting the Lie algebra of H. Let ω be a connection form on P and let ωh

and ωm be its h- and m-components, respectively. Then,

1. ϑ∗ωh is a connection form on Q,
2. ϑ∗ωm is an m-valued horizontal 1-form on Q of type Ad(H)m.

Proof Let Ψ and Ψ̃ be the G- and the H-actions on P and Q, respectively. Then,

ϑ ◦ Ψ̃a(q) = Ψa ◦ ϑ(q) (1.6.3)

for any q ∈ Q and a ∈ H.
1. We must check that ϑ∗ωh has the properties of a connection form. Decomposing
ω = ωh + ωm on P and using that ω is a connection form, for any A ∈ h, we have

A = ω(A∗) = ωh(A∗) + ωm(A∗),

where A∗ denotes the Killing vector field on P generated by A. Thus, ωm(A∗) = 0,
that is, ωh(A∗) = A. Let Ã∗ denote the Killing vector field on Q generated by A.
Then, by (1.6.3), ϑ ′ ◦ Ã∗ = A∗ ◦ ϑ and thus ϑ∗ωh(Ã∗) = A. It remains to show H-
equivariance. For a ∈ H, we have

Ψ ∗
a ω = Ad(a−1) ◦ ω = Ad(a−1) ◦ ωh + Ad(a−1) ◦ ωm

and, on the other hand,
Ψ ∗
a ω = Ψ ∗

a ωh + Ψ ∗
a ωm.

By reductivity, Ad(a−1) ◦ ωm takes values in m. Hence, Ψ ∗
a ωh = Ad(a−1) ◦ ωh.

Then, taking the pullback of this equation under ϑ and using (1.6.3), we obtain the
assertion. Moreover, for later use, we note

Ψ ∗
a ωm = Ad(a−1) ◦ ωm. (1.6.4)

2. By (1.6.4), ϑ∗ωm is an m-valued 1-form of type Ad(H)m. It remains to show
that it is horizontal: for any A ∈ h, using (1.6.3), we calculate

(ϑ∗ωm)q(Ã∗) = (ϑ∗ω)q(Ã∗) − (ϑ∗ωh)q(Ã∗).
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The second term yields −A. For the first term, we compute

(ϑ∗ω)q(Ã∗) = ωϑ(q)(ϑ
′ ◦ Ã∗(q)) = ωϑ(q)(A∗ ◦ ϑ(q)) = A .

�

We conclude that only in the case when ϑ∗ω takes values in h, its restriction to Q is
a connection form on Q. This result suggests the following definition.

Definition 1.6.9 (Reducible connection) Let P be a principal G-bundle over a con-
nected manifold M. Let Γ be a connection on P and let ω be its connection form.
Let Q(M,H) be a reduction of P given by the morphism (ϑ, iH). Then, Γ is called
reducible to H if ϑ∗ω takes values in h. Γ is called irreducible if P is not reducible
to any genuine Lie subgroup of G.

Recall that reductions of a principal G-bundle P to a closed subgroup H of G are in
bijective correspondence with smooth sections of the associated bundle P ×G G/H,
cf. Corollary 1.6.5. Since orbits of Lie group actions are initial submanifolds, we can
carry over Proposition 1.6.2 to the case of a general Lie group action (F,G, σ ) by
applying it to elements of HomG(P,F) with values in a single orbit of σ .

Proposition 1.6.10 Let P(M,G) be a principal bundle and let (F,G, σ ) be a rep-
resentation. Let Φ̃ ∈ HomG(P,F) and assume that it takes values in a single orbit
O of σ . Let Q(M,H) be the reduction of P defined by Φ̃ and some element f ∈ O.
Then, a connection Γ on P is reducible to a connection Γ ′ on Q iff Φ̃ is parallel
with respect to Γ .

Proof Let ω be the connection form of Γ and let (ϑ, iH) be the morphism corre-

sponding to the reduction Q. Since Q =
{
p ∈ P : Φ̃(p) = f

}
, we have ϑ∗Φ̃ = f on

Q. Thus,

ϑ∗
(
DωΦ̃

)
= d(ϑ∗Φ̃) + σ ′(ϑ∗ω)(ϑ∗Φ̃) = σ ′(ϑ∗ω)(ϑ∗Φ̃).

Now, Γ is reducible iff ϑ∗ω takes values in the Lie algebra h of H, that is, iff

σ ′(ϑ∗ω)(ϑ∗Φ̃) = 0, that is, iff ϑ∗
(
DωΦ̃

)
= 0. By the G-equivariance of Γ the

latter is equivalent to DωΦ̃ = 0 on the whole of P. �

Definition 1.6.11 (Compatible connection) LetQ(M,H) ⊂ P(M,G) be a principal
bundle reduction defined by an element Φ̃ ∈ HomG(P,F) taking values in a single
orbit O and by a point f ∈ O. A connection Γ on P will be referred to as compatible
with Φ̃ if it is reducible to Q.

By Proposition 1.6.10, a connection Γ is compatible with Φ̃ iff

DωΦ̃ = 0. (1.6.5)
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Here, ω is the connection form of Γ . Note that Φ̃ takes values in a single orbit O
iff the corresponding section Φ of P ×G F takes values in P ×G O. In terms of Φ,
(1.6.5) takes the form

∇ωΦ = 0. (1.6.6)

In the sequel, we will frequently meet compatible connections, in particular in the
context of H-structures to be discussed in Chap. 2. Here, we discuss one important
class of examples.

Example 1.6.12 (Connection compatible with a fibre metric) We take up point 2
of Example 1.6.6. For K = R or C, let E be a K-vector bundle of rank n over M
endowed with a fibre metric h. Recall that h may be viewed as a section of the
associated bundle L(E) ×GL(n,K) F , where F denotes the space of inner products
in R

n and C
n, respectively. In the case K = C, GL(n, C) acts transitively on F ,

whereas in the case K = R it does not. If, in the latter case, we assume that M is
connected, then h takes values in a single GL(n, R)-orbit on F . Now, by (1.6.6), a
connection form ω on L(E) is compatible with h iff

∇ωh = 0.

Since∇X is a derivation of the tensor algebra, this condition takes the following form:

X(h(Φ1, Φ2)) = h(∇XΦ1, Φ2) + h(Φ1,∇XΦ2), (1.6.7)

for any Φ1, Φ2 ∈ Γ ∞(E) and X ∈ X(M). If ω is compatible, then it is reducible to
the bundle of h-orthonormal or h-unitary frames of E, respectively. �

In the next section,wewill show that there exists a smallest reduction of a principal
G-bundle P with connection Γ , namely the reduction to the holonomy bundle. We
will see that a connection is irreducible iff P coincides with its holonomy bundle.

Exercises

1.6.1 Prove the statements of Example 1.6.6.

1.7 Parallel Transport and Holonomy

From elementary geometry, the reader knows the notion of parallel transport of a
vector in an affine space, say, in the 2-plane.Here,we show that this notiongeneralizes
to the abstract theory of connections on fibre bundles.

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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Definition 1.7.1 Let P be a principalG-bundle overM with canonical projection π ,
letΓ be a connection onP and let γ and γ̃ be smooth curves inM andP, respectively.
The curve γ̃ is called

1. a lift of γ if π ◦ γ̃ = γ ,
2. horizontal relative to Γ , if all tangent vectors ˙̃γ are horizontal relative to Γ .

Proposition 1.7.2 Let (P,G,M, Ψ, π) be a principal bundle and let Γ be a con-
nection on P. Let I be an open interval containing 0 and let γ : I → M be a smooth
curve. Then, for every point p0 ∈ π−1(γ (0)), there exists a unique horizontal lift γ h

of γ fulfilling p0 = γ h(0).

The proposition generalizes to piecewise smooth curves.

Proof We choose an arbitrary lift γ̃ of γ starting at p0 and seek the horizontal lift of
γ in the following form:

t �→ γ h(t) = Ψg(t)γ̃ (t),

see Fig. 1.1. We will prove that there exists a unique curve t �→ g(t) in G such that
γ h is horizontal. Since Ψγ h(t) = Ψγ̃ (t) ◦ Lg(t), we have

γ̇ h(t) = (
Ψg(t)

)′
γ̃ (t)

( ˙̃γ (t)
)

+ (
Ψγ̃ (t)

)′
g(t) (ġ(t))

= (
Ψg(t)

)′
γ̃ (t)

( ˙̃γ (t)
)

+ (
Ψγ h(t)

)′
γ h(t) ◦ (Lg(t)−1

)′
g(t) (ġ(t)) .

Let ω be the connection form of Γ . The curve γ h is horizontal iff ω(γ̇ h(t)) = 0 for
all t ∈ I . Inserting the formula for γ̇ h, we obtain

ω
((

Ψg(t)
)′
γ̃ (t)

( ˙̃γ (t)
))

+ ω
((

Ψγ h(t)

)′
γ h(t) ◦ (Lg(t)−1

)′
g(t) (ġ(t))

)
= 0 .

Now, point 3 of Proposition 1.3.5 implies

Fig. 1.1 Construction of the
horizontal lift γ h in the proof
of Proposition 1.7.2

γ

γh
p0

γ(0) γ(1)

M

P

˙̃γ(t)

γ̇h(t)

γ̃
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Ad
(
g(t)−1

) ◦ ω( ˙̃γ (t)) = − (
Lg(t)−1

)′
g(t) (ġ(t)) .

This is an ordinary first order differential equation for t �→ g(t)with the initial condi-
tion g(0) = 1. Using the standard existence and uniqueness theorem for differential
equations of this type, we obtain the assertion.18 �

Now, let I = [0, 1]. Recall that the concatenation of curves γ, τ : I → M satisfy-
ing γ (1) = τ(0) is defined by

τ · γ (t) :=
{

γ (2t) | t ≤ 1
2 ,

τ (2t − 1) | t > 1
2

(1.7.1)

and that the inverse curve is defined by γ −1(t) = γ (1 − t). The proof of the following
lemma is left to the reader (Exercise 1.7.2).

Lemma 1.7.3 Let γ : I → M be a piecewise smooth curve, let p ∈ π−1(γ (0)) and
let γ h be the horizontal lift of γ through p.

1. The horizontal lift of γ through Ψa(p) is given by Ψa ◦ γ h.
2. If τ : I → M is another piecewise smooth curve fulfilling τ(0) = γ (1), then the

horizontal lift of τ · γ through p is given by τ h · γ h, where τ h is the horizontal
lift of τ through the point γ h(1).

3. The horizontal lift of γ −1 to the point γ h(1) is given by (γ h)−1.

Via the horizontal lift, every piecewise smooth curve γ : I → M defines a mapping

γ̂Γ : π−1(γ (0)) → π−1(γ (1)),

which assigns to p ∈ π−1(γ (0)) the point γ h(1), where γ h is the horizontal lift of γ

through p.

Definition 1.7.4 The mapping γ̂Γ is called the operator of parallel transport along
γ with respect to the connection Γ .

By point 1 of Lemma 1.7.3, γ̂Γ is equivariant and, thus, an isomorphism of G-
manifolds. By point 3, we have

(
γ̂Γ

)−1 = (̂
γ −1

)
Γ
.

Remark 1.7.5

1. By construction, the parallel transport operator does not depend on the choice of
the parameterization of the curve γ . If γ is a smooth curve fromm0 tom1 and τ is

18For a detailed discussion of this theorem for differential equations on Lie groups we refer to [383],
see Sect. II/3.
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a smooth curve from m1 to m2, by point 2 of Lemma 1.7.3, γ̂Γ can be composed
with τ̂γ and we have

(̂τ · γ )Γ = τ̂Γ ◦ γ̂Γ . (1.7.2)

2. For a given horizontal lift γ h of γ , we obtain

γ̂Γ = Ψγ h(1) ◦ (Ψγ h(0)

)−1
, (1.7.3)

or, more generally,

γ̂Γ (t) = Ψγ h(t) ◦ (Ψγ h(0)

)−1 : π−1(m0) → π−1(γ (t)). (1.7.4)

�

Now, let us consider the important special case of parallel transport along closed
curves in M. Let C(m) be the set of piecewise smooth closed curves starting and
ending at m ∈ M. The parallel transport along γ ∈ C(m) yields an automorphism
of the fibre π−1(m). For the trivial curve it coincides with the identity. Thus, the
set of parallel transports along elements of C(m) form a subgroup of the group of
automorphisms of the fibre π−1(m).

Definition 1.7.6 The group of parallel transports along elements of C(m) is called
the holonomy group of Γ with base point m. It will be denoted by Hm(Γ ).

Let us denote by C0(m) ⊂ C(m) the subset of closed curves which are homotopic
to the trivial curve. The corresponding subgroup H 0

m (Γ ) ⊂ Hm(Γ ) is called the
restricted holonomy group of Γ with base point m.

We note that the holonomy groups can be naturally viewed as subgroups of the
structure group G: for every p ∈ π−1(m) and γ ∈ C(m), there exists a unique a ∈ G
such that

γ̂Γ (p) = Ψa(p). (1.7.5)

For another closed curve τ ∈ C(m), let b ∈ G be the corresponding group element.
Then,

τ̂Γ ◦ γ̂Γ (p) = τ̂Γ (Ψa(p)) = Ψa ◦ τ̂Γ (p) = Ψa ◦ Ψb(p) = Ψba(p),

that is, to τ̂Γ ◦ γ̂Γ there corresponds the product ba of elements of G. The subgroup
of G defined in this way is called the holonomy group of Γ with base point p. It is
denoted byHp(Γ ). Correspondingly, the restricted holonomy group with base point
p is denoted byH 0

p (Γ ). Obviously, Hp(Γ ) andHm(Γ ) are isomorphic as abstract
groups.

Remark 1.7.7 Let us define the following equivalence relation on P: two points p1
and p2 of P are equivalent iff they can be joined by a horizontal curve of Γ . Then,
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Hp(Γ ) coincides with the subset of elements a ∈ G such that p ∈ P is equivalent to
Ψa(p). �

The following proposition is a simple exercise which we leave to the reader (Exercise
1.7.1).

Proposition 1.7.8 Let P be a principal G-bundle over M and let Γ be a connection
on P.

1. The holonomy groups of Γ with base points p and Ψa(p), a ∈ G, are conjugate
in G,

HΨa(p)(Γ ) = a−1Hp(Γ )a.

The same is true for the restricted holonomy groups.
2. If two points in P can be joined by a horizontal curve, then their holonomy groups

coincide. �

Clearly, ifM is connected, then for each pair p1 and p2 of points in P, there exists a
group element a ∈ G, such that p1 and Ψa(p2) can be joined by a horizontal curve.
In this case, Proposition 1.7.8 implies that all holonomy groupsHp(Γ ), p ∈ P, are
conjugate in G. Consequently, they are all isomorphic to each other.

Theorem 1.7.9 Let P be a principal G-bundle over M, let M be connected and let
Γ be a connection on P. Then, for every p ∈ P,

1. H 0
p (Γ ) is a connected Lie subgroup of G,

2. H 0
p (Γ ) is a normal subgroup of Hp(Γ ) and Hp(Γ )/H 0

p (Γ ) is countable.

Our proof is along the lines of Sect. 19.7 of [447]. First, we need the following lemma.
Recall that a manifold is said to be C∞-pathwise connected if any two of its points
can be joined by a smooth curve.

Lemma 1.7.10 Let H be a C∞-pathwise connected subgroup of a Lie group G.
Then, H is a connected Lie group and a Lie subgroup of G.

Proof Consider the following subset of the Lie algebra of G:

h := {
h′(0) ∈ T1G : h ∈ C∞(R,G), h(R) ⊂ H, h(0) = 1

}
. (1.7.6)

One can check that h is a Lie subalgebra of g (Exercise 1.7.3). Let H̃ be the corre-
sponding connected Lie subgroup of G provided by Proposition I/5.6.5. As shown
in the proof of this proposition, H̃ is the maximal integral submanifold through 1 of
the distribution Dh generated by h. Now, let t �→ h(t) be a smooth curve in G such
that h(R) ⊂ H and h(0) = 1. Clearly,

L′
h(t)−1h′(t) = d

ds �s=0
h(t)−1h(t + s) ∈ h.
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Thus, by left invariance ofDh, t �→ h(t) lies in H̃. Since, by assumption, every point
in H is connected with 1 via such a curve, we conclude H ⊂ H̃.

To prove H̃ ⊂ H, choose a basis (e1, . . . , en) in h and a family of smooth curves
t �→ hi(t) inG such that hi(R) ⊂ H, hi(0) = 1 and h′

i(0) = ei. Consider themapping

F : R
n → H̃, F(t) := h1(t1) . . . hn(tn).

Clearly, F ′(0)mapsR
n bijectively onto h. Thus, by the InverseMapping Theorem, F

is a local diffeomorphismmapping an open neighbourhood of the origin inR
n onto an

open neighbourhood of 1 in H̃. We conclude thatH contains an open neighbourhood
of 1 in H̃ and, thus, H̃ ⊂ H. �

Proof of the theorem. We prove that the restricted holonomy group is C∞-pathwise
connected and apply the lemma.

Let m = π(p), let [0, 1] 
 s �→ γ (s) ∈ M be an element of C0(m) and let γ h be
its horizontal lift starting at p. Choose a smooth homotopy ϕ : R

2 → M such that

ϕ(1, s) = γ (s), ϕ(0, s) = ϕ(t, 0) = ϕ(t, 1) = m,

for all (t, s) ∈ [0, 1] × [0, 1]. By Corollary 1.3.16, the connection Γ induces a con-
nection Γ ϕ on the pullback principal bundle ϕ∗P. Let ϑ : ϕ∗P → P be the induced
morphism projecting to ϕ. Clearly, for every t ∈ [0, 1], the preimage under ϕ of the
closed curve s �→ ϕ(t, s) is the line segment s �→ (t, s) in R

2. Let Φ be the flow of
the Γ ϕ-horizontal lift of ∂s. Then,

t �→ ϑ ◦ Φ(t, 1)

is a smooth curve in P starting at p0 and ending at γ h(1). Via (1.7.5), it defines
a smooth curve in G starting at the unit element 1 and ending at the element of
H 0

p0(Γ ) defined by γ , that is, H 0
p0(Γ ) is a C∞-pathwise connected subgroup of G.

Now, Lemma 1.7.10 implies the first assertion.
Let us prove the second assertion. Clearly, for smooth closed curves τ and γ start-

ing atm0 ∈ M, with γ being null-homotopic, the curve τ · γ · τ−1 is null-homotopic,
too. Thus, by (1.7.3),H 0

p (Γ ) is a normal subgroup ofHp(Γ ). To prove that the quo-
tient group Hp(Γ )/H 0

p (Γ ) is countable, we define a homomorphism F from the
fundamental group π1(M,m) ofM based atm ontoHp(Γ )/H 0

p (Γ ) as follows: for a
given α ∈ π1(M,m), let t �→ γ (t) be a piecewise smooth closed curve representing
α. We put F(α) := [γ̂Γ ]. This mapping is well defined: if γ1 and γ2 are two represen-
tatives of α, then γ1 ◦ γ −1

2 is null-homotopic and thus defines an element ofH 0
p (Γ ).

Clearly, it is surjective. Thus, F is a homomorphism onto Hp(Γ )/H 0
p (Γ ), indeed.

Now, countability of this quotient follows from the countability of π1(M,m). �

Remark 1.7.11 By Theorem 1.7.9,Hp(Γ ) is a Lie subgroup of G whose connected
component of the identity coincides with H 0

p (Γ ). In particular, if M is simply
connected, then Hp(Γ ) is connected. �
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Proposition 1.7.12 Let (P,G,M, Ψ, π) be a principal bundle with connected base
manifold M and let Γ be a connection on P. Let p0 ∈ P and let Pp0(Γ ) be the subset
of points in P which can be joined to p0 by a horizontal curve of Γ . Then,

1. Pp0(Γ ) is a reduction of P with structure group Hp0(Γ ).
2. The connection Γ is reducible to a connection on Pp0(Γ ).

Proof 1. Since M is connected, the restriction of π to Pp0(Γ ) is surjective. By
Proposition 1.7.8 and Remark 1.7.7, Pp0(Γ ) is invariant under the right action of the
Lie subgroup Hp0(Γ ) ⊂ G and Pp0(Γ ) intersects the fibres of P inHp0(Γ )-orbits.

Next, we show that Pp0(Γ ) is a subbundle of P. For that purpose, let p ∈ Pp0(Γ )

and let (U, κ) be a local chart at m = π(p) such that κ(U) is an open ball in R
dimM

and κ(m) = 0. For any m̃ ∈ U, let t �→ γ (t) be the unique curve from m to m̃ such
that t �→ κ ◦ γ (t) is the line segment from 0 to κ(m̃). Define

s : U → P, s(m̃) := γ̂Γ (p).

Clearly, s is a smooth local section fulfilling s(U) ⊂ Pp0(Γ ). Now, for every p ∈
π−1(U), there exists a unique element a ∈ G such that p = Ψas(π(p)). Then,

χ̃ : π−1(U) → U × G, χ̃(p) := (π(p), a)

is a bijective mapping which induces a bijective mapping

χ : Pp0(Γ ) ∩ π−1(U) → U × Hp0(Γ ).

Constructing, this way, a system of bijective mappings {(Ui, κi)} such that {Ui} is a
covering of M and requiring that the mappings χi be diffeomorphisms, we endow
Pp0(Γ ) with a manifold structure and with a system of local trivializations. To see
that Pp0(Γ ) is a submanifold of P, note that {π−1(Ui)} is a covering of Pp0(Γ ) with
open subsets of P such that every subset Pp0(Γ ) ∩ π−1(U) is a submanifold of P.
This follows from the fact that Hp0(Γ ) is a submanifold of G and that the χi are
diffeomorphisms.

We conclude that Pp0(Γ ) is a reduction of P with structure group Hp0(Γ ) with
the corresponding morphism (ϑ, λ) given by the natural inclusion mappings ϑ :
Pp0(Γ ) → P and λ : Hp0(Γ ) → G.

2. Let p ∈ Pp0(Γ ) and let X ∈ Γp. Then, there exists a curve γ starting at π(p)
such that its horizontal lift γ h starting at p fulfilsX = d

dt �0γ
h(t). Since p can be joined

to p0 by a horizontal curve, we conclude that the image of γ h is contained in Pp0(Γ )

and that X ∈ Tp
(
Pp0(Γ )

)
. Thus, for every p ∈ Pp0(Γ ), the horizontal subspace Γp

is tangent to Pp0(Γ ). This means that the connection Γ is reducible to Pp0(Γ ): the
horizontal subspace at p ∈ Pp0(Γ ) of the reduced connection is given by Γp. �

Definition 1.7.13 The subbundle Pp0(Γ ) is called the holonomy bundle of Γ with
base point p0.
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Note thatPp0(Γ ) = Pp1(Γ ) iffp0 andp1 maybe joinedby ahorizontal curve. Thus,
for any pair (p0, p1) of points in P, we have either Pp0(Γ ) = Pp1(Γ ) or Pp0(Γ ) ∩
Pp1(Γ ) = ∅, that is,P decomposes into the union of disjoint holonomy bundles. One
can check that all holonomy bundles of a given connection are isomorphic (Exercise
1.7.4).

Remark 1.7.14 Let P(M,G) be a principal bundle, let H ⊂ G be a Lie subgroup
and let Q(M,H) be a reduction of P given by a morphism (ϑ, iH) with iH : H → G
being the natural inclusion mapping. Let Γ be a connection on P which is reducible
to a connection Γ̃ in Q. Then, by Proposition 1.3.13, Γ̃ defines a connection Γ̂ on P
(the image of Γ̃ under ϑ). Now, Γ̂ is either irreducible or not. In the first case, ϑ(Q)

coincides with the holonomy bundle Pp(Γ ), p ∈ ϑ(Q), and Γ̂ coincides with the
reduction of Γ to Pp(Γ ). In the second case, by Proposition 1.7.12, Γ̂ is reducible
to the holonomy bundle. Thus, in this case, for all p ∈ ϑ(Q), we have

Pp(Γ ) ⊂ ϑ(Q), Γ̂�Pp(Γ ) = Γ�Pp(Γ ).

Thus, the holonomy bundle is the smallest possible reduction of a principal bundle
with connection. In particular, a connection Γ on P is irreducible iff P = Pp(Γ ) and
G = Hp(Γ ) for all p ∈ P. �

The following classical theorem characterizes the Lie algebra of the holonomy
group of a connection in terms of its curvature [18].

Theorem 1.7.15 (Ambrose–Singer) Let (P,G,M, Ψ, π) be a principal bundle with
connected base manifold M and let Γ be a connection on P with connection form
ω and curvature form Ω . Let g be the Lie algebra of G. Then, for any p0 ∈ P, the
Lie algebra hp0(Γ ) of the holonomy groupHp0(Γ ) coincides with the subspace of g
generated by elements of the form Ωp(X,Y), where p ∈ Pp0(Γ ) and X,Y ∈ Γp.

Proof ByProposition 1.7.12,without loss of generalitywemay assumeHp0(Γ ) = G
and Pp0(Γ ) = P. Let

h = span
{
Ωp(X,Y) ∈ g : p ∈ Pp0(Γ ), X,Y ∈ Γp

}
.

Wemust show that h = g. First, sinceΩ is a horizontal form of type Ad, the subspace
h is invariant under the adjoint action of G. Thus, h is an ideal in g. Next, consider
the distribution

p �→ Dp := Γp ⊕ Ψ ′
p(h).

We show that D is involutive. Since Γp is spanned by horizontal vector fields and
Ψ ′
p(h) is spanned by Killing vector fields generated by elements of h, we must con-

sider the following three cases:

(a) Let A,B ∈ h and let A∗ and B∗ be the corresponding Killing vector fields. Then,
[A,B] ∈ h and since [A∗,B∗] = [A,B]∗, we have [A∗,B∗]p ∈ Ψ ′

p(h).
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(b) Let X be a horizontal vector field and let A ∈ h. Then, by Lemma 1.4.2, [X,A∗]
is a horizontal vector field.

(c) Let X and Y be horizontal vector fields. Then, by (1.4.5),

ver
([X,Y ]p

) = −Ψ ′
p

(
Ωp(X,Y)

)
.

Now, the Frobenius Theorem I/3.5.12 and Theorem I/3.5.17 yield the existence of a
maximal connected integral manifold N through p0 ∈ P. A point p ∈ P belongs to N
iff there exists a curve γ joining p to p0 such that γ̇ (t) ∈ Dγ (t) for every t. Since Γ ⊂
TN , we conclude Pp0(Γ ) = P ⊂ N . Thus, N = P and D = TP and, consequently,

dim g = dim P − dimM = dimN − dimM = dim h,

that is, g = h. �

The proofs of the following statements are left to the reader (Exercise 1.7.5).

Remark 1.7.16

1. As already stated after Definition 1.7.13, P is a disjoint union of holonomy bun-
dles. By the proof of the Ambrose–Singer Theorem, this disjoint union coincides
with the foliation defined by the distribution D.

2. If the curvatureΩ of Γ vanishes, thenH 0
p (Γ ) = {1} and each holonomy bundle

Pp(Γ ) is a covering of M. These bundles are all isomorphic and are associated
with the universal covering ofM, which is a principal bundle with structure group
π1(M), cf. Example 1.1.26.

3. If the curvatureΩ of Γ vanishes and if, additionally,M is simply connected, then
P is isomorphic to the trivial bundleM × G and the isomorphism maps Γ to the
canonical connection on M × G, cf. Example 1.3.18.

4. If G is connected, then Γ is irreducible iff hp0(Γ ) = g.
5. Using the Ambrose–Singer Theorem, one can show the following. For every

principal fibre bundle P(M,G), with M connected and dimM ≥ 2, there exists
a connection Γ on P such that Pp(Γ ) = P for all p ∈ P. For the rather technical
proof we refer to [490]. A direct, yet also technical proof can be found in [383],
see Chapter II/Theorem 8.2 of Part I. �

In the remainder of this section, we show that the concept of parallel transport
on a principal G-bundle P carries over to any associated vector bundle E = P ×G F
with (F,G, σ ) being a representation of G.

As in the case of principal bundles, the horizontal lift of vectors implies the lift of
curves in M to horizontal curves in E. By (1.3.5), the unique lift of a curve γ in M
to the horizontal curve γ h

E in E starting at the point [(p, f )] ∈ π−1
F (γ (0)) is given by

γ h
E (t) = ιf (γ

h
P (t)), (1.7.7)
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where γ h
P is the horizontal lift of γ to P starting at p. The corresponding parallel

transport operators along γ will be denoted by

γ̂ Γ E (t) : π−1
F (γ (0)) → π−1

F (γ (t)).

As in the case of the principal bundle, for t = 1, we simply write γ̂ Γ E . For a given
horizontal lift γ h

P to P, formula (1.7.4) implies

γ̂ Γ E (t) = ιγ h
P (t) ◦

(
ιγ h

P (0)

)−1
. (1.7.8)

In particular, for closed curves inM, we can define the holonomy group

Hm(Γ E) := {
γ̂ Γ E : γ ∈ C(m)

} ⊂ GL(π−1
F (γ (0))) (1.7.9)

and, correspondingly, the restricted holonomy group H 0
m (Γ E). Using (1.7.7), it is

easy to show (Exercise 1.7.7) that for any p ∈ π−1(m),

Hm(Γ E) = ιp ◦ σ
(
Hp(Γ )

) ◦ ι−1
p . (1.7.10)

In particular, if σ is injective, then Hm(Γ E) and Hp(Γ ) are isomorphic.
Finally, we relate the concept of parallel transport to the notion of parallelity of

sections, cf. Definition 1.4.5 and Corollary 1.5.7. For that purpose, let us denote the
subspace of sections of E which are parallel with respect to Γ E by P(E, Γ E). The
following proposition provides a geometric interpretation of the covariant derivative
in terms of parallel transport.

Proposition 1.7.17 Let Γ E be a connection on E, let ∇ be its covariant derivative
and let Φ ∈ Γ ∞(E). Then, for any m ∈ M and any X ∈ X(M),

∇XΦ(m) = d

dt �0

(
γ̂ Γ E (t)

)−1 ◦ Φ(γ (t)), (1.7.11)

where γ : I → M is an integral curve of X through m = γ (0) and I ⊂ R is an open
interval containing 0.

Proof Let γ h
P be the horizontal lift of γ to P starting at p ∈ π−1(m). Let Xh be the

horizontal lift of X to P. Then,

Xh
p (Φ̃) = d

dt �0
Φ̃ ◦ γ h

P (t) = d

dt �0

(
ιγ h

P (t)

)−1
Φ(γ (t))

and, thus, (1.5.3) and (1.7.8) imply (1.7.11). �

Rewriting formula (1.7.11) as
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∇XΦ(m) = lim
t→0

(
γ̂ Γ E (t)

)−1 ◦ Φ(γ (t)) − Φ(γ (0))

t
, (1.7.12)

we obtain a geometric interpretation of the covariant derivative. In particular, we
note that a section Φ is parallel iff the curve Φ ◦ γ in E is horizontal for any integral
curve γ of X.

Now, let us consider an arbitrary smooth curve γ : I → M. ByDefinition 1.5.13, a
section of E along γ : I → M is a mapping φ : I → E fulfilling πF ◦ φ = γ . Recall
that φ is a section of E along γ iff t �→ (t, φ(t)) is a section of γ ∗E, that is, there is a
canonical isomorphism between Γ ∞(γ ∗E) and the vector space Γ ∞

γ (E) of sections
of E along γ . Also recall that there is an associated covariant derivative along the
mapping γ . According to (1.5.16), it is given by

∇γ
d
dt

: Γ ∞
γ (E) → Γ ∞

γ (E), ∇γ
d
dt
φ = ωE

(
φ′
(
d

dt

))
, (1.7.13)

where d
dt is the standard unit vector field on I ⊂ R and ωE is the connection mapping

in E. Now, clearly, for any Φ ∈ Γ ∞(E),

φ = Φ ◦ γ

is a section of E along γ and, for this choice of φ, formula (1.7.13) takes the form

∇γ
d
dt
(Φ ◦ γ ) = ωE

(
Φ ′ (γ̇ )

) = ωE

(
d

dt

(
Φ ◦ γ )

)
, (1.7.14)

where

γ̇ (t) = γ ′
t

(
d

dt �t

)

is the tangent vector field of γ , cf. Example I/1.5.5. Thus, a sectionΦ ◦ γ of E along
γ is parallel iff

∇γ
d
dt
(Φ ◦ γ ) = 0. (1.7.15)

To summarize, we obtain the following.

Proposition 1.7.18 The parallel transport operator γ̂ Γ E : Eγ (0) → Eγ (1) along a
curve γ is given by the set of solutions of the differential equation (1.7.15) with the
initial condition Φ(γ (0)) running through the fibre Eγ (0). �

Remark 1.7.19 (Synchronous framing) For a vector bundleE → M with connection
∇, let ω be the connection form of ∇ in the frame bundle L(E) and let Ω be its
curvature. Denote dimM = n and consider an open ball B ⊂ R

n centered at 0. Let
x1, . . . , xn be the standard coordinates on B and let
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Xr :=
∑

i

xi∂i

be the corresponding radial vector field on B. Let (U, κ) be a local chart sendingU to
B. Via κ , parallel transport along rays t �→ tx, x ∈ B, provides a local trivialization
of E over B by identifying the fibres Ex with E0. The corresponding local frame is
said to be synchronous.

LetA = κ∗A be the local representative of ω on Bwith respect to a synchronous
frame {eα}, viewed as a local section of the frame bundle L(E), and letF = κ∗F be
the corresponding representative of Ω . Then, (1.5.6) implies

∇Xr eα = Aβ
α(Xr) eβ = 0, (1.7.16)

that is, (Xr�A) = 0. This implies

L Xr A = Xr� dA = Xr�F.

We decompose A = Ai dxi, F = 1
2Fij dxi ∧ dxj. Then,

L Xr A = Fijx
idxj.

On the other hand, by the derivation property of the Lie derivative,

L Xr A = Xr(Ai)dx
i + Aidx

i.

Comparing these two formulae, we read off

Xr(Ai) + Ai = −Fijx
j .

This implies

Ai(x) ∼ −1

2
Fij(0)x

j + 0(‖x‖2). (1.7.17)

In particular, we have A(0) = 0. �

Finally, we show that the holonomy group of Γ E can be used to characterize the set
P(E, Γ E) of sections of E which are parallel with respect to Γ E . Given p ∈ P, an
element of F is called holonomy-invariant if it is invariant under the restriction of
the representation σ to the holonomy group Hp(Γ ).

Proposition 1.7.20 (Holonomy principle) If M is connected, then there is a bijective
correspondence between P(E, Γ E) and the space of holonomy-invariant vectors
in F.

Proof Letm0 ∈ M andp0 ∈ π−1(m0). ByProposition 1.7.12,P reduces togetherwith
Γ to the holonomy bundle Pp0(Γ ) and, by Proposition 1.6.7, we have the following
isomorphism of associated vector bundles:
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E = P ×G F ∼= Pp0(Γ ) ×Hp0 (Γ ) F.

Thus, it is enough to consider sections of the associated bundle on the right hand
side which are parallel in the sense of the reduced connection.

1. Let f ∈ F be holonomy invariant, that is, σhf = f for all h ∈ Hp0(Γ ). Define

Φ̃ : Pp0(Γ ) → F, Φ̃(p) := f . (1.7.18)

Since, for all h ∈ Hp0(Γ ), we have

Φ̃(Ψh(p)) = f = σh−1 f = σh−1Φ̃(p),

Φ̃ isHp0(Γ )-equivariant. Thus, by Proposition 1.2.6, it induces a smooth section Φ

ofE. Since Φ̃ is constant onPp0(Γ ), we haveXh(Φ̃) = Xh(f ) = 0 for anyX ∈ X(M).
Then, (1.5.3) implies that Φ is parallel.

2. Conversely, letΦ be a parallel section and let Φ̃ be the corresponding equivariant
mapping. By (1.5.3), we haveXh(Φ̃) = 0 for every horizontal vector field onPp0(Γ ).
Thus, Φ̃ is constant along any horizontal curve in Pp0(Γ ), that is, Φ̃ is constant on
Pp0(Γ ). Let f := Φ̃(p) ∈ F be this constant vector. The equivariance of Φ̃ implies
the holonomy invariance of f . �

Exercises

1.7.1 Prove Proposition 1.7.1.

1.7.2 Prove Lemma 1.7.3.

1.7.3 Show that h defined by (1.7.6) is a Lie subalgebra of g.

1.7.4 Prove that all holonomy bundles of a given connection are isomorphic.

1.7.5 Prove the statements of Remark 1.7.16.

1.7.6 Within the class of principal bundles defined in Example 1.1.4/3, take

(a) G = GL(n, C) and H = SL(n, C). Then, G/H ∼= C∗ and the canonical projec-
tion is given by the determinant.

(b) G = SO(3) and H = SO(2). Then, G/H = S2.

Let g and h be the Lie algebras of G and H, respectively. In both cases, decompose
g = h ⊕ m reductively and define a connection on each of these bundles by putting
Γ1 = m andΓa = L′

aΓ1, cf. Example 1.3.19. Calculate the holonomy groups of these
connections.
Hint. For case (b), use the Ambrose–Singer Theorem.



72 1 Fibre Bundles and Connections

1.7.7 Prove formula (1.7.10).

1.7.8 Confirm formula (1.7.17).

1.8 Automorphisms

By Definition 1.1.7, if (ϑ, λ) is an automorphism of a principal G-bundle P, then
λ is an automorphism of G. In the sequel, we limit our attention to the restricted
class of automorphisms fulfilling λ = idG. This class corresponds to the equivariant
automorphisms of the G-manifold (P,G, Ψ ), cf. Definition I/6.1.1. We denote the
group of equivariant automorphisms by Aut(P). Recall from Remark 1.1.8/2 that an
automorphism ϑ of P is called vertical if ϑ̃ = idM .

Remark 1.8.1 The vertical automorphisms of P constitute a group which will be
denoted by AutM(P). By (1.1.4), the mapping Aut(P) 
 ϑ �→ ϑ̃ ∈ Diff(M) is a
homomorphism of groups and, by definition, AutM(P) coincides with the kernel
of this homomorphism. Thus, AutM(P) is a normal subgroup of Aut(P) and the
following sequence is exact,

0 → AutM(P) → Aut(P) → Diff(M).

In gauge theory, AutM(P) plays the role of the group of local gauge transformations.
It can be turned into an infinite-dimensional Hilbert-Lie group, see Chaps. 6 and 8.

�

We start by giving a characterization of AutM(P) in terms of equivariant map-
pings which is useful in gauge theory. For a given principal bundle (P,G,M, Ψ, π),
consider the set HomG(P,G) of equivariant smooth mappings u : P → G, where G
is viewed as a right G-manifold endowed with the G-action by conjugation, that is,
(a, b) �→ b−1ab. Then, equivariance means

u(Ψa(p)) = a−1 u(p) a, a ∈ G, p ∈ P. (1.8.1)

We endow HomG(P,G) with a group structure by putting (uv)(p) := u(p) v(p) for
any u, v ∈ HomG(P,G). Then,

(uv)(Ψa(p)) = u(Ψa(p)) v(Ψa(p)) = (a−1 u(p) a)(a−1 v(p) a) = a−1 (uv)(p) a,

showing that uv ∈ HomG(P,G). The unit element is given by the constant mapping
p �→ 1 and the inverse of u is given by the mapping p �→ u(p)−1.

Remark 1.8.2 By Proposition 1.2.6, HomG(P,G) may be identified with the space
of sections of the associated bundle P ×G G, with G acting on the typical fibre G by
inner automorphisms. �

http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_8
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For u ∈ HomG(P,G), we define

ϑu : P → P, ϑu(p) := Ψu(p)(p). (1.8.2)

Proposition 1.8.3 For every u ∈ HomG(P,G), the mapping ϑu defined by (1.8.2) is
a vertical automorphism of P. The assignment u �→ ϑu defines an isomorphism of
groups.

Proof Since Ψ and u are smooth, ϑu : P → P is smooth as a composition of smooth
mappings. Then, ϑu−1 is also smooth and we have

ϑu−1 ◦ ϑu(p) = Ψu(Ψu(p)(p))
−1 ◦ Ψu(p)(p) = Ψu(p)−1 u(p)−1 u(p) ◦ Ψu(p)(p) = p,

that is, ϑu−1 ◦ ϑu = idP and, analogously, ϑu ◦ ϑu−1 = idP. Thus, ϑu is a diffeomor-
phism. Moreover, by equivariance of u,

ϑu ◦ Ψa(p) = Ψu(Ψa(p)) ◦ Ψa(p)) = Ψa−1 u(p) a ◦ Ψa(p)) = Ψa ◦ ϑu(p),

showing that ϑu is an automorphism of P. By definition, it is vertical.
To prove the second assertion, we first note that the mapping u �→ ϑu is a homo-

morphism of groups:

ϑu ◦ ϑv(p) = Ψu(Ψv(p)(p)) ◦ Ψv(p)(p) = Ψu(p) v(p)(p) = ϑuv(p).

Since the G-action Ψ is free, the mapping u �→ ϑu is injective. It is also surjective.
Indeed, let ϑ ∈ AutM(P). Since ϑ(p) and p belong to the same fibre, there exists a
unique element u(p) ∈ G such that ϑ(p) = Ψu(p)(p). This yields a smooth mapping

u : P → G, u(p) = Ψ −1
p ◦ ϑ(p).

Finally, we must show the equivariance of u. On the one hand, we have

ϑ(Ψa(p)) = Ψu(Ψa(p)) ◦ Ψa(p) = Ψa u(Ψa(p))(p)

and, on the other hand, by (1.1.3),

ϑ(Ψa(p)) = Ψa(ϑ(p)) = Ψa ◦ Ψu(p)(p) = Ψu(p) a(p).

This yields a u(Ψa(p)) = u(p) a, that is, u(Ψa(p)) = a−1 u(p) a. �

Next, we show that a vertical automorphism of P induces a vertical automorphism
in every associated bundle (P ×G F,M, πF).

Proposition 1.8.4 Let ϑ be a vertical automorphism of P. Then, the mapping

ϑ̂ : P ×G F → P ×G F, ϑ̂([(p, f )]) := [(ϑ(p), f )],
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is a vertical automorphism of P ×G F. If ϑ is given by u ∈ HomG(P,G), then

ϑ̂u([(p, f )]) = [(
p, σu(p)(f )

)]
. (1.8.3)

Proof The first assertion follows from Proposition 1.2.8/3. To prove (1.8.3), we
calculate

ϑ̂u([(p, f )]) = [
(ϑu(p), f )

] = [(
Ψu(p)(p), f

)] = [(
p, σu(p)(f )

)]
.

�

Corollary 1.8.5 If (F,G, σ ) is a Lie group representation, then ϑ̂ is a vertical
automorphism of vector bundles.

Proof Let m ∈ M and let p ∈ π−1(m). Formula (1.8.3) implies

(ϑ̂u)�
π

−1
F (m)

= ιp ◦ σu(p)−1 ◦ ι−1
p . (1.8.4)

According to Proposition 1.2.8, the diffeomorphism ιp is a linear mapping. Thus,
(1.8.4) defines an endomorphism of the fibre π−1

F (m). �

Remark 1.8.6 From the proof of Proposition 1.8.4 we read off the following formula
for the local representative of ϑ̂ :

ξ ◦ ϑ̂ ◦ ξ−1(m, f ) = (m, σρ(m)f ). (1.8.5)

Here, ρ = u ◦ s denotes the local representative of u ∈ HomG(P,G). �

We know from Corollary 1.3.16 that the image ϑ ′(Γ ) and the preimage (ϑ−1)′(Γ )

of a connection Γ under an automorphism ϑ of P are both connections. In particular,
the image of a horizontal curve under ϑ is horizontal with respect to ϑ ′(Γ ) and
formula (1.7.4) immediately implies the following transformation law for the parallel
transport operator:

γ̂ϑ ′(Γ ) = ϑ ◦ γ̂Γ ◦ ϑ−1. (1.8.6)

Proposition 1.8.7 Let P(M,G) be a principal bundle and let Γ be a connection on
P. Then, for ϑ ∈ AutM(P) corresponding to u ∈ HomG(P,G), one has the following
transformation laws:

1. If ω is the connection form of Γ , then ϑ∗ω is the connection form of (ϑ−1)′(Γ )

and
(ϑ∗ω)p = Ad(u(p)−1) ◦ ωp + (u∗θ)p, (1.8.7)

with θ denoting the Maurer-Cartan form on G.
2. If Ω is the curvature form of ω, then ϑ∗Ω is the curvature form of ϑ∗ω and

(ϑ∗Ω)p = Ad(u(p)−1) ◦ Ωp. (1.8.8)
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3. For the operator of covariant exterior derivative, one has

Dϑ∗ω = ϑ∗ ◦ Dω ◦ (ϑ∗)−1. (1.8.9)

Proof 1. To prove (1.8.7), we must calculate ϑ ′(X) for X ∈ TpP. Let γ be a curve
representing X. Then, using (1.8.2), we have

ϑ ′
p(X) = d

dt �0
ϑ(γ (t))

= d

dt �0
Ψ
(
γ (t), u(γ (t))

)

= d

dt �0
Ψ
(
γ (t), u(p)

) + d

dt �0
Ψ
(
p, u(γ (t))

)

= Ψ ′
u(p)(X) + Ψ ′

p ◦ u′
p(X).

The second term describes a vertical vector in ϑ(p). Thus, we may write it in the
form Ψ ′

ϑ(p)(A) with A ∈ g. Explicitly, since u′
p(X) ∈ Tu(p)G, we can write

Ψ ′
p ◦ u′

p(X) = Ψ ′
p ◦ L′

u(p) ◦ L′
u(p)−1 ◦ u′

p(X).

Using
L′
u(p)−1 ◦ u′

p(Y) = θ(u′
p(X)) = (u∗θ)p(X)

and Ψp ◦ Lu(p) = Ψϑ(p), we obtain

ϑ ′
p(X) = Ψ ′

u(p)(X) + Ψ ′
ϑ(p)

(
u∗θ(X)

)
. (1.8.10)

Using this equation, together with the equivariance of ω, we obtain (1.8.7).
2. Using the Structure Equation, we obtain

ϑ∗Ω = ϑ∗(dω + 1

2
[ω,ω]) = d(ϑ∗ω) + 1

2
[ϑ∗ω, ϑ∗ω],

that is,ϑ∗Ω is the curvature form ofϑ∗ω, indeed. To prove (1.8.8), wemust calculate
ϑ∗Ω(X,Y) for any X, Y ∈ TpP. For that purpose, we use the decomposition (1.8.10)
for both tangent vectors. Since Ω is horizontal, only the first terms of this decom-
position contribute. Then, using the equivariance of Ω , one immediately obtains
(1.8.8).
3. Using the horizontality of the covariant exterior derivative and the fact that ϑ∗ω
is the connection form of (ϑ−1)′(Γ ), we obtain

ϑ ′ ◦ horϑ
∗ω = horω ◦ϑ ′
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and thus
(Dϑ∗ω(ϑ∗α̃))(X0, . . . ,Xk) = (ϑ∗Dωα̃)(X0, . . . ,Xk),

for any α̃ ∈ Ωk
σ,hor(P,F) and Xi ∈ TpP. This yields the assertion. �

Remark 1.8.8

1. Sometimes, we will use the following short-hand notation for the above transfor-
mation laws:

ϑ∗ω = Ad(u−1) ◦ ω + u∗θ, ϑ∗Ω = Ad(u−1) ◦ Ω.

In matrix notation, we have u∗θ = u−1du, cf. Remark I/5.5.12/2. Then,

ϑ∗ω = u−1ωu + u−1du, ϑ∗Ω = u−1Ωu.

2. Using the local representativeρ = u ◦ s, introduced inRemark 1.8.6, from (1.8.7)
and (1.8.8) we read off the following transformation laws for the local represen-
tatives of ω and Ω , cf. formulae (1.3.11) and (1.4.16):

A ′ = Ad(ρ−1) ◦ A + ρ∗θ, F ′ = Ad(ρ−1) ◦ F . (1.8.11)

�

1.9 Invariant Connections

In this section, we consider the following geometrical setting. Let there be given a
principal bundle (P,G,M, Ψ, π) and let the base manifold M be endowed with a
left Lie group action (M,K, δ). Assume that both K and G are compact19 connected
Lie groups. By a lift of the K-action to P we mean a homomorphism Δ : K →
Aut(P) projecting to δ, that is, π ◦ Δk = δk ◦ π for any k ∈ K . The following natural
problems arise:

(a) Classify the lifts of the K-actions.
(b) Classify the connections on P which are invariant under a lifted K-action.

In pure mathematics, these problems are a natural part of fibre bundle theory. We
will cite a number of relevant contributions later on. In physics, these questions are
closely related to model building in the spirit of Kaluza–Klein theories, see Sects. 7.8
and 7.9.We also refer to Chap.6 for various applications. Here, we address the above
problems under the following additional assumptions.

(a) We assume that the K-action δ have only one orbit type. In the sequel, such an
action will be referred to as a simple K-action.

19It will become clear below for which statements the compactness assumption is necessary. In
particular, under this assumption the K-action δ is proper.

http://dx.doi.org/10.1007/978-94-024-0959-8_7
http://dx.doi.org/10.1007/978-94-024-0959-8_7
http://dx.doi.org/10.1007/978-94-024-0959-8_6
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(b) SinceΔk is an automorphismofP for every k ∈ K , the actionsΨ andΔ commute
and thus they induce a left action,

ρ : (K × G) × P → P, ρ(k,g)(p) := Δk ◦ Ψg−1(p). (1.9.1)

We assume that this action be simple, too.

Let us denote the orbit type of δ by [H] and let us consider a representative H
of the conjugacy class [H]. In the notation of Sect. 6.6. of Part I, let NK(H) be the
normalizer of H in K and let ΓH = NK(H)/H. Recall that ΓH acts on K/H naturally
from the left,

ΓH × K/H → K/H, (aH, kH) �→ ka−1H. (1.9.2)

By Proposition I/6.6.1, the subset MH ⊂ M of isotropy type H is a principal ΓH -
bundle over the orbit space M̂ ≡ M/K with right ΓH -action (a,m) �→ δa−1(m) and
δ induces a K-equivariant diffeomorphism

MH ×ΓH K/H → M, [(m, [k])] �→ δk(m), (1.9.3)

with the K-action on MH ×ΓH K/H given by left translation on K/H.
Now, let (P,G,M, Ψ, π) be a principal bundle, with G compact connected, and

letΔ : K → Aut(P) be a lift of δ. Then, for every isotropy groupH, the submanifold
π−1(MH) ⊂ P is a principalG-bundle overMH and the restriction ofΔ toH defines a
homomorphism fromH toAutMH (π−1(MH)). By Proposition 1.8.3, the latter induces
a mapping λ : H × π−1(MH) → G, given by

Δh(p) = Ψλ(h,p)(p), π(p) ∈ MH , h ∈ H. (1.9.4)

For every h ∈ H, the induced mapping λh : π−1(MH) → G is G-equivariant,

λh(Ψg(p)) = g−1λh(p)g, (1.9.5)

and, for every p ∈ π−1(MH), the induced mapping λp : H → G is a homomorphism
of Lie groups. By (1.9.5), a change of the point in a given fibre of π−1(MH) results
in a conjugate homomorphism, that is,

λΨg(p) = g−1λpg. (1.9.6)

By assumption, the left action ρ of K × G on P given by (1.9.1) is simple. Let
us calculate the isotropy group (K × G)p for a chosen point p ∈ π−1(MH). From
Δk ◦ Ψg−1(p) = p we read off δk(π(p)) = π(p), that is, k ∈ H. Thus, using (1.9.4),
we obtain

(K × G)p = {
(h, λp(h)) ∈ K × G : h ∈ H

}
. (1.9.7)

http://dx.doi.org/10.1007/978-94-024-0959-8_6
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Now, let us choose an isotropy subgroup I and let us consider the subset

PI ⊂ π−1(MH) ⊂ P

of isotropy type I . By definition of PI , the restriction of the mapping p �→ λ(h, p) to
PI is constant. In the sequel, it will be denoted by λ0. Denoting

ΓI = NK×G(I)/I

and, again using Proposition I/6.6.1, we conclude that PI is a principal ΓI -bundle
over the orbit space P/(K × G) = M̂ with right ΓI -action

Ψ I : ΓI × PI → PI , (a, p) �→ Ψ I(a, p) := ρa−1(p), (1.9.8)

and that ρ induces a (K × G)-equivariant diffeomorphism

PI ×ΓI (K × G)/I → P, [(p, [(k, g)])] �→ ρ(k,g)(p). (1.9.9)

Thus, a principal G-bundle P admitting a simple lift of a simple K-action has the
form

P = PI ×ΓI (K × G)/I, (1.9.10)

where I is a chosen isotropy group of the induced action ρ.

Remark 1.9.1 If we take another representative I ′ = aIa−1, a ∈ K × G, of the orbit
type [I], then the isotropy submanifold PI gets translated by a, that is, PI ′ = ρa(PI).
Thus, P is uniquely characterized by an equivalence class [(I,PI)]. �

The following remark shows that, depending on the context, formula (1.9.10) may
be interpreted in various ways.

Remark 1.9.2

1. By (1.9.7), the action of I on K × Gmay be identified with the action of H given
by

H × (K × G) → K × G, (h, (k, g)) �→ (kh, gλ0(h)). (1.9.11)

Thus, we can write
(K × G)/I = K ×H G, (1.9.12)

where K is viewed as a principal H-bundle over K/H.
2. Consider K × G as a principal NK×G(I)-bundle over (K × G)/NK×G(I). Since

I ⊂ NK×G(I) is a normal subgroup, by Corollary I/6.5.3/1, the right action of
NK×G(I) on K × G descends to a free proper action of ΓI = NK×G(I)/I on
(K × G)/I and idK×G induces a diffeomorphism between (K × G)/NK×G(I) and(
(K × G)/I

)
/ΓI . Thus, (K × G)/I may be viewed as a principalΓI -bundle over
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(K × G)/NK×G(I) and the isomorphism (1.9.9) may be rewritten as follows:

P ∼= (K × G)/I ×ΓI PI . (1.9.13)

�

Next, we will show that from the above data, we can construct a principal G-
bundle admitting the lift of a simple K-action. For that purpose, we must gain some
insight into the structure of ΓI = NK×G(I)/I and of PI , respectively. First, note that
(k, g) ∈ NK×G(I) iff

k ∈ NK(H), gλ0(h)g
−1 = λ0(khk

−1) for all h ∈ H. (1.9.14)

Next, consider the centralizer CG(λ0(H)). By (1.9.14), we have

NK×G(I) ∩ ({1K} × G) = {1K} × CG(λ0(H)) ≡ Z. (1.9.15)

Since Z ∩ I = {1K × 1G}, we may view Z as a (normal) subgroup of ΓI . Thus, Z
acts freely on PI and, by (1.9.15), transitively on each intersection of PI with a fibre
of P. We conclude that PI carries the structure of a principal Z-bundle over

MI := π(PI) ∼= PI/Z,

with the right action of Z given by restriction of Ψ to Z × PI ⊂ G × P. Clearly,
MI ⊂ MH and thus

ΓI/Z ⊂ ΓH . (1.9.16)

To summarize, we have a sequence of principal bundles

PI
πMI−→ MI

πM̂−→ M̂, (1.9.17)

with structure groups Z and ΓI/Z , respectively. Let us denote the Lie algebras of,
respectively,

K, H, NK(H), ΓH , G, I, NK×G(I), ΓI , Z by k, h, nH , n̂H , g, i, nI , n̂I , z.

Lemma 1.9.3 The Lie algebra n̂I of ΓI is the direct sum of two ideals,

n̂I = n̂H ⊕ z. (1.9.18)

Proof Let [(A,B)] ∈ n̂I . Then, by (1.9.14), A ∈ nH . Since K is compact, we can
decompose

nH = h ⊕ h⊥ (1.9.19)
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with respect to some Ad-invariant scalar product in k. By invariance and since h is
an ideal, h⊥ is an ideal and thus (1.9.19) is a decomposition into a direct sum of Lie
algebras. Clearly, we may choose A ∈ h⊥. Then, [A,X] = 0 for any X ∈ h. Now, for
any B ∈ z, the second equation of (1.9.14) implies

[B, λ′
0(X)] = λ′

0([A,X]) = 0.
�

From (1.9.18) we read off that the connected components of the identity of ΓI/Z and
ΓH coincide,

(ΓI/Z)0 = (ΓH)0, (1.9.20)

and, using (1.9.16), we conclude that ΓI/Z is the union of a number of connected
components of ΓH . In particular, ΓH/(ΓI/Z) is a discrete group.

Lemma 1.9.4 The manifold MI is a reduction of the principal ΓH-bundle MH → M̂
to the closed subgroup ΓI/Z and we have the following isomorphism of associated
bundles:

MH ×ΓH K/H ∼= MI ×ΓI/Z K/H. (1.9.21)

Proof Note that MH/(ΓI/Z) may be viewed as a section of the associated bundle
MH ×ΓI/Z ΓH/(ΓI/Z). By Corollary 1.6.5, this section defines a reduction ofMH to
the closed subgroup ΓI/Z . Thus,MI is a reduction ofMH to ΓI/Z . The isomorphism
(1.9.21) follows from Proposition 1.6.7. �

We conclude from (1.9.21) that, via the K-equivariant diffeomorphism (1.9.3), we
may identify M with MI ×ΓI/Z K/H. Now, we can prove the announced converse
statement.

Proposition 1.9.5 Let K and G be compact connected Lie groups and let (M,K, δ)

be a simple Lie group action. Let H ⊂ K be an isotropy subgroup of δ and let
λ0 : H → G be a Lie group homomorphism. Let (P̂, ΓI , M̂, Ψ̂ , π̂) be a principal
bundle, where I = {(h, λ0(h)) ∈ K × G : h ∈ H} and ΓI = NK×G(I)/I. Then, the
bundle

P = P̂ ×ΓI (K × G)/I (1.9.22)

associated with P̂ carries the structure of a principal G-bundle over M, where G acts
by inverse left translation on the factor G. The natural K-action Δ on P given by
left translation on (K × G)/I yields a group homomorphism Δ : K → Aut(P) and
projects onto δ.

Proof First, we show that P carries the structure of a principal G-bundle over M.
The right G-action is defined by

G × P → P, Ψ (a, [(p̂, [(k, g)])]) := [(p̂, [(k, a−1g)])].

This action is obviously free. The canonical bundle projection is defined as the
projection onto the orbit space of this action, π : P → P/G. We must show that the
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orbit space is diffeomorphic to M. Since G is compact, the action Ψ is proper and
thus, as explained in Sect. 6.5 of Part I, the Tubular Neighbourhood Theorem I/6.4.3
implies that (P,G,P/G, Ψ, π) is a principal bundle. Next, we have the sequence
(1.9.17) with PI replaced by P̂ and, thus, P̂/Z = MI . Using this and the fact that Z
is normal in ΓI , we obtain

P/G = P̂ ×ΓI K/H = P̂/Z ×ΓI/Z K/H = MI ×ΓI/Z K/H.

Thus, using (1.9.21) and (1.9.3), we obtain P/G = M. Finally, P can be endowed
with the natural left K-action

Δ : K × P → P, Δ(l, [(p̂, [(k, g)])]) := [(p̂, [(lk, g)])],

which obviously commutes with the G-action and which projects onto δ. �

Remark 1.9.6 As in Remark 1.9.1, we may pass to another subgroup I ′ = aIa−1,

a ∈ K × G. Correspondingly,ΓI ′ is isomorphic toΓI . Choosing aprincipalΓI ′ -bundle
P̂′ which is vertically isomorphic to P̂, the construction yields a principal bundle P′
isomorphic to P. �

Next, we discuss two important special cases. First, we consider the classical case
of a transitive K-action, see [383, 647].

Remark 1.9.7

1. If δ is transitive, then ρ is also transitive. Thus, in this case, M̂ and, therefore,
also PI/ΓI is the one-point space and, by (1.9.12), formula (1.9.22) reduces to

P = K ×H G, (1.9.23)

whereK is viewed as a principalH-bundle overK/H. Thus, in the transitive case,
principal G-bundles admitting a lift of a K-action are completely characterized
by Lie group homomorphisms λ0 : H → G.

2. The bundle P given by (1.9.23) is trivial iff λ0 extends to a smooth mapping
λ̃0 : K → G fulfilling λ̃0(kh) = λ̃0(k)λ0(h) for k ∈ K and h ∈ H (Exercise 1.9.2).

3. If the action of K is free, then λ0 is the trivial homomorphism and thus P is a
trivial bundle. This means that a principal bundle over a Lie group K admits a lift
of the natural action of K on itself by left translation iff it is trivial.

4. The triples (K,P(M,G),Δ), where K is a Lie group, P(M,G) is a principal
G-bundle over a homogeneous K-space M and Δ is an action of K on P by
automorphisms which projects to the transitive K-action onM, form a category,
called the category of homogeneous principal bundles. Correspondingly, onemay
consider the category of homogeneous principal bundles with base point p ∈ P.
As a consequence of Proposition 1.9.5, in the latter category, every object is
isomorphic to (K,P(K/H,G),Δ)with base point (1K ,1G), see [634] for details.

�

http://dx.doi.org/10.1007/978-94-024-0959-8_6
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Before we proceed to a more general case, we give an example illustrating that a
lift does not always exist, see [632]. For a discussion of the lifting problem we refer
to [89, 256, 266, 486, 502].

Example 1.9.8 Put K = SO(3), G = U(1) and M = S2, endowed with the natural
action of K . Then, H = SO(2) ∼= U(1) and we must consider homomorphisms
λ : U(1) → U(1). It is well known that such homomorphisms are labelled by the
integers, that is, they are of the form λn(z) = zn, with z ∈ U(1) and n ∈ Z. Thus, for
n > 0, we obtain

Pn = SO(3) ×U(1) U(1) ∼= SO(3)/Zn
∼= SU(2)/Z2n.

These are the even 3-dimensional lens spaces. In particular, for n = 1, the bundle
manifold is SO(3). For n = 0 the bundlemanifold is S2 × U(1).We conclude that the
complex Hopf bundle S3(S2,U(1)) does not admit a lift of the natural SO(3)-action
on S2. �

The following case was considered in various versions in [284, 285, 539, 546].

Remark 1.9.9 Assume that the principal ΓI/Z-bundle20 MI → M̂ is trivial. Then,
we may choose a global section s : M̂ → MI . Let us denote M̃ := s(M̂) and

P̃ := π−1(M̃) ∩ PI = (πMI )
−1(M̃).

By construction, P̃ is a subbundle of PI(M̂, ΓI) carrying the structure of a principal
Z-bundle. In particular, since M̃ and M̂ may be identified via the section s, this yields
a reduction of PI to the structure group Z . Thus, by Proposition 1.6.7,

PI ×ΓI (K × G)/I = P̃ ×Z (K × G)/I.

Since Z = {1K} × CG(λ0(H)) ⊂ ΓI , the action of I on K × G commutes with the
action of Z on this product. Thus,

P̃ ×Z (K × G)/I ∼= K ×H

(
P̃ ×CG(λ0(H)) G

)
,

whereH acts on P̃ ×CG(λ0(H)) G by right translation on the factorG viaλ0. Viewing the
twisted product P̃ ×CG(λ0(H)) G as a bundle associated with the principal CG(λ0(H))-
bundle G(CG(λ0(H)),G/CG(λ0(H))), we finally obtain

P ∼= K ×H

(
G ×CG(λ0(H)) P̃

)
, (1.9.24)

with the right H-action on K ×
(
G ×CG(λ0(H)) P̃

)
induced by (1.9.11),

20And thus also the principal ΓH -bundle MH → M̂.
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(h, (k, [(g, p̃)]) �→ (kh, [(gλ0(h), p̃)]), h ∈ H,

cf. [539]. The diffeomorphism (1.9.24) is induced from (1.9.9) in an obvious way:

[(k, [(g, p̃)])] �→ Δk ◦ Ψg−1(p̃).

By Remark 1.9.6, passing from λ0 to a conjugate homomorphism yields an isomor-
phic principal G-bundle P. �

Next, we will use the above results to classifyG-invariant connections in the present
context.

Definition 1.9.10 Let P(M,G) be a principal bundle and let Δ : K → Aut(P) be
a group homomorphism. A connection form ω on P is called K-invariant if for all
k ∈ K

Δ∗
kω = ω.

The following result yields the classification of invariant connections for the case of
simple group actions. It belongs to Jadczyk and Pilch [345]. To formulate it, we need
a reductive decomposition

k = nH ⊕ p, (1.9.25)

whose existence is guaranteed by the compactness of K . Let L(p, g) be the space of
linear mappings from p to g. Note that L(p, g) is endowed with a natural NK×G(I)-
action given by

NK×G(I) × L(p, g) → L(p, g), ([(k, g)],F) �→ Ad(g) ◦ F ◦ Ad(k−1),

and that this action descends to a ΓI -action on the subspace L(p, g)H ⊂ L(p, g) of
H-invariant elements, that is, linear mappings fulfilling

F = Ad(λ0(h)) ◦ F ◦ Ad(h−1), h ∈ H. (1.9.26)

Theorem 1.9.11 Let (M,K, δ) be a simple Lie group action, let (P,G,M, Ψ, π) be
a principal bundle admitting a lift Δ : K → Aut(P) of the K-action. Then, there is a
one-to-one correspondence between K-invariant connection forms ω on P and pairs
(ω̂, Φ̂), where ω̂ is a z-valued 1-form of type Ad on PI(M̂, ΓI) fulfilling

ω̂p(A∗) = A, A ∈ z, p ∈ PI , (1.9.27)

and Φ̂ : PI → L(p, g)H is a ΓI -equivariant mapping.

Proof 1. Let ω be K-invariant. According to Remark 1.9.2/2, we may view P as a
bundle associated with the principal ΓI -bundle

(K × G)/I → (K × G)/NK×G(I). (1.9.28)
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Since G is compact, we may decompose g into z and its orthogonal complement

g = z ⊕ z⊥. (1.9.29)

Clearly, this decomposition is reductive. Using the decompositions (1.9.25) and
(1.9.29), together with nH = h ⊕ n̂H , we obtain

T[1]((K × G)/I) = (n̂H ⊕ z) ⊕ (p ⊕ z⊥). (1.9.30)

Since the decompositions (1.9.25) and (1.9.29) are reductive, this decomposition is
reductive, too. Using (1.9.18), we obtain

T[1]
(
(K × G)/NK×G(I)

) = p ⊕ z⊥. (1.9.31)

By Example 1.3.19, p ⊕ z⊥ defines a connection on the principal bundle (1.9.28),
which in turn induces a connection on the associated bundle (K × G)/I ×ΓI PI . By
(1.9.9), the corresponding splitting of the tangent bundle TP is pointwise given by

Tρ(k,g)(p)P = ρ ′
(k,g)

{
TpPI ⊕ ρ ′

p(p ⊕ z⊥)
}
, (1.9.32)

where (k, g) ∈ NK×G(I) and p ∈ PI (Exercise 1.9.1). The first summand in (1.9.32)
is vertical and the second one is the horizontal subspace of the induced connection.
With respect to this splitting, every 1-formα onPmay be decomposed into its vertical
and horizontal parts,

α = αv + αh,

and the horizontal part may be further decomposed as

αh = αp + αz⊥
.

We define
ω̂ := (ωv)�PI . (1.9.33)

Using the K-invariance of ω and (1.9.4), on PI we obtain

ωp = (Δ∗
hω)p = (Ψ ∗

λ0(h)ω)p = Ad(λ0(h)
−1)ωp,

for every p ∈ PI and every h ∈ H. Thus, ω̂ takes values in z. By point 3 of Proposition
1.3.5 and, again, by K-invariance of ω,

ρ∗
(k,g)ω̂ = Ad(g) ◦ ω̂, (k, g) ∈ NK×G(I).

Since ω̂ is z-valued and z ⊂ n̂I = n̂H ⊕ z, we may rewrite this relation as follows:
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(Ψ I)∗aω̂ = Ad(a−1) ◦ ω̂, a ∈ ΓI , (1.9.34)

showing that ω̂ is of type Ad. Finally, formula (1.9.27) is an immediate consequence
of point 2 of Proposition 1.3.5. Next, we define

Φ : PI → (p ⊕ z⊥)∗ ⊗ g, Φ(p) := ρ∗
p

(
(ωh)�PI

)
, p ∈ PI ,

where ρp : NK×G(I) → PI is defined by restriction. Since

ρ ′
p(p ⊕ z⊥) = Δ′

p(p) ⊕ Ψ ′
p(z

⊥),

the two horizontal components are

Φ̂ : PI → p∗ ⊗ g = L(p, g), Φ̂(p) := Δ∗
p

(
(ωp)�PI

)
, (1.9.35)

and
Φ̌ : PI → (z⊥)∗ ⊗ g = L(z⊥, g), Φ̌(p) := Ψ ∗

p

(
(ωz⊥

)�PI

)
.

Here, as above, Δp and Ψp stand for the appropriate restrictions. We show that Φ̂

is ΓI -equivariant and that Φ̌ is constant and equal to the identical mapping on z⊥.
Using the G-equivariance and the K-invariance of ω, together with

ρ ′
ρ(k,g)(p)(A,B) = ρ ′

(k,g) ◦ ρ ′
p

(
Ad(k−1)A,Ad(g−1)B

)
,

where (k, g) ∈ NK×G(I) and (A,B) ∈ p ⊕ z⊥, we calculate

Φ(ρ(k,g)(p))(A,B) = ωh
ρ(k,g)(p)

(
ρ ′

ρ(k,g)(p)(A,B)
)

= ωρ(k,g)(p)
(
Δ′

k ◦ Ψ ′
g−1 ◦ ρ ′

p(Ad(k
−1)A,Ad(g−1)B

))

= Ad(g) ◦ ωp
(
ρ ′
p(Ad(k

−1)A,Ad(g−1)B
)

= Ad(g) ◦ Φ(p)
(
Ad(k−1)A,Ad(g−1)B

)
.

Thus,
Φ̂(ρ(k,g)(p)) = Ad(g) ◦ Φ̂(p) ◦ Ad(k−1), (1.9.36)

showing the NK×G(I)-equivariance of Φ̂, and

Φ̌(ρ(k,g)(p))(B) = Ad(g) ◦ ωz⊥
p (Ψ ′

p(Ad(g−1)B)) = B.

Finally, the H-invariance of Φ̂(p) follows immediately: for (h, λ0(h)) ∈ I we have
ρ(h,λ0(h))(p) = p for all h ∈ H, and thus (1.9.36) implies

Φ̂(p) = Ad(λ0(h)) ◦ Φ̂(p) ◦ Ad(h−1).
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Thus, Φ̂ is ΓI -equivariant.
2. Conversely, let (ω̂, Φ̂) be a pair of objects defined on the principal bundle

PI(M̂, ΓI) with the desired properties. Using the (K × G)-equivariant diffeomor-
phism

P ∼= PI ×ΓI (K × G)/I

given by (1.9.9), we extend Φ̂ by the constant mapping Φ̌ : PI → idz⊥ to a mapping

Φ : PI → (p ⊕ z⊥)∗ ⊗ g, Φ := Φ̂ + Φ̌,

and use (1.9.32) to define

ωp(Z) := ω̂p(X) + Φ(p)(A,B),

with p ∈ PI and Z = X + ρ ′
p(A,B) ∈ TpP. Finally, we extendω toP via ρ. The proof

that this yields a well-defined K-invariant connection form on P is left to the reader
(Exercise 1.9.3). �

Remark 1.9.12

1. Combining Theorem 1.9.11 with Proposition 1.9.5, one finds that pairs (P, ω),
where P is a principal bundle over M admitting a lift of the K-action and ω is
a K-invariant connection, are in bijective correspondence with triples (P̂, ω̂, Φ̂),
where P̂ is a principal ΓI -bundle, ω̂ is a z-valued 1-form of type Ad on P̂ fulfilling
(1.9.27) and Φ̂ : P̂ → L(p, g)H is a ΓI -equivariant mapping.

2. Note that ω̂ is is not a connection form on PI(M̂, ΓI), because point 2 of Proposi-
tion 1.3.5 need not be fulfilled for elements A ∈ n̂I . On the other hand, owing to
the fact that Z ⊂ ΓI , formula (1.9.34) holds for any a ∈ Z . Together with (1.9.27),
this implies that ω̂ is a connection form on PI viewed as a principal Z-bundle
over MI .

3. Let μ be a connection form on the principal ΓI/Z-bundle πM̂ : MI → M̂. Define

τ̂ := ω̂ − ω̂ ◦ π∗
MI

μ + π∗
MI

μ, (1.9.37)

where
ω̂ ◦ π∗

MI
μ : TpPI → n̂I , ω̂ ◦ π∗

MI
μ(X) := ω̂((μ(π ′

MI
(X))∗).

Here, μ(π ′
MI

(X)) is viewed as an element of n̂I via (1.9.18). It is easy to see

that τ̂ is a connection form on PI(M̂, ΓI) (Exercise 1.9.4). This shows that any
connection form onMI(M̂, ΓI/Z) completes the connection form ω̂ on PI(MI ,Z)

to a connection form on PI(M̂, ΓI).
4. The H-invariance condition (1.9.26) for Φ̂(p), p ∈ PI , may be rewritten as

Φ̂(p) ◦ Ad(h) = Ad(λ0(h)) ◦ Φ̂(p), h ∈ H. (1.9.38)
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In this form, it means that the linear mapping Φ̂(p) is an operator intertwining the
restrictions of the adjoint representations ofK andG toH acting onm and toλ0(H)

acting on g, respectively. Under the canonical identification L(p, g) = p∗ ⊗ g,
condition (1.9.26) takes the form

(
Ad∗(h) ⊗ Ad(λ0(h))

)
Φ̂(p) = Φ̂(p).

�

Let us apply Theorem 1.9.11 to the two special cases treated before. First, let us
consider the case of a transitive K-action addressed in Remark 1.9.7. By this remark,
principal G-bundles admitting a lift of the K-action are completely characterized by
Lie group homomorphisms λ0 : H → G and have the following structure:

P = K ×H G.

In this case, M̂ is the one-point space and thus the principal ΓI -bundle PI coincides
with the principal Z-bundle ΓI → ΓI/Z . Consequently, by (1.9.34) and (1.9.27), ω̂ is
a ΓI -invariant connection form on this bundle and, therefore, by (1.9.18), it is given
by a linear mapping φ̂ : n̂H → z. Since Ad(H) acts trivially on n̂H , this mapping is
H-invariant. To summarize, if we denote

m = n̂H ⊕ p, (1.9.39)

then k = h ⊕ m andwemaymerge φ̂ and Φ̂ to anH-equivariantmapping Φ̃ : m → g,
that is, a mapping fulfilling

Φ̃ ◦ Ad(h) = Ad(λ0(h)) ◦ Φ̃, h ∈ H. (1.9.40)

This way, we get the following classical result of Wang [647].

Corollary 1.9.13 (Wang) If the K-action is transitive, then K-invariant connections
on P are in one-to-one correspondence with H-equivariant linear mappings Φ̃ :
m → g. �

Some details of the proofs of the statements contained in the following remark are
left to the reader (Exercise 1.9.5).

Remark 1.9.14

1. For later purposes, we give an explicit reconstruction formula for the K-invariant
connections described by Corollary 1.9.13. Choose p0 = [(1K ,1G)] ∈ K ×H G.
Then, any tangent vector Zp0 ∈ Tp0(K ×H G) may be written as

Zp0 = [(A,B)], A ∈ k, B ∈ g,

and, for any p ∈ K ×H G, there exist elements k ∈ K and g ∈ G such that
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p0 = Δk ◦ Ψg(p).

We define
ωp(Z) = Ad(g)

(
λ′
0(Ah) + Φ̃(Am) + B

)
, (1.9.41)

where Ah ∈ h and Am ∈ m are the components of A with respect to the decom-
position k = h ⊕ m. It is easy to show that ω is a (correctly defined) K-invariant
connection form on K ×H G, indeed.

2. Clearly, among the invariant connections labeled by Φ̃ there is a distinguished
element, defined by

Φ̃ = 0. (1.9.42)

By (1.9.41), it is given by

ωp(Z) = Ad(g)
(
λ′
0(Ah) + B

)
, (1.9.43)

that is, it is uniquely determined by the homomorphism λ0. Therefore, it is called
the canonical invariant connection on P.

3. In the transitive case, the compactness assumptions on K andGmay be dropped.
Then, in general, there is no reductive decomposition (1.9.25) and the (slightly
more general) classification reads as follows:K-invariant connection forms are in
one-to-one correspondencewithH-invariant linearmappings� : k → g fulfilling
�(A) = λ′

0(A) for any A ∈ h.
4. Using the Structure Equation, it is easy to calculate the curvature Ω of a K-

invariant connection form. Clearly, it suffices to calculate Ω on Killing vector
fields of K . This yields

Ω(A∗,A′
∗) = [�(A),�(A′)] − �([A,A′]), A,A′ ∈ k.

Thus, a K-invariant connection is flat iff � is a Lie algebra homomorphism. �

Application of Theorem 1.9.11 to the case addressed in Remark 1.9.9 yields the
following, see [546].

Corollary 1.9.15 If the principal ΓI/Z-bundle MI → M̂ is trivial, then K-invariant
connections on P are in one-to-one correspondence with pairs (ω̃, Φ̃), where

1. ω̃ is a connection form on the principal CG(λ0(H))-bundle P̃ over M̃,
2. Φ̃ : P̃ → L(m, g)H is a CG(λ0(H))-equivariant mapping.

Proof Since ΓI acts freely on PI and Z is a normal subgroup of ΓI we have the
following diffeomorphism:

ϕ : P̃ ×Z ΓI → PI ϕ([(p̃, a)]) := ρa(p̃). (1.9.44)

Using this identification and (1.9.18), we get a splitting of the tangent bundle,
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Tρa(p̃)PI = ρ ′
a

{
Tp̃P̃ ⊕ Δ′

p̃(n̂H)
}

. (1.9.45)

Decomposing ω̂ with respect to this splitting yields a pair (ω̃, φ̂), where ω̃ is a
connection form on P̃ and φ̂ is a mapping given by

φ̂ : P̃ → (n̂H)∗ ⊗ z, φ̂(p̃)(A) = ω̂(Δ′
p̃(A)), A ∈ n̂H . (1.9.46)

Finally, as above, merging φ̂ with Φ̂ we get a mapping

Φ̃ : P̃ → (m)∗ ⊗ g,

fulfilling
Φ̃(p̃) ◦ Ad(h) = Ad(λ0(h)) ◦ Φ̃(p̃), h ∈ H. (1.9.47)

Conversely, given a pair (ω̃, Φ̃), one first reconstructs the pair (ω̂, Φ̂) and then, using
Theorem 1.9.11, the invariant connection ω. �

Remark 1.9.16

1. By construction, see (1.9.35) and (1.9.46), Φ̃ is given by

Φ̃(p̃)(A) = ωp̃(Δ
′
p̃(A)) = Δ∗

p̃(ω)(A), A ∈ m. (1.9.48)

2. Comparing with point 3 of Remark 1.9.12, in this case, the connection form μ is
simply given by the section s : M̂ → MI , cf. Example 1.3.18. �

To conclude this section, we discuss two simple examples of the above type which
are relevant in physics.

Example 1.9.17 (Rotational invariance) Consider the defining representation of
SO(3) on R

3 or, equivalently, the adjoint representation of SU(2) under the identifi-
cation R

3 ∼= su(2).21 If we remove the origin, we have R
3 \ {0} ∼= R+ × S2 and thus

we deal with the situation described by Remark 1.9.9 and Corollary 1.9.15, with

G = SU(2), K = SU(2), H = U(1), M̃ = R+.

Let us classify the K-invariant SU(2)-connections over R
3 \ {0}.

(a) Principal SU(2)-bundles over M̃ admitting a lift of the adjoint representation
of SU(2) are labeled by conjugacy classes of homomorphisms λ : U(1) → SU(2).
Clearly, with U(1) = {z ∈ C : |z| = 1}, for every integer n, the mapping

λn(z) = diag(zn, z−n)

21See Examples5.2.8 and 5.4.7 of Part I.

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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is a homomorphism. Since any unitary matrix is diagonalizable via conjugation by
unitary matrices, all other homomorphisms are conjugate to some λn. Thus, the
conjugacy classes of homomorphisms classifying the admissible principal SU(2)-
bundles are labeled by n ∈ Z. The principal SU(2)-bundles admitting a lift of δ are
given by (1.9.24),

P ∼= K ×H

(
G ×CG(λn(H)) P̃

)
,

where P̃ is necessarily trivial, that is, P̃ = R+ × CG(λn(H)). Thus,P can be naturally
identified as follows

P ∼= R+ × (K ×H G). (1.9.49)

(b) Let us apply Corollary 1.9.15. By direct inspection, we see that the central-
izer CSU(2)(λn(U(1))) is U(1) for n �= 0 and SU(2) for n = 0. Consequently, ω̃ is
u(1)-valued for n �= 0 and su(2)-valued for n = 0. By (1.9.49), ω̃ may be globally
represented by a z-valued 1-form Ã on R+. Let us analyze the mapping Φ̃. Again by
(1.9.49), it is a function onR+ with values in theK-invariant connections onK ×H G,
cf. point 1 of Remark 1.9.14. The latter are given by (1.9.41). Since Φ̃ takes values
in L(m, su(2))U(1), where m is defined by the orthogonal reductive decomposition
g = u(1) ⊕ m, we must analyze the U(1)-invariance condition

Φ̃ ◦ Ad(h) = Ad(λn(h)) ◦ Φ̃, h ∈ U(1).

Here we interpret Φ̃ as an intertwiner of the representations Ad(U(1))�m and
Ad(λn(U(1))). For that purpose, it is convenient to pass to the complexification
of the Lie algebras under consideration and to use the standard representation theory
of complex simple Lie algebras.22 Correspondingly, we extend Φ̃ by linearity to the
complexified spaces. Let h be a Cartan element and let e−, e+ be root vectors for
the complexification of k = su(2). Clearly, u(1) is spanned by h and m is spanned
by the root vectors. By direct inspection, we see that m decomposes into irreducible
components of Ad(U(1))m as

m = Ce+ ⊕ Ce−, ad(h)�Ce± = ±2 .

In physics notation, this is summarized in the formula

2 = (2) + (−2). (1.9.50)

If we denote the Cartan element and the root vectors for g = su(2) by H,E−,E+,
respectively, then we have λ′

n(h) = nH. Consequently, the decomposition of g into
irreducible components reads, in physics notation,

3 = (0) + (2n) + (−2n). (1.9.51)

22See [329, 344].
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Comparing (1.9.50) with (1.9.51) we see that for n �= ±1, the decompositions do
not contain equivalent representations, that is, the intertwining operator Φ̃ vanishes.
In that case, the corresponding invariant connection on K ×H G is the canonical one
given by (1.9.43). Since λ′

n(h) = nH, for n = 0, this connection degenerates to a
‘pure gauge’. For n = ±1, we get a nontrivial solution. For every r ∈ R+, it is given
by

Φ̃(e−) = c−E−, Φ̃(e+) = c+E+ c± ∈ C. (1.9.52)

Finally, returning to the originalmapping Φ̃ by restricting the above intertwiner to the
real vector space m implies c+ = c̄−. Thus, Φ̃ is labeled by two R-valued functions
on R+. The corresponding invariant connections are given by (1.9.41). �

Example 1.9.18 (Translational invariance) Consider the orthogonal decomposition
of the Euclidean space

R
4 = Re0 ⊕ R

3

and write pri, i = 1, 2, for the canonical projections onto the first and the second
component. For x ∈ R

4, denote pr1(x) = x0 and pr2(x) = x̃. In this notation, the
action of the Abelian group R by translations23 on the first factor is given by

δ : R × R
4 → R

4, δ(s, (x0, x̃)) = (x0 + s, x̃).

For a given Lie group G, let us classify the R-invariant connections over R
4.

(a) Principal G-bundles π : P → R
4 admitting a lift of δ are given by (1.9.24).

Here, K = R and H = {0}. Thus, λ0 must be the trivial homomorphism sending 0 to
1G. Consequently, CG(λ0(H)) = G and we obtain

P ∼= R × P̃, P̃ = π−1(R3),

with π̃ : P̃ → R
3 being a (trivial) principal G-bundle. Under this isomorphism,

the lift Δ of δ to automorphisms of P is given by translations on the first factor,
Δ(s, (x0, p̃)) = (x0 + s, p̃).

(b) According to Corollary 1.9.15, R-invariant connections ω on P are given by
pairs (ω̃, Φ̃), where ω̃ is a connection form on P̃ and Φ̃ is an equivariant mapping
from P̃ to L(Re0, g) ∼= (Re0)∗ ⊗ g. Thus,

Φ̃(p̃) = φ̃(p̃) ⊗ e∗
0, p̃ ∈ P̃,

where e∗
0 is the basis in (Re0)∗ dual to e0 and φ̃ ∈ HomG(P̃, g). Given (ω̃, Φ̃), let

us reconstruct ω: pulling back φ̃ and e∗
0 with the natural projections P → P̃ and

23Although the group R is not compact, the action under consideration is proper and, since R is
Abelian, the standard scalar product is trivially Ad-invariant. As a consequence, the above theory
applies.
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P → Re0, respectively, we obtain from Φ̃ a horizontal 1-form τ̃ of type Ad on P.
Extending ω̃ via the R-action to P, we obtain

ω = ω̃ + τ̃ . (1.9.53)

�Exercises

1.9.1 Prove formula (1.9.32).

1.9.2 Prove the statements of Remark 1.9.7/2 and 1.9.7/3.

1.9.3 Complete point 2 of the proof of Theorem 1.9.11.

1.9.4 Prove the statement of Remark 1.9.12/3.

1.9.5 Work out the details in Remark 1.9.14.



Chapter 2
Linear Connections and Riemannian
Geometry

In Sects. 2.1 and 2.2, we present the general theory of linear connections together
with the reduction theory of the underlying frame bundle to some Lie subgroup of the
general linear group. These reductions are usually referred to as H -structures.1 They
lead to a unified view on possible geometric structures manifolds may be endowed
with. Using this framework, we discuss almost complex, pseudo-Riemannian, con-
formal, almost Hermitean and almost symplectic structures including a discussion
of the corresponding compatible connections. Thus, from the perspective of H -
structures, Riemannian geometry is an important special example. In Sects. 2.3 and
2.5, we continue to study H -structures by investigating torsion-free compatible con-
nections. We ask which holonomy groups may occur for such connections. This
fundamental question has been first systematically studied by Berger. In this delicate
analysis, the central object to be studied is the curvature mapping of the connection
under consideration. In Sect. 2.3, we study the class of connections which are not
locally symmetric with emphasis on the metric case, where the H -structure defines
a pseudo-Riemannian manifold. For that case, we formulate the classification result
of Berger without giving a proof. We also comment on the classification in the non-
metric case. In Sect. 2.5, we study the case of locally symmetric connections. This
leads us to the theory of symmetric spaces. We present the basics of this theory in a
fairly consistent manner including a number of important classes of examples. Next,
in Sect. 2.6, we extend our discussion of compatible connections to vector bundles
with emphasis on Hermitean bundles and holomorphic structures. In Sect. 2.7, we
present the basics of Hodge Theory2 including a detailed study of Weitzenboeck-
type formulae. Finally, in Sect. 2.8, we discuss properties of Riemannian manifolds
which are special in dimension four.

1Also called G-structures in the older literature.
2But, the proof of the Hodge Decomposition Theorem is postponed to Chap. 5.
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2.1 Linear Connections

Let M be an n-dimensional differentiable manifold and let L(M) be its bundle of
linear frames, cf. Example 1.1.14. Recall that a linear frame at m ∈ M is an ordered
basis u = (u1, . . . , un) in TmM and that π : L(M) → M , π(u) = m, is a principal
GL(n,R)-bundle. The free right action of GL(n,R) on L(M) is given by

L(M)× GL(n,R) → L(M) , (u, a) �→ ua . (2.1.1)

Here, ua = (uiai 1, . . . , uiai n).
In the sequel, the basic representation of GL(n,R) given by matrix multiplication

of elements of Rn from the left will be denoted by σ 0
n . Thus, σ

0
n (a)x = ax.

Definition 2.1.1 A principal connection Γ on the frame bundle L(M) will be
referred to as a linear connection on M .3

Given a linear connection on M , it induces connections on all tensor bundles over
M . To see this, it is enough to show that all tensor bundles over M are vector bundles
associated with L(M). For the proof, take the basic representation σ 0

n of GL(n,R)
and the corresponding associated bundle E := L(M)×GL(n,R) R

n . Define

ϕ : E → TM , ϕ([(u, x)]) := xiui , (2.1.2)

where xi are the components of x ∈ R
n in the standard basis {ei } of Rn . It is easy to

show that ϕ is an isomorphism of vector bundles (Exercise 2.1.1). Thus,

TM ∼= L(M)×GL(n,R) R
n . (2.1.3)

Via the dual of the basic representation, this induces an isomorphism

T∗M ∼= L(M)×GL(n,R) (R
n)∗ (2.1.4)

and, thus,
T
k
l M ∼= L(M)×GL(n,R) T

k
l R

n . (2.1.5)

Remark 2.1.2 Often, a frame u ∈ L(M) will be viewed as an isomorphism

u : Rn → Tπ(u)M , u(x) := xiui .

By (2.1.2), we have
ϕ ◦ ιu = u . (2.1.6)

�

3As in the general theory, Γ is a horizontal distribution on L(M). Below, it will become clear why
it is reasonable to speak of a connection on the base manifold M .

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Now we can start discussing the theory of linear connections. First, we exhibit a
structure which distinguishes frame bundles from general principal fibre bundles.

Definition 2.1.3 The differential form θ ∈ Ω1(L(M),Rn) defined by

θ(X) := u−1(π ′(X)) , X ∈ Tu L(M) , (2.1.7)

is called the canonical Rn-valued 1-form on L(M), or, the soldering form.

Proposition 2.1.4 The soldering form θ is a horizontal 1-form of type σ 0
n ,

Ψ ∗
a θ = a−1 ◦ θ , a ∈ GL(n,R) .

Proof By definition, θ is horizontal. Let u ∈ L(M) and a ∈ GL(n,R). If we view u
as a mapping R

n → Tπ(u)M , then to Ψa(u) there corresponds the mapping

u ◦ a : R
n a→ R

n u→ Tπ(u)M .

Thus, for any X ∈ Tu L(M),

(Ψ ∗
a θ)u(X) = θΨa(u)(Ψ

′
a X)

= (Ψa(u))
−1(π ′ ◦ Ψ ′

a(X))

= (u ◦ a)−1(π ′(X))

= a−1θu(X) . �

Remark 2.1.5 By Proposition 1.2.12, via the isomorphism (2.1.2), to θ there corre-
sponds a unique 1-form θ̂ ∈ Ω1(M,TM) given by

θ̂m(X) = u ◦ θ(X∗) = u ◦ u−1 ◦ π ′(X∗) = X ,

whereπ(u) = m, X ∈ TmM and X∗ ∈ Tu L(M) fulfillingπ ′(X∗) = X . Thus, θ̂ (X) =
X . That is why θ̂ is usually called the tautological 1-form. �

Now, letΓ be a linear connection on M and letω be its connection form on L(M).
Then, any x ∈ R

n defines a Γ -horizontal vector field B(x) on L(M) by assigning to
u ∈ L(M) the unique Γ -horizontal lift of u(x) ∈ Tπ(u)M to the point u .

Definition 2.1.6 The vector field B(x) is called the horizontal standard vector field
defined by x ∈ R

n .

Proposition 2.1.7 For any x ∈ R
n, the horizontal standard vector field fulfils

1. θ(B(x)) = x,
2. Ψa∗B(x) = B(a−1x), a ∈ GL(n,R),
3. if x 	= 0, then B(x) vanishes nowhere.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Proof 1. We calculate

θu(B(x)) = u−1(π ′(B(x)u)) = u−1(u(x)) = x .

2. By Proposition 2.1.4 and point 1, we have

θ(Ψa∗B(x)) = Ψ ∗
a θ(B(x)) = a−1θ(B(x)) = a−1x ,

and, thus, π ′(Ψa∗B(x)) = u(a−1x). Since Ψa∗B(x) is horizontal, the assertion fol-
lows from the uniqueness of the horizontal lift.

3. Clearly, B(x)u = 0 iff u(x) = 0 and, thus, iff x = 0, because u : Rn →
Tπ(u)M is a vector space isomorphism. �

Remark 2.1.8 Let {ei } be the standard basis in R
n . Then, the horizontal standard

vector fields Bi = B(ei ) span the horizontal distribution defined by Γ . Moreover,
B(x) is uniquely determined by the conditions

θ(B(x)) = x , ω(B(x)) = 0 . (2.1.8)

�

Lemma 2.1.9 Let A∗ be the Killing vector field on L(M) generated by A ∈ gl(n,R)
and let x ∈ R

n. Then,
[A∗, B(x)] = B(Ax) . (2.1.9)

Proof Let at = exp(t A). Using point 2 of Proposition 2.1.7, we obtain

[A∗, B(x)]u = (L A∗ B(x))u = d

dt �0

((
Ψa−1

t

)
∗B(x)

)

u
= d

dt �0
B(atx)u = B(Ax)u .

�

Definition 2.1.10 Let Γ be a linear connection on M and let ω be its connection
form. The 2-form Θ ∈ Ω2(L(M),Rn) defined by

Θ := Dωθ (2.1.10)

is called the torsion form of Γ .

Clearly, Θ is a horizontal 2-form of type σ 0
n . The Structure Equation (1.4.9) for the

curvature of a linear connection is supplemented by a structure equation involving
the torsion form.

Proposition 2.1.11 (Structure Equations) Let ω,Ω and Θ be, respectively, the
connection, curvature and torsion forms of a linear connection Γ on M. Then, for
any X,Y ∈ Tu L(M),

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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dω(X,Y ) = −[ω(X), ω(Y )] +Ω(X,Y ) , (2.1.11)

dθ(X,Y ) = −(
ω(X)θ(Y )− ω(Y )θ(X)

) +Θ(X,Y ) . (2.1.12)

Proof Equation (2.1.11) coincides with the Structure Equation (1.4.9) of the general
theory. Since θ is a horizontal form, (2.1.12) follows immediately from formula
(1.4.1), with σ being the basic representation. �

Remark 2.1.12 Using

ω ∧ θ(X,Y ) = ω(X)θ(Y )− ω(Y )θ(X) ,

the Structure Equations may be rewritten as follows:

dω = −ω ∧ ω +Ω , dθ = −ω ∧ θ +Θ . (2.1.13)

If we decompose the above forms with respect to the standard bases {ei } in R
n and

{Ei
j } in gl(n,R),

θ = θ iei , Θ = Θ iei , ω = ωi
j E

j
i , Ω = Ω i

j E
j
i , (2.1.14)

then we obtain the Structure Equations in the form

dωi
j = −ωi

k ∧ ωk
j +Ω i

j , dθ i = −ωi
j ∧ θ j +Θ i . (2.1.15)

�

The Bianchi identity for the curvature has a counterpart for the torsion.

Proposition 2.1.13 (Bianchi Identities) Let ω,Ω and Θ be, respectively, the con-
nection, curvature and torsion forms of a linear connection Γ on M. Then,

DωΩ = 0 , (2.1.16)

DωΘ = Ω ∧ θ . (2.1.17)

Proof Equation (2.1.16) coincides with the Bianchi Identity (1.4.10) of the general
theory. Equation (2.1.17) is an immediate consequence of Proposition 1.4.12, with
σ = σ 0

n . �

Alternatively, (2.1.17) may be checked by direct inspection. It is obtained by differ-
entiating the first of the two equations in (2.1.15) and by using both of these equations
thereafter (Exercise 2.1.5).

Remark 2.1.14

1. The 1-forms ω and θ may be combined to the joint object

ω + θ ∈ Ω1(L(M), gl(n,R)⊕ R
n) .

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Clearly, gl(n,R)⊕ R
n is the Lie algebra of the affine group on R

n . Its com-
mutation relations are obtained by supplementing the commutation relations of
gl(n,R) by

[A, x] = −[x, A] = Ax , [x, y] = 0 , A ∈ gl(n,R) , x, y ∈ R
n .

Accordingly, we may pass from the bundle L(M) of linear frames to the bun-
dle A(M) of affine frames. Clearly, ω + θ defines a connection form on A(M)

which is called the affine connection form induced by ω. This explains why lin-
ear connection and affine connection are often used as synonyms in the literature.
Obviously,

Dω+θ (ω + θ) = d(ω + θ)+ 1

2
[ω + θ, ω + θ ] = Ω +Θ ,

that is, curvature and torsion constitute a joint object on A(M), namely the cur-
vature of ω + θ .

2. Let {ei } and {E j
i } be the standard bases of Rn and gl(n,R), respectively. Let

Bi be the horizontal standard vector field with respect to a chosen connection Γ
generated by ei and let E j

i∗ be the Killing vector field generated by E j
i . Since the

E j
i∗ span the vertical subspace Vu ⊂ Tu L(M), for every u ∈ L(M), and since

the {Bi } span the (complementary)Γ -horizontal subspaceΓu , these n2 + n vector
fields provide a global frame in the tangent bundle TL(M) which is, therefore,
trivial. One says that the manifold L(M) admits a global parallelism given by
the vector fields Bi , E j

i ∗. Moreover, the vector fields Bi , E j
i ∗ are dual to the

1-forms θ i , ωi
j ,

θ k(Bi ) = δk i , θ k(E j
i ∗) = 0 ,

ωk
l(Bi ) = 0 , ωk

l(E
j
i ∗) = δk iδ

j
l .

(2.1.18)

Thus, T∗L(M) is trivial, too, and the 1-forms θ i , ωi
j provide a global frame

of T∗L(M), or, in more abstract terms, the affine connection ω + θ induces an
absolute parallelism on A(M). As a consequence, every horizontal k-form α on
L(M) may be expanded with respect to the 1-forms θ i ,

α = 1

k!αi1...ikθ
i1 ∧ · · · ∧ θ ik . (2.1.19)

In particular,
Ω i

j = 1
2Ω

i
kl j θ

k ∧ θ l , Θ i = 1
2Θ

i
jk θ

j ∧ θ k . (2.1.20)

�

Since both Ω and Θ are horizontal 2-forms on L(M) of type Ad, respectively, they
uniquely correspond to 2-forms on M with values in certain associated vector bun-
dles. By Proposition 1.2.12 and by the isomorphism (2.1.3), toΘ ∈ Ω2(L(M),Rn)

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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there corresponds an element T ∈ Ω2(M,TM) defined by

Tm(X,Y ) = u(Θu(X
∗,Y ∗)) , (2.1.21)

where X,Y ∈ TmM , π(u) = m and X∗,Y ∗ ∈ Tu L(M) fulfilling π ′(X∗) = X and
π ′(Y ∗) = Y .4 By Remark 1.4.7, toΩ there corresponds a 2-form on M with values
in the adjoint bundle Ad(L(M)). Since the differential of the basic representation
σ 0
n identifies gl(n,R) naturally with End(Rn), this 2-form may be identified with the

curvature endomorphism form R ∈ Ω2(M,End(TM)),

Rm(X,Y ) = u ◦Ωu(X
∗,Y ∗) ◦ u−1 , (2.1.22)

cf. (1.5.13). Since R takes values in End(TM), we may apply it to any tangent vector
Z ∈ TmM :

Rm(X,Y )Z = u
(
Ωu(X

∗,Y ∗)(u−1Z)
)
. (2.1.23)

Definition 2.1.15 Let Γ be a linear connection on L(M) and let Θ and Ω be its
curvature and torsion forms. The 2-forms T and R defined by (2.1.21) and (2.1.22)
are called the torsion tensor field associated with Θ and the curvature tensor field
associated with Ω , respectively.

Remark 2.1.16 Since, for any u ∈ L(M), the assignment Rn → Γu , x �→ B(x), is
an isomorphism of vector spaces, we have an induced isomorphism

b(u) : ∧2
R

n → ∧2
Γu , b(u)(x ∧ y) = B(x)u ∧ B(y)u .

Using this, we get yet another presentation of curvature and torsion, which will turn
out to be useful. We define mappings

R : L(M) → ∧2
(Rn)∗ ⊗ gl(n,R) , T : L(M) → ∧2

(Rn)∗ ⊗ R
n

by
R(u) := Ωu ◦ b(u) , T (u) := Θu ◦ b(u) . (2.1.24)

In the sequel,R andT will be referred to as the curvature and the torsion mappings,
respectively.Using thatΩ andΘ are horizontal forms of typeAd andσ 0

n , respectively,
together with (1.2.3), one finds:

R(Ψa(u))(x, y) = Ad(a−1) ◦ (
R(u)(ax, ay)

)
, (2.1.25)

T (Ψa(u))(x, y) = a−1 ◦ (
T (u)(ax, ay)

)
. (2.1.26)

By Proposition 1.2.6, toR andT , there correspond unique sections of the associated
bundles

4Clearly, for X∗ and Y ∗ we may take the horizontal lifts of X and Y with respect to Γ .

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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L(M)×GL(n,R)
(∧2

(Rn)∗ ⊗ gl(n,R)
)
, L(M)×GL(n,R)

(∧2
(Rn)∗ ⊗ R

n
)
,

respectively. By (2.1.24), they are given by

m �→ u ◦ R(u) ◦ u−1 = Ru ◦ ∧2u , m �→ u ◦ T (u) = Tu ◦ ∧2u , (2.1.27)

where
∧2u : Rn ∧ R

n → Tπ(u)M ∧ Tπ(u)M and m = π(u). �

Next, we discuss the covariant derivative of tensor fields and apply the Koszul
calculus developed in Sect. 1.5 to the case under consideration. By Definition 1.5.2,
the covariant derivative

∇ω = (dω)�Ω0(M,E) : Γ∞(E) → Γ∞(T∗M ⊗ E)

on an associated bundle E = P ×G F , induced from a connection form ω, is given
by

(∇ωΦ)m(X) = ιp ◦ (DωΦ̃)p(X
∗) , (2.1.28)

with π(p) = m and X∗ ∈ Tp P fulfilling π ′(X∗) = X . Applying this to a section Y
of T M ∼= L(M)×GL(n,R) R

n , that is, to a vector field on M , we read off

(∇ωY )m(X) = u ◦ (DωỸ )u(X
∗) , π(u) = m , (2.1.29)

where Ỹ ∈ HomGL(n,R)(L(M),Rn) is given by Y (m) = u ◦ Ỹ (u). According to
(1.5.10), we have an associated operator

∇ω
X : Γ∞(TM) → Γ∞(TM) , ∇ω

XY := (∇ωY )(X) . (2.1.30)

In the sequel, we assume that a connection has been chosen and, for simplicity, we
write ∇ instead of ∇ω.

Remark 2.1.17

1. By (1.5.3), formula (2.1.29) may be rewritten as (∇XY )(m) = u(X∗
u(Ỹ )), where

X∗ is the horizontal lift of X . Thus, using

θu(Y
∗) = u−1 ◦ π ′(Y ∗) = u−1Ym = Ỹu ,

we obtain
(∇XY )(m) = u(X∗

u(θ(Y
∗))) . (2.1.31)

2. Clearly, the covariant derivative∇X givenby (2.1.30) has all the properties listed in
Proposition 1.5.8. Moreover, it induces covariant derivatives in all tensor bundles
overM . A general formula is easily derived from (1.4.2) by taking for σ the tensor

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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product representation of p copies of σ 0
n and q copies of its dual, cf. Exercise

2.1.2. If not otherwise stated, by ∇ we mean the covariant derivative in TM . �

The proof of the following proposition is left to the reader (Exercise 2.1.3). It provides
an axiomatic characterization of the covariant derivative of a tensor field.

Proposition 2.1.18 Let Γ be a linear connection on a manifold M and let ∇ be its
covariant derivative in TM. Then, the covariant derivative

∇X : Γ∞(Tr
s M) → Γ∞(Tr

s M) ,

acting on tensor fields of type (r, s) is uniquely determined by the following proper-
ties.

1. ∇X f = X ( f ) , for f ∈ C∞(M).
2. ∇X is a derivation of the tensor algebra.
3. ∇X commutes with any contraction.

We express the curvature and torsion tensor fields in terms of the covariant derivative.

Proposition 2.1.19 Let ∇ be the covariant derivative of a linear connection Γ on
M. Then, the curvature and the torsion tensor fields of Γ are given by

R(X,Y ) = [∇X ,∇Y ] − ∇[X,Y ] , (2.1.32)

T(X,Y ) = ∇XY − ∇Y X − [X,Y ] . (2.1.33)

Proof Formula (2.1.32) follows from Proposition 1.5.11 as a special case. To prove
formula (2.1.33), let X∗,Y ∗ be the horizontal lifts of X and Y . Then, Θ(X∗,Y ∗) =
dθ(X∗,Y ∗). Using this, together with (2.1.31) and π ′([X∗,Y ∗]) = [X,Y ], we obtain

T(X,Y )(m) = u(Θu(X
∗,Y ∗))

= u(X∗
u(θ(Y

∗))− Y ∗
u (θ(X

∗))− θu([X∗,Y ∗]))
= (∇XY − ∇Y X − [X,Y ])(m) .

�

Finally, we carry over the concept of parallel transport and holonomy as devel-
oped in Sect. 1.7 to the case of linear connections on M . In this way, for a given
connection, we obtain the operation of parallel transport along curves in M both for
the frame bundle L(M) and for any associated tensor bundle Tr

s M . Correspondingly,
we obtain holonomy groups in all associated tensor bundles. As in the general theory,
there is a deep relation between holonomy and curvature, provided by the Ambrose-
Singer Theorem 1.7.15. This has tremendous consequences for the structure theory
of (pseudo-)Riemannian manifolds, see Sect. 2.3.

Clearly, comparing with the general theory, the situation here is special in so
far as the parallel transport operators apply to geometric objects living on the base

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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manifold M . Related to this fact, there is a special class of curves which we discuss
next. Applying the theory to the tangent bundle, for any curve γ : I → M , we obtain
a unique parallel transport of tangent vectors along γ . In the sequel, let I ⊂ R denote
an open interval containing 0. Let γ̇ be the tangent vector field of γ . By Example
I/1.5.5, it is given by

γ̇ (t) = γ ′
t

(
d

dt �t

)
,

where d
dt denotes the unit vector field on I . Applying the notions developed in

Sect. 1.7, a vector field X on M is parallel (with respect to a connection Γ ) along a
curve γ if

∇γ
d
dt
X = 0 . (2.1.34)

Here, ∇γ is the covariant derivative along the mapping γ and X must be viewed as
a section of TM along γ .5 In particular, since γ̇ is certainly a section of TM along
γ , we may consider the equation

∇γ
d
dt
γ̇ = 0 (2.1.35)

and we may ask whether it admits solutions.

Definition 2.1.20 Let Γ be a linear connection. A curve γ : I → M , t �→ γ (t) , is
called a geodesic with respect to Γ if it fulfils equation (2.1.35).

The following proposition is left as an exercise to the reader (Exercise 2.1.4).

Proposition 2.1.21 If a curve γ : I → M is a geodesic, then for any α, β ∈ R the
curve t �→ γ (α · t + β) is a geodesic, too. �
Proposition 2.1.22 Let Γ be a linear connection on M. Then, the projection under
π : L(M) → M of any integral curve of a horizontal standard vector field is a
geodesic. Conversely, every geodesic is obtained in this way.

Proof Let x ∈ R
n . By definition, B(x)u is the unique Γ -horizontal lift of u(x) ∈

Tπ(u)M to u ∈ L(M). Let t �→ γ̃ (t) be an integral curve of B(x). Define γ := π ◦ γ̃ .
Then, using the natural identification (2.1.2) and omitting ϕ,

γ̇ (t) = π ′ ◦ ˙̃γ (t) = π ′(B(x)γ̃ (t)) = γ̃ (t)(x) = ιx(γ̃ (t)) ,

where γ̃ (t) : Rn → Tγ (t)M as usual. Thus, by (1.7.13) and (1.3.4), we have

∇γ
d
dt
γ̇ = ωE

(
ι′x( ˙̃γ (t))) = 0 .

Conversely, let γ : I → M be a geodesic. Let u0 ∈ L(M) be such that π(u0) = γ (0)
and let x := u−1

0 (γ̇ (0)) ∈ R
n . Let t �→ γ̃ (t) be the horizontal lift of γ through u0.

5That is, more precisely, we should write X ◦ γ instead of X .

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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If x = 0, we are done. Thus, let x 	= 0. Then, there exists a curve t → σ(t) in L(M)

such that γ̇ (t) = σ(t)(x) . Hence,

d

dt
γ̇ (t) = ι′xσ̇ (t) .

Since γ is a geodesic, that is, d
dt γ̇ (t) ∈ Γ TM ⊂ T(TM), this formula implies that

t �→ σ(t) is horizontal in L(M). Since σ(0) = u0 and π ◦ σ = γ , uniqueness of the
horizontal lift implies σ = γ̃ . Thus, γ̇ (t) = γ̃ (t)(x) and, since γ̃ is horizontal,

θ( ˙̃γ (t)) = γ̃ (t)−1(π ′( ˙̃γ (t))) = γ̃ (t)−1(γ̇ (t)) = x .

Thus, t �→ γ̃ (t) is an integral curve of B(x). �

Corollary 2.1.23 Let Γ be a connection on M. For every m ∈ M and every X ∈
TmM, there exists a unique geodesic γ : I → M with initial conditions (m, X), that
is, γ (0) = m and γ̇ (0) = X. �

We say that a linear connection Γ on M is complete if every geodesic of Γ may
be extended to I = R. Then, we have another corollary following immediately from
Proposition 2.1.22.

Corollary 2.1.24 A linear connection on M is complete iff every horizontal standard
vector field on L(M) is complete. �

If M is endowed with a complete linear connection Γ , we may define the following
mapping. For every m ∈ M and every X ∈ TmM , we take the unique geodesic γ
with initial conditions (γ (0) = m, γ̇ (0) = X) and put

exp : TM → M , exp(X) := γ (1) . (2.1.36)

This mapping is called the exponential mapping of Γ .

Remark 2.1.25 If Γ is not complete, then exp may still be defined. In this case, one
defines exp on a neighbourhood of the zero section in TM . This way, one obtains
a smooth mapping which, for every m ∈ M , yields a local diffeomorphism from
a neighbourhood of the origin in TmM onto a neighbourhood Um of m in M , see
Fig. 2.1. For details, we refer to Propositions 8.1 and 8.2 in Chap. III of [381]. �

In the remainder of this section, we describe the above structures locally. Thus,
let

m �→ e(m) = (e1(m), . . . , en(m))

be a local section of L(M), that is, a local frame of TM , and let

m �→ ϑ(m) = (ϑ i (m), . . . ϑn(m))

be its dual coframe. Recall that e(m)(ei ) = ei (m) for the standard basis {ei } of Rn .
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Um
exp

TxM

X

γ

M

x
exp(X)

Fig. 2.1 Exponential mapping

Lemma 2.1.26 For any local frame e,

e∗θ = ϑ i ⊗ ei . (2.1.37)

Proof For any X ∈ TmM , we calculate

(e∗θ)m(X) = θe(m)(e
′(X)) = (e(m))−1(π ′ ◦ e′(X)) = (e(m))−1(X) .

Thus, decomposing X = Xiei (m) and using e(m)(ei ) = ei (m), we obtain

(e∗θ)m(X) = Xi (m)ei = ϑ i
m(X)ei . �

Thus, for the components of θ with respect to the decomposition (2.1.14),

e∗θ i = ϑ i . (2.1.38)

Next, the local representative A = e∗ω of a linear connection Γ with connection
form ω is a 1-form on M with values in gl(n,R). Thus, it may be written as

A = A i
k E

k
i = Γ i

jk ϑ
j ⊗ Ek

i . (2.1.39)

The coefficient functions Γ i
jk are called the Christoffel symbols of Γ in the local

frame e.

Remark 2.1.27 Consider a change e → e′ of the local frame.6 Using (1.3.15), we
obtain the following induced transformation formula for the Christoffel symbols
(Exercise 2.1.6)

Γ
′l
mn = Γ i

jk ρ
j
mρ

k
n(ρ

−1)l i + ρ j
m
(
∂ j ρ

i
n
)
(ρ−1)l i . (2.1.40)

�

6We emphasize the passive interpretation here, but formula (2.1.40)may also be interpreted actively.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Let us calculate the local representatives of curvature and torsion. For that purpose,
we take the pullback of (2.1.20) under e,

e∗Ω i
j = 1

2

(
e∗Ω i

kl j

)
ϑk ∧ ϑ l , e∗Θ i = 1

2

(
e∗Θ i

jk

)
ϑ j ∧ ϑk , (2.1.41)

and denote the local coefficient functions as follows:

Ri
kl j = e∗Ω i

kl j , Ti
jk = e∗Θ i

jk .

To calculate them, we use the Structure Equations in the form given by (2.1.15).
Taking the pullback of the first equation yields

1
2R

i
kl j ϑ

k ∧ ϑ l = dA i
j + A i

k ∧ A k
j .

Inserting (2.1.39) into this equation, we obtain (Exercise 2.1.7)

Ri
jkl = e j (Γ

i
kl)− ek(Γ

i
jl)+ Γ m

klΓ
i
jm − Γ m

jlΓ
i
km − Cm

jkΓ
i
ml , (2.1.42)

where the Ci
jk are the structure functions of the local frame e defined by

[e j , ek] = Ci
jkei . (2.1.43)

In the same way, taking the pullback of the second equation in (2.1.15), we read off

Ti
jk = Γ i

jk − Γ i
k j − Ci

jk . (2.1.44)

Next, by Proposition 1.5.3, the local version of the Koszul calculus is based upon
the following formula. For a local frame e, we have

∇e j = Γ k
i jϑ

i ⊗ ek . (2.1.45)

Correspondingly,
∇ei e j = Γ k

i j ek . (2.1.46)

Next, acting with ∇ei on the pairing ϑ
j (ek) = δ j

k and using that the covariant deriv-
ative is a derivation of the tensor algebra, we obtain

∇eiϑ
j = −Γ j

ik ϑ
k . (2.1.47)

Thus,
∇ϑ j = −Γ j

ik ϑ
i ⊗ ϑk . (2.1.48)

Now, decomposing an arbitrary tensor field with respect to a local frame e and its
dual coframe ϑ and using (2.1.46) and (2.1.47), together with the properties of the
covariant derivative, one can derive a local formula for the covariant derivative of

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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any tensor field, see Exercise 2.1.7. In particular, for a vector field X and a 1-form α

we obtain

∇ei X = (
ei (X

k)+ Γ k
i j X

j
)
ek , (2.1.49)

∇eiα = (
ei (α j )− Γ k

i jαk
)
ϑ j . (2.1.50)

Using (1.5.8), we get∇X = ϑ i ⊗ ∇ei X and∇α = ϑ i ⊗ ∇eiα. Clearly, the covariant
derivative of any tensor field t may also be decomposed in this way,

∇t = ϑ i ⊗ ∇ei t , (2.1.51)

in accordance with the fact that ∇t ∈ Ω1(M,Tk
l (M)).

Remark 2.1.28 By point 2 of Remark 1.2.15, it is clear that the local representatives
of Ω and R, as well as the local representatives of Θ and T, coincide. Thus,

R
(
e j , ek

)
el = Ri

jklei , T
(
e j , ek

) = Ti
jkei . (2.1.52)

This can also be checked by direct inspection, inserting (2.1.46) into (2.1.32) and
(2.1.33) and comparing with (2.1.42) and (2.1.44) (Exercise 2.1.8). �

Remark 2.1.29 (Holonomic frame) Let (U, κ) be a local chart of M and let xi be
the corresponding local coordinates. Then, {∂ j } is a local frame of TM , called the
induced holonomic frame of TM and {dx j } is the dual coframe of T∗M . The name
holonomic refers to the fact that [∂i , ∂ j ] = 0, that is, the structure functions of a
holonomic frame vanish. In such a frame, the formulae (2.1.39), (2.1.42), (2.1.44)
and (2.1.45) take the following form:

A = Γ i
jk dx

j ⊗ Ek
i , (2.1.53)

Ri
jkl = ∂ j Γ

i
kl − ∂k Γ

i
jl + Γ m

klΓ
i
jm − Γ m

jlΓ
i
km , (2.1.54)

Ti
jk = Γ i

jk − Γ i
k j , (2.1.55)

∇∂ j = Γ k
i j dx

i ⊗ ∂k . (2.1.56)

The change from one holonomic frame to another one is described by the Jacobi
matrix of the coordinate transformation. Thus, here, the transition function is

x �→ ρ(x) =
(
∂xi

∂x ′l

)

and the transformation formula (2.1.40) reads

Γ ′l
mn = Γ i

jk
∂x j

∂x ′m
∂xk

∂x ′n · ∂x
′l

∂xi
+ ∂2xi

∂x ′m∂x ′n
∂x ′l

∂xi
. (2.1.57)

�
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It remains to analyze Eqs. (2.1.34) and (2.1.35) in local coordinates. Then, γ is given
by t �→ xi (t) and, correspondingly, X = Xi∂i and γ̇ = ẋ i∂i . Using points 3 and 4
of Proposition 1.5.8 we calculate:

∇γ̇ X = ∇ẋ i ∂i

(
X j∂ j

) = (
ẋ i X jΓ k

i j + ∂i (X
k)ẋ i

)
∂k ,

that is, Eq. (2.1.34) reads
dXk

dt
+ Γ k

i j ẋ
i X j = 0 . (2.1.58)

This is a system of first order ordinary differential equations, which according to
standard theorems admits unique local solutions depending smoothly on the initial
values (t0, X (t0)). The solution t �→ X (t) provides the parallel transport

γ̂ Γ TM (t) : Tγ (t0)M → Tγ (t)M . (2.1.59)

Inserting Xi = ẋ i into (2.1.58), we obtain the local form of the geodesic equation:

d2xk

dt2
+ Γ k

i j ẋ
i ẋ j = 0 . (2.1.60)

This is a system of second order ordinary differential equations, which admits unique
local solutions depending smoothly on the initial conditions (t0, xi (t0), ẋ i (t0)).

Remark 2.1.30

1. Consider the exponential mapping of a linear connection Γ on M , cf. equation
(2.1.36) and Remark 2.1.25. Via the exponential mapping, any frame u : Rn →
TmM at m ∈ M provides a local chart on TmM :

ϕ := exp ◦u : Rn → Um .

This is a local diffeomorphism from a neighborhood of 0 inRn onto a neighbour-
hood Um ⊂ M of m. Taking κ := ϕ−1 we obtain a local chart (U, κ) centered at
m which will be referred to as a local geodesic chart. The local coordinates xi

of that chart mapping will be called normal coordinates at m. In normal coordi-
nates, any geodesic takes the form xi (t) = ai · t . Thus, at m, we obviously have
Γ k

i j + Γ k
ji = 0. That is, for vanishing torsion, the Christoffel symbols vanish

at m (Exercise 2.1.9).
2. The parallel transport of a tangent vector along a closed curve yields a geometric

interpretation of curvature. Note that this is in accordance with the Ambrose-
Singer Theorem 1.7.15. We have (Exercise 2.1.9)

�Xi = −1

2
Ri

jkl X
l · f jk , (2.1.61)

where f jk is a bivector field characterizing the plane enclosed by γ .

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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3. The quantity

ai := d2xi

dt2
+ Γ i

jk
dx j

dt

dxk

dt

is the natural generalization of the notion of acceleration of a point particle to
curved space. For ai = 0, the particle moves on a geodesic. This occurs if the
particle is not acted upon by additional (non-gravitational) external forces. �

Exercises

2.1.1 Prove that the mapping ϕ defined by (2.1.2) is an isomorphism of vector
bundles.

2.1.2 Derive from (1.4.2) a formula for the covariant derivative of a tensor field t
of type (r, s) by taking for σ the tensor product representation of s copies of σ 0

n and
r copies of its dual.

2.1.3 Prove Proposition 2.1.18.

2.1.4 Prove Proposition 2.1.21.

2.1.5 Prove equation (2.1.17) by a direct calculation using the Structure Equations.

2.1.6 Prove formula (2.1.40).

2.1.7 Prove the local formulae (2.1.42), (2.1.44), (2.1.49) and (2.1.50). Derive a
local formula for the covariant derivative of an arbitrary tensor field t , cf. Exercise
2.1.2. Conclude that, in particular, in local coordinates the covariant derivative of t
is given by

∇∂k t
i1...is
j1... jr

= ∂k t
i1...is
j1... jr

+
∑

l

Γ
il
kmt

i1...il=m...is
j1... jr

−
∑

l

Γ m
kjl t

i1...is
j1... jl=m... jr

.

2.1.8 Prove the statement of Remark 2.1.28.

2.1.9 Prove the statements of points 1 and 2 of Remark 2.1.30.

2.2 H-Structures and Compatible Connections

In the sequel, we will meet reductions of the frame bundle L(M) to various Lie
subgroups of GL(n,R). The following concept allows for a unified treatment of all
of them.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Definition 2.2.1 (H-structure) Let M be a smooth manifold.

1. A reduction P of the frame bundle L(M) to a Lie subgroup H ⊂ GL(n,R) is
called an H -structure on M .

2. An H -structure P is called integrable if for every pointm ∈ M there exists a local
chart (U, κ)with local coordinates x j such that the induced holonomic frame {∂ j }
is a local section of P . Such local coordinates are called admissible.

3. Let ϕ : M → M be a diffeomorphism. If ϕ′ : TM → TM leaves P invariant,
then ϕ is called an automorphism of the H -structure.

Clearly, the automorphisms of an H -structure form a group. By Corollary 1.6.5,
reductions of L(M) to a Lie subgroup H ⊂ GL(n,R) are in one-to-one correspon-
dence with smooth sections of the associated bundle

L(M)×GL(n,R) (GL(n,R)/H) , (2.2.1)

or, equivalently, with elements of HomGL(n,R)(L(M),GL(n,R)/H). Thus, the exis-
tence of an H -structure on a manifold M is a topological problem which can be
dealt with by applying methods of obstruction theory. In particular, if GL(n,R)/H
is contractible, then an H -structure certainly exists. Note that, geometrically, an
H -structure should be viewed as a bundle of distinguished frames on M .

Recall from Definition 1.6.11 the general notion of compatible connection.

Definition 2.2.2 A linear connection onM is called compatiblewith the H -structure
P if it is reducible to P .

Next, recall Proposition 1.6.10 characterizing the reducibility of connections on
principal bundles in terms of G-homomorphisms.

Proposition 2.2.3 Let P be an H-structure on M and let

Φ̃ : L(M) → GL(n,R)/H

be theGL(n,R)-equivariant mapping defining P. Assume thatGL(n,R)/H embeds
into aGL(n,R)-module F. Then, a linear connection ω on L(M) is compatible with
the H-structure P iff Φ̃ is parallel with respect to ω, that is, iff

DωΦ̃ = 0 .

Proof By the proof of Proposition 1.6.2, P =
{
u ∈ L(M) : Φ̃(u) = [1]

}
. Thus, the

restriction of DωΦ̃ = 0 to P reads

σ ′(ω)[1] = 0 ,

which holds iff ω restricted to P takes values in the Lie algebra of H . This is
equivalent to being reducible to P . �

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Clearly, for a given H -structure P we may restrict the soldering form θ of L(M)

to P and, thus, for any connection ω on P we have a torsion 2-formΘ on P defined
by (2.1.10). One says that ω is torsion-free if Θ vanishes.

Proposition 2.2.4 If P is an integrable H-structure on M, then it admits a torsion-
free connection.

Proof Let π : P → M be the canonical projection. Let s be an integrable local
section of P overU ⊂ M . Taking the tangent bundle of the graph of s and extending
it using the right H -action to a distributionon P ,weobtain a connectiononπ−1(U ) ⊂
P . Then, integrability implies s∗dθ = 0 (Exercise 2.2.1) and, thus, vanishing of the
torsion. Next, we patch together these local connections to a connection on P using
a partition of unity. Since torsion is additive this yields the assertion. �

Since any other connection ω′ on P differs from ω by a horizontal 1-form α on P
with values in the Lie algebra h of H ,

Θ ′ = Θ + α ∧ θ .

By Remark 2.1.16, Θ and α may be identified with H -equivariant functions

T : P → ∧2
(Rn)∗ ⊗ R

n , α̃ : P → (Rn)∗ ⊗ h ,

respectively. Since H ⊂ GL(n,R), we have a natural inclusion

ιh : h → End(Rn) ∼= (Rn)∗ ⊗ R
n .

Thus, under the above identification, α ∧ θ is a function on P with values in∧2
(Rn)∗ ⊗ R

n . We claim that it coincides with the image of α̃ under the mapping

δ : (Rn)∗ ⊗ h → ∧2
(Rn)∗ ⊗ R

n , δ := (a ⊗ idRn ) ◦ (id(Rn)∗ ⊗ιh) , (2.2.2)

where a : (Rn)∗ ⊗ (Rn)∗ → ∧2
(Rn)∗ is the anti-symmetrization mapping. Indeed,

using α̃(u)(x) = α
(
B(x)

)
, we calculate

(α ∧ θ)u
(
B(x), B(y)

) = (
α̃(u)(x)

)
y − (

α̃(u)(y)
)
x = (

δ ◦ α̃(u))(x, y) .

As a result,
T ′ = T + δ(α̃) . (2.2.3)

Let
pr : ∧2

(Rn)∗ ⊗ R
n → coker(δ) =

(∧2
(Rn)∗ ⊗ R

n
)
/ im(δ)



2.2 H -Structures and Compatible Connections 111

be the natural projection.7 Then, the mapping

τ : P → coker(δ) , τ (u) := pr(T (u)) , (2.2.4)

does not depend on the choice of the connection. This motivates the following defi-
nition.

Definition 2.2.5 The mapping τ is called the intrinsic torsion of the H -structure P .
Moreover, P is called torsion-free if τ vanishes.

Clearly, τ yields the obstruction to the existence of a torsion-free connection on P .

Proposition 2.2.6 Let P be an H-structure. Then, the following hold.

1. If ω and ω′ are torsion-free connections on P and ω′ = ω + α, then α̃(u) ∈ ker δ
for every u ∈ P. In particular, if ker(δ) = 0, then P admits at most one torsion-
free connection.

2. P has a torsion-free connection iff it is torsion-free.

Proof The first assertion follows immediately from (2.2.3). For the second one, if P
has a torsion-free connection, then it is clearly torsion-free. We prove the converse:
let ω be a connection with (non-vanishing) torsion Θ . By assumption, τ = 0. Thus,
T (u) ∈ im(δ) for every u ∈ P . That is, there exists an equivariant mapping α̃ :
P → (Rn)∗ ⊗ h such that T = δ(α̃). Let α be the unique horizontal 1-form on P
corresponding to α̃. Then, ω′ = ω − α is a torsion-free connection. �

In particular, as an immediate consequence, we obtain

Corollary 2.2.7 If δ is bijective, then P admits a unique torsion-free connection. �

Next, let us discuss a number of relevant examples.

Example 2.2.8 (Orientation) We take H = GL+(n,R). Then, GL(n,R)/H ∼= Z2.
According to Example 1.6.6, a section of the associated bundle (2.2.1) exists iff the
manifold is orientable, that is, iff the first Stiefel-Whitney class8 of M vanishes.
In this case, the H -structure consists of those frames which are compatible with a
chosen orientation. Note that this H -structure is integrable. Also note that automor-
phisms of this H -structure are exactly the orientation-preserving diffeomorphisms
of M . �

Example 2.2.9 (Volume form) We consider H = SL(n,R). The basic representation
of GL(n,R) on R

n induces the following GL(n,R)-action on
∧n

(Rn)∗:

GL(n,R)× ∧n
(Rn)∗ → ∧n

(Rn)∗ , (a, v) �→ det(a) · v .

7The mapping δ and its cokernel have an interpretation in terms of Spencer cohomology of hwhich
we suppress here. For details, see e.g. [569].
8See Sect. 4.2.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_4


112 2 Linear Connections and Riemannian Geometry

Restricted to
∧n

(Rn)∗ \ {0}, this action is transitive and has the common stabilizer
SL(n,R). Thus,

GL(n,R)/SL(n,R) ∼= ∧n
(Rn)∗ \ {0} .

Via the natural isomorphism
∧nT∗M ∼= L(M)×GL(n,R)

∧n
(Rn)∗, the sections of

the associated bundle (2.2.1) are in one-to-one correspondence with volume forms
on M . The SL(n,R)-structure corresponding to a given volume form v consists of
those frames u fulfilling

v = v0 ◦ ∧nu ,

where v0 is the canonical volume form on R
n . Since GL(n,R)/SL(n,R) is homo-

topy equivalent to GL(n,R)/GL+(n,R), M admits an SL(n,R)-structure iff M is
orientable. Moreover, it is easy to show that any SL(n,R)-structure is integrable
(Exercise 2.2.2). Finally, note that the automorphisms of this H -structure are the
volume-preserving diffeomorphisms of M . �

Example 2.2.10 (Almost complex structure) Take H = GL(n,C) canonically
embedded in GL(2n,R) via

a + ib �→
[
a −b
b a

]
, a, b ∈ GL(n,R) , (2.2.5)

and consider the canonical complex structure on R2n given by

J0 =
[
0 −1
1 0

]
. (2.2.6)

Since End(R2n) ∼= (R2n)∗ ⊗ R
2n , the basic representation of GL(2n,R) induces a

GL(2n,R)-module structure on End(R2n) given by

GL(2n,R)× End(R2n) → End(R2n) , (g, A) �→ g−1Ag .

Since End(R2n) is the Lie algebra of GL(2n,R), this is merely the adjoint represen-
tation. Now, by Proposition I/7.1.2, the induced action of GL(2n,R) on the subset
of endomorphisms fulfilling A2 = − id is transitive and the stabilizer of J0 is

HJ0 =
{[

a b
−b a

]
: a, b ∈ GL(n,R)

}
= GL(n,C) . (2.2.7)

Thus,
GL(2n,R)/GL(n,C) ∼= {

A ∈ End(R2n) : A2 = − id
}
.

Thus, by (2.2.1), GL(n,C)-structures are in one-to-one correspondencewith sections
J of End(TM) fulfilling J2m = − id for every m ∈ M . A GL(n,C)-structure will be
referred to as an almost complex structure on M and (M, J) will be called an almost
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complex manifold. Since End(R2n) ∼= (R2n)∗ ⊗ R
2n , J may be viewed as a tensor

field on M of type (1, 1). The GL(n,C)-structure defined by J will be denoted by
C(M, J) and will be referred to as the bundle of complex linear frames. Note that it
consists of frames fulfilling

u ◦ J0 = Jm ◦ u , (2.2.8)

where u : R2n → TmM as usual. It is easy to show that every almost complex mani-
fold is orientable (Exercise 2.2.4). For a discussion of the obstructions to the existence
of almost complex structures we refer to [431].

Next, let us discuss integrability. By (2.2.8), an almost complex structure (M, J)
is integrable if M has the structure of a complex manifold such that for any system
of admissible local coordinates (x1, . . . , xn, y1, . . . , yn) we have

J

(
∂

∂xk

)
= ∂

∂yk
, J

(
∂

∂yk

)
= − ∂

∂xk
.

Then, zk := xk + iyk provide M with a local chart of complex coordinates. Con-
versely, we have

Proposition 2.2.11 Viewed as a real C∞-manifold, every complex manifold M car-
ries a natural induced integrable almost complex structure.

Proof Let {(Ui , κi )} be a holomorphic atlas of M consisting of charts κi : Ui → C
n .

For every i , we define an associated mapping κ̃i : Ui → R
2n given by

κ̃i (m) := (Re(κ1(m)), . . . ,Re(κn(m)), Im(κ1(m)), . . . , Im(κn(m))) ,

which clearly provides a C∞-chart on Ui . Thus, {(Ui , κ̃i )} endows M with the
structure of a real C∞-manifold. Next, consider R2n with the global coordinates
x1, . . . , xn, y1, . . . yn . Then,

J

(
∂

∂xk

)
:= ∂

∂yk
, J

(
∂

∂yk

)
:= − ∂

∂xk
,

clearly defines a complex structure on R
2n . We transport this complex structure to

M , viewed as a real manifold, via the local charts κ̃i . The almost complex structure
defined in this way is independent of the choice of the atlas, because the transition
mappings are holomorphic and a mapping of an open subset of Cn to C

n leaves an
almost complex structure on C

n invariant iff it is holomorphic (Exercise 2.2.3). By
construction, the above almost complex structure is integrable. Indeed,

(x, y) �→
(

∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂y1
, . . . ,

∂

∂yn

)

provides a local section of the GL(n,C)-structure defined by J. �
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To summarize, an almost complex structure is integrable iff it is induced from a
complex structure. The following notion provides a criterion for integrability.

Definition 2.2.12 Let (M, J) be an almost complex manifold. The Nijenhuis tensor
of (M, J) is the tensor field N ∈ Γ∞(T1

2(M)) defined by

N (X,Y ) := [JX, JY ] − [X,Y ] − J([X, JY ])− J([JX,Y ]) , X,Y ∈ X(M) .

The following deep theorem holds, see [485].

Theorem 2.2.13 (Newlander–Nirenberg) An almost complex structure J is inte-
grable iff the Nijenhuis tensor of J vanishes. �

Next, we show that J implies a natural splitting of tensor bundles over M . In par-
ticular, this will imply a variety of equivalent criteria for integrability. From now on,
let T = R

2n denote the basic GL(2n,R)-module, let T∗ be the dual (contragredient)
module and let TC and T∗

C
be the complexifications of T and T∗, respectively. We

extend J0 to a C-linear mapping of TC and decompose TC into eigenspaces T1,0 and
T0,1 corresponding to the eigenvalues i and −i of J0:

TC = T1,0 ⊕ T0,1 . (2.2.9)

Then,

T1,0 = {X − iJ0X : X ∈ T} , T0,1 = {X + iJ0X : X ∈ T} . (2.2.10)

On the other hand, recall from Sect. 7.5 of Part I that J0 endows T with the structure
of a complex vector space, denoted by V , via

(a + ib)X := aX + bJ0X , a, b ∈ R , X ∈ T . (2.2.11)

Clearly, V ∼= C
n carries the basic GL(n,C)-module structure. Let ι be the natural

embedding of V into TC. Via this mapping, a chosen basis (e1, . . . , en) in V induces
a basis (e1, J0e1, . . . , en, J0en) in TC. By (2.2.11), for Z = (Xk + iY k)ek we have

ι(Z) = Xkek + Y kJ0ek . (2.2.12)

Note that ι is not complex linear. Next, let pr1,0 : TC → T1,0 and pr0,1 : TC → T0,1

be the canonical projections. Then,

pr1,0 ◦ι : V → T1,0 , pr0,1 ◦ι : V → T0,1
m , (2.2.13)

are C-linear and C-anti-linear vector space isomorphisms, respectively (Exercise
2.2.6). Next, recall the embedding GL(n,C) → GL(2n,R) given by (2.2.5). It
extends to TC by

http://dx.doi.org/10.1007/978-94-024-0959-8_7
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ρ : GL(n,C)× TC → TC , ρ(g)

[
X
Y

]
=

[
a −b
b a

] [
X
Y

]
=

[
aX − bY
bX + aY

]
.

One easily checks (Exercise 2.2.6) that for any Z ∈ V ,

pr1,0 ◦ρ(g) ◦ ι(Z) = (a + ib)Z , pr0,1 ◦ρ(g) ◦ ι(Z) = (a − ib)Z . (2.2.14)

On the other hand, the subspacesT1,0 andT0,1 are invariant under theGL(n,C)-action
and, by (2.2.5), they carry the basic representation of GL(n,C) and its conjugate,
respectively. It follows that V and T1,0 are isomorphic as GL(n,C)-modules.

Next, note that, by duality, the decomposition (2.2.9) implies a decomposition

T∗
C = T∗1,0 ⊕ T∗0,1 , (2.2.15)

where T∗1,0 and T∗0,1 are the annihilators of T0,1 and T1,0, respectively. Thus, they
carry the dual of the basic and the basic representation of GL(n,C), respectively.
This decomposition induces the following decompositions:

∧kT∗
C =

⊕

p+q=k

∧p,q
,

∧p,q = ∧p T∗1,0 ⊗ ∧q T∗0,1 . (2.2.16)

Clearly, in analogy to (2.2.9) and (2.2.15), J induces decompositions

TCM = T1,0M ⊕ T0,1M , T∗
CM = T∗1,0M ⊕ T∗0,1M . (2.2.17)

Note that, as a complex vector bundle, TM is C-linearly isomorphic to T1,0M via
(2.2.13). Corresponding to (2.2.16), we have

∧kT∗
CM =

⊕

p+q=k

∧p,qM ,
∧p,qM = ∧p T∗1,0M ⊗ ∧q T∗0,1M . (2.2.18)

The spaces of sections of
∧kT∗

CM and
∧p,qM will be denoted by Ωk

C
(M) and by

Ω p,q(M), respectively. Elements of Ω p,q(M) are called differential forms of type
(p, q). Let us denote the projection to Ω p,q(M) by Π p,q . Extending the exterior
differential C-linearly, we may define mappings ∂ : Ω p,q(M) → Ω p+1,q(M) and
∂ : Ω p,q(M) → Ω p,q+1(M) via

∂ := Π p+1,q ◦ d , ∂ := Π p,q+1 ◦ d . (2.2.19)

Proposition 2.2.14 For an almost complex manifold, the following conditions are
equivalent:

1. N (X,Y ) = 0 for all X,Y ∈ X(M).
2. T1,0M is involutive.
3. d

(
Ω1,0(M)

) ⊂ Ω2,0(M)⊕Ω1,1(M).
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4. For any α ∈ Ωk
C
(M), we have dα = ∂α + ∂α.

Proof Recall that, as a real vector space, TC decomposes as TC = T + iT. Cor-
respondingly, we have real linear projections Re, Im : TC → T defined by W =
Re(W )+ iIm(W ) for all W ∈ TC. Now, for any X,Y ∈ X(M), we calculate

N (X,Y ) = [JX, JY ] − [X,Y ] − J([X, JY ])− J([JX,Y ])
= −Re

([X − iJX,Y − iJY ] + iJ[X − iJX,Y − iJY ])

= −8Re
([X1,0,Y 1,0]0,1) .

Since for elementsW ∈ T0,1 we have Im(W ) = J(Re(W )), points 1 and 2 are equiv-
alent. For α ∈ Ω1,0(M) and X,Y ∈ Γ∞(T1,0M),

dα(X,Y ) = X (α(Y ))− Y (α(X))− α([X,Y ]) = −α([X,Y ]) ,

where α ∈ Ω0,1(M) defined by α(W ) = α(W ) with W denoting the conjugation in
TC. This implies the equivalence of points 2 and 3. Clearly, point 4 implies point
3. Thus, it remains to prove the converse. We note that d = ∂ + ∂ holds iff dα ∈
Ω p+1,q(M)⊕Ω p,q+1(M) for any α ∈ Ω p,q(M). Locally,

α = f ϑ i1 ∧ . . . ∧ ϑ i p ∧ ϕ j1 ∧ . . . ∧ ϕ jq , ϑk ∈ Ω1,0(M) , ϕl ∈ Ω0,1(M) .

Wehaved f ∈ Ω1,0(M)⊕Ω0,1(M), dϑk ∈ Ω2,0(M)⊕Ω1,1(M). SinceΩ1,0(M) =
Ω0,1(M), point 3 implies dϕl ∈ Ω1,1(M)⊕Ω0,2(M) and the assertion follows. �

Corollary 2.2.15 If an almost complex structure J is integrable, then

∂2 = 0 , ∂
2 = 0 , ∂ ◦ ∂ + ∂ ◦ ∂ = 0 . (2.2.20)

Conversely, if ∂
2 = 0, then J is integrable.9

Proof The first assertion is an immediate consequence of d2 = 0. The second asser-
tion is left to the reader, see Exercise 2.2.7. �

Let zk be local coordinates on a complex manifold M . Then, any α ∈ Ω∗
C
(M) locally

reads10 α = αI Jdz I ∧ dz J and

∂α = ∂αI J

∂zk
dzk ∧ dz I ∧ dz J , ∂α = ∂αI J

∂zk
dzk ∧ dz I ∧ dz J .

9Using the operator ∂ , one can build a cohomology theory for complex manifolds, called the
Dolbeault cohomology, see [336].
10We use the notation of Sect. 4.1 of Part I.

http://dx.doi.org/10.1007/978-94-024-0959-8_4
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Finally, we note that a diffeomorphism ϕ : M → M is an automorphism of an
almost complex structure J iff ϕ′ ◦ J = J ◦ ϕ′. If J is integrable, then this means that
ϕ is holomorphic. �
The following example is closely related to Example 1.6.6.

Example 2.2.16 (Pseudo-Riemannianmetric) Denote the vector space of symmetric
covariant tensors of second rank onRn by S2Rn . EndowR

n with a pseudo-Euclidean
metric η ∈ S2Rn with signature (k, l) where n = k + l. The basic representation of
GL(n,R) induces a GL(n,R)-module structure on S2Rn given by

σ : GL(n,R) → Aut(S2Rn) , σ (a) := (a−1)T ⊗ (a−1)T . (2.2.21)

As alreadynoted under point 2 ofExample 1.6.6, by theSylvesterTheorem,GL(n,R)
acts transitively on the subspace S2(k,l)R

n ⊂ S2Rn consisting of elements with fixed
signature, and the stabilizer of η is O(k, l), that is,

GL(n,R)/O(k, l) ∼= S2(k,l)R
n .

Thus, by (2.2.1), O(k, l)-structures are in one-to-one correspondence with pseudo-
Riemannian metrics g on M and the O(k, l)-structure corresponding to g coincides
with the bundle O(M) of frames which are orthonormal with respect to g. If (M, g)
is oriented, then O(M) further reduces to a principal SO(k, l)-bundle, denoted by
O+(M). Note that GL(n,R)/O(n) is contractible. Thus, an O(n)-structure, that is,
a Riemannian metric, always exists. On the contrary, for an arbitrary signature,
O(k, l)-structures may not exist. E.g. the obstruction to the existence of a Lorentz-
structure11 on a 4-dimensional oriented manifold is given by the Euler class of the
tangent bundle. Thus, for a non-compact M , there is no obstruction. Below, we will
see that associated with a pseudo-Riemannian structure, there is a unique torsion-
free connection. Then, point 1 of Remark 1.4.7 implies that an O(k, l)-structure
is integrable iff the curvature of this connection vanishes. Equivalently, a pseudo-
Riemannian structure is integrable iff it is locally flat, that is, if for every point of M
there exists a neighbourhood on which g is given by the Euclidean metric.

Clearly, a diffeomorphismϕ : M → M is an automorphismof anO(k, l)-structure
iff ϕ is an isometry of the corresponding pseudo-Riemannian metric g, that is,
ϕ∗g = g. It can be shown, see Theorem 3.4 in Chap. VI of [381], that the group
of isometries carries a Lie group structure with respect to the compact-open topol-
ogy. This Lie group will be denoted by I (M). �
Example 2.2.17 (Conformal structure) For n ≥ 3, consider the Lie subgroup

CO(n) := {
a ∈ GL(n,R) : aTa = c1 , c ∈ R , c > 0

}
.

Clearly, CO(n) = R+ × O(n). By the previous example, GL(n,R) acts transi-
tively on the space S2(k,l)R

n . Thus, it also acts transitively on the set of conformal

11A pseudo-Riemannian structure with signature (+,−,−,−).

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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equivalence classes of elements of S2(k,l)R
n defined by the relation η ∼ η′ iff η′ = cη

for some positive real number c. Clearly, the stabilizer of an element [η] is CO(n).
Thus, CO(n)-structures are in one-to-one correspondence with conformal equiva-
lence classes [g] of metrics on M , with the equivalence defined as follows: two
metrics g1 and g2 are conformally equivalent iff they differ by a positive function.
The CO(n)-structure corresponding to class [g] is denoted by CO(M) and is referred
to as the bundle of conformal frames.

Since CO(n) = R+ × O(n), the representation theory of CO(n) is essentially
obtained as an extension of the representation theory of the orthogonal group O(n).
The irreducible representations of R+ on R are labeled by real numbers r ∈ R and
are given by

R+ × R → R , (t, x) �→ tr x .

The number r is called the conformal weight of the representation under considera-
tion. Let us denote the corresponding representation space by Lr (a copy ofR). Then,
a typical CO-module is a tensor product of an O(n)-module with Lr . Note that, with
respect to the conformal structure [g], the tangent and the cotangent bundles can
no longer be identified, because they correspond to representations containing the
factors Lr and L−r , respectively. Clearly, on the level of vector bundles over M , the
additional factors Lr corresponds to building the tensor product with an associated
line bundle characterized by r .

In close relation to the previous example, one can show that a conformal structure
is integrable iff it is locally conformally flat, that is, iff for every point ofM there exists
a neighbourhood on which the metric is given by g = f 2g0, where g0 is the (flat)
Euclidean metric and f is a nowhere vanishing function on that neighbourhood.
If this condition holds globally, then one says that (M, g) is conformally flat or,
equivalently, that (M, [g]) is flat.

A diffeomorphism ϕ : M → M is an automorphism of a CO(n)-structure iff there
exists a nowhere vanishing function f ∈ C∞(M) such that ϕ∗g = f 2g, where g
is some representative of this structure. The automorphism group of a conformal
structure (M, [g]) is called the conformal group of (M, [g]). It will be denoted by
C(M, [g]). The following classical theorem may be found in [381].12

Theorem 2.2.18 Let (M, g) be a connected n-dimensional Riemannian manifold
with n ≥ 3. Then, its conformal group C(M, [g]) is a Lie group of dimension at most
1
2 (n + 1)(n + 2). �

For a systematic study of conformal geometry, we refer to [61, 119, 382, 492, 686,
608]. �

Example 2.2.19 (Almost Hermitean structure) Recall from Example I/7.5.5 that, in
the standard embedding (2.2.6) of GL(n,C) → GL(2n,R), we have

U(n) = SO(2n) ∩ GL(n,C) . (2.2.22)

12The authors of [381] outline a proof based upon results of Eisenhardt [183] and Palais [499].
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Explicitly,

U(n) =
{[

a −b
b a

]
: aaT + bbT = 1 , abT − baT = 0 , a, b ∈ GL(n,R)

}
.

(2.2.23)
This shows that we may combine an almost complex structure C(M) with the
SO(2n)-structure O+(M) of a 2n-dimensional (oriented) Riemannian manifold by
intersecting them. On the algebraic level, JT0ηJ0 = η. Thus, if we assume that J is an
isometry, that is,

g(JX, JY ) = g(X,Y ) , X,Y ∈ X(M) , (2.2.24)

then the intersection
U (M) := C(M) ∩ O+(M) (2.2.25)

is a U(n)-structure.13 It is called the bundle of unitary frames. If (2.2.24) is fulfilled,
we say that g is a Hermitean metric with respect to J. The triple (M, g, J) is called an
almost Hermitean manifold. If, additionally, J is integrable, then (M, g, J) is called
a Hermitean manifold. Note that

β(X,Y ) := g(X, JY ) (2.2.26)

is a non-degenerate 2-form on M . Thus, βn is a nowhere vanishing 2n-form,
that is, an orientation of M . This shows that every almost Hermitean manifold is
endowedwith a canonical volume form. Existence and integrability criteria of almost
Hermitean structures are obtained from Examples 2.2.10 and 2.2.16 above. Clearly,
a diffeomorphism ϕ : M → M is an automorphism of a U(n)-structure iff it is an
automorphism of the GL(n,C)- and of the SO(2n)-structure.

We give an equivalent description of an almost Hermitean manifold (M, g, J).
Viewing its tangent bundle TM as a complex vector bundle, each of its fibres carries
a Hermitean scalar product, given by14

h(X,Y ) := g(X,Y )+ ig(X, JY ) . (2.2.27)

Equivalently, by (2.2.26),

h(X,Y ) = g(X,Y )+ iβ(X,Y ) = β(JX,Y )+ iβ(X,Y ) . (2.2.28)

Note that h is linear in the first and anti-linear in the second entry (Exercise 2.2.8).
Thus, (TM, h) is a Hermitean vector bundle, cf. Definition 1.1.16. As usual, let
h̃, g̃ and J̃ be the equivariant mappings corresponding to h, g and J, respectively.

13It suffices to assume that C(M) and O+(M) have a nonempty intersection over every point of M .
14See Sect. 7.5 of Part I. Note that we have changed conventions in order to be compatible with the
standard literature.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_7
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Restricted to U (M), g̃ and J̃ coincide with the Euclidean metric η and the standard
complex structure J0, respectively. Let h0 be the Hermitean form defined by η and
J0 via (2.2.27). Since η is SO(2n)-invariant and since J0 commutes with the U(n)-
action, h0 is U(n)-invariant. This yields the following.

Proposition 2.2.20 Relative to a given almost complex structure J on M, U(n)-
structures on M are in one-to-one correspondence with Hermitean fibre metrics on
TM.15 �
Finally,we give a characterization of the above objects in terms of the decompositions
(2.2.9), (2.2.15) and (2.2.16). Here, T may be viewed as the basic SO(2n)-module
and, by (2.2.22), the subspaces T1,0 and T0,1 carry the basic representation of U(n)
and its conjugate, respectively. Thus, V and T1,0 are isomorphic as U(n)-modules.
For k = 2, the decomposition (2.2.16) takes the form

∧2T∗
C = ∧2,0 ⊕ ∧1,1 ⊕ ∧0,2

. (2.2.29)

By standard representation theory, the adjoint representation of U(n) is given by the
tensor product of the basic representation and its dual. Thus, after intersecting with
the real exterior product

∧2T∗, formula (2.2.29) corresponds to the decomposition
o(2n) = u(n)⊕ u(n)⊥ , where

u(n) = ∧1,1 ∩ ∧2T∗ , u(n)⊥ =
(∧2,0 ⊕ ∧0,2

)
∩ ∧2T∗ . (2.2.30)

For a given basis (e1, Je1, . . . , en, Jen) of T, let (ϑ1, ϕ1, . . . , ϑn, ϕn) be the dual
basis in T∗. Clearly, the latter yields the bases

{ϑk ∧ ϑ l} , {ϑk ∧ ϕl} , {ϕk ∧ ϕl} , k < l , k, l = 1, . . . n ,

in, respectively,
∧2,0,

∧1,1 and
∧0,2. In particular, for (e1, . . . , en) we may choose

the standard basis in V ∼= C
n . Since h̃ takes values in the space of bilinear forms on

TC, we obtain (Exercise 2.2.9)

h̃(u) =
n∑

k=1

(ϑk ⊗ ϑk + ϕk ⊗ ϕk)− i
n∑

k=1

ϑk ∧ ϕk , (2.2.31)

for any u ∈ U (M). From (2.2.28), we read off

g̃(u) =
n∑

k=1

(ϑk ⊗ ϑk + ϕk ⊗ ϕk) , β̃(u) = −
n∑

k=1

ϑk ∧ ϕk . (2.2.32)

To summarize, for u ∈ U (M),

15Clearly, this is consistent with Example 1.1.18, where we considered the orthonormal frame
bundle of an arbitrary vector bundle carrying a fibre metric.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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h̃(u) ∈ ∧1,1
, g̃(u) ∈

(∧2,0 ⊕ ∧0,2
)

∩ S2T∗ , β̃(u) ∈ ∧1,1 ∩ ∧2T∗ .
(2.2.33)

Note that β(u) ∈ u(n) is U(n)-invariant. Thus, it spans a 1-dimensional invariant
subspace in u(n) and gives rise to the decomposition u(n) = su(n)⊕ iR. �

Example 2.2.21 (Almost symplectic structure) Consider H = Sp(n,R). Recall that
this is the group of linear transformations ofR2n leaving the standard symplectic form
(2.2.6) invariant.16 Thus, Sp(n,R)-structures are in one-to-one correspondence with
2-forms on M of maximal rank. Such structures are called almost symplectic. By
the previous example, each almost Hermitean structure defines such a 2-form β. By
Proposition I/7.5.3,

Sp(n,R) ∩ GL(n,C) = U(n) = SO(2n) ∩ Sp(n,R) ,

and, thus, each pair built from the triple (g, J, β) yields the same U(n)-structure.
Moreover, since Sp(n,R) and GL(n,C) contain U(n) as their maximal compact
subgroup, M admits an almost symplectic structure iff it admits an almost complex
structure. Clearly, by the Darboux Theorem I/8.1.5, an almost symplectic structure
is integrable iff dβ = 0. Then (M, β) is called a symplectic manifold. A Hermitean
manifold (M, g, J) such that the 2-form β defined by (2.2.26) is closed is called
Kähler. For the discussion of existence, see Remark I/8.1.4.

Clearly, a diffeomorphism ϕ : M → M is an automorphism of an Sp(n,R)-
structure iffϕ∗β = β. If (M, β) is symplectic, thenϕ is called a symplectomorphism.
For the study of the group of symplectomorphisms see Sect. 8.8 in Part I. �

In the remainder of this section, we discuss compatible connections.

Example 2.2.22 (Metric connection) By Example 2.2.16, pseudo-Riemannianman-
ifolds are in one-to-one correspondence with O(k, l)-structures. Thus, let (M, g) be
a pseudo-Riemannian manifold and let O(M) be its O(k, l)-structure. In terms of
the corresponding equivariant mapping g̃,

O(M) = {u ∈ L(M) : g̃(u) = η} , (2.2.34)

where η is the standard inner product on R
n with signature (k, l). By Proposition

2.2.3, a linear connection ω on M is compatible with the O(k, l)-structure iff g is
parallelwith respect toω. A linear connection fulfilling this condition is calledmetric.
By (2.2.21), the metricity condition Dg̃ = dg̃ + σ ′(ω)g̃ = 0 reads

dg̃ − (
ωT ⊗ 1 + 1 ⊗ ωT

)
(g̃) = 0 . (2.2.35)

More explicitly, decomposing ω with respect to the basis {E j
i } in gl(n,R) and g̃

with respect to the basis in S2Rn induced from the standard basis of Rn , (2.2.35)
takes the form

16Note the double role of J0.

http://dx.doi.org/10.1007/978-94-024-0959-8_8
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dg̃ jk − g̃ jlω
l
k − g̃klω

l
j = 0 . (2.2.36)

But, on O(M) we have g̃kl = ηkl and, thus, dg̃ jk = 0. This shows that ω is metric iff
its reduction to O(M) fulfils

ω jk + ωk j = 0 ,

that is, iff this reduction takes values in the Lie algebra o(k, l), indeed. Equivalently,
the metricity condition is given by ∇g = 0. Since ∇X is a derivation of the tensor
algebra, the latter is equivalent to

X (g(Y, Z)) = g(∇XY, Z)+ g(Y,∇X Z) , (2.2.37)

for any X,Y, Z ∈ X(M).

Remark 2.2.23 Let (V, q) be a quadratic vector space over K. Assume that K is R
or C and that q is non-degenerate. Recall from Example I/5.2.6 that the Lie algebra
o(V, q) of the orthogonal group O(V, q) coincides with those endomorphisms of V
which are anti-symmetric with respect to the symmetric bilinear form η of q. In the
context of Clifford algebras, see Sect. 5.2, we will see that the following canonical
isomorphism of Lie algebras holds:

κ : o(V, q) → ∧2V , κ(A) = 1

4
A(ei ) ∧ η−1(ϑ i ) , (2.2.38)

where {ei } is a q-orthogonal basis in V and {ϑ j } is the dual basis. Denoting Akl =
g(ek, Ael), we obtain

κ(A) = 1

4
ηi j A(ei ) ∧ e j = 1

4
Ai jei ∧ e j . (2.2.39)

�

Proposition 2.2.24 Any O(k, l)-structure has a unique torsion-free connection.

Proof By Corollary 2.2.7, it is enough to show that the mapping δ given by (2.2.2) is
bijective. In the case under consideration, h = o(k, l) ∼= ∧2

R
n ∼= ∧2

(Rn)∗. Thus,

δ : (Rn)∗ ⊗ ∧2
(Rn)∗ → ∧2

(Rn)∗ ⊗ R
n .

Let α ∈ (Rn)∗ ⊗ ∧2
(Rn)∗ and let αi jk be the components of α in the basis induced

from the standard basis of Rn . Then, αi jk = −αik j and the components of δ(α) are
given by 1

2 (αi jk − α j ik). Assume δ(α) = 0. Then,

αi jk = α j ik = −α jki = −αk ji = αki j = αik j = −αi jk ,

that is ker(δ) = 0. Now, bijectivity follows from dimension counting. �

http://dx.doi.org/10.1007/978-94-024-0959-8_5
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A classical proof of Proposition 2.2.24 is obtained by using (2.2.37) and (2.1.33),

X (g(Y, Z)) = g(∇XY, Z)+ g(Y,∇X Z) , 0 = ∇XY − ∇Y X − [X,Y ] .

Then, by direct inspection (Exercise 2.2.10),

2g(∇XY, Z) = X (g(Y, Z))+ Y (g(X, Z))− Z(g(X,Y ))

+ g([X,Y ], Z)+ g([Z , X ],Y )+ g([Z ,Y ], X) . (2.2.40)

One easily checks that this equation defines a torsion-free connection. In the sequel,
the unique torsion-free connection defined by g will be called the Levi-Civita con-
nection.

Finally, we derive local formulae for the Levi-Civita connection. In contrast to
general linear connections, here we have two natural types of local frames:

(a) local holonomic frames {∂ j } induced from arbitrary local charts (Uj , κ j ),
(b) local frames {e j } which are orthonormal with respect to g.

Since the formulae (2.1.42), (2.1.44), (1.5.8) and (2.1.46)–(2.1.50) hold true for any
local frame, they clearly apply here. Let e be an arbitrary local frame. By (2.2.40),

2g(∇ei e j , ek) = ei (g jk)+ e j (gik)− ek(gi j )+ Cl
i jglk + Cl

kigl j + Cl
k jgli ,

where gi j = g(ei , e j ). Thus,

Γ m
i j = 1

2
gmk

(
ei (g jk)+ e j (gik)− ek(gi j )

)

+ 1

2

(
Cm

i j + gkmgl jC
l
ki + gkmgliC

l
k j

)
. (2.2.41)

For the case (a), we have gi j = g(∂i , ∂ j ) and Ci
jk = 0. Thus,

Γ m
i j = 1

2
gmk(g jk,i + gki, j − g j i,k) , Γ m

i j = Γ m
ji . (2.2.42)

For the case (b), we have gi j = ηi j and, therefore,

Γ m
i j = 1

2

(
Cm

i j + ηkmηl jC
l
ki + ηkmηliC

l
k j

)
. (2.2.43)

Thus, Γki j = ηkmΓ
m
i j = 1

2 (Cki j + C jki + Cik j ) and, consequently, for case (b) we
have

Γki j = −Γ j ik , Γ k
ik = 0 . (2.2.44)

Using (2.1.46) and (2.2.43), we obtain

http://dx.doi.org/10.1007/978-94-024-0959-8_1


124 2 Linear Connections and Riemannian Geometry

dϑ i (e j , ek) = −ϑ i ([e j , ek]) = Γ i
k j − Γ i

jk

and, thus,
dϑ i = −Γ i

jkϑ
j ∧ ϑk . (2.2.45)

Comparing with (2.1.46), we read off

dϑ i = ϑ j ∧ ∇e jϑ
i . (2.2.46)

This implies the following useful formula (Exercise2.2.11). For any α ∈ Ωk(M),

dα = ϑ j ∧ ∇e jα . (2.2.47)

Since the operator d is intrinsically defined, this formula does not depend on the
choice of the frame. It can be rewritten as

dα(e0, . . . , ek) =
∑

j

(−1) j
(∇e jα

) (
e0,

j
�. . ., ek)

)
. (2.2.48)

By the locality property of ∇ and by the multilinearity of α, we conclude

dα(X0, . . . , Xk) =
∑

j

(−1) j
(∇X jα

) (
X0,

j
�. . ., Xk)

)
, (2.2.49)

for any set of vector fields X0, . . . , Xk on M . �

Example 2.2.25 (Almost complex connection) By Example 2.2.10, GL(n,C)-
structures on a manifold M are in one-to-one correspondence with sections J of
End(TM) fulfilling J2m = − id for every m ∈ M . By Proposition 2.2.3, a linear con-
nection ω on M is compatible with a GL(n,C)-structure iff J is parallel with respect
to ω. A linear connection fulfilling this condition is called almost complex. Recall
that the obstruction to integrability of an almost complex structure is given by the
Nijenhuis tensor N .

Proposition 2.2.26 Analmost complexmanifold (M, J)admits a torsion-free almost
complex linear connection iff J is integrable.

Proof We show that the intrinsic torsion vanishes iff J is integrable. Here, the map-
ping (2.2.2) takes the form

δ : (R2n)∗ ⊗ gl(n,C) → ∧2
(R2n)∗ ⊗ R

2n .

We pass to the complexifications of both the domain and the target space of δ and
use the decompositions (2.2.9), (2.2.15) and (2.2.29), together with the embedding
(2.2.5). Then, the target space reads
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(∧2T∗
C

) ⊗ TC =
(∧2,0 ⊕ ∧1,1 ⊕ ∧0,2

)
⊗ (

T1,0 ⊕ T0,1
)

=
(∧2,0 ⊗ T1,0

)
⊕

(∧1,1 ⊗ T1,0
)

⊕
(∧0,2 ⊗ T1,0

)

⊕
(∧2,0 ⊗ T0,1

)
⊕

(∧1,1 ⊗ T0,1
)

⊕
(∧0,2 ⊗ T0,1

)
,

and for the image of δ we get

im(δ) =
((∧1,1 ⊕ ∧0,2

)
⊗ T0,1

)
⊕

((∧2,0 ⊕ ∧1,1
)

⊗ T1,0
)
. (2.2.50)

The latter is obtained by a straightforward calculation, see Exercise 2.2.5. Thus, the
intrinsic torsion takes values in

coker(δ) = (∧0,2 ⊗ T1,0
) ⊕ (∧2,0 ⊗ T0,1

)
.

We give the argument for the first component. Let e = (e1, . . . , en) be a holomorphic
frame and let (ϑ1, . . . , ϑn) be the dual coframe. Taking the pullback under e of the
Structure Equation for the torsion, cf. (2.1.15), we obtain

Ti = dϑ i + A i
j ∧ ϑ j .

Evaluating the (1, 0)-component of this equation on X1, X2 ∈ Γ∞(T0,1M), we
obtain

Ti (X1, X2) = −ϑ i ([X1, X2]) .

We get the same equation for the (0, 1)-component evaluated on a pair of vector
fields of type (1, 0). Thus, the intrinsic torsion vanishes iff T1,0M and T0,1M are
involutive. Now, point 2 of Proposition 2.2.14 yields the assertion. �

By the above proof and point 1 of Proposition 2.2.14, the Nijenhuis tensor measures
the torsion of an almost complex linear connection, see also Theorem 3.4 in Chap.
IX of [381] for a classical proof. �

Example 2.2.27 (Unitary connection) Here, we take up Example 2.2.19. Thus, let
U (M) be a U(n)-structure and let (M, g, J) be the corresponding 2n-dimensional
almost Hermitean manifold. Clearly, by Proposition 2.2.3, a linear connection ω on
M is compatible with the U(n)-structure iff both g and J are parallel with respect to
ω. Such a connection will be called unitary.

Assume that there exists a torsion-free unitary connectionω onM . SinceU (M) =
C(M) ∩ O+(M) and since the Levi-Civita connection of g is the unique torsion-free
connection on O+(M), ω is necessarily obtained as a reduction of the Levi-Civita
connection to U (M). Thus, if it exists, it is necessarily unique.

Proposition 2.2.28 Let U (M) be aU(n)-structure, let (M, g, J) be the correspond-
ing almost Hermitean manifold and let β be the almost symplectic form defined
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by the pair (g, J). Then, the Levi-Civita connection ω of g is compatible with the
U(n)-structure iff J is integrable and β is symplectic.

Proof Assume that ω is U(n)-compatible. Then, both g and J are ω-parallel and,
by Proposition 2.2.26, since ω is torsion-free and since J is parallel, J is integrable.
Moreover, the parallelity of g and J imply the parallelity of β. Then, (2.2.49) yields
dβ = 0. The converse statement follows immediately from the identity

2g((∇XJ)Y, Z) = dβ(X, JY, JZ)− dβ(X,Y, Z)+ g(N (Y, Z), JX) , (2.2.51)

where ∇ is the covariant derivative of ω and X,Y, Z ∈ X(M), see Exer-
cise 2.2.12. �

Thus, ω is compatible with the U(n)-structure iff (M, g, J) is Kähler. For a detailed
description of Kähler structures in terms of local coordinates we refer to Sects. 4 and
5 of Chap. IX in [381].

Finally, by the discussion in Example 2.2.19, we obtain a characterization of
unitary connections in terms of the Hermitean fibre metric h defined by g and J.

Proposition 2.2.29 A linear connection ω on a Hermitean manifold (M, g, J) is
unitary iff the Hermitean fibre metric h defined by g and J is parallel with respect to
ω.

According to (2.2.33), h̃(u) ∈ ∧1,1. Explicitly, the U(n)-module structure of
∧1,1

is given by

σ : U(n) → Aut
(∧1,1

)
, σ (g) = (

g−1
)T ⊗ (

g−1
)T
. (2.2.52)

Thus, the metricity condition D h̃ = dh̃ + σ ′(ω)h̃ = 0 restricted to U (M) implies

ωT ⊗ 1 + 1 ⊗ ωT = 0 . (2.2.53)

Analyzing (2.2.53) in the standard basis as in Example 2.2.22,we obtainω† + ω = 0,
that is, ω takes values in the Lie algebra u(n), indeed. �

Exercises

2.2.1 Show that integrability of a section s in an H -structure P implies s∗dθ = 0.

2.2.2 Prove that any SL(n,R)-structure is integrable.

2.2.3 Prove that a mapping of an open subset of Cn to C
m is compatible with the

natural almost complex structures iff it is holomorphic.

2.2.4 Prove that every almost complex manifold is orientable.

2.2.5 Prove formula (2.2.50).Hint.Let ξ ∈ (R2n)∗ and a ∈ gl(n,C) ∼= (Cn)∗ ⊗ C
n .

To calculate δ(ξ ⊗ a), decompose both elements with respect to bases
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adapted to the decompositions (2.2.9) and (2.2.15) and calculate the image explicitly
using (2.2.5).17

2.2.6 Prove that the mappings pr1,0 ◦ι and pr0,1 ◦ι, defined by (2.2.13), are C-linear
and C-anti-linear, respectively. Show that (2.2.14) holds.

2.2.7 Prove the second assertion inCorollary 2.2.15.Hint.Usepoint 2 of Proposition
2.2.14.

2.2.8 Prove that h defined by (2.2.27) is linear in the first and anti-linear in the
second entry.

2.2.9 Prove formula (2.2.31).

2.2.10 Give an alternative proof of Proposition 2.2.24 by using (2.2.37) and (2.1.33).

2.2.11 Prove formula (2.2.47).

2.2.12 Prove formula (2.2.51). Hint. Prove that g((∇XJ)Y, Z) = g(∇X (JY ), Z)+
g(∇XY, JZ) and rewrite the terms on the right hand side according to (2.2.40). Use
formula I/4.1.6. Alternatively, the proof can be found in [381], see Proposition 4.2
in Chap. IX.

2.2.13 Prove that for H = Sp(n,R), the cokernel of the mapping (2.2.2) is isomor-
phic to

∧3
(R2n)∗. Show that the corresponding intrinsic torsion coincides with the

exterior derivative of the almost symplectic form, cf. Example 2.2.21.

2.3 Curvature and Holonomy

In this section, we continue the discussion of connections compatible with H -
structures. Here, we consider exclusively torsion-free connections and ask which
holonomy groups may occur for such a connection. This question has first been
studied systematically by Berger, see [68, 69].

At this point, the reader may wish to recall the basic notions from the general
holonomy theory as presented in Sect. 1.7. For a linear connection Γ in L(M), let
Pu0(Γ ) be the holonomy bundle of Γ with base point u0 ∈ L(M). By Proposition
1.7.12, Γ is reducible to Pu0(Γ ) and thus, for any u ∈ Pu0(Γ ), the curvatureΩ of Γ
takes values in the Lie algebra hu0(Γ ) of the holonomy groupHu0(Γ ) ⊂ GL(n,R).
By the Ambrose-Singer Theorem 1.7.15, we have

hu0(Γ ) = span
{
Ωu(X,Y ) : u ∈ Pu0(Γ ) , X,Y ∈ Γu

}
. (2.3.1)

It is the condition of torsion-freeness which makes the above question nontrivial. If
we drop this assumption, then any closed Lie subgroup H ⊂ GL(n,R) may occur

17Cf. also Example 2.2.19.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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as the holonomy group of a linear connection on some n-dimensional manifold M ,
see [283]. However, in general, such a connection will have a nontrivial torsion. By
the Bianchi identity (2.1.17), vanishing of the torsion implies

Ω ∧ θ = 0 , (2.3.2)

and, by the Ambrose-Singer Theorem, this yields a nontrivial restriction on the
holonomy. Now, let P ⊂ L(M) be an H -structure on an n-dimensional manifold
M , let ω be an H -compatible connection and let Ω be its curvature. For simplicity,
let us denote Rn ≡ V . By Remark 2.1.16, we may represent Ω equivalently by the
curvature mapping

R : P → ∧2V ∗ ⊗ h (2.3.3)

fulfilling the equivariance condition (2.1.25)with respect to the natural representation

σ : H → Aut
(∧2V ∗ ⊗ h

)
given by

σa((ξ ∧ τ)⊗ A) := (
(a−1)Tξ ∧ (a−1)Tτ

) ⊗ Ad(a)A . (2.3.4)

Since the exterior products of the components θ i of θ span the spaces of horizontal
forms, (2.3.2) implies that R takes values in the kernel K(h) of the mapping

δ : ∧2V ∗ ⊗ h → ∧3V ∗ ⊗ V , δ = (a ⊗ id) ◦ (id⊗ιh) , (2.3.5)

where a is the anti-symmetrization mapping, cf. (2.2.2). Clearly,

K(h) =
{
F ∈ ∧2V ∗ ⊗ h : F(x, y)z + F(y, z)x + F(z, x)y = 0 , x, y, z ∈ V

}
.

The space K(h) is called the space of curvature mappings.

Lemma 2.3.1 The subspace

h := span {F(x, y) ∈ h : F ∈ K(h) , x, y ∈ V } (2.3.6)

is an ideal of h.

Proof Let F(x, y) ∈ h and let A ∈ h ⊂ End(V ). Then, we may write

[F(x, y), A] = F̃(x, y)− F(Ax, y)− F(x, Ay) ,

where
F̃(x, y) = [F(x, y), A] + F(Ax, y)+ F(x, Ay) .

One checks by direct inspection that F̃ ∈ K(h). �
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Note that F̃ corresponds exactly to the action of A on F obtained by differentiating
the equivariance condition (2.1.25).18 Thus, by the Ambrose-Singer Theorem, for
the Lie algebra hu0(Γ ) of the holonomy group of a torsion-free connection Γ , we
have

hu0(Γ ) = hu0(Γ ) .

We conclude that a Lie subalgebra h ⊂ gl(n,R) can occur as the Lie algebra of the
holonomy group of a torsion-free connection only if it coincides with the ideal h. This
is commonly referred to as the first criterion of Berger. It yields a necessary condition
for a Lie subalgebra to be the holonomy Lie algebra of a torsion-free connection.

Next, let us analyze the Bianchi identity (2.1.16) in terms of R. The covariant
derivative DR = dR + σ ′(ω)R is a horizontal 1-form on P with values in K(h).

Definition 2.3.2 A torsion-free connection fulfilling DR = 0 is called locally sym-
metric.

Decomposing DR with respect to the horizontal frame {θ i }, we obtain a function
DR : P → V ∗ ⊗ K(h). Using the fact that the commutators of horizontal standard
vector fields corresponding to a torsion-free connection are vertical (Exercise 2.3.1),
we calculate

DΩ(B(x), B(y), B(z)) = dΩ(B(x), B(y), B(z))

= B(x)
(
Ω(B(y), B(z)

) −Ω([B(x), B(y)], B(z))+ cycl.

= dR(B(x))(y ∧ z)+ cycl.

= DR(x)(y ∧ z)+ cycl. .

Thus, by the Bianchi identity DΩ = 0, we conclude that the function DR takes
values in the kernel of the mapping

δ′ : V ∗ ⊗ K(h) → ∧3V ∗ ⊗ h , (2.3.7)

defined as the composition

V ∗ ⊗ K(h) → V ∗ ⊗ ∧2V ∗ ⊗ h → ∧3V ∗ ⊗ h

of the inclusion and the anti-symmetrization mappings. Clearly, the kernel of δ′ is

K1(h) := {
Φ ∈ V ∗ ⊗ K(h) : Φ(x)(y, z)+Φ(y)(z, x)+Φ(z)(x, y) = 0 , x, y, z ∈ V

}
.

Thus, if h is the holonomy Lie algebra of a torsion-free linear connection that is
not locally symmetric, then necessarily K1(h) 	= 0. This is usually referred to as the
second Berger criterion.

18Clearly, this is the action of the Killing vector field generated by A.
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Definition 2.3.3 A Lie subalgebra h ⊂ End(V ) is called a Berger algebra if h = h.
A Berger algebra is called symmetric if K1(h) = 0 and non-symmetric otherwise.
Correspondingly, a Lie subgroup H ⊂ Aut(V ) is referred to as a (symmetric or non-
symmetric) Berger group if its Lie algebra is a (symmetric or non-symmetric) Berger
algebra.

By the above discussion, we have the following.

Proposition 2.3.4 (Berger) Let h ⊂ End(V ) be a Lie subalgebra. Then,

1. If h is the Lie algebra of the holonomy group of a torsion-free connection on some
manifold, then h is a Berger algebra.

2. If K1(h) = 0, then any torsion-free connection on a manifold whose holonomy
Lie algebra is contained in h must be locally symmetric.

Based upon these criteria, Berger started to tackle the above classification problem.
It is natural to distinguish between the following two classes:

(a) Lie subalgebras h lying in some o(η), where η is some non-degenerate bilinear
form on V . In this case, the associated H -structure defines a pseudo-Riemannian
manifold. Therefore, this is called the metric case.

(b) Lie subalgebras which are not contained in any orthogonal Lie algebra. This is
called the non-metric case.

Within this general analysis, Berger obtained a list of candidates for Lie subalgebras
of type (a) and also an (incomplete) list for type (b).19 These lists where refined and
completed by the work of Alekseevski [14], Bryant [108, 109], Chi [132], Merkulov
and Schwachhöfer [569]. The final full classification of irreducible holonomies
of torsion-free affine connections was obtained by Merkulov and Schwachhöfer
[441]. For an exhaustive discussion, we refer to the reviews of Bryant [110] and
Schwachhöfer [570] and to the textbooks of Besse [76], Joyce [353] and Salamon
[555]. In [110], the reader can find the complete classification list (divided into four
parts) together with a lot of information on methods for proving that a given group
in the list really occurs as a holonomy. It turns out that every such group is realized
at least locally.20

In the remainder of this section, we exclusively consider the metric case. That
is, we consider (pseudo-)Riemannian manifolds (M, g), endowed with their unique
torsion-free metric connection (the Levi-Civita connection). Under this assumption,
the frame bundle reduces to the orthonormal frame bundle O(M) and the whole
theory may be described in terms of objects living on O(M). Consequently, in the
case under consideration, the holonomy group is a subgroup of the structure group
O(k, l). If the Levi-Civita connection is locally symmetric, we call (M, g) locally
symmetric.

19The list provided by Theorem 2.3.19 below is included in type (a).
20The appropriate method working for three of the above mentioned four tables is to describe
torsion-free connections with a given holonomy as solutions to an exterior differential system and
to apply Cartan’s existence theorem.
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Definition 2.3.5 Let (M, g) be a pseudo-Riemannian manifold. The curvature map-
ping

R : O(M) → ∧2V ∗ ⊗ o(k, l)

of the Levi-Civita connection of g is called the Riemann curvature mapping. Corre-
spondingly, the curvature tensor R is called the Riemann curvature of (M, g).

Comparing with the general case,R has some additional properties coming from the
fact thatwemayuse themetricη to identifyV withV ∗. In particular, o(k, l) ∼= ∧2V ∗,
and thus

R(u) ∈ ∧2V ∗ ⊗ ∧2V ∗ , (2.3.8)

for every u ∈ O(M).

Proposition 2.3.6 The Riemann curvature mapping R of a pseudo-Riemannian
manifold has the following algebraic properties. For any x, y, z,w ∈ V ,

R(x, y) = −R(y, x) , (2.3.9)

η(R(x, y)z,w) = −η(R(x, y)w, z) , (2.3.10)

η(R(x, y)z,w) = η(R(z,w)x, y) , (2.3.11)

R(x, y)z + R(y, z)x + R(z, x)y = 0 . (2.3.12)

Proof Formulae (2.3.9) and (2.3.10) follow immediately from (2.3.8) and formula
(2.3.12) is a direct consequence of the fact thatR takes values in the kernel K(h) of
the mapping (2.3.5). It remains to prove (2.3.11). For that purpose, we write down
the following four versions of (2.3.12).

0 = η(R(x, y)z,w)+ η(R(y, z)x,w)+ η(R(z, x)y,w) ,

0 = η(R(y, z)w, x)+ η(R(z,w)y, x)+ η(R(w, y)z, x) ,

0 = −η(R(z,w)x, y)− η(R(w, x)z, y)− η(R(x, z)w, y) ,

0 = −η(R(w, x)y, z)− η(R(x, y)w, z)− η(R(y,w)x, z) .

Summation of these equations and using (2.3.9) and (2.3.10) yields the
assertion. �

Remark 2.3.7

1. By Proposition 2.3.6,

R : O(M) → S2
(∧2V ∗

)
, (2.3.13)

where S2
(∧2V ∗

)
= ∧2V ∗ s⊗ ∧2V ∗ is the symmetrized tensor product. By

(2.1.25), R has the following equivariance property, see Exercise 2.3.2,

R(Ψa(u))(x, y,u, v) = R(u)(ax, ay, au, av) , (2.3.14)
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for a ∈ O(k, l) and x, y,u, v ∈ V .
2. By (2.1.27), the Riemann curvature R fulfils identities corresponding to (2.3.9)–

(2.3.12) with x, y, z,w ∈ V replaced by X,Y, Z ,W ∈ TmM and η replaced by g.
Thus, in particular, R ∈ Γ∞(

S2(
∧2T∗M)

)
. For a local frame {ei }, using (2.1.52)

we write
Ri jkl ≡ g(R(ei , e j )ek, el) = Rm

i jk gml .

In this notation, the algebraic properties (2.3.9)–(2.3.12) read

Ri jkl = −R j ikl , Ri jkl = −Ri jlk , Ri jkl = Rkli j , (2.3.15)

Ri jkl + R jkil + Rki jl = 0 (2.3.16)

�

Using the above properties, the space of Riemann curvature mappings K(o(k, l))
may be characterized as follows. By standard representation theory of the group
O(k, l), for n ≥ 4, one obtains the following decompositions into O(k, l)-irreducible
modules [76, 555]:

∧3V ∗ ⊗ V ∗ = ∧2V ∗ ⊕ ∧4V ∗ ⊕U , (2.3.17)

S2
(∧2V ∗

)
= R ⊕Σ2

0 ⊕ ∧4V ∗ ⊕ W , (2.3.18)

where Σ2
0 stands for the space of traceless endomorphisms of Rn (viewed as sym-

metric 2-tensors) and where U and W are orthogonal complements. By dimension
counting, U and W are not isomorphic.

Proposition 2.3.8 The space of Riemann curvature mappings is given by

K(o(k, l)) = ker ϕ ∩ S2
(∧2V ∗

)
, (2.3.19)

where
ϕ : ∧2V ∗ ⊗ ∧2V ∗ → ∧4V ∗ , ϕ(ξ ⊗ τ) := ξ ∧ τ . (2.3.20)

Proof Under the identifications o(k, l) ∼= ∧2V ∗ and V ∼= V ∗, K(o(k, l)) coincides
with the kernel of the mapping χ : ∧2V ∗ ⊗ ∧2V ∗ → ∧3V ∗ ⊗ V ∗ given by

χ(α ⊗ (ζ ∧ τ)) := (α ∧ ζ )⊗ τ − (α ∧ τ)⊗ ζ .

Now, consider the decompositions (2.3.17) and (2.3.18). Viewing χ as an O(k, l)-
intertwining mapping and using Schur’s Lemma, together with the fact that χ is
surjective, we conclude that χ must be zero on the irreducible subspaces R, Σ2

0
and W . By dimension counting, these subspaces span the kernel of χ . Moreover,
restricted to S2(

∧2V ∗), χ maps onto
∧4V ∗ and coincides with ϕ. �
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Combining (2.3.19) and (2.3.18), for n ≥ 4, we obtain21

K(o(k, l)) = R ⊕Σ2
0 ⊕ W . (2.3.21)

This yields a decomposition of the Riemann curvature into its irreducible compo-
nents with respect to the action of O(k, l). The component Σ2

0 corresponds to the
contraction to V ∗ ⊗ V ∗ defined by taking the trace of the mapping z �→ R(z, x)y
and restricting it to S2(V ∗).

Definition 2.3.9 (Ricci tensor) Let (M, g) be a pseudo-Riemannian manifold and
letR be its Riemann curvature mapping. The mapping

R̃ic : O(M) → S2(V ∗) , R̃ic(u)(x, y) := tr {z �→ R(u)(z, x)y} (2.3.22)

is called the Ricci curvature mapping. Correspondingly,

Ric : TmM × TmM → R , Ric(X,Y ) := tr {Z �→ R(Z , X)Y } (2.3.23)

is called the Ricci tensor of (M, g).

Note that Ric is of the same geometric type as the metric. Thus, viewing it as a
mappingTmM → T∗

mM andusingg−1 : T∗
mM → TmM ,we candefine a scalar onM .

Definition 2.3.10 (Scalar curvature) Let (M, g) be a pseudo-Riemannian manifold
and let Ric be its Ricci tensor. The function

Sc : M → R , Sc(m) := tr(g−1 ◦ Ric)(m) (2.3.24)

is called the scalar curvature of (M, g). The corresponding equivariant function
S̃c : O(M) → R is called the scalar curvature mapping.

The scalar curvature corresponds to the first component in the decomposition
(2.3.21). The component corresponding to the third summand is called the Weyl
tensor. In Sect. 2.8, the above decomposition will be discussed in detail for the case
n = 4.

Remark 2.3.11 Denoting Ri j = Ric(ei , e j ) , we obtain the following local expres-
sions for the Ricci tensor and the scalar curvature,

Ri j = gkl Rki jl , Sc = gi jRi j . (2.3.25)

In particular, for a holonomic frame, we obtain

Ri j = ∂i Γ
l
jl − ∂ j Γ

l
il + Γ l

jmΓ
m
il − Γ l

imΓ
m

jl . (2.3.26)

21For k + l = 3, one obtainsK(o(k, l)) = R ⊕Σ2
0 . For k + l = 4, this result belongs to Singer and

Thorpe [592].
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For an orthonormal local frame, we have Ri j = ηkl Rki jl . This yields the following
useful formula

Ric(X,Y ) = ηklg(R(ek, X)Y, el) , X,Y ∈ X(M) . (2.3.27)

�

There is an important special class of Riemannian manifolds characterized by the
fact that their curvature has a trivial Σ2

0 -component in the decomposition (2.3.21).

Definition 2.3.12 (Einstein manifold) A (pseudo-)Riemannian manifold (M, g) is
called Einstein if its Ricci tensor is a constant multiple of the metric at each point of
M .

Note that for an n-dimensional Einstein space (M, g) we have

Ric = Sc

n
g , (2.3.28)

where Sc is constant. In Sect. 2.5, we will see a large class of Einstein manifolds.
In the next step, we show which impact the above additional structures have on

the analysis of the Berger criteria in the metric case. For a chosen orthonormal frame
u0 ∈ Pu0(Γ ), let us consider the holonomy bundle Pu0(Γ ) ⊂ O(M). Let us denote

H = Hu0(Γ ) , h = hu0(Γ ) .

On Pu0(Γ ), the curvature takes values in h ⊂ o(k, l) ∼= ∧2
(V ∗). This fact, together

with (2.3.19), implies the following.

Proposition 2.3.13 For any point u ∈ Pu0(Γ ), the Riemann curvatureR(u) belongs
to the space

K(h) = ker ϕ ∩ S2(h) . (2.3.29)

�

It turns out that for many subgroups H ⊂ O(k, l), the restriction of ϕ to S2(h) is
injective. This implies K(h) = 0 and, thus, h = 0. Then, the first Berger criterion
implies that, in this case, H cannot occur as a holonomy group.

In the same way, the covariant derivative DR may be dealt with. By the above
discussion, we have the following.

Proposition 2.3.14 For any point u ∈ Pu0(Γ ), the covariant derivative of R(u)
takes values in

K1(h) = ker δ′ ∩ (
V ∗ ⊗ K(h)

)
, (2.3.30)

where δ′ : V ∗ ⊗ K1(o(k, l)) → ∧3V ∗ × o(k, l), cf. formula (2.3.7). �
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As already mentioned above, the condition K1(h) = 0 distinguishes a special class
of possible candidates. By Proposition 2.3.4, in this case the Riemannian manifold is
necessarily locally symmetric.We exclude this class of spaces for awhile, postponing
its presentation to Sect. 2.5.

Finally, we show that we may limit our attention to the case where the repre-
sentation of the holonomy group H on V ≡ R

n is irreducible. We consider the
Riemannian metric case and comment on the pseudo-Riemannian case at the end.
Under this assumption, the holonomy group is a subgroup of O(n). Let us assume,
on the contrary, that the representation of H is reducible, that is, there exists a proper
subspaceW ⊂ V invariant under H . Since we assume that η be definite, there exists
an invariant orthogonal complement W⊥ ⊂ V . Proceeding further in this manner,
we obtain an invariant orthogonal decomposition

V = W0 ⊕ W1 ⊕ . . .⊕ Wk , (2.3.31)

with W0 carrying the trivial representation22 (acting as the identity) and Wk carry-
ing nontrivial irreducible representations of H for all k ≥ 1. The following theorem
belongs to de Rham [150]. It simplifies the holonomy classification problem essen-
tially.

Theorem 2.3.15 (de Rham Splitting Theorem) Let (M, g) be a Riemannian man-
ifold. If the holonomy group H acts reducibly on R

n, then the restricted holonomy
group23 H 0 of (M, g) is isomorphic to a product,

H 0 = {e} × H1 × . . .× Hk ,

and M is locally isomorphic to a product of Riemannian manifolds,

M0 × M1 × . . .× Mk ,

with M0 being flat.

Proof By the above discussion, R : O(M) → ∧2V ∗ ⊗ o(n) and R(u)(x, y) takes
values in h ≡ hu0(Γ ), for any u ∈ Pu0(Γ ) and any x, y ∈ V . Since the decomposition
(2.3.31) is invariant, we have

R(u)(x, y)�W0 = 0 , R(u)(x, y)�Wi ⊂ Wi , (2.3.32)

for 1 ≤ i ≤ k. We decompose x = ∑
xi and y = ∑

yi with respect to (2.3.31) and
insert this decomposition intoR(u)(x, y). This yields

R(u)(x, y) =
∑

i

R(u)(xi , yi )+
∑

i 	= j

R(u)(xi , y j ) .

22Clearly, W0 may be zero.
23By Theorem 1.7.9, this is the identity connected component of H .

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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By (2.3.12) and (2.3.32), we have R(u)(Wi ,Wj )Wk = 0 for i, j and k pairwise
distinct. Next, consider the case i = j 	= k. Then, again by (2.3.12),

R(u)(xi , yi )zk = 0 , R(u)(yi , zk)xi = −R(u)(zk, xi )yi .

The first of these equations impliesR(u)(Wi ,Wi )Wk = 0 for i 	= k. Using (2.3.11),
from the second equation we obtain

η
(
R(u)(zk, xi )yi , xi

) = η
(
R(u)(zk, yi )xi , xi

) = η
(
R(u)(xi , xi )zk, yi

)
,

and the anti-symmetry of R implies R(u)(Wk,Wi )Wi = 0 for i 	= k. We conclude

R(u)(x, y) =
∑

i

R(u)(xi , yi ) .

Now, according to the equivariance of R, as u ranges over π−1(m) ∩ Pu0(Γ ) and
x, y over V , for every i , the mappingsR(u)(xi , yi ) span an ideal hi (m) ⊂ End(Wi )

of h. Finally, varying m yields ideals hi and, by (2.3.1), the decomposition

h = h1 ⊕ . . .⊕ hk .

This proves the first assertion. To prove the second assertion, first note that the
splitting (2.3.31) induces a splitting of the horizontal distribution Γ on Pu0(Γ ),

Γ = Γ1 ⊕ . . .⊕ Γk , Γi := Γ ∩ θ−1(Wi ) .

By H -equivariance, this splitting induces a family of distributions Di = π ′(Γi ) on
M such that

TM = D1 ⊕ . . .⊕ Dk .

Moreover, corresponding to (2.3.31), let us decompose

θ = θ1 + . . .+ θk , ω = ω1 + . . .+ ωk , Ω = Ω1 + . . .+Ωk ,

with θi ∈ Ω1(Pu0(Γ ))⊗ Wi and ωi , Ωi ∈ Ω∗(Pu0(Γ ))⊗ hi . We define the distri-
butions

Γ̂i := Γi ⊕ Vi

on Pu0(Γ ), with Vi being the vertical distribution spanned by the Killing vector fields
generated fromelements ofhi . Clearly,Γi is spannedby thehorizontal standardvector
fields generated by any basis ofWi . Thus, Γ̂i annihilates both θ j , ω j , andΩ j for any
j 	= i and, by point 2 of Remark 2.1.14 and (1.4.5), for every i the distribution Γ̂i is
involutive. Consequently, by the Frobenius Theorem, it is integrable and, for every
i , we have

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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dθi + ωi ∧ θi = 0 , Ωi = dωi + 1

2
[ωi , ωi ] . (2.3.33)

Let Pi ⊂ Pu0(Γ ) be an integral manifold of Γ̂i . Integrability of Γ̂i clearly induces
integrability of Di and the integral manifoldsUi of Di fulfilUi = π(Pi ) ⊂ M . More-
over, for every i , the restriction πi : Pi → Ui of π defines a principal Hi -bundle and,
by (2.3.33), ωi is a torsion-free connection on Pi with restricted holonomy group Hi .

To summarize, for every m ∈ M , there exists a neighbourhood U ∼= U1 × . . .×
Uk of m in M , with the Ui being integral manifolds of Di , and the Levi-Civita
connection restricted to U being a product of the Levi-Civita connections on the
components Ui . �

Definition 2.3.16 A Riemannian manifold (M, g) which is locally isomorphic to a
product of Riemannian manifolds is called locally reducible. It is called irreducible
if it is not locally reducible.

Clearly, by Theorem 2.3.15, if (M, g) is irreducible, then the restricted holonomy
group necessarily acts irreducibly. Under additional assumptions, de Rham [150]
was able to prove the following global version of Theorem 2.3.15.

Theorem 2.3.17 (Global de Rham Splitting Theorem) Let (M, g) be a geodesically
complete simply connected Riemannian manifold and assume that the holonomy
group24 of the Levi-Civita connection acts reducibly. Then, (M, g) is the direct prod-
uct of geodesically complete simply connected irreducible Riemannian manifolds
(Mi , gi ),

(M, g) = (M0, g0)× (M1, g1)× . . .× (Mk, gk) .

Here, (M0, g0) is a Euclidean vector space whose dimension is possibly zero. �

Remark 2.3.18 Both versions of the de Rham Splitting Theorem have been extended
to the case of an indefinite metric by Wu [682, 683]. �

Summarizing our discussion, for finding the possible holonomy groups of a Rie-
mannian manifold (M, g), it is reasonable to make the following assumptions:

(a) M is simply connected. This ensures that the holonomy group is connected and
that it coincides with the restricted holonomy group.

(b) (M, g) is irreducible. This implies that the holonomy group acts irreducibly.
(c) (M, g) is not locally symmetric. This requires K1(h) 	= 0.

Under these assumptions, for the Riemannian case, Berger obtained the following.

Theorem 2.3.19 (Berger) Let (M, g) be an n-dimensional simply connected irre-
ducible Riemannian manifold which is not locally symmetric. Then, its holonomy
group H belongs to one of the following classes:

24ByRemark 1.7.11, ifM is simply connected, then the holonomygroup and the restricted holonomy
group coincide.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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1. H = SO(n), n ≥ 2, (generic Riemannian manifold)

2. H = U(m), n = 2m ≥ 4, (generic Kähler manifold)

3. H = SU(m), n = 2m ≥ 4, (special Kähler manifold)

4. H = Sp(m) · Sp(1), n = 4m ≥ 8, (quaternionic Kähler manifold)

5. H = Sp(m), n = 4m ≥ 8, (Hyper-Kähler manifold)

6. H = G2, n = 7, (special holonomy)

7. H = Spin(7), n = 8, (special holonomy). �

For the proof, which is beyond the scope of this book, we refer to [68, 69, 555].

Remark 2.3.20

1. An elegant proof of Theorem 2.3.19 is obtained from the following result of
Simons [591]: if M is irreducible, then either the holonomy group H acts tran-
sitively on Sn−1 or its identity component acts trivially on the space of curvature
tensors K(h). Then, Theorem 2.3.19 is obtained by using the classification of
simple Lie algebras and their representations.

2. According to Examples 2.2.22 and 2.2.27, it was clear from the beginning
that the groups SO(n) and U(n) must occur in the above list. For a detailed
discussion of examples for all the groups occuring in Theorem 2.3.19, we refer
to [555]. �

Exercises

2.3.1 Show that the commutators of horizontal standard vector fields corresponding
to a torsion-free connection are vertical.

2.3.2 Confirm the equivariance property (2.3.14). Hint: Under the identification
o(n) ∼= (Rn)∗ ∧ (Rn)∗, the adjoint representation is mapped onto the second exterior
power of the dual of the basic representation.

2.3.3 Show that, in terms of the Riemann curvature R, the Bianchi identity (2.1.16)
reads

(∇XR)(Y, Z)+ (∇YR)(Z , X)+ (∇ZR)(X,Y ) = 0 . (2.3.34)

2.4 Sectional Curvature

In this section, we discuss a generalization of the classical Gaussian curvature of
surfaces in R

3. It reduces the study of the Riemann curvature to the study of real
valued functions. Let (M, g) be a pseudo-Riemannian manifold. Let Σm ⊂ TmM
be a 2-dimensional subspace such that g�Σm

is non-degenerate. Let {X,Y } be an
arbitrary basis of Σm . We put

K(Σm) := 〈R(X,Y )Y, X〉
‖ X ‖2‖ Y ‖2 −〈X,Y 〉2 , (2.4.1)
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where ‖ · ‖2 and 〈·, ·〉 are the quadratic form and the bilinear form, respectively,
induced from g. It can be easily shown that K(Σp) is well defined, that is,

(a) the right hand side of (2.4.1) does not depend on the choice of the basis. This is a
simple consequence of the symmetry properties of R given by point 2 of Remark
2.3.7 and is, thus, left to the reader (Exercise 2.4.1).

(b) Σm is non-degenerate iff ‖ X ‖2‖ Y ‖2 −〈X,Y 〉2 	= 0, (Exercise 2.4.2).

Note that K may be viewed as a mapping from the Graßmann manifold G2(TmM)

to R. Let G0
2(TmM) ⊂ G2(TmM) be the subset of non-degenerate subspaces.

Definition 2.4.1 The mapping K : G0
2(TmM) → R given by (2.4.1) is called the

sectional curvature of the pseudo-Riemannian manifold at m ∈ M .

Clearly, in the Riemannian case, every 2-dimensional subspace of TmM is non-
degenerate.

Proposition 2.4.2 The curvature tensorR is completely determined by the sectional
curvature. If the mapping K is constant, that is, K(Σm) = k(m) for every Σm ∈
G0

2(TmM), then
Rm(X,Y )Z = k(m)

(〈Y, Z〉X − 〈X, Z〉Y )
. (2.4.2)

Conversely, if (2.4.2) is fulfilled, then all non-degenerate planes have sectional cur-
vature k(m).

Proof The proof of the first assertion is the consequence of the following simple
polarization argument. Denote α(X,Y ) := 〈R(X,Y )X,Y 〉, for any X,Y ∈ TmM .
Then, by direct inspection,

−6〈R(X,Y )Z ,W 〉 = α(X + W,Y + Z)− α(X + W,Y )− α(X + W, Z)

− α(X,Y + Z)− α(W,Y + Z)+ α(X, Z)+ α(W,Y )

− α(Y + W, X + Z)+ α(Y + W, X)+ α(Y + W, Z)

+ α(Y, X + Z)+ α(W, X + Z)− α(Y, Z)− α(W, X) ,

showing that R is determined by α and, thus, by K. We prove the second statement.
For that purpose, denote

R0(X,Y )Z := 〈Y, Z〉X − 〈X, Z〉Y .

Note that R0 shares the symmetry properties (2.3.9), (2.3.10) and (2.3.12) of R.25

Assume that K(Σm) = k(m) for all non-degenerate planes. If X,Y span a non-
degenerate plane, then by (2.4.1),

〈R(X,Y )Y, X〉 = k(m)
(〈Y,Y 〉X − 〈X,Y 〉Y ) = 〈k(m)R0(X,Y )Y, X〉 .

25It also shares the symmetry property (2.3.11), but this is not needed here.
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Thus, the tensor R̂ := R − k(m)R0 has the above symmetry properties and fulfils

〈R̂(X,Y )Y, X〉 = 0 . (2.4.3)

If X and Y span a degenerate plane, we can choose sequences Xn → X and Yn → Y
of tangent vectors such that Xn and Yn span non-degenerate planes for each n.26

Then, 〈R̂(Xn,Yn)Yn, Xn〉 = 0 for all n and, thus, (2.4.3) holds for degenerate planes
as well. Finally, note that this equation is also true for pairs X,Y which are linearly
dependent. We conclude that (2.4.3) holds for all X,Y ∈ TmM . Now, the assertion
is a consequence of the following simple algebraic fact (Exercise 2.4.3): If

R̃ : TmM × TmM × TmM × TmM → R

is a quadrilinear mapping sharing the symmetry properties (2.3.9), (2.3.10) and
(2.3.12) of R, then 〈R̃(X,Y )Y, X〉 = 0 implies R̃ = 0.

The converse statement is trivial. �

Proposition 2.4.2 leads us to an important class of pseudo-Riemannian manifolds.

Definition 2.4.3 If K(Σm) = k(m) for every Σm ∈ G0
2(TmM), then we say that

(M, g) is a space of constant curvature at m. Let k be a real number. We say that
(M, g) is a space of constant curvature k if K(Σm) = k at every point m ∈ M .

Remark 2.4.4

1. By the proof of Proposition 2.4.2, for a space of constant curvature, we have

R(X,Y )Z = k
(〈Y, Z〉X − 〈X, Z〉Y )

, k ∈ R . (2.4.4)

2. By a theorem of Schur, see Theorem 2.2. in Chap. V of [381], if (M, g) is a space
of constant curvature at every point of M and dim M ≥ 3, then M is a space of
constant curvature, that is, the mapping m → k(m) is constant.

3. It is not hard to construct models of spaces of constant curvature. The simplest
Riemannian example is the n-sphere of radius r embedded in the standard way
in R

n+1. This is a space of constant curvature equal to 1
r2 . The simplest pseudo-

Riemannian model is the pseudo-Euclidean space (Rn
s , g

n
s ) with the signature

(n − s, s). It is easy to show that this is a space of constant curvature equal to
0. In Sect. 2.5, we will see a large class of spaces of constant curvature. For an
exhaustive presentation of this subject we refer to [676].

4. In the indefinite case, there is a lot of subtleties and there is quite a number of
classical papers on that subject, see [63, 145, 257, 395, 490] and further references
therein. �

26By property (b) above, in any fixed basis of TmM , ‖ X ‖2‖ Y ‖2 −〈X, Y 〉2 is a polynomial in the
components of X and Y whose zero set does not contain any open subset.
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Exercises

2.4.1 Prove that (2.4.1) does not depend on the choice of the basis.

2.4.2 Show that the restriction of a pseudo-Riemannian metric to a 2-dimensional
subspace Σm ⊂ TmM is non-degenerate iff ‖ X ‖2‖ Y ‖2 −〈X,Y 〉2 	= 0.

2.4.3 Prove the following. If R̃ : TmM × TmM × TmM × TmM → R is a quadri-
linear mapping sharing the symmetry properties (2.3.9), (2.3.10) and (2.3.12) of R,
then 〈R̃(X,Y )Y, X〉 = 0 implies R̃ = 0.

2.5 Symmetric Spaces

In this section, we take up the discussion from Sect. 2.3. We analyze the special case
K1(h) = 0, that is, we analyze the condition

DR = 0 , (2.5.1)

defining locally symmetric manifolds, cf. Definition 2.3.2. Thus, we give up assump-
tion (c) prior to Theorem 2.3.19, but we keep on assuming the following.

(a) M is simply connected, which ensures that the holonomy group H is connected
and that it coincides with the restricted holonomy group.

(b) (M, g) is irreducible, which implies that H acts irreducibly.

Moreover, as above, we limit our attention to the Riemannian metric case, that is,
H ⊂ O(n) is a compact Lie subgroup acting irreducibly on V ≡ R

n . Then, by the
Holonomy Principle, cf. Proposition 1.7.20, the space of parallel sections of

E = O(M)×O(n) S
2
(∧2V ∗

)

is in one-to-one correspondence with the space of holonomy-invariant vectors in

S2
(∧2V ∗

)
as follows.AnyR satisfying (2.5.1) is constant on Pu0(Γ ) and, restricted

to Pu0(Γ ), it takes values in K(h) given by (2.3.29). Thus, the Holonomy Principle
assigns toR the H -invariant element

F := R(u) ∈ K(h), u ∈ Pu0(Γ ) . (2.5.2)

Lemma 2.5.1 Let H ⊂ O(n) be a closed subgroup and let F ∈ K(h) be an H-
invariant element. Then, g = h ⊕ V carries the structure of a Lie algebra given
by

[A, x] = −[x, A] = Ax , [x, y] = −F(x, y) , A ∈ h , x, y ∈ V .

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Proof Bilinearity and anti-symmetry are obvious. We prove that the Jacobi identity
holds. For that purpose, we have to consider three cases:
(a) Let x, y, z ∈ V . Since F(x, y) ∈ h ⊂ End(V ), the definition of K(h) implies

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 .

(b) Let x, y ∈ V . By the H -invariance of F , cf. (2.1.25), we have

F(x, y) = Ad(a−1) ◦ F(ax, ay) , a ∈ H ⊂ O(n) .

Differentiating this equation, we obtain

[F(x, y), A] + F(Ax, y)+ F(x, Ay) = 0

for any A ∈ h. This implies

[[x, y], A] + [[y, A], x] + [[A, x], y] = 0 .

(c) Let x ∈ V and A, B ∈ h. Then, by definition of the Lie bracket of h ⊂ End(V ),

[A, B](x) = A(Bx)− B(Ax) .

This proves the third case. �

To make contact with the standard notation, we denote V = m. Then,

g = h ⊕ m (2.5.3)

and the commutation relations of g fulfil:

[h, h] ⊂ h , [h,m] ⊂ m , [m,m] ⊂ h . (2.5.4)

Moreover, by the Ambrose-Singer Theorem,

[m,m] = h . (2.5.5)

Associated with the decomposition (2.5.3), there is a linear mapping

λ : g → g , λ(A, x) := (A,−x) , A ∈ h , x ∈ m . (2.5.6)

By (2.5.4), λ is an involutive Lie algebra homomorphism (Exercise 2.5.1). Con-
versely, we have the following.

Lemma 2.5.2 Any involutive Lie algebra homomorphism λ of a Lie algebra g
induces a decomposition g = h ⊕ m fulfilling (2.5.4).
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Proof Since λ2 = id, λ is diagonalizable and we may decompose g into the
eigenspaces h and m of λ corresponding to the eigenvalues +1 and −1, respec-
tively. Now, the first relation in (2.5.4) is obvious. To check the remaining two, we
calculate

λ([A, x]) = [λ(A), λ(x)] = −[A, x] , A ∈ h , x ∈ m ,

that is, [A, x] ∈ m. Similarly, λ([x, y]) = [x, y] ∈ h for any x, y ∈ m. �

Definition 2.5.3 Let g be a Lie algebra and let λ be an involutive automorphism of
g. Then, the pair (g, λ) is called a symmetric Lie algebra. In addition,

1. if the set of fixed points h of λ is a compactly embedded Lie subalgebra27 of g,
then (g, λ) is called an orthogonal symmetric Lie algebra,

2. if h ∩ z = {0}, where z is the center of g, then (g, λ) is called effective.
3. if (g, λ) is effective and ad([m,m]) acts irreducibly on m, then (g, λ) is called

irreducible.

Proposition 2.5.4 The Lie algebra g constructed in Lemma 2.5.1, endowed with the
involutive automorphism λ given by (2.5.6), is an irreducible orthogonal symmetric
Lie algebra.

Proof By construction, (g, λ) is symmetric. Since, by assumption, H ⊂ O(n) is a
compact Lie subgroup acting faithfully on R

n , ad(h) is compact and, thus, (g, λ) is
orthogonal. Suppose A ∈ h ∩ z. Then,

Ax = [A, x] = 0

for every x ∈ m and, thus, A = 0. Thus, (g, λ) is effective. Finally, by assumption,
H acts irreducibly on m. Thus, ad(h) acts irreducibly on m, too. This, together with
(2.5.5) implies that (g, λ) is irreducible. �

In the sequel, the pair (g, λ) constructed abovewill be called the canonical symmetric
Lie algebra associated with the locally symmetric Riemannian manifold we started
with. The decomposition (2.5.3) will be called the canonical decomposition of (g, λ).

The following proposition characterizes irreducible symmetric Lie algebras.

Proposition 2.5.5 Let (g, λ) be an irreducible symmetric Lie algebra and let g =
h ⊕ m be the decomposition induced by λ. Then, one of the following cases occurs:

1. g is a simple Lie algebra.
2. g = g̃ ⊕ g̃ with g̃ simple, fulfilling h = {

(A, A) : A ∈ g̃
}
and λ(A, B) = (B, A)

for any A, B ∈ g̃.
3. [m,m] = 0.

For the proof we refer the reader to [381].28

27That is, the group of transformations of g generated by ad(h) is compact.
28Cf. Proposition 7.5 in Vol. 2, Chap. XI of [381].
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Remark 2.5.6

1. Assume that either point 1 or point 2 of Proposition2.5.5 holds. Then, since
[m,m] ⊕ m is an ideal in g, we have h = [m,m]. Thus, an effective symmetric
Lie algebra is irreducible iff h = [m,m], that is, iff g is of the form described
either by point 1 or by point 2. In particular, if (g, λ) is irreducible, then g is
semisimple.

2. Conversely, if (g, λ) is an orthogonal symmetric Lie algebra and g is simple, then
ad(h) acts irreducibly on m, see Proposition 7.4 in Vol. 2, Chap. XI of [381]. �

Proposition2.5.5 and property (2.5.5) imply that the canonical symmetric Lie algebra
(g, λ) is semisimple. Consequently, by Proposition I/5.4.10, the Killing form

k : g × g → R , k(X,Y ) = tr(ad(X)ad(Y )) ,

of g is non-degenerate. Moreover, the relations (2.5.4) imply that the decomposition
(2.5.3) is orthogonal with respect to k (Exercise 2.5.2). Equivalently, k is λ-invariant.
This implies that the restrictions kh and km of k to h and m, respectively, are both
non-degenerate and λ-invariant, too. Moreover, they have the following properties:

(a) By Corollary I/5.5.8, kh is negative semidefinite and, since (g, λ) is effective, it
is negative definite.

(b) Since ad(h) acts irreducibly onm and since both km and the scalar product η on
m induced from the metric g are ad(h)-invariant, by Schur’s Lemma, they must
be proportional to each other,

η(x, z) = −c km(x, z) , x, z ∈ m , c ∈ R , c 	= 0 . (2.5.7)

Thus, since η is positive definite, km is either positive or negative definite.

Definition 2.5.7 An effective orthogonal symmetric Lie algebra (g, λ)with g semi-
simple is said to be of compact or of non-compact type, if the restriction of theKilling
form of g to m is, respectively, negative definite or positive definite.

Remark 2.5.8 Combining Proposition 2.5.5 with Propositions 7.4 and 7.5 in in Vol.
2, Chap. XI of [381], one can show that any irreducible orthogonal symmetric Lie
algebra is either of compact or of non-compact type. �

Next, we show that, given an irreducible orthogonal symmetric Lie algebra (g, λ),
one can construct a special type of homogeneous Riemannian manifold.

Let g = h ⊕ m be the decomposition induced from λ. Let G̃ be the connected
simply connected Lie group with Lie algebra g and let H̃ be the connected Lie
subgroup corresponding to h. Then, the space of left cosets M := G̃/H̃ is a simply
connectedmanifold endowedwith the natural left G̃-action given by left translations.
Let

Z̃ =
{
g ∈ G̃ : g(m) = m for all m ∈ M

}
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be the kernel of this action. Since, by assumption, (g, λ) is effective, Z̃ must be
discrete. Thus, M is an almost effective G̃-manifold. We pass to an effective action
by setting G := G̃/Z̃ and H := H̃/Z̃ . Then, M = G/H , G and H are connected,
and we have the natural left effective action

δ : G × G/H → G/H , (a, [g]) �→ δa([g]) := [ag] .

By point 4 of Example 1.1.4, the natural projection π : G → M endows G with
the structure of a principal H -bundle P and the tangent mapping π ′ identifiesm and
T[1]M as vector spaces. Under this identification, the isotropy representation

H → Aut(T[1]M) , h �→ (δh)
′
1 ,

is given by Ad(H) acting on m, cf. point 1 of Remark I/6.2.10. Correspondingly,

G ×Ad(H) m → TM , [(a, x)] �→ [L′
a(x)], (2.5.8)

is an isomorphism. Since (g, λ) is orthogonal and irreducible, there exists an Ad(H)-
invariant scalar product η on m which is unique up to a positive factor. Clearly, η
induces an H -invariant scalar product on T[1]M which, using the leftG-action δ, can
be extended to a G-invariant Riemannian metric g on M . To summarize, we have
constructed a simply connected transitive and effective G-manifold (M, g) with G
acting by isometries.

Consider the bundle of orthonormal frames O(M) of (M, g). Note that any η-
orthonormal basis (e1, . . . , en)ofm induces viaπ ′ ag-orthonormal frame (e1, . . . , en)
at [1] ∈ M and, thus, an injective bundle morphism

ϑ : P → O(M) , ϑ(a) := (δ′
a(e1), . . . , δ

′
a(en)) , (2.5.9)

projecting onto the identical diffeomorphism of M . The corresponding Lie group
homomorphism τ : H → O(n) ⊂ GL(n,R) ∼= Aut(TmM) is given by the adjoint
action of H on m ∼= T[1]M . To summarize, P is a subbundle of O(M).

Now, decompose theMaurer–Cartan form θG ∈ Ω1(G, g)with respect to (2.5.3):

θG = θh + θm .

By Example 1.3.19, θh coincides with the canonical G-invariant connection29 ωc on
P . Recall that the corresponding horizontal distribution is generated by m, that is,
by left invariant vector fields a �→ (x∗)a = L ′

a(x) with x ∈ m.

Lemma 2.5.9 Under the morphism (ϑ, τ ), θm corresponds to the soldering form θ

on O(M), that is, ϑ∗θ = θm.

29Note that this is a special case of the canonical invariant connection defined in point 2 of Remark
1.9.14. It is obtained by setting G = H and λ = id there.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Proof Bym-valuedness of θm and horizontality of θ , both ϑ∗θ and θm vanish on the
left invariant vector fields generated by elements of h. Thus, let x∗ be generated by
x ∈ m. Then, clearly θm(x∗) = x. On the other hand,

(ϑ∗θ)g(x∗) = ϑ(g)−1(ρ ′ ◦ ϑ ′(x∗)) = ϑ(g)−1(π ′(x∗)) = ϑ(g)−1(δ′
g ◦ π ′(x)) = x ,

where ρ : O(M) → M is the canonical projection. �

Proposition 2.5.10 The Riemannian manifold (M, g) has the following properties:

1. Under the morphism (ϑ, τ ), the Levi-Civita connection ω0 of (M, g) corresponds
to the canonical connection ωc, that is, ϑ∗ω0 = ωc.

2. The Riemann curvature of (M, g) is constant and given by the linear mapping

F : ∧2m → h , F(x, y) = −[x, y] . (2.5.10)

3. The holonomy group based at ϑ(1) ofω0 is H and the holonomy bundle coincides
with P.

4. The Riemann curvature of (M, g) is parallel, that is, (M, g) is locally symmetric.
5. For any x ∈ m, t �→ π(Lg exp(tx)) is a geodesic through [g] ∈ M. Conversely,

every geodesic through [g] is of this form. In particular, M is geodesically com-
plete.

Proof 1. We decompose the commutator [θG, θG] ∈ Ω2(G, g) with respect to
(2.5.3). By (2.5.4),

[θG, θG]h = [θh, θh] + [θm, θm] , [θG, θG]m = 2[θh, θm] . (2.5.11)

Since the Levi-Civita connection is uniquely characterized by its covariant derivative
Dω0 on TM , it is enough to show that the covariant derivative Dωc induced by ωc

via the isomorphism (2.5.8) coincides with Dω0 . This is done by showing that the
extension of ωc to O(M) is metric and torsionless. By Proposition 1.2.6, we may
view any vector field X on M as an H -equivariant mapping X̃ : G → m and, thus,

Dωc X̃ = d X̃ + ad(ωc) ◦ X̃ = d X̃ + [θh, X̃ ] ,

cf. Eq. (1.4.2). Let η be the (unique up to a positive factor) Ad(H)-invariant scalar
product on m. By Ad(H)-invariance, we obtain

η(Dωc X̃ , Ỹ )+ η(X̃ , Dωc Ỹ ) = d(η(X̃ , Ỹ )) .

This shows that the extension of ωc to O(M) is metric. It remains to show that
this extension is torsionless: restricting the Maurer–Cartan equation to m and using
(2.5.11) we get

Dωcθm = dθm + [θh, θm] = 0 .

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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But, by Lemma 2.5.9, ϑ∗θ = θm and, thus, ϑ∗Θ = 0. By uniqueness of the
Levi-Civita connection, the assertion follows.

2. By the Structure Equation, the curvature form of ωc is given by30

Ωc = −1

2
[θm, θm] .

By point 1, ϑ∗Ω0 = Ωc. These two facts immediately imply (2.5.10).
3. By point 2 and by the Ambrose-Singer Theorem, the Lie algebra of the

holonomy group of ω0 is [m,m]. By point 1 of Remark 2.5.6, [m,m] = h and, thus,
the Lie algebra of the holonomy group ofω0 coincides with h. Since, by construction,
M is simply connected, the holonomy group of ω0 is connected and coincides with
the restricted holonomy group. On the other hand, since H is connected, too, we
obtain the assertion. It follows that P coincides with the holonomy bundle of ω0.

4. Since the curvature is constant on P and, thus, H -invariant, the Holonomy
Principle 1.7.20 implies the assertion.

5. By Proposition 2.1.22, the geodesics of (M, g) are given by the projections
of integral curves of horizontal standard vector fields on L(M). Since they are hor-
izontal, these curves may be chosen to lie in P . The restriction of B(y), y ∈ R

n ,
to P is given by the left-invariant vector field generated by x = yiei ∈ m, where
{ei } is a basis in m. Thus, here, the geodesics are given as projections of (global)
one-parameter subgroups t �→ exp(tx) and their left translates by arbitrary group
elements g ∈ G. �

By point 3 of Proposition 2.5.10, the irreducibility of (g, λ) implies that (M, g) is
irreducible. Together with points 4 and 5, this yields the following.

Corollary 2.5.11 (M, g) is a complete irreducible locally symmetric Riemannian
manifold. �

Next, we show that the involutive automorphism λ induces a special symmetry for
any point m ∈ M . Since any automorphism of a Lie algebra is the differential of a
unique automorphism of the corresponding simply connected Lie group,31 λ induces
a unique automorphism σ of G̃. By (2.5.6), it fulfils σ(H̃) = H̃ . Thus, σ descends
to an involutive diffeomorphism s : M → M . By construction,

s ′
[1] : T[1]M → T[1]M , s ′

[1](X) = −X . (2.5.12)

Thus, under the identification T[1]M = m, we have s ′
[1] = λ�m.

Lemma 2.5.12 The origin [1] of M is an isolated fixed point of s. Moreover, s is an
isometry of the Riemannian metric g.

30Since ωc is a G-invariant connection, this is a special case of point 4 of Remark 1.9.14.
31For a proof, see e.g. Theorem 3.27 in [652].

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Proof The proof of the first assertion is left to the reader (Exercise 2.5.4). To prove
the second statement, we have to show that the mapping

s ′
m : TmM → TmM

is isometric. For the point m = [1], this follows immediately from (2.5.12), because
at the origin g coincides with η and the latter is λ-invariant. To prove the invariance
for an arbitrary point m = [g], note that for any g, h ∈ G,

s(δg[h]) = s([gh]) = [σ(g)σ (h)] = δσ(g)[σ(h)] = δσ(g)s([h]) ,

that is, s ◦ δg = δσ(g) ◦ s. Differentiation of this identity yields

s ′
[g] ◦ (δg)′[1] = (δσ(g))

′
[1] ◦ s ′

[1] .

By construction, g is G-invariant and, thus, (δg)′[1] and (δσ(g))
′
[1] leave g invariant.

This yields the assertion. �

Remark 2.5.13 For every g ∈ Z̃ , we have
(
σ(g)

)
(m) = s ◦ g ◦ s(m) = s2(m) = m.

Hence, σ(Z̃) = Z̃ and σ descends to an automorphism of G, denoted by the same
symbol. One has σ(H) = H . �

Next, for any m = [g] ∈ M , we define32

sm : M → M , sm := δg ◦ s ◦ δg−1 . (2.5.13)

Differentiating (2.5.13), we obtain s ′
m = δ′

g ◦ s ′
[1] ◦ δ′

g−1 for anym = [g] ∈ M . Thus,
by Lemma 2.5.12, by formula (2.5.12) and by the G-invariance of g, for anym ∈ M ,
sm is an involutive isometry of g fulfilling (Exercise 2.5.5)

sm(m) = m , (sm)
′
m = − id . (2.5.14)

The following remark yields a geometric interpretation of the symmetry sm .

Remark 2.5.14 Let t → γ (t) be a geodesic of (M, g) with γ (0) = m. Since an
isometry transforms geodesics to geodesics, t �→ τ(t) := sm(γ (t)) is a geodesic,
too. By (2.5.14), its tangent vector at t = 0 satisfies

τ̇ (0) = (sm)
′
m γ̇ (0) = −γ̇ (0) . (2.5.15)

Now, the uniqueness property of geodesics, see Corollary 2.1.23, implies τ(t) =
γ (−t). Thus, for any m ∈ M ,

32Clearly, this definition does not depend on the choice of the representative.
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sm(γ (t)) = γ (−t) , (2.5.16)

that is, sm reverses the geodesics through m. �

Definition 2.5.15 (Riemannian globally symmetric space) A Riemannian manifold
(M, g) is called globally symmetric if for each m ∈ M there exists an involutive
isometry sm : M → M such that m is an isolated fixed point of sm . The mapping sm
is called the symmetry of (M, g) at m.

Taking into account that, in the above construction of (M, g), the scalar product on
m is unique up to a positive constant and that a change of this constant implies a
conformal transformation of g, we obtain the following.

Proposition 2.5.16 To any irreducible33 orthogonal symmetric Lie algebra (g, λ)
there corresponds a unique homothetic equivalence class (M, [g]) of simply con-
nected irreducible Riemannian globally symmetric spaces. �

It should be clear that the locally symmetric Riemannian manifold we started with
and the Riemannian globally symmetric space constructed here are deeply related.
Indeed, let (M, g) be a locally symmetric space. Let (g, λ) be its canonical symmetric
Lie algebra with canonical decomposition g = h ⊕ m. Let η ∈ S2(m∗) be the scalar
product onm defined by g and let F ∈ K(h) ⊂ ∧2m∗ ⊗ h be the Riemann curvature
of (M, g). Let G/H be the Riemannian globally symmetric space constructed from
(g, λ). Then, for any chosen point m ∈ M , via

TmM ∼= m ∼= T[1]G/H

we obtain an isometric isomorphism between TmM and T[1]G/H and, by point 2
of Proposition 2.5.10, M and G/H have the same Riemann curvature given by the
mapping F . By standard arguments,34 this implies the following.

Corollary 2.5.17 Every point of a locally symmetric space (M, g) admits a neigh-
bourhood isometric to a neighbourhood of the origin of the Riemannian globally
symmetric space constructed from the canonical symmetric Lie algebra of (M, g).

Note, however, that not every locally symmetric space is a Riemannian globally
symmetric space. It is even not necessarily homogeneous. As an example,35 let M
be a compact Riemann surface with genus ≥2, equipped with a Riemannian metric
of constant curvature equal to −1. Then, the isometry group of M is finite and, thus,
M is not homogeneous and, consequently, also not globally symmetric.

As an immediate consequence of the existence of the symmetries sm , we obtain

Proposition 2.5.18 Any Riemannian globally symmetric space (M, g) is complete.

33Remember that irreducibility includes effectiveness, cf. Definition 2.5.3.
34See Theorem 7.4 in Chap. VI of [381].
35This example is taken from [73].
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Proof Consider any geodesic t �→ γ (t) defined on the interval [0, t0[. Apply the
symmetry sγ (t0−ε) to γ with some ε fulfilling 0 < ε < t0

2 . By (2.5.16), this opera-
tion extends the domain of γ to [0, 2t0 − 2ε[. Continuing this procedure, we obtain
completeness of (M, g). �

Next, given a Riemannian globally symmetric space (M, g), for every geodesic
t �→ γ (t) we consider the family of isometries

T γ
t := sγ ( t

2 )
◦ sγ (0) , (2.5.17)

called the transvections along γ . The following properties are immediate conse-
quences of (2.5.15) and (2.5.16) and are, therefore, left to the reader (Exercise 2.5.3).

Proposition 2.5.19 Let (M, g) be a Riemannian globally symmetric space and let
t �→ γ (t) be a geodesic. Then,

1. T γ
t acts on γ by translations, that is, T γ

t (γ (s)) = γ (t + s).
2. (T γ

t )
′
γ (s) acts by parallel translation from γ (s) to γ (t + s) along γ , that is, for

any parallel vector field X along γ ,

(T γ
t )

′
γ (s)(X (γ (s)) = X (γ (t + s)) .

3.
{
T γ
t

}
t∈R is a 1-parameter group of isometries, that is, T γ

t+s = T γ
t ◦ T γ

s . �

Recall fromExample 2.2.16 that the isometry group I (M) of a Riemannianmanifold
M is a Lie group. Let us denote its identity component by I0(M). By point 3 of
Proposition 2.5.19, for any geodesic γ , the transvections T γ

t form a subgroup (called
the transvection group) of I0(M). On the other hand, by a classical theorem of Hopf
and Rinow,36 any two points of a complete Riemannian manifold may be joined by
a geodesic. Using these two facts, we obtain the following.

Corollary 2.5.20 Let (M, g) be a Riemannian globally symmetric space. Then,

1. Geodesics in M are images of 1-parameter groups of isometries.
2. The identity component I0(M) acts transitively on M. �

Proposition 2.5.21 Let (M, g) be an irreducible Riemannian globally symmetric
space and let G be a Lie group acting transitively and isometrically on M. If G acts
effectively, then G coincides with I0(M).

Proof Clearly, I0(M) is the largest connected group of isometries of (M, g). Denote
G ′ = I0(M) and let g′ be its Lie algebra. Conjugation by s defines an automorphism
σ ′ of G ′ which clearly restricts to the automorphism σ of G, cf. Remark 2.5.13. The
canonical decompositions g = h ⊕ m and g′ = h′ ⊕ m′ necessarily fulfil m′ = m.
Here h′ is the Lie algebra of the stabilizer of the chosen point on M under G ′. Thus,
by Remark 2.5.6,

36See, e.g. [352].
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h = [m,m] = [m′,m′] = h′ .

This implies g′ = g and, thus, G ′ = G. �

Thus, in the construction leading to Proposition 2.5.16, the Lie group G actually
coincides with I0(M). Now, we are able to prove the converse of Proposition 2.5.16.

Proposition 2.5.22 To any simply connected irreducible Riemannian globally sym-
metric space there corresponds a unique irreducible orthogonal symmetric Lie alge-
bra.

Proof Let (M, g) be a simply connected irreducible Riemannian globally symmetric
space. By Corollary 2.5.20, G = I0(M) acts transitively and effectively on M . Let
H be the isotropy group of this Lie group action at a chosen point o ∈ M . By the
homotopy sequence of the fibration H → G → G/H , the simply-connectedness of
G/H and the connectedness of G imply that H is connected. Moreover, by Theo-
rem 3.4 in Chap. VI of [381], the isotropy subgroup I (M)m at any point m ∈ M is
compact. Hence, H = G ∩ I (M)o is compact, too. Thus, M = G/H and, by stan-
dard arguments, π : G → M is a submersion. In particular, π ′ : T1G → ToM is an
H -equivariant surjective linear mapping whose kernel coincides with T1H .

Let s be the symmetry at o. Since s is an involutive diffeomorphism, the mapping
g �→ σ(g) := s ◦ g ◦ s−1 defines an involutive automorphismofG. Letg andh be the
Lie algebras ofG and H , respectively. Clearly,λ := σ ′ is an involutive automorphism
of g. Let m be the eigenspace of λ corresponding to the eigenvalue −1. By (2.5.14),
π ′(m) = ToM .We prove that h is the eigenspace ofλ corresponding to the eigenvalue
+1: let

Gσ := {g ∈ G : σ(g) = g}

be the fixed point set of σ . By (2.5.14), s ′
o commutes with the isotropy representation

of H at o and, thus, H is contained in Gσ . Conversely, if g ∈ Gσ , then it commutes
with s and, thus, for any 1-parameter subgroup t �→ gt of Gσ ,

s ◦ gt (o) = gt ◦ s(o) = gt(o) ,

that is, the orbit gt(o) is left invariant pointwise by s. Now, by Lemma 2.5.12, o is an
isolated fixed point. Thus, gt(o) must coincide with o. But, gt(o) = o implies that
the 1-parameter subgroup t �→ gt is contained in H . Since a connected Lie group is
generated by its 1-parameter subgroups, we have (Gσ )0 ⊂ H . Thus,

(Gσ )0 ⊂ H ⊂ Gσ .

This relation implies that h coincides with the (+1)-eigenspace of λ, indeed. To
summarize, the decomposition g = h ⊕ m is canonical with respect to λ, that is,
(g, λ) is a symmetricLie algebra. Since H is compact, ad(h) is a compactly embedded
Lie subalgebra of g, that is, (g, λ) is orthogonal. It remains to prove that (g, λ) is
irreducible. Since g is G-invariant, we are in the situation described by Proposition
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2.5.10. By this proposition, H coincides with the holonomy group of the Levi-Civita
connection of g. Thus, the irreducibility of (M, g), together with the effectiveness
of the action of G on M , implies the irreducibility of (g, λ). �

Remark 2.5.23 In the course of the above proof, we have found the following struc-
ture: a triple (G, H, σ ) fulfilling

1. G is a connected Lie group and H is a closed subgroup,
2. σ is an involutive automorphism of G such that (Gσ )0 ⊂ H ⊂ Gσ ,
3. Ad(H) is compact,

is called a Riemannian symmetric pair. This notion clearly constitutes a link between
symmetric spaces and symmetric Lie algebras. �

Combining Proposition 2.5.16 with Proposition 2.5.22, we obtain the following.

Theorem 2.5.24 The homothetic equivalence classes of simply connected irre-
ducible Riemannian globally symmetric spaces are in one-to-one correspondence
with the irreducible orthogonal symmetric Lie algebras. �

This theorem reduces the classification of symmetric spaces of the above type to the
classification of irreducible symmetric Lie algebras of compact or of non-compact
type. According to a beautiful duality,37 the problem further reduces to the classi-
fication of irreducible symmetric Lie algebras of the non-compact type. The latter
can be shown to be in one-to-one correspondence with the real simple Lie algebras
of non-compact type. If the complexification of such a Lie algebra is simple as a
complex Lie algebra, then M is said to be of type III, otherwise M is said to be
of type IV. The corresponding compact irreducible symmetric spaces are obtained
by duality and are referred to as of type I and II, respectively. The complete list of
simply connected irreducible symmetric spaces with symmetry group being a clas-
sical Lie group is given in Tables2.1 and 2.2.38 Here, SO0(p, q) denotes the identity
component of SO(p, q) and SO∗(2n) is the subgroup of SO(2n,C) satisfying

gTJ0g = J0 , gTg = 12n .

For the corresponding list with exceptional Lie groups we refer to the textbook
of Helgason [293]. As already mentioned, there the reader may find an exhaustive
presentation of the whole subject.

Remark 2.5.25 Note that in our considerations, we have excluded the class of sym-
metric Lie algebras fulfilling [m,m] = 0, cf. case 3 in Proposition 2.5.5. Symmetric
Lie algebras with this property are said to be of Euclidean type. By point 2 of Proposi-
tion 2.5.10, they are necessarily flat. One can show that if G/H is simply connected,

37See Sect. 8 of Chap. XI in [381] or Sect. 2 of Chap. V in [293].
38By definition, the rank is the dimension of some maximal Abelian subspace of m. Any two
maximal Abelian subspaces of m are Ad(H)-conjugate.
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Table 2.1 Classical symmetric spaces of types I and III

Type I Type III Dimension Rank

SU(n)/SO(n) SL(n,R)/SO(n) (n − 1)(n + 2)/2 n − 1

SU(2n)/Sp(n) SL(n,H)/Sp(n) (n − 1)(2n + 1) n − 1

SU(p + q)/S(U(p)× U(q)) SU(p, q)/S(U(p)× U(q)) 2pq min(p, q)

SO(p + q)/(SO(p)× SO(q)) SO0(p, q)/(SO(p)× SO(q)) pq min(p, q)

SO(2n)/U(n) SO∗(2n)/U(n) n(n − 1) [n/2]
Sp(n)/U(n) Sp(n,R)/U(n) n(n + 1) n

Sp(p + q)/(Sp(p)× Sp(q)) Sp(p, q)/(Sp(p)× Sp(q)) 4pq min(p, q)

Table 2.2 Classical symmetric spaces of types II and IV. For type II, see Proposition X.1.2 and
Sect. IV.6 in [293]

Type II Type IV Dimension Rank

SU(n + 1) SL(n + 1,C)/SU(n + 1) n(n + 2) n

Spin(2n + 1) SO(2n + 1,C)/SO(2n + 1) n(2n + 1) n

Sp(n) Sp(n,C)/Sp(n) n(2n + 1) n

Spin(2n) SO(2n,C)/SO(2n) n(2n − 1) n

then a symmetric space of this type is isometric to some Euclidean spaceRn . Clearly,
R

n itself provides the simplest example, with the symmetry at the origin given by
s : x → −x. �

Next, we show that Riemannian symmetric spaces provide Riemannian manifolds
of certain types met before. Recall that if (g, λ) is irreducible, then g is necessarily
semisimple and thus, the Killing form k is non-degenerate. As already noted, this
implies

η(x, z) = −c km(x, z) , x, z ∈ m , (2.5.18)

for some c ∈ R, c 	= 0, cf. (2.5.7). Recall from point 2 of Proposition 2.5.10 that the
curvature mapping R is given by the mapping F , cf. formula (2.5.10). Substituting
x = F(u, v)w into (2.5.18) and using the ad(h)-invariance of k, we obtain

η(F(u, v)w, z) = c km([[u, v],w], z) = c kh([u, v], [w, z]) . (2.5.19)

Setting x = u = z and y = v = w in (2.5.19), we immediately obtain the following
formula for the sectional curvature:

η(F(x, y)y, x) = −c kh([x, y], [x, y]) . (2.5.20)
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This yields useful formulae for the Ricci tensor and for the scalar curvature. For
any orthonormal basis {ei } of m,

Ric(ei , e j ) = −
∑

k

η([[ek, ei ], e j ], ek) , Sc = −
∑

k,l

η([[ek, el], el], ek) .
(2.5.21)

Proposition 2.5.26 Let (M, g) be an irreducible Riemannian globally symmetric
space and let (g, λ) be the corresponding irreducible orthogonal symmetric Lie
algebra.

1. If (g, λ) is of compact type, then (M, g) is a compact Einstein manifold with
non-negative sectional curvature and positive definite Ricci tensor.

2. If (g, λ) is of non-compact type, then (M, g) is a simply connected Einstein man-
ifold with non-positive sectional curvature and negative definite Ricci tensor.
Moreover, M is diffeomorphic to a Euclidean space.

Proof Let g = h ⊕ m be the canonical decomposition. By Theorem 2.5.24, G =
I0(M) acts transitively and effectively onM and g isG-invariant. Since kh is negative
definite, the statements about the sectional curvature K follow immediately from
(2.5.20). Since the Ricci tensor Ric is a symmetric ad(h)-invariant bilinear form on
m and since ad(h) acts irreducibly onm, Ricmust be proportional to the metric, that
is, (M, g) is an Einstein space.

1. Let (g, λ) be of compact type. Then, K is non-negative and, thus, Ric is semi-
positive definite. Since M is Einstein, Ric is either positive definite or zero. But if
Ric is zero, then (2.3.27) implies that Kmust also be zero, which contradicts the non-
degeneracy of k and, thus, the irreducibility of (g, λ). Finally, since km is negative
definite, k is negative definite and, since g is semisimple, G is compact. Thus, M is
compact.

2. Let (g, λ) be of non-compact type. Then, by similar arguments, M is Einstein
with negative definite Ricci tensor. The remaining statement follows from Theorem
8.3 in Chap. VIII of [381]. �

In the remainder of this section, we present the symmetric space structure of a few
of the types in Table2.1 explicitly. By Theorem 2.5.24, it is enough to exhibit the
corresponding symmetric Lie algebra structure. For a muchmore detailed discussion
of examples we refer to Chap. XI of [381] and to [692]. We leave it to the reader to
check the statements below (Exercise 2.5.6).

Example 2.5.27

1. Consider type I in lines 3, 4, and 7 of Table2.1. Lines 3 and 7 correspond to the
Graßmann manifolds

GK(k, n) ∼= UK(n)/(UK(n − k)× UK(k)) , K = C,H ,
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and line 4 corresponds to theGraßmannmanifold of oriented subspaces ofRp+q .39

The corresponding symmetric Lie algebra is given by

uK(p + q) = (uK(p)⊕ uK(q))⊕ m ,

where

uK(p)⊕ uK(q) =
{[

A 0
0 B

]
∈ uK(p + q) : A ∈ uK(p) , B ∈ uK(q)

}
,

m =
{[

0 −X†

X 0

]
∈ uK(p + q) : X ∈ L(Kp,Kq)

}
.

The action of Ad(H) on m is given by

X �→ hXk−1 , h ∈ UK(q) , k ∈ UK(p) ,

and the involutive automorphism λ acts via

[
A −X†

X B

]
�→

[
A X†

−X B

]
.

The corresponding involutive automorphism σ is given by conjugation with

1p,q =
[−1p 0

0 1q

]
. (2.5.22)

2. Consider the special case p = n and q = 1 for type I in line 4 of Table2.1:

Sn = SR(1, n + 1) = SO(n + 1)/SO(n) .

The underlying symmetric Lie algebra is given by

o(n + 1) = o(n)⊕ m , (2.5.23)

where

o(n) =
{[

0 0
0 A

]
∈ o(n + 1) : A ∈ o(n)

}
,

m =
{[

0 −xT

x 0

]
∈ o(n + 1) : x ∈ R

n

}
.

Then, Ad(SO(n)) gets identified with the basic representation of SO(n) on R
n

and, under the identification m ∼= R
n , the Euclidean scalar product on R

n yields

39Cf. Example I/7.5.6.
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a scalar product on m which coincides with the restriction of the Killing form on
o(n + 1) tom up to the factor−2(n − 1). The involutive automorphisms are read
off from the previous point.

3. Consider type I in line 5 of Table2.1. One easily shows that SO(2n)/U(n) is the
space of orthogonal complex structures on the 2n-dimensional Euclidean space.40

Here we decompose41

o(2n) = u(n)⊕ m ,

with

u(n) =
{[

X Y
−Y X

]
∈ o(2n) : X,Y ∈ gl(n,R) , X = −XT , Y = Y T

}
,

m =
{[

X Y
Y −X

]
∈ o(2n) : X,Y ∈ gl(n,R) , X = −XT , Y = −Y T

}
.

The involutive automorphism λ : o(2n) → o(2n) corresponding to this decom-
position is given by conjugation with the matrix

J0 =
[
0 −1
1 0

]
.

4. Consider type I in line 1 ofTable2.1. Recall fromSect. 7.6 of Part I thatU(n)/O(n)
is the space of Lagrangian subspaces of R2n endowed with its canonical sym-
plectic structure. Correspondingly, SU(n)/SO(n) is called the space of special
Lagrangian subspaces. Here, we decompose

su(n) = o(n)⊕ m ,

with

o(n) =
{[

X 0
0 X

]
∈ su(n) : X ∈ gl(n,R) , X = −XT , tr X = 0

}
,

m =
{[

0 Y
−Y 0

]
∈ su(n) : Y ∈ gl(n,R) , Y = Y T

}
.

Here, we have used the embedding u(n) ⊂ o(2n) from the previous point. Under
this embedding, the involutive automorphism λ : su(n) → su(n) is given by

[
X Y

−Y X

]
�→

[
X −Y
Y X

]
.

40Cf. Example I/7.5.5.
41Cf. Example 2.2.19.

http://dx.doi.org/10.1007/978-94-024-0959-8_7
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5. Consider type III in line 4 of Table2.1with p = 1, that is,M = SO0(1, n)/SO(n).
On the level of Lie algebras, we have to consider the pseudo-Euclidean space
(R1,n, η) with η = 11,n given by (2.5.22). Then,

o(n, 1) = {
X ∈ gl(n + 1,R) : XT11,n + 11,n X = 0

}
.

Embedding o(n) ⊂ o(1, n) via Y �→
[
1 0
0 Y

]
, we obtain the canonical decompo-

sition

o(1, n) = o(n)⊕ m , m =
{[

0 uT

u 0

]
∈ o(1, n) : u ∈ R

n

}
.

It is obvious that M may be identified with the hypersurface H+(1, n) ⊂ R
1,n

defined by
η(u,u) = −1 , u0 ≥ 1 .

Therefore, M is referred to as the hyperbolic space form of (R1,n, η). �

Remark 2.5.28 Consider the example of the n-sphere above. By Example 1.1.18,
under the identificationm ∼= R

n , the bundle of orthonormal frames O(Sn) coincides
with the principal SO(n)-bundle SO(n + 1) → SO(n + 1)/SO(n) and, by Propo-
sition 2.5.10, the Levi-Civita connection on Sn with respect to the natural metric
coincides with the SO(n + 1)-invariant canonical connection on this bundle. The
curvature (2.5.10) reads F(x, y) = x ∧ y . Comparing with (2.4.2), this shows that
Sn has a constant sectional curvature equal to 1. �

For applications of the theory of symmetric spaces in this book, see Sects. 6.8 and 7.9.

Exercises

2.5.1 Prove that λ defined by (2.5.1) is an involutive Lie algebra homomorphism.

2.5.2 Prove that the decomposition (2.5.3) is orthogonal with respect to the Killing
form.

2.5.3 Prove Proposition 2.5.3.

2.5.4 Prove Lemma 2.5.12.

2.5.5 Prove the following. For an involutive isometry s with isolated fixed point m,
one has s ′

m = − id. Hint. Use the eigenspace decomposition of s ′
m .

2.5.6 Check the statements in Example 2.5.27.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_7
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2.6 Compatible Connections on Vector Bundles

Here, we take up the discussion of Sect. 2.2. We consider real or complex vector
bundles endowed with a fibre metric h and an h-compatible connection ∇. Such a
structure will be denoted by (E, h,∇). In the first part, we will collect what we know
already for the case of real (pseudo-)Riemannian base manifolds (M, g), and in the
second part we will pass to complex base manifolds and Hermitean vector bundles
endowed additionally with a holomorphic structure.

First, recall Examples 2.2.19 and 2.2.27.
(a) O(k, l)-structures are in one-to-one correspondence with pseudo-Riemannian
manifolds (M, g)of dimension (k + l),where theO(k, l)-structure coincideswith the
bundle O(M) of frames which are orthonormal with respect to g. A linear connection
ω on M is compatible with the O(k, l)-structure iff g is parallel with respect to ω.
Such a connection is called metric.
(b) U(n)-structures are in one-to-one correspondence with 2n-dimensional almost
Hermitean manifolds (M, g, J) or, equivalently, with Hermitean fibre metrics on
TM relative to a given J. A linear connection ω on M is compatible with the U(n)-
structure iff both g and J are parallel with respect to ω. Such a connection is called
unitary. Equivalently, ω is unitary iff the Hermitean fibre metric h in TM defined by
g and J is parallel with respect to ω.

More generally, as we know from Examples 1.6.6 and 1.6.12, a connection ∇ on
a real or complex vector bundle (E, h) is compatible with h iff

∇h = 0 , (2.6.1)

which is equivalent to

X (h(s1, s2)) = h(∇Xs1, s2)+ h(s1,∇Xs2) , (2.6.2)

for any X ∈ X(M) and s1, s2 ∈ Γ∞(E). Since h may be viewed as a section of the
associated bundle L(E)×GL(n,K) F , where F denotes the space of fibre metrics,
(2.6.1) is equivalent to

Dωh̃ = 0 , (2.6.3)

whereω is the connection formon L(E) and h̃ : L(E) → F is theG-homomorphism
corresponding to ∇ and h, respectively. The metric h defines a reduction to the
subbundle of orthonormal frames

O(E) =
{
u ∈ L(E) : h̃(u) = h0

}
,

where h0 = 1p,q in the real and h0 = 1 in the complex case. By compatibility, ω
is reducible to O(E). In the (pseudo-)Riemannian case, the restriction of equation
(2.6.3) to O(E) reads (

ωT ⊗ 1 + 1 ⊗ ωT
)
(h0) = 0

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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and in the Hermitean case, we obtain

(
ωT ⊗ 1 + 1 ⊗ ωT

)
(h0) = 0 .

Thus, ∇ is h-compatible iff ω is metric or unitary for K = R or C, respectively.

Remark 2.6.1

1. By Proposition 1.3.7, O(E) admits a connection. Thus, every (pseudo-)
Riemannian or Hermitean vector bundle admits a compatible connection.

2. Using the isomorphisms given by (1.2.4) and by Proposition 1.6.7, we have

E ∼= L(E)×GL(k,K) K
k ∼= O(E)×G K

k ,

whereG = O(p, q) in the (pseudo-)Riemannian and G = U(k) in the Hermitean
case. Since h̃ is constant on O(E), without loss of generality, we can limit our
attention to the following setting. Let P(M,G) be a principal G-bundle over
an oriented (pseudo-)Riemannian manifold (M, g) and let E = P ×G F be an
associated vector bundle such that (F,G, σ ) is a finite-dimensional representation
space carrying a σ -invariant inner product 〈·, ·〉F . Then, 〈·, ·〉F induces a fibre
metric on E via

h(e1, e2) := 〈 f1, f2〉F , (2.6.4)

with e1 = [(p, f1)] and e2 = [(p, f2)]. By G-invariance of 〈·, ·〉F , this definition
does not depend on the choice of representatives. �

For the remainder, let us assume that M is a complex manifold. Recall that a com-
plex manifold of dimension n is a real manifold of dimension 2n endowed with an
equivalence class of holomorphic atlases.

Definition 2.6.2 A complex vector bundle E over a complex manifold M is called
holomorphic if E admits a system of local trivializations whose transition functions
are holomorphic.

Note that such a system of trivializations turns E into a complex manifold such that
the projection π : E → M is holomorphic. Also note that, since the composition of
anti-holomorphic mappings need not be anti-holomorphic, there is no notion of an
anti-holomorphic vector bundle.

Remark 2.6.3

1. For a complex manifold of complex dimension n, one can define the principal
GL(n,C)-bundle C(M) of complex linear frames in the same way as in the real
case, cf. Example 2.2.10. Correspondingly, any holomorphic vector bundle E of
rank k over M may be viewed as associated with its complex linear frame bundle
C(E), that is, E ∼= C(E)×GL(k,C) C

k .

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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2. As in the C∞-case, any functorial construction in linear algebra gives rise to
holomorphic vector bundles. In particular, one can build the dual bundle, direct
sums and tensor products, see [336] for details. �

The basic example of a holomorphic vector bundle is provided by the holomorphic
tangent bundle of a complex manifold M . Let (Ui , ϕi )i∈I be a holomorphic atlas of
M with transition mappings ϕi j and let zi be the complex coordinates corresponding
to ϕi . Consider the Jacobian

J (ϕi j )(ϕ j (z)) := ∂ϕk
i j

∂zl
(ϕ j (z))

of the transition mappings.

Definition 2.6.4 (Holomorphic tangent bundle) The holomorphic tangent bundle
of a complex manifold M of dimension n is the holomorphic vector bundle T M
over M of rank n given by the transition functions ψi j (z) = J (ϕi j )(ϕ j (z)).

The dual T ∗M of T M is called the holomorphic cotangent bundle. Clearly, { ∂
∂zk }

and {dzk} provide local frames in T M and T ∗M , respectively.
Let J be the natural almost complex structure of the complex manifold M , cf.

Proposition 2.2.11. Consider the decomposition (2.2.17) defined by J. It is easy
to see that T1,0M has the same transition functions as T M (Exercise 2.6.1). This
implies the following.

Proposition 2.6.5 If M is a complex manifold, then T1,0M is naturally isomorphic
to the holomorphic tangent bundle T M. �

Note that the induced tensor bundles
⊗p T1,0M and

∧kT1,0M are holomorphic,
whereas

∧kT0,1M is not holomorphic.
Next, recall the decomposition (2.2.18). For a complex vector bundle E over a

complex manifold M , letΩ p,q(M, E) be the space of E-valued (p, q)-forms on M .

Proposition 2.6.6 Let π : E → M be a holomorphic vector bundle. Then, there
exists a C-linear differential operator ∂E : Ω p,q(M, E) → Ω p,q+1(M, E) fulfilling

∂
2
E = 0 and the Leibniz rule

∂E ( f α) = ∂( f ) ∧ α + f ∂E (α) ,

for any function f on M and any α ∈ Ω p,q(M, E).

Proof Let (e1, . . . , ek) be a local holomorphic frame42 in E over U ⊂ M . Then,
locally, anyα ∈ Ω p,q(M, E)maybewritten asα = ∑

i αi ⊗ ei , withαi ∈ Ω p,q(M).
We define

42That is, every ei : U → E is a holomorphic mapping.
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∂Eα :=
∑

i

∂(αi )⊗ ei .

This definition is independent of the choice of frame. Indeed, let e′
i = g j

i e j be another
holomorphic frame. Then, the g j

i are holomorphic functions on M and

∂
′
Eα = ∂

′
E
(∑

i

α′
i ⊗ g j

i e j
) =

∑

i

∂α′
i ⊗ g j

i e j =
∑

i

∂(g j
iα

′
i )⊗ e j =

∑

i

∂(αi )⊗ e j .

Thus, ∂
′
Eα = ∂Eα. The remaining statements are now obvious. �

Themapping ∂ E is called theDolbeault operator. It gives rise to a cohomology theory,
see Example 5.7.25 and [336] for much more material.43 Now, let

∇ : Γ∞(E) → Ω1(M, E)

be a connection on E . Taking the complexification ofT∗M , we extend it to an operator

∇ : Γ∞(E) → Ω1
C
(M, E) .

According to (2.2.18), the latter decomposes as follows:

∇ = ∇1,0 + ∇0,1 . (2.6.5)

Definition 2.6.7 A connection ∇ on a holomorphic vector bundle E is called com-
patible with the holomorphic structure if ∇0,1 = ∂E on Γ∞(E).

Note that for a compatible connection, the following are equivalent: for any local
section ϕ of E , ∇0,1ϕ = 0 iff ϕ is holomorphic.

Proposition 2.6.8 Let (E, h) be a holomorphic Hermitean vector bundle over the
complex manifold M. Then, there exists a unique connection ∇ on E which is com-
patible both with the holomorphic and with the Hermitean structure.

Proof Let∇ be a connection fulfilling the compatibility assumptions and let ω be its
connection form. Let e = (e1, . . . , ek) be a local holomorphic frame, let A = e∗ω
be the local representative of ω and let H be the matrix of h with respect to e, that
is, Hi j = h(ei , e j ). Taking the pullback of the compatibility condition (2.6.2) under
e, we obtain

dH = A TH + H A . (2.6.6)

To analyze the compatibility of ∇ with the holomorphic structure, we act with ∇ on
a local holomorphic section ϕ. Then,

0 = ∇0,1ϕ = ∂ϕ + A 0,1ϕ .

43Note that there is no analogue of the ∂-operator.

http://dx.doi.org/10.1007/978-94-024-0959-8_5
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Thus,A 0,1 = 0, that is,A is of type (1, 0). Now, decomposing both sides of (2.6.6)
into their (1, 0) and (0, 1)-parts, we read off ∂H = A TH and ∂H = HA and, thus,

A = H
−1
∂H .

This formula defines unique compatible connections on each open subset belonging
to a system of local trivializations. It is easy to check that, by passing to another local
holomorphic frame, these local 1-forms transform properly. Thus, using a partition
of unity, they may be glued together to a compatible connection on C(M). �
Definition 2.6.9 The unique connection given by Proposition 2.6.8 is called the
Chern connection, or the canonical connection, of the holomorphic Hermitean vector
bundle (E, h).

Corollary 2.6.10 Let (E, h) be a holomorphic Hermitean vector bundle, let ∇ be
its Chern connection and let ω and Ω be the connection and curvature form of ∇,
respectively. Let A = e∗ω and F = e∗Ω be the local representatives with respect
to a local holomorphic frame e and let H be the matrix of h with respect to e. Then,

A = H
−1
∂H , F = ∂A , (2.6.7)

that is, A is of type (1, 0) and F is of type (1, 1).

Proof The first assertion follows from the proof of Proposition 2.6.8. We show the
second one: using the explicit expression for A , together with ∂2 = 0 and ∂H−1 =
−H−1 · ∂H · H−1, we obtain ∂A = −A ∧ A . Then,

F = dA + A ∧ A = ∂A .

Since A is of type (1, 0), F is of type (1, 1). �
Example 2.6.11 In particular,wemayconsider the holomorphic tangent bundleT M
of a complexmanifoldM endowedwith its Chern connection. According to (2.2.13),
TM viewed as a complex vector bundle is C-linearly isomorphic to T1,0M . On the
other hand, by Proposition 2.6.5, T1,0M is naturally isomorphic to T M . Thus, we
have a vector bundle isomorphism Φ : TM → T M which can be used to transport
the Chern connection to TM . The image can be compared with the Levi-Civita
connection, see the Appendix to Chap.4 in [336] for details. In particular, if (M, g) is
Kähler, then underΦ, the Chern connection and the Levi-Civita connection coincide.

�

The following theorem states a converse of Proposition 2.6.8. Our proof is along the
lines of [384], cf. Proposition 1.3.7 there.

Theorem 2.6.12 Let (E, h) be a Hermitean vector bundle over a complex manifold
M and let ∇ be a Hermitean connection on E such that its curvature Ω is of type
(1, 1), that is,Ω ∈ Ω1,1(M,End(E)). Then, there exists a holomorphic structure on
E such that ∇ is the canonical connection with respect to this structure.
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Proof Let C(E) be the principal GL(k,C)-bundle of complex linear frames asso-
ciated with E , that is, E ∼= C(E)×GL(k,C) C

k . Clearly, we may view GL(k,C) as
a complex manifold. Let JM and JG be the almost complex structures on M and
GL(k,C), respectively, defined by the complex manifold structures. Let ω be the
connection form on C(E) corresponding to ∇ and let Γ ⊂ T(C(E)) be its horizon-
tal distribution. Then, we have a unique almost complex structure on C(E) defined
by ω, JM and JG as follows: Take the splitting T(C(E)) = V ⊕ Γ , lift JM from TM
to Γ and define J on T(C(E)) as the direct sum of this lift and of JG . By construc-
tion, J is invariant under the right GL(k,C)-action. Thus, J and the natural almost
complex structure of Ck combine to an almost complex structure on E denoted by
the same symbol.

We prove that Ω ∈ Ω1,1(M,End(E)) implies that J is integrable. It is enough
to give the proof in a local trivialization of E . For a chosen local trivialization
π−1(U ) ∼= U × C

k , let (z1, . . . , zn) be complex local coordinates onU ⊂ M and let
(w1, . . . ,wk) be the complex coordinates on C

k with respect to the standard basis.
Let A be the local representative of ω on U and let A α

β be its components with
respect to the standard basis

{
Eα

β

}
of the Lie algebra gl(k,C). We decompose A

with respect to JM ,
A = A 1,0 + A 0,1 .

Then,
{

∂

∂zk

}
locally span Γ∞(

T0,1M
)
and, thus, Γ∞(

T0,1Γ
)
is locally spanned by

the following vector fields44:

{
∂

∂zk
− (A 0,1)αβ

(
∂

∂zk

)
(Eβ

α)∗
}
, k = 1, . . . , n , α, β = 1, . . . k ,

where (Eβ
α)∗ is the Killing vector field generated by Eβ

α . Now, the horizontal
distribution on E corresponding to Γ is given by (1.3.4). Here, since Ck is the basic
GL(k,C)-module,

ι′z(A∗u) = u(Az) , z ∈ C
k , u ∈ C(E) , A ∈ gl(k,C) .

Thus, Γ∞(
T0,1E

)
is locally spanned by

{
∂

∂zk
− (

A 0,1
)α

β

(
∂

∂zk

)
wβ ∂

∂wα
,

∂

∂wα

}
.

Consequently, its annihilator Ω1,0(E) is locally spanned by
{
dzl , ϑα

}
, where

ϑα = dwα + (
A 0,1

)α
βw

β .

44Recall that the horizontal component of a vector field X on a principal G-bundle is given by
X − Ψ ′

p(ω(X)), cf. formula (1.3.7).

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Now, using Ω ∈ Ω1,1(M,End(E)), we calculate

dϑα = wβd
(
A 0,1

)α
β − (

A 0,1
)α

β ∧ dwβ

= wβd
(
A 0,1

)α
β − (

A 0,1
)α

β ∧ (
ϑβ − (

A 0,1
)β

γw
γ
)

= wβ
(
∂
(
A 0,1

)α
β + (

Ω0,2
)α

β

) − (
A 0,1

)α
β ∧ ϑβ

= wβ∂
(
A 0,1)α

β − (
A 0,1)α

β ∧ ϑβ ,

that is, dϑα ∈ Ω1,1(E). By Proposition 2.2.14, this is equivalent to the vanishing of
the Nijenhuis tensor and, thus, the Newlander–Nirenberg Theorem 2.2.13 implies
that J is integrable.

It remains to prove that, with respect to the holomorphic structure defined by J,
∇ coincides with the Chern connection. That is, we have to prove that a local section
ϕ : U → E fulfilling ∇0,1ϕ = 0 is holomorphic. For that purpose, it is enough to
show that any ϕ fulfilling this condition pulls back every (1, 0)-form on E to a
(1, 0)-form on M .45 In the above notation, ∇0,1ϕ = 0 reads

∂ϕα + (
A 0,1

)α
βϕ

β = 0 .

Using this, we calculate ϕ∗(dzk) = dzk and

ϕ∗(ϑα) = dϕα + (
A 0,1

)α
βϕ

β = ∂ϕα .

�

For a more general integrability theorem containing Theorem 2.6.12 as a special
case, we refer to [35].

Exercises

2.6.1 Prove Proposition 2.6.5.

2.7 Hodge Theory. The Weitzenboeck Formula

Let us recall some basic notions from Sects. 4.4 and 4.5 of Part I. Consider an n-
dimensional oriented pseudo-Riemannian manifold (M, g)with signature (r, s). The
metric g yields a distinguished volume form vg, cf. Definition I/4.4.4., and a mapping

∗ : Ωk(M) → Ωn−k(M) , ∗α := (−1)sg−1(α) � vg , (2.7.1)

called the Hodge star operator, cf. Definition I/4.5.1. We immediately read off

45Recall Exercise 2.2.3.

http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
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∗ 1 = (−1)svg , ∗ vg = 1 . (2.7.2)

We have the following further basic properties: for any α, β ∈ Ωk(M),

∗ ∗α = (−1)k(n−k)+s α , (2.7.3)

g−1(∗α, ∗β) = (−1)sg−1(α, β) , (2.7.4)

α ∧ ∗β = (−1)sg−1(α, β)vg , (2.7.5)

cf. Proposition I/4.5.3. Let {ei } be an orthonormal local frame on M and let {ϑ i } be
the dual coframe. Then, locally, we have

vg = (−1)sϑ In , (2.7.6)

∗ϑ I = ηI J eJ�ϑ In = sign

(
In
J J c

)
η I J ϑ J c . (2.7.7)

Using (2.7.7), for any α ∈ Ωk(M), one easily shows the following:

(∗α)(Xk+1, . . . , Xn)vg = α ∧ g(Xk+1) ∧ . . . ∧ g(Xn) . (2.7.8)

This implies

X� ∗ α = ∗(α ∧ g(X)) , (2.7.9)

g−1(β)� ∗ α = ∗(α ∧ β) , (2.7.10)

for any α ∈ Ω∗(M), β ∈ Ω1(M) and X ∈ X(M) (Exercise 2.7.1). The metric
induces a natural fibre metric on E = ∧kT∗M via

〈α, β〉 := (−1)sg−1(α, β) ,

which gives rise to an L2-inner product on the space of square-integrable k-forms:

〈α, β〉L2 :=
∫

M
〈α, β〉vg =

∫

M
α ∧ ∗β . (2.7.11)

Using this inner product, one defines the Hodge dual d∗ : Ωk(M) → Ωk−1(M) of
the exterior derivative by

〈d∗α, β〉L2 := 〈α, dβ〉L2 , (2.7.12)

for all β ∈ Ωk−1(M). For α ∈ Ωk(M), one has

d∗α = (−1)n(k−1)+s+1 ∗ d ∗α . (2.7.13)
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Given the exterior derivative and its Hodge dual, we build the Hodge–Laplace oper-
ator of (M, g):

� : Ωk(M) → Ωk(M) , � := dd∗ + d∗d . (2.7.14)

Clearly,
〈�α, α〉L2 = 〈dα, dα〉L2 + 〈d∗α, d∗α〉L2 . (2.7.15)

Moreover,
d� = � d , d∗ � = � d∗ , ∗� = � ∗ . (2.7.16)

Finally, we note that � is symmetric:

〈�α, β〉L2 = 〈α,�β〉L2 . (2.7.17)

The proof of these elementary properties is left to the reader (Exercise 2.7.2).

Remark 2.7.1 (Hodge decomposition) In this Remark, we assume that (M, g) is a
compact oriented n-dimensional Riemannian manifold.

Since g is Riemannian, the inner product (2.7.11) is positive definite. Then,
(2.7.15) implies that � is positive definite and that

�α = 0 iff dα = 0 and d∗α = 0 . (2.7.18)

Since � = (d + d∗)2, we also have

ker(�) = ker(d + d∗) . (2.7.19)

A k-formα fulfilling�α = 0 is called harmonic.We conclude that the only harmonic
functions on a compact connected oriented Riemannian manifold are the constant
functions. This in turn implies that if, additionally, the first de Rham cohomology of
M is trivial, then there does not exist any nontrivial harmonic 1-form on M (Exercise
2.7.3). The space of harmonic k-forms is denoted by

H k(M) := {
α ∈ Ωk(M) : �α = 0

}
.

In Sect. 5.7 we will see that the Hodge–Laplace operator on a compact oriented
Riemannian manifold is elliptic. The theory of elliptic operators implies that, for
any k,H k(M) is finite-dimensional. Moreover, the following orthogonal direct sum
decomposition, called Hodge decomposition, holds.46

Theorem 2.7.2 (Hodge Decomposition Theorem)

Ωk(M) = H k(M)⊕ �(Ωk(M)) . (2.7.20)

46Clearly, by the elementary properties of�proved above, the second summand can be decomposed
further, �(Ωk(M)) = d(Ωk−1(M))⊕ d∗(Ωk+1(M)).

http://dx.doi.org/10.1007/978-94-024-0959-8_5
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The proof will be given in a more general context in Chap.5, see Theorem 5.7.18.
The Hodge decomposition has the following immediate consequences:

1. The natural mapping

F : H k(M) → Hk
dR(M) , α �→ [α] ,

is an isomorphism, that is, every de Rham cohomology class contains a unique
harmonic form. To prove injectivity of F , take two harmonic k-forms α and β
belonging to the same cohomology class. Then, there exists a (k − 1)-form τ

such that α − β = dτ . Then,

‖ α − β ‖2L2= 〈α − β, dτ 〉L2 = 〈d∗α − d∗β, τ 〉L2 = 0 ,

and thus α = β. To prove surjectivity, take an arbitrary class [α] ∈ Hk
dR(M) and

represent it by some closed form α ∈ Zk(M). Then, by the Hodge decomposition
(2.7.20), there exists an element ω ∈ H k(M) and a k-form β such that

α = ω + �β.

Since dω = 0, we have 0 = dα = dd∗dβ and thus

〈d∗dβ, d∗dβ〉L2 = 〈dβ, dd∗dβ〉L2 = 0 .

This implies d∗dβ = 0 and thus α = ω + dd∗β, showing that [ω] = [α].
2. The natural pairing

Hk
dR(M)× Hn−k

dR (M) → R , ([α], [β]) �→
∫

M
α ∧ β ,

defines an isomorphism (Poincaré duality) of Hn−k
dR (M) with the dual space of

Hk
dR(M),

Hn−k
dR (M) ∼= (

Hk
dR(M)

)∗
. (2.7.21)

To prove this, given a nonzero cohomology class [α] ∈ Hk
dR(M), we must find

a cohomology class [β] ∈ Hn−k
dR (M) such that

∫
M α ∧ β 	= 0. For that purpose,

we choose a Riemannian metric g on M . By point 1, we may choose a harmonic
representative α of [α] which, of course, cannot vanish identically. Then, by the
third identity in (2.7.16), ∗α is also harmonic and thus, by (2.7.18), it is closed.
This means that ∗α represents a cohomology class in Hn−k

dR (M). Pairing this
element with [α] yields

([α], [∗α]) �→
∫

M
α ∧ ∗α =‖ α ‖2 	= 0 .

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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Thus, the above pairing defines an isomorphism of Hn−k
dR (M) and

(
Hk

dR(M)
)∗
,

indeed. �

Below, we wish to prove the Weitzenboeck Formula which, combined with the the-
ory of harmonic forms, yields deep insight into the relation between curvature and
topology. It compares theHodge–Laplace operator of (M, g) to theBochner–Laplace
operator built from the Levi-Civita connection∇ of g. The basic object relating these
two quantities is the Weitzenboeck curvature operator built from the curvature endo-
morphism of ∇. In order to accomplish this goal, we need a unified treatment of
these objects in terms of the Koszul calculus. Thus, we consider the vector bundle
E = ∧kT∗M endowed with its natural fibre metric 〈·, ·〉 defined above and with the
natural connection induced from the Levi-Civita connection,47 which we also denote
by ∇. Clearly, ∇ is compatible with 〈·, ·〉. Then, we proceed as follows:

(a) We express the Hodge dual operator d∗ in terms of ∇. Recall that d has been
already calculated in terms of ∇, cf. formula (2.2.49).

(b) We define the Bochner–Laplace operator and calculate it in terms of ∇. Since
this can be done without any modifications for an arbitrary Riemannian (or
Hermitean) vector bundle endowed with a compatible connection, we present it
for this general case. This will also be useful later on.

(c) We define the Weitzenboeck curvature operator and derive the Weitzenboeck
Formula.

(a) Let ω be the connection form of ∇. Let e = {ei } be a local frame and let {ϑ i }
be its dual coframe. By (2.1.39), the local representative of ω with respect to e is
given by e∗ωi

k = Γ i
jkϑ

j , where Γ i
jk are the Christoffel symbols with respect to e.

Lemma 2.7.3 For any X ∈ X(M) and α ∈ Ω∗(M),

∇Xvg = 0 , ∇X ∗ α = ∗∇Xα . (2.7.22)

Proof As an immediate consequence of (2.7.6), (2.1.47) and (2.2.44), for any ortho-
normal frame {ei }, we have

∇ei vg = (−1)s+1
∑

j

Γ j
i jϑ

1 ∧ . . . ∧ ϑn = 0 .

This proves the first assertion. To prove the second one, we act with ∇X on equation
(2.7.5). Using ∇Xvg = 0, ∇Xg = 0 and once again (2.7.5), we obtain

∇Xα ∧ ∗β + α ∧ ∇X ∗ β = (−1)s
(
g−1(∇Xα, β)+ g−1(α,∇Xβ)

)
vg

= ∇Xα ∧ ∗β + α ∧ ∗∇Xβ ,

for arbitrary forms α and β. From this we read off the second assertion. �

47Cf. Exercise 2.1.7.
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Lemma 2.7.4 Let (M, g) be a pseudo-Riemannian manifold and let α ∈ Ωk(M).
Let {ei } be a local frame and let {ϑ i } be its dual coframe. Then,

d∗α = −g−1(ϑ j )�∇e jα . (2.7.23)

Proof Let α ∈ Ωk(M). Using (2.2.47), Lemma 2.7.3 and (2.7.10), we calculate

∗d ∗ α = ∗ (
ϑ j ∧ ∇e j ∗ α)

= (−1)n−k ∗ (∗(∇e jα) ∧ ϑ j
)

= (−1)n−k
(
g−1(ϑ j )�(∗2∇e jα)

)

= (−1)(n−k)(k+1)+s
(
g−1(ϑ j )�∇e jα

)
.

Comparison with (2.7.13) yields the assertion. �

Remark 2.7.5 Since the operator d∗ is intrinsically defined, formula (2.7.23) does
not depend on the choice of the frame. Using g−1(ϑ j ) = g jkek , it reads

(d∗α)(X2, . . . , Xk) = −g jl
(∇e jα

)
(el , X2, . . . , Xk) . (2.7.24)

For some purposes, it is useful to rewrite this as

(d∗α)(X2, . . . , Xk) = − (
trg12(∇α)

)
(X2, . . . , Xk) . (2.7.25)

Here, ∇α ∈ Γ∞(T∗M ⊗ ∧kT∗M) and trg12 means contracting the first two tensor
indices of ∇α with g. The quantity trg12(∇α) is called the divergence of α and is
denoted by divgα. In this terminology, we have

d∗α = −divgα . (2.7.26)

In particular, for a 1-form α ∈ Ω1(M), we obtain (Exercise 2.7.4)

divg(α) vg = d(g−1(α)� vg) . (2.7.27)

�

(b) Next, instead of (
∧kT∗M, 〈·, ·〉,∇), consider any Riemannian or Hermitean

vector bundle E with a fibre metric 〈·, ·〉 and a compatible connection ∇ over a
pseudo-Riemannianmanifold (M, g). As in the above special case, 〈·, ·〉 and g induce
a natural L2-inner product on Γ∞(E) via

〈s1, s2〉L2 :=
∫

M
〈s1, s2〉vg . (2.7.28)

If we endow T∗M with the natural fibre metric given by g−1, then we may extend
〈·, ·〉L2 to an inner product on Γ∞(T∗M ⊗ E)which we denote by the same symbol.
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We define the formal adjoint ∇∗ : Γ∞(T∗M ⊗ E) → Γ∞(E) of ∇ by

〈s,∇∗ϕ〉L2 = 〈∇s, ϕ〉L2 ,

for any s ∈ Γ∞(E) and ϕ ∈ Γ∞(T∗M ⊗ E).

Proposition 2.7.6 For any ϕ ∈ Γ∞(T∗M ⊗ E),

∇∗ϕ = − trg12(∇ϕ) .

Proof Let s ∈ Γ∞(E). For a given local frame {ei } and its dual coframe {ϑ i }, decom-
pose

∇s = ϑ i ⊗ ∇ei s , ϕ = ϑ j ⊗ ϕ(e j ) ,

and calculate

〈∇s, ϕ〉 = 〈ϑ i ⊗ ∇ei s, ϑ
j ⊗ ϕ(e j )〉 = gi j 〈∇ei s, ϕ(e j )〉 .

Since ∇ is compatible with the fibre metric, (2.6.2) implies

ei (〈s, ϕ(e j )〉) = 〈∇ei s, ϕ(e j )〉 + 〈s,∇ei (ϕ(e j ))〉 ,

and, thus,

〈∇s, ϕ〉 = gi j
(
ei (〈s, ϕ(e j )〉)− 〈s,∇ei (ϕ(e j ))〉

)

= gi j
(
ei (〈s, ϕ(e j )〉)− 〈s, ϕ(∇ei e j )〉 − 〈s, (∇eiϕ)(e j )〉

)
.

Defining a 1-form β ∈ Ω1(M) by β(X) := 〈s, ϕ(X)〉, where X ∈ X(M), we obtain

gi j
(
ei (〈s, ϕ(e j )〉)− 〈s, ϕ(∇ei e j )〉

) = gi j (∇eiβ)(e j ) = divgβ .

Then, (2.7.27) implies

〈∇s, ϕ〉 = d(g−1(β)� vg)− gi j 〈s, (∇eiϕ)(e j )〉 .

Integrating this identity with vg and using Stokes’ Theorem, we find

〈∇s, ϕ〉L2 = −〈s, gi j (∇eiϕ)(e j )〉L2 = −〈s, trg12(∇ϕ)〉L2 .

�
Remark 2.7.7 By Proposition 2.7.6,∇∗ϕ = −gi j (∇eiϕ)(e j ) for any local frame {ei }
and, thus,

∇∗ϕ = gi j
(
ϕ(∇ei e j )− ∇ei (ϕ(e j ))

)
. (2.7.29)

�
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Definition 2.7.8 (Bochner–Laplace operator) The mapping

∇∗∇ : Γ∞(E) → Γ∞(E)

is called the Bochner–Laplace operator.48

By Proposition 2.7.6, we have

∇∗∇s = − trg12(∇∇s) , s ∈ Γ∞(E) , (2.7.30)

and, by (2.7.29),
∇∗∇s = −gi j

(∇ei ∇e j s − ∇∇ei e j
s
)
. (2.7.31)

Moreover, since 〈∇∗∇s1, s2〉L2 = 〈∇s1,∇s2〉L2 = 〈s1,∇∗∇s2〉L2 , the Bochner–
Laplace operator is formally self-adjoint.

(c) It is convenient to consider
∧kT∗M as associated with the reduced bundle of

orthonormal frames O(M). Then, σ is induced from the basic representation of the
orthogonal groupO(r, s) of the pseudo-Euclideanmetric η onRn . It acts on

∧k
(Rn)∗

via

σ(a)(ξ1 ∧ . . . ∧ ξk) =
((

a−1
)T

ξ1

)
∧ ξ2 ∧ . . . ∧ ξk + . . .+ ξ1 ∧ . . . ∧ ξk−1 ∧

((
a−1

)T
ξk

)
.

Identifying
∧k

(Rn)∗ ∼= ∧k
R

n via the metric, we obtain the representation σ ′ of the
Lie algebra o(r, s) on

∧k
(Rn)∗:

σ ′(A)(ξ1 ∧ . . . ∧ ξk) = (Aξ1) ∧ ξ2 ∧ . . . ∧ ξk + . . .+ ξ1 ∧ . . . ∧ ξk−1 ∧ (Aξk) ,
(2.7.32)

that is, A ∈ o(r, s) acts as a derivation on
∧k

(Rn)∗. Accordingly, the curvature endo-
morphism form

RΛ
m(X,Y ) = ιp ◦ σ ′(Ωp(X

h,Y h)) ◦ ι−1
p

of ∇ is a 2-form on M with values in End(
∧kT∗M) acting as a derivation. For the

convenience of the reader, we recall the following.

Remark 2.7.9 (Contraction and exterior multiplication) Let V be a real vector space
endowed with a metric η = 〈·, ·〉. The contraction mapping ι : V ∗ → End(

∧
V ) is

defined by ι(ξ)1 = 0 and

ι(ξ)(v1 ∧ . . . ∧ vk) =
k∑

i=1

(−1)i−1〈ξ, vi 〉v1 ∧ . . . v̂i . . . ∧ vk ,

where ξ ∈ V ∗ and v1, . . . , vk ∈ V . We will also write ι(ξ) ≡ ξ�. Since

ι(ξ)ι(ζ )+ ι(ζ )ι(ξ) = 0

48Some authors call it the rough Laplacian.
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for all ξ, ζ ∈ V ∗, by the universal property of the exterior algebra, ι extends to
an algebra morphism ι : ∧

V ∗ → End(
∧
V ). We denote the operation of exterior

multiplication with an element v ∈ V by

ε(v)(α) := v ∧ α

and note the following basic identity (Exercise 2.7.6):

ε(v)ι(ξ)+ ι(ξ)ε(v) = 〈ξ, v〉 · 1 . (2.7.33)

Let {e j } be an orthonormal basis of V , let {ϑ j } be the dual basis and denote ε j :=
ε(e j ) and ιk := ι(ϑk). In this notation, the natural action End(V ) → Der(

∧
V ) of

End(V ) by derivations on the exterior algebra,

AΛ(v1 ∧ · · · ∧ vk) = Av1 ∧ v2 ∧ · · · ∧ vk + · · · + v1 ∧ · · · ∧ vk−1 ∧ Avk ,

is given by
AΛ = η jlη(el , Aek)ε j ιk . (2.7.34)

In terms of the matrix elements Ai j = η(ei , Ae j ), we have

AΛ = A j
kε j ι

k . (2.7.35)

�

By (2.7.34), the curvature endomorphism RΛ
m(X,Y ) acts as a derivation on

∧kT∗M
as follows:

RΛ(ei , e j ) = ηkmg(R(ei , e j )em, el)e
l
k , (2.7.36)

where el k := εl ιk and where {e j } is any local orthonormal frame.

Definition 2.7.10 The Weitzenboeck curvature operator RΛ : Ωk(M) → Ωk(M)

of ∇ is defined by

RΛ(α)(X1, . . . , Xk) :=
∑

i

η jl
(
RΛ(e j , Xi )α

)
(X1, . . . ,

i�
el , . . . , Xk) , (2.7.37)

where X1, . . . , Xk ∈ X(M) and {e j } is an arbitrary orthonormal local frame.49

Let us calculate RΛ in the frame {ekl}. Using (2.7.36), together with the symmetry
properties of R, we obtain

49We have only made the summation over i explicit. The remaining summations are in accordance
with the Einstein summation convention.
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RΛ(α)(X1, . . . , Xk) =
∑

i

η jl
(
RΛ(e j , Xi )α

)
(X1, . . . , el , . . . , Xk)

=
∑

i

η jlηkpg
(
R(ep, em)e j , Xi

)
(emkα)(X1, . . . , el , . . . , Xk)

=
∑

i

(emkα)(X1, . . . , η
jlηkpg

(
R(ep, em)e j , Xi

)
el , . . . , Xk)

= −
∑

i

(emkα)(X1, . . . , η
klR(el , em)Xi , . . . , Xk)

= (
ηkmRΛ(em, el) ◦ el k

)
(α)(X1, . . . , Xk) .

In the last step,we have used thatRΛ is a derivationwhich acts trivially on zero-forms.
Using (2.7.36) once again, we obtain

RΛ = Ri jklε
i ι jεk ιl . (2.7.38)

Now we are able to formulate the main result of the second part of this section.

Theorem 2.7.11 (Weitzenboeck Formula) Let α ∈ Ωk(M). Then,

�α = ∇∗∇α + RΛ(α) . (2.7.39)

Proof We choose an orthonormal local frame {ei } and the dual coframe {ϑ i }. Using
Lemma 2.7.4, (2.2.47), (2.1.46) and and the first equation in (2.2.44), we calculate

dd∗α = −d
(
η jl el�∇e jα

)

= −ϑ i ∧ ∇ei

(
η jl el�∇e jα

)

= −ϑ i ∧ (∇ei el�∇e jα + el�∇ei ∇e jα
)
η jl

= ei l
(∇∇ei e j

α − ∇ei ∇e jα
)
η jl .

On the other hand, again by Lemma 2.7.4, together with (2.1.47), we obtain

d∗dα = d∗ (
ϑ i ∧ ∇eiα

)

= −η jl el�
(∇e j

(
ϑ i ∧ ∇eiα

))

= −η jl el�
(∇e jϑ

i ∧ ∇eiα + ϑ i ∧ ∇e j ∇eiα
)

= η jl el�
(
ϑ i ∧ ∇∇e j ei

α − ϑ i ∧ ∇e j ∇eiα
)

= η j i
(
∇∇e j ei

α − ∇e j ∇eiα
)

− η jl ei l
(
∇∇e j ei

α − ∇e j ∇eiα
)
.

Adding up these two equations and using (2.7.31) yields

�α = ∇∗∇α − η jl ei l
(
∇ei ∇e jα − ∇e j ∇eiα − ∇(∇ei e j−∇e j ei )

α
)
.
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Since the Levi-Civita connection is torsionless, we have ∇ei e j − ∇e j ei = [ei , e j ]
and, thus, by point 2 of Remark 1.5.12 and Eqs. (2.1.32) and (2.7.36),

�α = ∇∗∇α − η jl ei l
(
RΛ(ei , e j )α

) = ∇∗∇α + Ri jklε
i ι jεk ιlα .

Comparing with (2.7.38), we obtain the assertion. �

Clearly, the second term in the Weitzenboeck Formula may be analyzed in more
detail for every form degree k. To do so, recall the presentation of the Ricci tensor
in a local frame given by (2.3.27),

Ric(X,Y ) = −ηi jg (
R(X, ei )Y, e j

)
, X,Y ∈ X(M) . (2.7.40)

Associated with the Ricci tensor, one has the Ricci mapping

Ric : TM → TM , Ric(X) := ηi jR(X, ei )e j . (2.7.41)

Being an endomorphism of TM , the Ricci mapping naturally extends to a derivation
RicΛ of

∧
TM . In degree 2, it is common to denote this derivation by Ric ∧ id. We

have
(Ric ∧ id)(X,Y ) := Ric(X) ∧ Y + X ∧ Ric(Y ) .

Analogously, associatedwith the curvature endomorphism form, onehas themapping

R : ∧2TM → ∧2TM , X ∧ Y �→ ηi j ei ∧ R(X,Y )e j . (2.7.42)

In applications, the cases k = 1 and k = 2 are of special importance.

Corollary 2.7.12

1 For k = 1, the Weitzenboeck Formula (2.7.39) reads

�α = ∇∗∇α + α ◦ Ric . (2.7.43)

2 For k = 2, the Weitzenboeck Formula may be rewritten as follows:

�α = ∇∗∇α + α ◦ (R + Ric ∧ id) , (2.7.44)

where R is the mapping defined by (2.7.42).

Proof 1. For k = 1, by (2.7.37), (2.7.36) and (2.7.41),

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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RΛ(α)(X) = η jl
(
RΛ(e j , X)α

)
(el)

= ηilηkmg
(
R(X, ei )el , em

)
α(ek)

= ηkmg
(
Ric(X), em

)
α(ek)

= α(Ric(X)) .

2. By a similar calculation as under point 1, using additionally the algebraic
Bianchi identity (2.3.16), together with (2.1.52) and (2.3.25), one gets:

RΛ(α)(ei , e j ) = −Rk jα
k
i + Rkiα

k
j + Ri jklα

kl

= α(Ric(ei ), e j )− α(Ric(e j ), ei )+ ηklα(ek,R(ei , e j )el)

= (
α ◦ (Ric ∧ id)+ α ◦ R

)
(ei , e j ) .

�

The proof of the following example is left to the reader (Exercise 2.7.5).

Example 2.7.13 For Sn , endowed with the canonical Riemannian metric, the map-
ping (2.7.42) is given byR = − id and the Ricci mapping readsRic(X) = (n − 1)X .
Using (2.7.38), one finds

RΛ = k(n − k) id (2.7.45)

on k-forms. �

Combining the Weitzenboeck Formula with the theory of harmonic forms, one gets
insight into the relation between curvature and topology. Let us discuss a simple
application of this type. We will write Ric ≥ 0 if Ricm(X, X) ≥ 0 for allm ∈ M and
all X ∈ TmM , and Ricm > 0 if Ricm(X, X) > 0 for all 0 	= X ∈ TmM .

Proposition 2.7.14 (Bochner) Let (M, g) be an n-dimensional compact connected
and oriented Riemannian manifold with Ric ≥ 0. Then, the following statements
hold.

1. Every harmonic 1-form α is parallel and fulfils Ric(g−1(α), g−1(α)) = 0.
2. If, additionally, Ricm > 0 for some point m ∈ M, then all harmonic 1-forms are

trivial.

Proof 1. By formula (2.7.43), for any α ∈ Ω1(M), we have

〈�α, α〉L2 =‖ ∇α ‖2L2 +
∫

M
Ric(g−1(α), g−1(α))vg .

If α is harmonic, then the left hand side vanishes. Since both terms on the right hand
side are non-negative, they must vanish, too.
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2. Let α ∈ Ω1(M) be harmonic. Then, it is parallel. Since, for any X ∈ X(M),

∇X (‖ α ‖) = X (‖ α ‖) = 2〈∇Xα, α〉 ,

α has locally constant length. Thus, since M is connected, αm = 0 implies α = 0
everywhere and, therefore, the evaluationmappingα �→ αm is injective.Alsobypoint
1, Ric(g−1(α), g−1(α)) = 0. Since Ricm > 0 for some point m ∈ M , we conclude
αm = 0 and, by the injectivity of the evaluation mapping, α = 0. �

From the above proof it is clear that the vector space of harmonic 1-forms has at most
dimension n. Combining this with point 1 of Remark 2.7.1 we get the following.

Corollary 2.7.15 Under the assumptions of Proposition 2.7.14 on (M, g), we have

1. If Ric ≥ 0, then b1(M) = dim H 1
dR(M) ≤ n.

2. If, additionally, Ricm > 0 for some point m ∈ M, then b1(M) = 0. �

Example 2.7.16

1. Since for the torus b1(Tn) = n 	= 0,we conclude that thismanifold does not admit
a Riemanian metric with positive Ricci curvature.

2. Using (2.7.45), for Sn endowed with the canonical Riemannian metric, we get
RΛ(α) = k(n − k)α, and thus theWeitzenboeck Formula implies� > 0 for 0 <
k < n. Consequently, there are no nontrivial harmonic forms for 0 < k < n and
the Betti numbers of M vanish for all k 	= 0, n. �

In the remainder of this section, we show that theWeitzenboeck Formula generalizes
in a straightforward way to the case of differential forms on M with values in a
Riemannian (or Hermitean) vector bundle E endowed with a fibre metric 〈·, ·〉 and a
compatible connection ∇. In this form, it will play a crucial role both for the study
of the instanton moduli space and for the investigation of stability of solutions to the
Yang-Mills equations.

Recall from point 2 of Remark 2.6.1 that, without loss of generality, we may
limit our attention to associated bundles E = P ×G F with fibre metrics 〈·, ·〉
induced from G-invariant inner products 〈·, ·〉F on F . First, note that the fibre
metric 〈·, ·〉 induces a pairing Ωk(M, E)×Ω l(M, E) → Ωk+l(M) as follows.
Let α ∈ Ωk(M, E) and β ∈ Ω l(M, E). For any m ∈ M , we choose a local frame
si : U → E , i = 1, . . . , dim F , on an open neighbourhoodU ⊂ M ofm, decompose
α = αi ⊗ si and β = β j ⊗ s j , and define

(α ∧̇β)m := αi
m ∧̇β j

m 〈si (m), s j (m)〉 . (2.7.46)

Clearly, this definition does not depend on the choice of the local frame.
In particular, using the metric g on M and extending the Hodge-star on M to

Ωk(M, E) by putting ∗α := (∗αi )⊗ si , we obtain a pairing

Ωk(M, E)×Ωk(M, E) → Ωn(M) , (α, β) �→ α ∧̇ ∗ β . (2.7.47)
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The latter can be used to define an L2-inner product50 on Ωk(M, E),

〈α, β〉L2 :=
∫

M
α ∧̇ ∗ β . (2.7.48)

Decomposing α = αIϑ
I and β = βJϑ

J with respect to a local orthonormal coframe
{ϑ I } in the bundle of k-forms on M , we have

α ∧̇ ∗ β = 〈αI , βJ 〉ϑ I ∧ ∗ϑ J = ηI J 〈αI , βJ 〉 vg . (2.7.49)

This shows that to the above pairing, there corresponds a natural inner product on
Ωk(M, E) given by the tensor product of the fibre metric 〈·, ·〉 with the fibre metric
η I J inΩk(M). If 〈·, ·〉 is positive definite and g is Riemannian, then this inner product
is positive definite.

Remark 2.7.17 Let α̃ ∈ Ωk
σ,hor(P, F) and β̃ ∈ Ω l

σ,hor(P, F) be the horizontal forms
corresponding toα ∈ Ωk(M, E) andβ ∈ Ω l(M, E) according toProposition 1.2.12.
Then, one easily shows (Exercise 2.7.7)

α̃ ∧̇ β̃ = π∗(α ∧̇β) . (2.7.50)

�

Next, recall the covariant exterior derivative dωα : Ωk(M, E) → Ωk+1(M, E) asso-
ciated with the connection form ω of ∇, cf. Definition 1.5.1. We define its dual
d∗
ωα : Ωk+1(M, E) → Ωk(M, E) in the sense of Hodge by

〈α, d∗
ωβ〉L2 = 〈dωα, β〉L2 , (2.7.51)

forα ∈ Ωk(M, E) andβ ∈ Ωk+1(M, E). The operator d∗
ωwill be called the covariant

exterior coderivative. Note that, given this operator, we have a natural generalization
of the Hodge-Laplacian, cf. (2.7.14),

�ω := dω ◦ d∗
ω + d∗

ω ◦ dω : Ωk(M, E) → Ωk(M, E) . (2.7.52)

Proposition 2.7.18 For α ∈ Ωk(M, E),

d∗
ωα = (−1)n(k−1)+s+1 ∗ dω ∗ α . (2.7.53)

Proof Using (2.7.50), (1.5.1) and the G-invariance of 〈·, ·〉F , for β ∈ Ωk+1 (M, E),
we calculate

50Again, wemust restrict ourselves to square-integrable forms. In particular, wemay consider forms
with compact support.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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π∗(dωα ∧̇ ∗ β) = Dωα̃ ∧̇ ∗̃β
= (dα̃ + σ ′(ω) ∧ α̃) ∧̇ ∗̃β
= d(α̃ ∧̇ ∗̃β)− (−1)k α̃ ∧̇ (d∗̃β + σ ′(ω) ∧ ∗̃β)
= d(α̃ ∧̇ ∗̃β)− (−1)k α̃ ∧̇ Dω(∗̃β)
= π∗ (

d(α ∧̇ ∗ β)) − (−1)kπ∗(α ∧̇ dω ∗ β) .

Thus,
dωα ∧̇ ∗ β = d(α ∧̇ ∗ β)− (−1)kα ∧̇ dω ∗ β .

Integrating this identity over M , using Stokes’ Theorem, we obtain

〈dωα, β〉L2 = 〈α, (−1)nk+s+1 ∗ dω ∗ β〉L2 .

Comparing with (2.7.51), we read off the assertion. �

As above, we need a unified description in terms of the Koszul calculus. For that
purpose, it will be convenient to view the space Ωk(M, E) as follows. Denote

T r
s = R

n⊗ r· · · ⊗R
n ⊗ R

n∗⊗ s· · · ⊗R
n∗ .

Consider the fibre product51 O(M)×M P over M with structure group O(k, l)× G
and the associated bundle with typical fibre T r

s ⊗ F ,

Er,s = (O(M)×M P)×O(k,l)×G (T r
s ⊗ F) ,

which is clearly isomorphic to the tensor product Tr
s (M)⊗ E of vector bundles. The

left actions of O(k, l) and G on T r
s and F are denoted by μ and σ , respectively.

By Remark 1.3.17, the Levi-Civita connection form ωo on O(M) and the gauge
connection form ω on P induce a connection form ωo + ω on O(M)×M P , cf.
(1.3.16).52 As usual, we denote the induced covariant exterior derivative acting on
Ωk

(μ,σ ),hor(O(M)×M P, T r
s ⊗ F) by D(ωo+ω), its counterpart acting onΩk(M, Er,s)

by d(ωo+ω) and the corresponding covariant derivative acting on sections of Er,s by
∇(ωo+ω). By the general theory,

Dωo+ωΦ̃ = dΦ̃ + (
μ′(ωo)⊗ idF + idT r

s
⊗σ ′(ω)

) ◦ Φ̃ , (2.7.54)

cf. (1.4.2). Clearly, μ′(ωo)⊗ idF + idT r
s
⊗σ ′(ω) must be viewed as a 1-form on

Q ×M P with values in End(T r
s ⊗ F). It is obtained by differentiating the tensor

product representation μ⊗ σ . Moreover, Ωk
(μ,σ ),hor(O(M)×M P, T r

s ⊗ F) may be
viewed as a subspace of

51Cf. Remark 1.1.9/2.
52For simplicity, we omit the canonical projections onto O(M) and P , respectively.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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HomO(k,l)×G(O(M)×M P, T r
s+k ⊗ F)

consisting of those elementswhose last k covariant tensor indices are anti-symmetric.
By Proposition 1.2.12, the latter space in turn may be identified with Γ∞(Er,s+k).
Elements of this space may be viewed as tensor fields of type (r, s + k) on M with
values in the associated bundle E . In particular, we get the following identification:

Ωk(M, E) ∼= Ωk(M, E0,0) . (2.7.55)

Now, the generalization of the Weitzenboeck Formula is straightforward. First, for
(r, s) = (0, 0), the action μ is trivial and hence (2.7.54) implies

d(ωo+ω)α = dωα , d∗
(ωo+ω)α = d∗

ωα ,

for any α ∈ Ωk(M, E). This implies

�ω = �(ωo+ω) . (2.7.56)

Lemma 2.7.19 Let α ∈ Ωk(M, E). Then, under the identification (2.7.55),

dωα(X0, . . . , Xk) =
∑

j

(−1) j
(
∇(ωo+ω)

X j
α
) (

X0,
j

�. . ., Xk) , (2.7.57)

(d∗
ωα)(X2, . . . , Xk) = −

∑

j,l

η jl
(
∇(ωo+ω)

e j α
)
(el , X2, . . . , Xk) , (2.7.58)

for X0, . . . , Xk ∈ X(M) and {el} being an orthonormal frame on (M, g).

We note the following immediate consequence of (2.7.57):

dωα =
∑

j

ϑ j ∧ ∇(ωo+ω)
e j α , (2.7.59)

where {ϑ j } is the coframe dual to {e j }.
Proof To prove (2.7.57), it is enough to consider elements α = φ ⊗ β, where φ ∈
Γ∞(E) and β ∈ Ωk(M). Then, again using that the action μ is trivial, for the left
hand side of (2.7.57) we get

dωα = dωφ ∧ β + φ ⊗ dβ .

To analyze the right hand side, we use the derivation property of the covariant deriv-
ative,

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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∇(ωo+ω)
X α = ∇ω

Xφ ⊗ β + φ ⊗ ∇ωo

X β .

This, together with formula (2.2.49), implies the assertion.
The proof of (2.7.58) is analogous to the proof of (2.7.23). We replace d by dω

and use (2.7.59). �
Now, by the same calculation as in the proof of Theorem 2.7.11, we obtain the
following Generalized Weitzenboeck Formula

�ωα = (∇(ω0+ω))∗∇(ω0+ω)α + η jl ei l
(
R∇(ω0+ω)

(e j , ei )α
)
, (2.7.60)

where R∇(ω0+ω)
is the curvature endomorphism form of the connection ω0 + ω given

by (1.5.13). Here, it reads

R∇(ω0+ω)
m (X,Y ) := ιz ◦ {

μ′(Ωo
z (X

h,Y h))⊗ id+ id⊗σ ′(Ωz(X
h,Y h))

} ◦ ι−1
z ,

where m ∈ M , z ∈ π−1(m) ⊂ O(M)×M P , X,Y ∈ TmM and Xh and Y h are the

horizontal lifts of X and Y to z, respectively. Clearly, by the additivity ofR∇(ω0+ω)
, the

second term on the right hand side of (2.7.60) is the sum of the Weitzenboeck cur-
vature operators for the representations μ and σ , respectively, cf. Definition 2.7.10.
This yields the following.

Theorem 2.7.20 (Generalized Weitzenboeck Formula) For α ∈ Ωk(M, E),

�ωα = (∇(ω0+ω))∗∇(ω0+ω)α + R∇ωo

(α)+ R∇ω

(α) . (2.7.61)

�
As above, formula (2.7.61) may be analyzed degreewise. Clearly, the terms coming
from the Levi-Civita connection are identical with those in Corollary 2.7.12. Thus,
we obtain the following.

Corollary 2.7.21

1. For α ∈ Ω1(M, E), the Weitzenboeck Formula (2.7.61) reads

�ωα = (∇(ω0+ω))∗∇(ω0+ω)α + α ◦ Ric + R∇ω

(α) . (2.7.62)

2. For α ∈ Ω2(M, E), formula (2.7.61) may be rewritten as follows:

�ωα = (∇(ω0+ω))∗∇(ω0+ω)α + α ◦ (R + Ric ∧ id)+ R∇ω

(α) . (2.7.63)

�
The Generalized Weitenboeck Formula will be taken up again in Example 5.6.7.
There, it will be discussed from the point of view of Dirac operator theory. It will
play a basic role in the analysis of the stability of Yang-Mills connections.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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Exercises

2.7.1 Prove the formulae (2.7.8)–(2.7.10).

2.7.2 Prove the identities contained in (2.7.15)–(2.7.17).

2.7.3 Prove that on a compact connected oriented Riemannian manifold fulfilling
H 1

dR(M) = 0 there does not exist any nontrivial harmonic 1-form. Construct a non-
trivial harmonic 1-form on the 2-torus T2 ⊂ R

4.

2.7.4 Prove formula (2.7.27).

2.7.5 Prove the statements of Example 2.7.13.

2.7.6 Prove formula (2.7.33).

2.7.7 Prove formula (2.7.50).

2.8 Four-Dimensional Riemannian Geometry. Self-duality

In this section, we deal with 4-dimensional (oriented) Riemannian manifolds. We
will show that, in contrast to other dimensions, they admit a rich additional structure.
Let us explain the reason for that. Given an oriented Riemannian manifold (M, g),
we know from Sect. 2.4 that g yields a reduction of the frame bundle L(M) to the
principal SO(4)-bundle O+(M) of oriented orthonormal frames. Correspondingly,
all tensor bundles over M become associated with O+(M) with their typical fibres
carrying representations of SO(4). Now, among all rotation groups, SO(4) is the
unique group which is not simple. This has striking consequences, as we will see
below. Recall from Example I/5.1.10 the isomorphism

Sp(1) → SU(2) , a = z + jw �→
[
z −w
w z

]
, (2.8.1)

wherewehave identifiedCwith span{1, i} ⊂ H andHwithC2 bywriting quaternions
in the form z + jw with z ,w ∈ C. Also recall from Example I/5.1.11 that Sp(1) and
Sp(1)× Sp(1) are the universal (two-fold) covering groups53 of SO(3) and SO(4),
respectively. Denoting by ι : Sp(1) → Sp(1)× Sp(1) the diagonal embedding, we
have the following commutative diagram

Sp(1) ι ��

��

Sp(1)× Sp(1)

f

��
SO(3) �� SO(4)

(2.8.2)

53In Chap.5, we will see that these are the spin groups in 3 and 4 dimensions, respectively.

http://dx.doi.org/10.1007/978-94-024-0959-8_5
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This fact reduces the representation theory of SO(4) to that of Sp(1). By the isomor-
phism Sp(1) ∼= SU(2), we are led to consider complex representations built from the
basic representation of SU(2) on V ∼= C

2. By a standard theorem in representation
theory [689], up to isomorphisms, the set of irreducible complex SU(2)-modules is

{
Sr V : r ≥ 0

}
,

where SrV denotes the subspace of ⊗r V of totally symmetric tensors. Equivalently,
this subspace may be identified with the space of homogeneous polynomials of
degree r in two variables. Thus, dimC(SrV ) = r + 1. Moreover,

SpV ⊗ SqV ∼=
min(p,q)⊕

r=0

Sp+q−2r V . (2.8.3)

Note that S2V is the (complexified) adjoint representation space.
Now, any complex SO(4)-module (W, σ )may be viewed as an (Sp(1)× Sp(1))-

module via the mapping

σ ◦ f : Sp(1)× Sp(1) → Aut(W ) .

Let us denote the basic representation spaces corresponding to the first and the
second factor in Sp(1)× Sp(1), respectively, by V+ and V−. Then, again, by standard
representation theory, the irreducible complex (Sp(1)× Sp(1))-modules are given
by

Sp,q = SpV+ ⊗ SqV− , p, q ≥ 0 . (2.8.4)

Clearly, an irreducible representation Sp(1)× Sp(1) → Aut(Sp,q) factors through
the covering homomorphism f , giving a representation of SO(4), iff p + q is even.
Moreover, in that case, Sp,q is the complexification of a real representation which
we denote by Sp,q

r . It is common to call Sp,q
r the real representation underlying Sp,q .

Also note that
dimC(S

p,q) = dimR(S
p,q
r ) = (p + 1)(q + 1) .

In particular, the basic complex SO(4)-module is S1,1 = V+ ⊗ V−. We denote T :=
S1,1r and write T ∗ for the dual (contragredient) representation space. Clearly, we may
use the Euclidean metric on T to identify T ∼= T ∗. Now, calculating (Exercise 2.8.1)

∧2T ∗
C

∼= ∧2
(V+ ⊗ V−) ∼=

(
S2V+ ⊗ ∧2V−

)
⊕

(∧2V+ ⊗ S2V−
)

and using that
∧2V is the trivial Sp(1)-module, we obtain

∧2T ∗
C

∼= S2V+ ⊕ S2V− . (2.8.5)
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Since S2V is the adjoint representation of Sp(1),
∧2T ∗

C
is the (complexified) adjoint

representation space of SO(4)with (2.8.5) corresponding to theLie algebra decompo-
sition so(4,C) ∼= so(3,C)⊕ so(3,C). Thus, we have the underlying isomorphism
of real representations ∧2T ∗ ∼= S2,0r ⊕ S0,2r (2.8.6)

corresponding to the decomposition so(4) ∼= so(3)⊕ so(3).
Next, we will relate the above decompositions to the Hodge star operator. Thus,

let ∗ : ∧r T ∗ → ∧4−r T ∗ be the Hodge star operator with respect to the Euclidean
metric on T . By Proposition I/4.5.3,

∗ ◦∗ = id∧2T ∗ , (2.8.7)

that is, on two-forms, the Hodge star operator is an involution. Thus, we may decom-
pose

∧2T ∗ into an orthogonal direct sum of eigenspaces of ∗ corresponding to the
eigenvalues ±1, ∧2T ∗ = ∧2

+T
∗ ⊕ ∧2

−T
∗ . (2.8.8)

Elements of
∧2

+T ∗ are called self-dual and elements of
∧2

−T ∗ are called anti-self-
dual. Since the Hodge star operator is invariant under the action of SO(4), the sub-
spaces

∧2
±T ∗ are SO(4)-invariant and, thus, they coincide with the direct summands

in (2.8.6), ∧2
+T

∗ ∼= S2,0r ,
∧2

−T
∗ ∼= S0,2r . (2.8.9)

For the corresponding complexifications, we get

∧2
+T

∗
C

∼= S2V+ ,
∧2

−T
∗
C

∼= S2V− . (2.8.10)

Remark 2.8.1

1. Let ϑ1, . . . , ϑ4 be an oriented orthonormal basis in T ∗. Then, the irreducible
subspaces

∧2
±T ∗ are spanned by

ϕ1
± = 1√

2

(
ϑ1 ∧ ϑ2 ± ϑ3 ∧ ϑ4

)
,

ϕ2
± = 1√

2

(
ϑ1 ∧ ϑ3 ∓ ϑ2 ∧ ϑ4

)
,

ϕ3
± = 1√

2

(
ϑ1 ∧ ϑ4 ± ϑ2 ∧ ϑ3

)
.
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2. In the same way as above, we can calculate

S2T ∗
C

∼= S2(V+ ⊗ V−)
∼= (S2V+ ⊗ S2V−)⊕ (

∧2V+ ⊗ ∧2V−)
∼= (S2V+ ⊗ S2V−)⊕ C .

Thus, using (2.8.10),
S20T

∗ ∼= ∧2
+T

∗ ⊗ ∧2
−T

∗ , (2.8.11)

where the subindex zero refers to tracelessness. �
Comparison of the decompositions (2.8.8) with (2.2.16) yields the following deep
insight. Let T ∗ be endowed with the complex structure54

J =
[
J1 0
0 J1

]
,

where J1 is the standard complex structure on R2. With respect to this structure, the
decomposition (2.2.16) reads

∧2T ∗
C

=
(∧2,0T ∗

C
⊕ ∧0,2T ∗

C

)
⊕ ∧1,1T ∗

C
. (2.8.12)

As already noted, the left hand side may be identified with the Lie algebra o(4,C).
In analogy to (2.2.22), J induces an embedding U(2) ⊂ SO(4) and the summands on
the right hand side of (2.8.12) carry representations of U(2). Observe that the almost
symplectic form β defined by (2.2.26) belongs to

∧1,1T ∗
C
and is U(2)-invariant.

Thus, we have an orthogonal decomposition

∧1,1T ∗
C

= C ⊕ ∧1,1
0 T ∗

C

into U(2)-irreducible components. By dimension counting,
∧1,1

0 T ∗
C

∼= sl(2,C) (the
complexification of su(2)) and, thus, (2.8.12) corresponds to the complexification
of the Lie algebra decomposition o(4) = R ⊕ su(2)⊕ m, cf. point 3 of Example
2.5.27.

Lemma 2.8.2 We have

∧2
+T

∗
C

= C ⊕
(∧2,0T ∗

C
⊕ ∧0,2T ∗

C

)
,

∧2
−T

∗
C

= ∧1,1
0 T ∗

C
. (2.8.13)

Proof Let {e1, . . . , e4} be the standard basis in the basic SO(4)-module T = R
4 and

let {ϑ1, . . . , ϑ4} be the dual basis in T ∗. Clearly,
∧1,0T ∗

C
is spanned by

54This choice is made in order to be compatible with standard conventions in gauge theory. It is
obtained by combining the standard complex structure J0 on R

4 with the transformation defined by
permuting the standard basis vectors e2 and e3. Beware that J and J0 induce different orientations.
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ψ1 = ϑ1 + iϑ2 , ψ2 = ϑ3 + iϑ4 .

Now, using point 1 of Remark 2.8.1, we express the generators of the U(n)-modules
on the right hand side of (2.8.12) in terms of the bases {ϕi±} of ∧2

±T ∗:

1

2
i(ψ1 ∧ ψ̄1 + ψ2 ∧ ψ̄2) = ϕ1

+ ,

ψ1 ∧ ψ2 = ϕ2
+ + iϕ3

+ ,

ψ̄1 ∧ ψ̄2 = ϕ2
+ − iϕ3

+ ,
1

2
i(ψ1 ∧ ψ̄1 − ψ2 ∧ ψ̄2) = ϕ1

− ,

ψ1 ∧ ψ̄2 = ϕ2
− − iϕ3

− ,

ψ̄2 ∧ ψ̄1 = −ϕ2
− + iϕ3

− .

�

Corollary 2.8.3 A 2-form on R
4 is anti-self-dual iff it is of type (1, 1) for all com-

patible complex structures. �

As we will see, the following lemma is of basic importance in 4-dimensional Rie-
mannian geometry [592].

Lemma 2.8.4 We have

S2
(∧2T ∗

) ∼= S0,0r ⊕ S0,0r ⊕ S2,2r ⊕ S4,0r ⊕ S0,4r . (2.8.14)

Proof Using (2.8.8), we calculate

S2
(∧2

+T
∗ ⊕ ∧2

−T
∗
) ∼= S2

(∧2
+T

∗
)

⊕
(∧2

+T
∗ ⊗ ∧2

−T
∗
)

⊕ S2
(∧2

−T
∗
)
.

By (2.8.9), the second term on the right hand side corresponds to S2,2r . The complex-
ification of the first term corresponds via (2.8.10) to the symmetric component of
S2V+ ⊗ S2V+ and thus has complex dimension 6. By (2.8.3),

S2V+ ⊗ S2V+ = S4V+ ⊕ S2V+ ⊕ S0V+ .

By counting dimensions, we find that the symmetric component corresponds to
S4V+ ⊕ S0V+. It follows that

S2
(∧2

+T
∗
)

= S4,0r ⊕ S0,0r (2.8.15)

and, analogously, S2
(∧2

+T ∗
)

= S0,4r ⊕ S0,0r . �
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Now, we can apply the above results to the 4-dimensional Riemannian manifold
(M, g). By Proposition I/4.5.3, the Hodge star operator is an isometric involution on
the bundle of two forms, that is, ∗ : ∧2T∗M → ∧2T∗M fulfils

∗ ◦∗ = id∧2T∗M , 〈∗α, ∗β〉L2 = 〈α, β〉L2 , (2.8.16)

and, corresponding to (2.8.8), we have the splitting

∧2T∗M = ∧2
+T

∗M ⊕ ∧2
−T

∗M . (2.8.17)

Clearly, the decomposition (2.8.17) implies a decomposition of 2-forms on M ,

Ω2(M) = Ω2
+(M)⊕Ω2

−(M) . (2.8.18)

Thus, any α ∈ Ω2(M) may be decomposed as follows:

α = α+ + α− , ∗α+ = α+ , ∗α− = −α− , (2.8.19)

where α± = 1
2 (α ± ∗α). Elements of Ω2+(M) are called self-dual and elements of

Ω2−(M) are called anti-self-dual 2-forms. Finally, for a local oriented orthonormal
frame ϑ1, . . . , ϑ4 in

∧1T∗M , the subbundles
∧2

±T∗M are locally spanned by {ϕi±}
given by the same formulae as in Remark 2.8.1/2.

Next, let us consider the Riemann curvature endomorphism form

R ∈ Ω2(M,End(TM))

of (M, g). By Remark 2.3.7, pointwise, it may be viewed as a symmetric endomor-
phism of

∧2T∗
mM ,

R(m) ∈ S2
(∧2T∗

mM
)
. (2.8.20)

Correspondingly, for every u ∈ O(M), it may be viewed as an element

R(u) ∈ ∧2 (
R

4
)∗ s⊗ ∧2 (

R
4
)∗ ≡ S2

(∧2 (
R

4
)∗)

. (2.8.21)

We wish to derive the counterpart of the general decomposition formula (2.3.21) for
n = 4. Here, according to the additional structures at a our disposal, this can be done
in two different ways. First, using (2.8.17), we can write

R(m) =
[
A B
BT C

]
. (2.8.22)
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Here, B ∈ Hom(
∧2

−T∗
mM,

∧2
+T∗

mM), A ∈ End(
∧2

+T∗
mM) andC ∈ End(

∧2
−T∗

mM).
SinceR(m) ∈ S2(

∧2T∗
mM), both A andC are symmetric endomorphisms. Note that

BT is the adjoint of B.

Lemma 2.8.5 We have

tr A = trC = −1

4
Sc ,

where Sc denotes the scalar curvature of ∇.

Proof This is a simple exercise which we leave to the reader (Exercise 2.8.2). �
Remark 2.8.6 We show that the decomposition (2.8.22) corresponds to the decom-
position of S2(

∧2T ∗) into irreducible components of SO(4) given by Lemma 2.8.4,
with one of the two S0,0 ∼= R-summands removed. For that purpose, we choose an
orthonormal basis in TmM and use it to identify TmM with T . Using (2.8.15), we
obtain

A ∈ S2
(∧2

+T
∗
)

= S4,0r ⊕ S0,0r , C ∈ S0,4r ⊕ S0,0r .

Moreover,
B ∈ Hom

(∧2
−T

∗,
∧2

+T
∗
) ∼= S2,0r ⊗ S0,2r

∼= S2,2r .

Finally, by Lemma 2.8.5, one of the summands S0,0r is removed and we obtain the
following 4-dimensional counterpart of the decomposition (2.3.21) of the space of
Riemann curvatures

K(m) = S0,0r ⊕ S2,2r ⊕ S4,0r ⊕ S0,4r ,

with
R(m) = (tr A, B, A − 1

3 tr A,C − 1
3 trC) . (2.8.23)

This result belongs to Singer and Thorpe [592]. �

We denote
W+ := A − 1

3 tr A , W− := C − 1
3 trC , (2.8.24)

and call

W :=
[
W+ 0
0 W−

]

the Weyl tensor. Note that W± : ∧2
± → ∧2

± are symmetric endomorphisms with
vanishing trace. Summarizing the above discussion, we obtain the following.

Theorem 2.8.7 (Singer-Thorpe) The Riemann curvature R of an oriented 4-
dimensional Riemannian manifold defines a symmetric endomorphism of

∧2T∗M
which decomposes as

R = −Sc

12
1 +

[
0 B
BT 0

]
+ W . (2.8.25)
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The statements of the following remark are left as an exercise to the reader
(Exercise 2.8.3).

Remark 2.8.8 In a local orthonormal frame on M , the decomposition (2.8.25) reads
as follows:

Ri jkl = Sc

6

(
δ jlδik − δ jkδil

) + 1

2

(
Rilδ jk + R jkδil − Rikδ jl − R jlδik

) + Wi jkl ,

(2.8.26)
where Ri j are the components of the Ricci tensor. Clearly, the Weyl tensor Wi jkl =
g(W(ei , e j )ek, el) inherits the properties (2.3.15) from the curvature tensor. By con-
struction, we have

∑
i Wi jki = 0. �

Definition 2.8.9 An oriented Riemannian 4-manifold is called self-dual or anti-self-
dual if, respectively, W− = 0 or W+ = 0.

By direct inspection of (2.8.26), one can check that M is Einstein if B = 0.

Example 2.8.10

1. The manifolds S4, S1 × S3 and T4, endowed with their natural metrics, have a
vanishing Weyl tensor and are, thus, both self-dual and anti-self-dual (Exercise
2.8.4).

2. CP2 with its standard metric and orientation is self-dual. For a detailed proof we
refer to [689]. �

Exercises

2.8.1 Prove formula (2.8.5). Hint. Construct explicit bases for the occuring repre-
sentation spaces.

2.8.2 Prove Lemma 2.8.5.

2.8.3 Prove the statements of Remark 2.8.8.

2.8.4 Prove the statements of Example 2.8.10/1.



Chapter 3
Homotopy Theory of Principal Fibre
Bundles. Classification

Westartwith a discussionoffibrations andwith the derivationof their exact homotopy
sequence from the exact homotopy sequence of a pair. This yields, in particular, an
exact sequence for fibre bundles containing the homotopy groups of the typical fibre,
the total space and the base space.

Then, we solve the classification problem of principal bundles with a given struc-
ture group and a given base manifold up to vertical isomorphisms. This is accom-
plished in three steps. First, in Sect. 3.3, we prove the Covering Homotopy Theorem,
which implies that the pullbacks of a given topological principal G-bundle under
homotopic mappings are vertically isomorphic. This leads to the idea of classifying
topological principal G-bundles in terms of homotopy classes of mappings to the
base space of a universal principal G-bundle. Following this idea, in Sects. 3.4 and
3.5 we prove that there exists a universal topological principal G-bundle for every
Lie group G. Finally, in Sect. 3.6, we prove that the smooth vertical isomorphism
classes of smooth principal G-bundles over a manifold M are in bijective correspon-
dence with the continuous isomorphism classes of topological principal G-bundles
over M . A posteriori, this gives the justification for classifying topological principal
bundles first.

In the final section, we discuss connections which are n-universal in the sense
that, via pullback, they can produce every connection on a principal G-bundle over
a manifold of dimension ≤ n. We give both the explicit description in terms of the
natural connections on the Stiefel bundles and the more abstract description in terms
of the tautological connection on the section jet bundle of an n-universal principal
G-bundle.
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3.1 Basics

To make the topological concept of homotopy fruitful for the theory of principal
bundles, we have to work with topological principal bundles. The definition of topo-
logical principal G-bundle is obtained from Definition 1.1.1 in the obvious way, that
is, by requiring P and M to be topological spaces, G to be a topological group, the
action Ψ to be free and continuous, the projection π : P → M to be continuous and
the local trivializations χ : π−1(U ) → U × G to be equivariant homeomorphisms
projecting to the identical mapping. Analogously, the definition of smooth fibre bun-
dle translates into the definition of topological fibre bundle. Sections in these bundles
are assumed to be continuous if not otherwise stated. The basic results about smooth
principal bundles discussed in Chap.1 translate in an obvious way to topological
principal bundles. In particular, we will need the following.

1. Associated bundles constructed by means of topological group actions are topo-
logical fibre bundles.

2. Every vertical G-morphism is an isomorphism (Remark 1.1.8/2).
3. The pullback of a topological principal G-bundle by a continuous mapping is a

topological principal G-bundle (Remark 1.1.9/1). Moreover, f ∗(g∗P) is verti-
cally isomorphic to (g ◦ f )∗P .

4. If ϑ : Q → P is a G-morphism of principal bundles with projection ϑ̃ , then the
mapping

Q → ϑ̃∗P, q �→ (
πQ(q), ϑ(q)

)
,

is a vertical isomorphism and ϑ decomposes into the composition of this iso-
morphism with the natural principal G-bundle morphism ϑ̃∗P → P (Remark
1.1.9/1).

5. G-bundle morphisms P → Q are in bijective correspondence with sections in
P ×G Q (Proposition 1.2.6). If P and Q have the same base space, then vertical
G-bundle morphisms P → Q are in bijective correspondence with sections in
P ×G,M Q (Corollary 1.2.7).

6. If H ⊂ G is a closed subgroup, the action ofG on P restricts to an action of H and
the latter makes P into a principal H -bundle over the topological quotient P/H .
The induced projection P/H → M is a topological fibre bundle with typical fibre
G/H (Example 1.2.4/1).

In this and in the next chapter, topological spaces will usually be denoted by X , Y , Z
etc. Continuous mappings X → Y will be denoted by f , g, h etc. and their totality
will be denoted byC(X,Y ) ≡ C0(X,Y ). The set of homotopy classes of continuous
mappings X → Y will be denoted by [X,Y ]. That is, [X,Y ] = C(X,Y )/ ∼, where
∼ refers to the equivalence relation of being homotopic. Every continuous mapping
g : Y → Z induces a mapping g∗ : [X,Y ] → [X, Z ] by

g∗([ f ]) := [g ◦ f ]. (3.1.1)

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Recall that a pointed topological space is a topological space X together with a
point ∗X . A mapping f : X → Y of pointed spaces is pointed if f (∗X ) = ∗Y . The
subset of continuous pointed mappings will be denoted by C∗(X,Y ) ⊂ C(X,Y ).
A pointed homotopy is a homotopy through pointed mappings. The set of pointed
homotopy classes of pointed mappings X → Y will be denoted by [X,Y ]∗. Every
pointed continuous mapping g : Y → Z induces a mapping g∗ : [X,Y ]∗ → [X, Z ]∗
given by (3.1.1).

Recall further that a topological pair (X, A) is a topological space X together
with a subset A endowed with the relative topology. A pair mapping (X, A) →
(Y, B) is a mapping f : X → Y satisfying f (A) ⊂ B. The subset of continuous
pair mappings will be denoted by C

(
(X, A), (Y, B)

) ⊂ C(X,Y ). A pair homo-
topy is a homotopy through pair mappings. The set of pair homotopy classes of
pair mappings (X, A) → (Y, B) will be denoted by [(X, A), (Y, B)]. A pointed
pair is a pair (X, A) with base point in A. The subset of continuous pointed
pair mappings will be denoted by C∗

(
(X, A), (Y, B)

) ⊂ C
(
(X, A), (Y, B)

)
and the

set of pointed pair homotopy classes of pointed pair mappings (X, A) → (Y, B)

will be denoted by [(X, A), (Y, B)]∗. Every pair mapping (pointed pair mapping)
g : (Y, B) → (Z ,C) induces a mapping g∗ : [(X, A), (Y, B)] → [(X, A), (Z ,C)]
(g∗ : [(X, A), (Y, B)]∗ → [(X, A), (Z ,C)]∗) given by (3.1.1).

Let I = [0, 1]. Recall that homotopies f, g : X × I → Y which satisfy f (x, 1) =
g(x, 0) for all x ∈ X can be concatenated and that their concatenation is usually
defined to be the homotopy

f · g : X × I → Y, ( f · g)(x, t) :=
{
f (x, 2t) | t ≤ 1

2 ,

g(x, 2t − 1) | t > 1
2 .

(3.1.2)

The concatenation of pointed homotopies, pair homotopies or pointed pair homo-
topies is, respectively, a pointed homotopy, a pair homotopy or a pointed pair homo-
topy. In the special case where X is the one-point space, (3.1.2) boils down to the
concatenation of curves γ, δ : I → Y satisfying γ (1) = δ(0), cf. formula (1.7.1).

Finally, recall the homotopy groups of a pointed topological space X ,

πn(X) := [(I n, ∂ I n), (X, {∗X })]∗, n = 0, 1, 2, . . . ,

with the origin 0 as the base point of (I n, ∂ I n). In case n = 0, we put I 0 = {0, 1} and
∂ I 0 = ∅. Thus,π0(X) is the set of pathwise connected components of X . In case n ≥
1, the setπn(X) carries a group structurewithmultiplication defined by concatenation
(3.1.2), where the mappings I k → X are viewed as homotopies I k−1 × I → X . In
case n ≥ 2, themultiplication is Abelian. Alternatively, since I n/∂ I n is homotopic to
Sn , the elements of πn(X) can be viewed as (homotopy classes of) pointed mappings
Sn → X .

Accordingly, the relative homotopy groups of a pointed topological pair (X, A)

are defined by

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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πn(X, A) := [(I n, ∂ I n), (X, A)]∗, n = 1, 2, 3, . . . .

Here, the multiplication is Abelian for n ≥ 3.
First, we discuss the compact-open topology on mapping spaces. Let X and Y be

Hausdorff spaces and assume X to be locally compact. The compact-open topology
on the space C(X,Y ) of continuous mappings X → Y is generated by the subsets

M(K , O) = { f ∈ C(X,Y ) : f (K ) ⊂ O}

with K ⊂ X compact and O ⊂ Y open. These subsets form a subbasis, meaning that
the topology is generated by taking finite intersections and arbitrary unions. In case
X and Y are pointed, the compact-open topology on C∗(X,Y ) is defined likewise.
It coincides with the relative topology induced from C(X,Y ). We will need the
following properties.

Proposition 3.1.1 Let X, Y and Z be Hausdorff spaces and assume X to be locally
compact.

1. C(X,Y ) is Hausdorff.
2. The evaluation mapping C(X,Y ) × X → Y , ( f, x) �→ f (x), is continuous.
3. Amapping f : X × Z → Y is continuous iff so are all themappings fz : X → Y ,

x �→ f (x, z), with z ∈ Z and the mapping Z → C(X,Y ), z �→ fz .
4. Let prY : Y × Z → Y and prZ : Y × Z → Z denote the natural projections. The

mappingC(X,Y × Z) → C(X,Y ) × C(X, Z)definedby f �→ (prY ◦ f, prZ ◦ f )
is a homeomorphism.

Similar statements hold in the pointed case.

Proof 1. Let f and g be two distinct elements of C(X,Y ). There exists x ∈ X such
that f (x) �= g(x). Since Y is Hausdorff, there exist disjoint open neighbourhoods
U1 of f (x) and U2 of g(x). Then, f −1(U1) ∩ g−1(U2) is an open neighbourhood
of x , because f and g are continuous. Since X is locally compact, this neighbour-
hood contains a compact neighbourhood K . Then, M(K ,U1) and M(K ,U2) are
neighbourhoods of f and g, respectively. They are disjoint, because U1 and U2 are
disjoint.

2. We have to show that for every open subset O ⊂ Y , the subset

Õ = {( f, x) ∈ C(X,Y ) × X : f (x) ∈ O}

of C(X,Y ) × X is open in the product topology. Let ( f0, x0) ∈ Õ . Then, x0 ∈
f −1
0 (O). Since f0 is continuous, f −1

0 (O) is an open neighbourhood of x0. Since
X is locally compact, f −1

0 (O) contains a compact neighbourhood K of x0. Then,
M(K , O) × K is a neighbourhood of ( f0, x0) which is contained in Õ . Therefore,
Õ is open.
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3. First, assume that f is continuous. For given z ∈ Z , the mapping fz is continu-
ous, because it arises by composing f with the mapping X → X × Z , x �→ (x, z),
whose continuity is immediate from the definition of the product topology. To prove
that the mapping z �→ fz is continuous, denote this mapping by ϕ. Since taking
preimages commutes with taking intersections or unions, it suffices to show that
ϕ−1

(
M(K , O)

)
is open for all compact K ⊂ X and all open O ⊂ Y . Thus, let K

and O be given and let z ∈ ϕ−1
(
M(K , O)

)
. Then, f (K × {z}) ⊂ O . By continuity

of f , for every x ∈ K , there exist open neighbourhoods Ux of x in X and Vx of z
in Z such that f (Ux × Vx ) ⊂ O . Since K is compact, we can find x1, . . . , xr such
that K ⊂ ⋃r

i=1Uxi . Then, V := ⋂r
i=1 Vxi is an open neighbourhood of z satisfying

f (K × V ) ⊂ O , that is, V ⊂ ϕ−1
(
M(K , O)

)
. Therefore, ϕ−1

(
M(K , O)

)
is open,

as asserted.
The converse implication follows by observing that f can bewritten as the compo-

sition of the mapping X × Z → C(X,Y ) × X , (x, z) �→ ( fz, x)with the evaluation
mapping C(X,Y ) × X → Y , ( f, x) �→ f (x) and by applying point 2.

4. Denote the mapping under consideration by ϕ. Obviously, ϕ is bijective
with inverse ( f, g) �→ ( f × g) ◦ ΔX , where ΔX : X → X × X denotes the diag-
onal mapping.

To prove that ϕ is continuous and open, since application of ϕ−1 and ϕ com-
mutes with taking intersections or unions, it suffices to show that the subsets
ϕ−1

(
M(K1, OY ) × M(K2, OZ )

)
of C(X,Y × Z) and ϕ

(
M(K , O)

)
of C(X,Y ) ×

C(X, Z) are open for all compact K1, K2, K ⊂ X and all open OY ⊂ Y , OZ ⊂ Z
and O ⊂ Y × Z . Since the first subset coincides with M(K1, OY × Z) ∩ M(K2,

Y × OZ ), this part is immediate. To see that ϕ
(
M(K , O)

)
is open, write O =⋃

α OA,α × OZ ,α with appropriate open subsets OY,α ⊂ Y and OZ ,α ⊂ Z . Then,
M(K , O) = ⋃

α M(K , OY,α × OZ ,α) and hence

ϕ
(
M(K , O)

) =
⋃

α
ϕ
(
M(K , OY,α × OZ ,α)

) =
⋃

α
M(K , OY,α) × M(K , OZ ,α).

�

Point 3 of Proposition 3.1.1 implies the following.

Corollary 3.1.2 Let X and Y be Hausdorff spaces and assume X to be locally
compact. A mapping f : X × I → Y is a homotopy iff the mapping t �→ ft is a
continuous curve in C(X,Y ). In particular, [X,Y ] coincides with the set of pathwise
connected components of C(X,Y ). In case X and Y are pointed, [X,Y ]∗ coincides
with the set of pathwise connected components of C∗(X,Y ). �

Under the correspondence of homotopies on X with values in Y with continuous
curves inC(X,Y ), the concatenation of homotopies corresponds to the concatenation
of curves. Together with point 4 of Proposition 3.1.1, this implies the following.

Corollary 3.1.3 Let X, Y and Z be Hausdorff spaces and assume X to be locally
compact. Let prY : Y × Z → Y and prZ : Y × Z → Z denote the natural projec-
tions. The mapping [X,Y × Z ] → [X,Y ] × [X, Z ] defined by
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[ f ] �→ (
prY ∗[ f ], prZ ∗[ f ])

is a bijection. A similar statement holds in the pointed case. �
Next, we discuss loop spaces and their homotopy groups. The loop space of a pointed
Hausdorff space X is the mapping space

ΩX := C
(
(I, ∂ I ), (X, {∗}))

endowed with the compact-open topology induced from C(I, X). By Proposition
3.1.1/1, ΩX is Hausdorff. It is pointed with base point given by the constant loop at
∗ ∈ X . Thus, for n = 0, 1, 2, . . . , we can consider the space of pointed pairmappings
C∗

(
(I n, ∂ I n), (ΩX, {∗})). For n ≥ 1, we may identify I n = I n−1 × I and thus view

the elements of this space as homotopies. As such, any two of them can be con-
catenated. Hence, through this identification, concatenation of homotopies defines
an operation on C∗

(
(I n, ∂ I n), (ΩX, {∗})). This operation descends to the ordinary

multiplication in πn(ΩX) = [(I n, ∂ I n), (ΩX, {∗})]∗. We will therefore refer to this
operation as ordinary concatenation.

On the other hand, one can check that the operation of concatenation in ΩX ,
given by (1.7.1), is continuous (Exercise 3.1.2). Hence, by pointwise application, it
induces an operation � in C∗

(
(I n, ∂ I n), (ΩX, {∗})),

f � g : I n → ΩX, ( f � g)(t) := f (t) · g(t). (3.1.3)

We will refer to this operation as pointwise concatenation. One can further check
that loop inversion γ �→ γ −1 defines a continuous mapping ΩX → ΩX (Exercise
3.1.2). Hence, for every f ∈ C∗

(
(I n, ∂ I n), (ΩX, {∗})), the mapping f −� : I n →

ΩX defined by f −�(t) = f (t)−1 (inverse loop) is continuous and hence an element
of C∗

(
(I n, ∂ I n), (ΩX, {∗})).

The following lemma collects the homotopy properties of the operation of point-
wise concatenation. The proof is analogous to that for ordinary concatenation and is
therefore left to the reader.

Lemma 3.1.4 Let n = 0, 1, 2, . . . , let X be a pointed Hausdorff space and let
f, g, h, k ∈ C∗

(
(I n, ∂ I n), (ΩX, {∗})). Let ∼ denote the equivalence relation of

being pointed homotopic and let e ∈ C∗
(
(I n, ∂ I n), (ΩX, {∗})) be defined by assign-

ing to every t ∈ I n the constant loop at ∗.
1. If f ∼ h and g ∼ k, then f � g ∼ h � k and f −� ∼ h−�.
2. ( f � g) � h ∼ f � (g � h).
3. f � e ∼ e � f ∼ f .
4. f −� � f ∼ f � f −� ∼ e. �
By an elementary calculation, one finds that for n ≥ 1, pointwise concatenation and
ordinary concatenation are related by

( f � g) · (h � k) = ( f · h) � (g · k). (3.1.4)

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Theorem 3.1.5 Let X be a pointed Hausdorff space and let n = 0, 1, 2, . . . .

1. The operation of pointwise concatenation in C∗
(
(I n, ∂ I n), (ΩX, {∗})) induces

a group operation in πn(ΩX) ≡ [(I n, ∂ I n), (ΩX, {∗})]∗. For n ≥ 1, the latter
operation coincides with that induced by ordinary concatenation.

2. The group πn(ΩX) is isomorphic to πn+1(X). An isomorphism is induced by
the mapping C∗

(
(I n, ∂ I n), (ΩX, {∗})) → C∗

(
(I n+1, ∂ I n+1), (X, {∗})), f �→ f̃ ,

where f̃ (t, t) := f (t)(t) for all t ∈ I n and t ∈ I .

According to point 1, the operation of pointwise concatenation provides an alternative
view on the homotopy groups of the loop spaceΩX and, in addition, a natural group
operation on π0(ΩX).

Proof 1. That � induces a group operation on πn(ΩX) for all n ≥ 0 follows from
Lemma 3.1.4. In case n ≥ 1, using this lemma, (3.1.4) and the homotopy properties
of ordinary concatenation, we find

f � g ∼ ( f · e) � (e · g) = ( f � e) · (e � g) ∼ f · g.

Hence, the operations induced on [(I n, ∂ I n), (ΩX, {∗})]∗ coincide.
2.ByProposition3.1.1/3, f̃ is continuous for every f .Hence, themapping f �→ f̃

is well defined. It is easy to see that this mapping is bijective.
To check that f ∼ g iff f̃ ∼ g̃, according to Corollary 3.1.2, it suffices to show

that a curve γ in C∗
(
(I n, ∂ I n), (ΩX, {∗})) is continuous iff so is the corresponding

curve γ̃ in C∗
(
(I n+1, ∂ I n+1), (X, {∗})). Applying Proposition 3.1.1/3 twice, we find

that γ is continuous iff so is the mapping

I n × I × I → X, (t, t, s) �→ (
γ (s)(t)

)
(t).

Since
(
γ (s)(t)

)
(t) = (

γ̃ (s)
)
(t, t), this mapping is continuous iff so is the mapping

I n+1 × I → X, (t ′, s) �→ (
γ̃ (s)

)
(t ′).

Applying Proposition 3.1.1/3 once again, we find that the latter holds iff γ̃ is continu-
ous. As a result, the mapping f �→ f̃ descends to a bijection πn(ΩX) → πn+1(X).

It remains to check that the latter is a group homomorphism. For that purpose, it
suffices to check that ( f � g)∼ = f̃ · g̃ for all f , g. We leave this to the reader. �

Remark 3.1.6 By Lemma 3.1.4 and formula (3.1.4), one finds

f � g ∼ (e · f ) � (g · e) = (e � g) · ( f � e) ∼ g · f ∼ g � f

for all f, g ∈ C∗
(
(I n, ∂ I n), (ΩX, {∗})). Hence, the group operation on πn(ΩX)

inherited from pointwise concatenation is Abelian. As a consequence, Theorem 3.1.5
implies that the homotopy groups πn(X) of a pointed Hausdorff space X are Abelian
for n ≥ 2. This is in fact the standard argument used in textbooks, cf. [104]. �
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Next, we discussCW-complexes. Recall that the direct sum of a family of topological
spaces {Xα : α ∈ A} is given by the disjoint union ⊔

α∈A Xα endowed with the final
topology1 defined by the natural inclusion mappings Xα → ⊔

α∈A Xα .

Definition 3.1.7 Let X be a set and let r0, r1, r2, . . . be a sequence of non-negative
integers. A CW-structure on X with rn cells in dimension n is a family F of map-
pings f ni : Dn → X , where n = 0, 1, 2, . . . and i = 1, . . . , rn whenever rn > 0, such
that the following conditions hold. Let X (n) denote the union of the images of the
mappings f ki with k ≤ n.

1. For every n with rn �= 0,
⊔rn

i=1 f ni maps
⊔rn

i=1(Int D
n) injectively to X \ X (n−1).2

2. Every f ni maps ∂Dn to X (n−1).
3. X = ⋃

n X
(n).

A CW-complex is a Hausdorff topological space X together with a CW-structureF
on the underlying set such that the topology of X coincides with the final topology
defined by F .

The mappings f ni are referred to as the characteristic mappings and their restrictions
to ∂Dn ⊂ Dn as the attaching mappings of the CW-structureF . The images f ni (Dn)

are referred to as the closed cells and the subsets f ni (Int Dn) as the open cells of
F . The subsets X (n) ⊂ X are called the n-skeleta of F . A CW-complex (X,F ) is
said to be finite if only finitely many of the numbers rn are nonzero. In this case, the
largest n such that rn �= 0 is called the dimension. The CW-complex (X,F ) is said
to be pointed if X is pointed and the base point is a 0-cell. A subcomplex of (X,F )

is a subspace X̃ ⊂ X endowed with the relative topology, together with a subfamily
F̃ ⊂ F such that (X̃ , F̃ ) is a CW-complex.

Remark 3.1.8 The acronym CW refers to the following properties.

1. Closure-finiteness: every closed cell meets only finitely many open cells (because
by the defining property 1, it can meet only open cells of lower dimension and
these are finite in number).

2. Weak topology: X carries the final topology defined by the family F . Thus, a
subset of X is open iff all of its preimages under the mappings f ni are open.
An analogous statement holds for closed subsets. Since Dn is compact and X is
Hausdorff, the latter is equivalent to the statement that a subset of X is closed iff
its intersection with every closed cell is closed. �

Proposition 3.1.9 Let X be a Hausdorff topological space and let F be a finite
CW-structure on X. For that F makes X into a CW-complex it suffices that every
f ni ∈ F is continuous.

1The final topology defined on X by a family of mappings fα : Xα → X is the finest topology in
which all fα are continuous. That is, a subset A ⊂ X is open iff f −1

α (A) ⊂ Xα is open for all α.
2For n = 0, we put Int D0 = D0 and X (−1) = ∅.
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Proof We show that a subset A ⊂ X is closed iff ( f ni )−1(A) ⊂ Dn is closed for all
n and i . The ‘only if’ direction is obvious. To prove the ‘if’ direction, assume that
( f ni )−1(A) is closed for all n and i . Since a continuousmapping from a compact space
to a Hausdorff space is closed (Exercise 3.1.1), it follows that f ni

(
( f ni )−1(A)

) ⊂ X
is closed for all n and i . Since A is the union over all these subsets, and since their
number is finite, we conclude that A is closed. �

Example 3.1.10 Proofs are left to the reader (Exercise 3.1.3).

1. The n-sphere Sn admits a CW-structure with one cell in dimension 0 and one cell
in dimension n. The characteristic mappings can be chosen as

f 0(∗) = e1, f n(x) = (2x 2 − 1, 2
√
1 − x 2x).

There is another CW-structure, with two cells in each dimension up to n. Its
characteristic mappings can be chosen as

f 0±(∗) = ±e1, f k±(x) = (x,±
√
1 − x 2, 0, . . . , 0). (3.1.5)

Correspondingly, the two closed cells in dimension k are given by

{(x1, . . . , xk+1, 0, . . . , 0) ∈ Sn : ±xk+1 ≥ 0}.

This CW-structure has the advantage that the lower dimensional spheres

Sk = {(x1, . . . , xk+1, 0, . . . , 0) ∈ Sn}, k = 0, 1, 2, . . . , n − 1,

are subcomplexes.
2. The closed n-diskDn has a tautologicalCW-structurewith one cell in dimension n

and the identical mapping as the characteristic mapping. It is however sometimes
convenient to have the boundary Sn−1 as a subcomplex. This can be achieved by
just adding either one of the two CW-structures of Sn−1 of point 1, with Sn−1

being viewed as a subset of Dn and the characteristic mappings as mappings to
Dn .

3. The one-point union3 of two pointed CW-complexes (X1,F1) and (X2,F2)

is a CW-complex with underlying space X1 ∨ X2 and CW-structure F1 ∪ F2,
where the elements of Fi are viewed as mappings to X1 ∨ X2 via the natural
inclusion mappings Xi → X1 ∨ X2. This way, the characteristic mappings of
the base points get identified and thus yield one element of F1 ∪ F2. As an
application, from the CW-structures on S1 we obtain CW-structures on the figure
eight and, more generally, on the one-point union of a finite number of 1-spheres.
However, one cannot obtain aCW-structure on the one-point union of a countably

3The one-point union X ∨ Y of pointed topological spaces X and Y with base points ∗X and ∗Y is
the quotient of X � Y by the subset {∗X , ∗Y }. It is pointed with base point [∗X ] = [∗Y ].
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infinite number of copies, a space which is known as the Hawaiian earring, in this
way. In fact, this space does not admit any CW-structure.

4. The direct product of two CW-complexes (X1,F1) and (X2,F2) is a CW-
complex with underlying space X1 × X2 and CW-structure F1 × F2 with ele-
ments ( f n1i × f m2 j ) ◦ pn+m , where pn+m : Dn+m → Dn × Dm is some chosen
homeomorphism. This makes sense, because, as a homeomorphism, pn+m maps
the boundary Sn+m−1 of Dn+m onto the boundary (Sn−1 × Dm) ∪ (Dn × Sm−1) of
Dn × Dm . The number of cells of F1 × F2 in dimension n is

n∑

k=0

r1,k r2,n−k .

For example, the direct product of two copies of theCW-complex S1 with one cell
in dimensions 0 and 1 yields a CW-structure on the 2-torus T2 = S1 × S1 with
one cell in dimensions 0 and 2 and two cells in dimension 1. This CW-structure
coincides with the one obtained by means of Morse theory in Example 8.9.9 of
Part I.

5. Let (X,F ) be a CW-complex and let G be a finite group acting freely on X by
homeomorphisms. If one can define a free action of G onF by permutations of
characteristic mappings of the same dimension such that

(a · f ni )(x) = a · (
f ni (x)

)

for all a ∈ G and x ∈ D, then by choosing one representative in eachG-orbit inF
and composing it with the natural projection onto the quotient, one obtains a CW-
structure on that quotient. For example, consider the action of the cyclic group
G = Z2 of order two on Sn generated by the antipodal mapping. The quotient
of this action is the real projective space RPn . One can define a free action of
Z2 on the CW-structure with two cells in each dimension up to n, cf. point 5, by
exchanging cells of the same dimension. By choosing one cell in each dimension,
f k+ say, and composing it with the natural projection Sn → RPn we obtain a
CW-structure on RPn with one cell in each dimension. �

Proposition 3.1.11 Let (X,F ) be a CW-complex, let Y be a topological space and
let f : X → Y be a mapping. The following statements are equivalent.

1. The mapping f is continuous.
2. The mappings f ◦ f ni are continuous for all n and i .
3. The restrictions of f to the closed cells of F are continuous.

Proof The implication 1 ⇒ 3 is obvious.
3 ⇒ 2. Let n and i be given. Since f ni is continuous, so is its restriction in range
to the closed cell f ni (Dn). Composition of the latter with the restriction of f in
domain to that closed cell yields f ◦ f ni .
2 ⇒ 1. Let A ⊂ Y be open. By assumption, then ( f ◦ f ni )−1(A) is open in Dn for
all n and i . Since ( f ◦ f ni )−1(A) = ( f ni )−1

(
f −1(A)

)
, then f −1(A) ⊂ X is open. �
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Proposition 3.1.12 Let (X,F ) be a CW-complex, let Y be a topological space and
let fn : X (n) → Y , n = 0, 1, 2, . . . , be a family of continuous mappings satisfying
fn+1�X (n) = fn for all n. Then, there exists a unique mapping f : X → Y such that
f�X (n) = fn for all n and this mapping is continuous.

Proof Since the assumption implies that fm�X (n) = fn for all m > n, and since X
is the union over the n-skeleta, we can define f by f�X (n) = fn . Uniqueness is then
obvious. To check continuity, we observe that for all n, i and x ∈ Dn , we have
f
(
f ni (x)

) = fn
(
f ni (x)

)
. It follows that f ◦ f ni is continuous for all n and i and

hence, by Proposition 3.1.11/2, that f is continuous. �

Using Morse theory, one can show the following, cf. the discussion for compact
manifolds on page 420 in Part I.

Proposition 3.1.13 Every smooth manifold M is homotopy equivalent to a CW-
complex of the same dimension.

Proof See [449, p. 36]. �

Finally, we discuss direct limits. A directed system of topological spaces consists
of a directed set4 (A,≤), a topological space Xα for every α ∈ A and a continuous
mapping fαβ : Xα → Xβ for every pair (α, β) ∈ A × A with α ≤ β such that fαα =
idXα

for all α and fβγ ◦ fαβ = fαγ for all α ≤ β ≤ γ . The direct limit

X = lim→ Xα

of a directed system {Xα, fαβ} is the topological quotient of the direct sum⊔
α∈A Xα

with respect to the equivalence relation that x ∈ Xα is equivalent to y ∈ Xβ iff
fαγ (x) = fβγ (y) for some γ . Composition of the natural inclusion mappings
Xα → ⊔

α∈A Xα with the natural projection to equivalence classes yields contin-
uous mappings

ϕα : Xα → X

and the topology of X coincides with the final topology defined by these mappings.
That is, a subset of X is open iff its preimage under ϕα is open in Xα for every α.
The proofs of the following two propositions are left to the reader (Exercises 3.1.4
and 3.1.5).

Proposition 3.1.14 Let {Xα, fαβ} and {Yα, gαβ} be directed systems of topological
spaces over the same index set A and let X and Y , respectively, be the direct limits.
Every family of continuous mappings hα : Xα → Yα satisfying hβ ◦ fαβ = gαβ ◦ hα

whenever α ≤ β descends to a continuous mapping h : X → Y . �

4A set with a partial ordering ≤ which has the property that for any two elements α1, α2 ∈ I there
exists α3 ∈ I such that α1 ≤ α3 and α2 ≤ α3.
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Proposition 3.1.15 Let {Xα, fαβ} be directed systems of topological spaces and let
X be the direct limit. If for some i one has πi (Xα) = 0 for all but finitely many α,
then πi (X) = 0. �

Example 3.1.16 The family of skeleta {X (k) : k = 0, 1, 2, . . . } of a CW-complex
(X,F ), together with the natural inclusion mappings fkl : X (k) → X (l) for k ≤ l,
forms a directed system of topological spaces. The direct limit of this system is home-
omorphic to X (Exercise 3.1.6). As a consequence, Proposition 3.1.14 reproduces
Proposition 3.1.12. �

Exercises

3.1.1 Prove that a continuous mapping from a compact space to a Hausdorff space
is closed. Hint. First, prove the following. A closed subset of a compact space is
compact. The image of a compact set under a continuous mapping is compact. A
compact subset of a Hausdorff space is closed.

3.1.2 Show that the mappingsm : ΩX × ΩX → ΩX and i : ΩX → ΩX defined
by concatenation of loops and loop inversion, respectively, are continuous.

3.1.3 Prove the statements of Example 3.1.10.

3.1.4 Prove Proposition 3.1.14.

3.1.5 Prove the statement about the homotopy groups of the direct limit of a directed
system of topological spaces given in Proposition 3.1.15.

3.1.6 Show that the direct limit of the directed system made up by the skeleta of
a CW-structure on a topological space is homeomorphic to that space, cf. Example
3.1.16.

3.2 Fibrations

In this section, let X , Y be topological spaces and let π : Y → X be a continuous
mapping. Given a topological space Z and a continuous mapping f : Z → X , every
continuous mapping f̃ : Z → Y satisfying

π ◦ f̃ = f

is called a lift of f through π . Let there be given a topological pair (Z , A), a contin-
uous mapping f : Z → X and a lift f̃0 : A → Y of f�A through π . The quest for an
extension of f̃0 to a lift f̃ of f through π is called the lifting problem for π defined
by the mapping f and the initial condition f̃0. The situation can be summarized in
the diagram
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A
f̃0 ��

∩
��

Y

π

��
Z

f̃

��

f �� X

(3.2.1)

If for a certain class of topological pairs (Z , A) every lifting problem for π has a
solution, one says that π has the lifting property with respect to that class of pairs.

Of particular interest is the special situation where the pair under consideration
is of the form (Z × I, Z × {0}). In this case, the lifting problem is referred to as the
homotopy lifting problem. The corresponding diagram (3.2.1) reads

Z × {0} f̃0 ��

∩
��

Y

π

��
Z × I

f̃

��

f �� X

(3.2.2)

If for a certain class of pointed topological spaces Z every homotopy lifting problem
for π has a solution, one says that π has the homotopy lifting property with respect
to that class of spaces.

Definition 3.2.1 A continuous mapping π : Y → X is called a Hurewicz fibration
if it has the homotopy lifting property with respect to all topological spaces. It is
called a Serre fibration if it has the homotopy lifting property with respect to Dn for
all n.

Example 3.2.2

1. The natural projections in a direct product are Hurewicz fibrations. Indeed, for
Y = X × F and the natural projection π : Y → X , the homotopy lifting problem
defined by some mapping f : Z × I → X and an appropriate initial condition
f̃0 : Z × {0} → Y is solved by the mapping

f̃ : Z × I → Y, f̃ (z, t) := (
f (z, t), f̃0(z, 0)

)
.

2. Topological fibre bundles are Serre fibrations, see Corollary 3.2.5 below. �

In what follows, we first collect the basic properties of Serre fibrations. Then, we
prove that topological fibre bundles are Serre fibrations. Thereafter, we show that
the homotopy sequence for pairs induces a homotopy sequence for Serre fibrations.
Finally, we discuss the path-loop fibration of a topological space and pullbacks of
fibrations.

Proposition 3.2.3 Serre fibrations have the lifting property with respect to all pairs
of the form
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1.
(
K × I, (K × {0}) ∪ (L × I )

)
, where K is aCW-complex and L is a subcomplex,

2. (K , L), where K is a CW-complex and L is a subcomplex which is a strong
deformation retract of K .

Proof Let π : Y → X be a Serre fibration, let K be a CW-complex and let L be a
subcomplex of K .

1. Consider the lifting problem defined by some f : K × I → X and an appro-
priate initial condition f̃0 : (K × {0}) ∪ (L × I ) → Y . We prove the assertion by
induction on the dimension k of the cells attached to L to build K . Let K (k) denote
the k-skeleton of K . The case k = 0 is trivial. Thus, assume thatwe have constructed a
lift f̃ of f over the subspace (K (k) ∪ L) × I ⊂ K × I for some k ≥ 0 and consider
a (k + 1)-cell C not contained in L , with characteristic mapping χ : Dk+1 → K .
Since C is not contained in L , we have C ∩ (K (k) ∪ L) = C ∩ K (k). Hence, we wish
to extend f̃ from

(C × {0}) ∪ (
(C ∩ K (k)) × I

) ⊂ C × I

to a lift of f on C × I . Assume that we can extend

f̃ ◦ (
χ × id I

)
�(Dk+1×{0})∪(∂Dk+1×I )

to a lift of f ◦ (χ × id I
)
on Dk+1 × I . Since χ is injective on Int Dk+1, this lift

uniquely determines a lift of f on C × I . By Proposition 3.1.11, applied to the
CW-complex C × I , the latter is continuous.

This argument shows that in order to prove that f̃ extends to a lift of f over
(K (k+1) ∪ L) × I , it suffices to show that π has the lifting property with respect to
the pair

(
Dk+1 × I, (Dk+1 × {0}) ∪ (∂Dk+1 × I )

)
. It is not hard to see that this pair

is homeomorphic to the pair (Dk+1 × I,Dk+1 × {0}) (Exercise 3.2.1). Since π is a
Serre fibration, this yields the assertion.

2. Let F : K × I → K be a strong deformation retraction from K to L and
consider the lifting problem defined by some f : K → X and an appropriate initial
condition f̃0 : L → Y . Define g : K × I → X by g := f ◦ F . Since F maps the
subsets K × {1} and L × I to L , we can also define

g̃0 : (K × {1}) ∪ (L × I ) → Y, g̃0(x, t) := f̃0
(
F(x, t)

)
.

A brief calculation shows that g̃0 is a lift of g over the subset (K × {1}) ∪ (L × I ).
Hence, according to point 1, it can be extended to a lift g̃ of g. Then, another brief
calculation shows that the mapping f̃ : K → Y defined by f̃ (x) := g̃(x, 0) is a lift
of f through π extending f̃0. �

To be a Serre fibration is a local property in the following sense.

Proposition 3.2.4 For a continuous mapping π : Y → X to be a Serre fibration
it suffices that every x ∈ X admits a neighbourhood U such that the mapping
π−1(U ) → U induced by restriction of π is a Serre fibration.
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Proof Consider the homotopy lifting problem defined by some f : Dn × I → X
and some appropriate initial condition f̃0 : Dn × {0} → Y . Since Dn × I is com-
pact, we can find open subsets U1, . . . ,Ur of X such that the mappings π−1(Ui ) →
Ui induced by restriction of π are Serre fibrations and such that the preimages
f −1(Ui ) cover Dn × I . We find a cell complex structure of Dn and numbers
t1, . . . , ts ∈ I such that for every cell C and every j = 0, . . . , s, there exists i such
that f (C × [t j , t j+1]) ⊂ Ui . Here, t0 = 0 and ts+1 = 1. We prove the assertion by
induction on the dimension k of the cells and, for each fixed cell, by induction on
j . The case k = 0 is trivial for all j . For a given cell C of dimension k ≥ 1 and
given j , via the characteristic mapping of C , the induction argument boils down to
solving a lifting problem for the Serre fibration π−1(Ui ) → Ui , defined on the pair(
C × [t j , t j+1], (C × {0}) ∪ (∂C × I )

)
. Thus, the assertion follows from Proposi-

tion 3.2.3/1. �
In view of Example 3.2.2/1, Proposition 3.2.4 implies

Corollary 3.2.5 Topological fibre bundles are Serre fibrations. �
If the base space is assumed to be paracompact, one has the following stronger result,
originally proved independently in [322] and [332].

Proposition 3.2.6 (Huebsch and Hurewicz) Topological fibre bundles over para-
compact base spaces are Hurewicz fibrations.

Proof See [598, Theorem 2.7.13]. �
Now, we show that the homotopy sequence for pointed pairs induces a homotopy
sequence for Serre fibrations. Let π : Y → X be a Serre fibration. Let ∗X be a base
point in X , let F := π−1(∗X ) and let ∗F be a base point in F . The latter will be taken
as a base point in Y , too. This way, π is turned into a pointed mapping. The subset
F is referred to as the fibre of π . Recall that for the pointed pair (Y, F), one has the
following natural homomorphisms of homotopy groups:

1. the boundary homomorphism defined by

∂ : πn(Y, F) → πn−1(F), ∂[ f ] := [ f�∂ I n ], (3.2.3)

2. the homomorphism i∗ : πn(Y ) → πn(Y, F) induced from the natural inclusion
mapping (Y, {∗F }) → (Y, F),

3. the homomorphism j∗ : πn(F) → πn(Y ) induced from the natural inclusionmap-
ping j : F → Y .

Recall further that these homomorphisms fit into an exact sequence

· · · ∂−→ πn(F)
j∗−→ πn(Y )

i∗−→ πn(Y, F)
∂−→ πn−1(F)

j∗−→ πn−1(Y )
i∗−→ πn−1(Y, F)

∂−→ · · ·
· · · j∗−→ π1(Y )

i∗−→ π1(Y, F)
∂−→ π0(F)

j∗−→ π0(Y ),

(3.2.4)
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referred to as the homotopy sequence of the pair (Y, F). Except for the last two, all
mappings are group homomorphisms.

Lemma 3.2.7 For every n ≥ 1, composition with π defines a mapping

C∗
(
(I n, ∂ I n), (Y, F)

) → C∗
(
(I n, ∂ I n), (X, {∗X })), f �→ π ◦ f,

and this mapping descends to a group isomorphism πn(Y, F) → πn(X).

Proof Since π(F) = {∗X }, the mapping is well defined. Moreover, for every pointed
pair homotopy H : I n × I → Y , the mapping π ◦ H : I n × I → X is a pointed
homotopy.Hence, the assignment f �→ π ◦ f descends to amapping ι : πn(Y, F) →
πn(X). Clearly, ι is a group homomorphism.

The mapping ι is injective: let f, g ∈ C∗
(
(I n, ∂ I n), (Y, F)

)
and H : I n × I → X

be a pointed homotopy fromπ ◦ f toπ ◦ g. Every solution H̃ of the homotopy lifting
problem for π defined by H and the initial condition

H̃0 : (I n × {0, 1}) ∪ ({e1} × I ) → Y

given by

H̃0�I n×{0} = f, H̃0�I n×{1} = g, H̃0(e1, t) = ∗F

defines a homotopy H̃ : Dn × I → Y from f to g. Since the subset (I n × {0, 1}) ∪
({e1} × I ) is a strong deformation retract of I n × I (Exercise 3.2.2), Proposition
3.2.3/2 yields that H̃ exists. Since π ◦ H̃t = Ht sends ∂ I n to {∗X }, H̃ is a pair
homotopy. Since H̃(e1, t) = H̃0(e1, t) = ∗F , it is pointed.

The mapping ι is surjective: let f ∈ C∗
(
(I n, ∂ I n), (X, {∗X })). By Proposition

3.2.3/2, the lifting problem for π defined by the mapping f : I n → X and the initial
condition f̃0 : {e1} → Y , f̃0(e1) := ∗F , has a solution f̃ : I n → Y . By construction,
f̃ ∈ C∗

(
(I n, ∂ I n), (Y, F)

)
and ι[ f̃ ] = [ f ]. �

As a consequence, in the homotopy sequence of the pair (Y, F), we can replace
the relative homotopy groups πn(Y, F) by the ordinary homotopy groups πn(X), the
homomorphism i∗ by ι ◦ i∗ and the homomorphism ∂ by ∂ ◦ ι−1. The homomorphism
∂ ◦ ι−1 will be referred to as the boundary homomorphism of the fibration π and will
be denoted by ∂ . We determine these homomorphisms explicitly. On the one hand,
for f ∈ C∗

(
(I n, ∂ I n), (Y, {∗F })), we have ι ◦ i∗([ f ]) = [π ◦ f ]. On the other hand,

for f ∈ C∗
(
(I n, ∂ I n), (X, {∗X })), we have

∂([ f ]) = [ f̃�∂ I n ], (3.2.5)

where f̃ ∈ C∗
(
(I n, ∂ I n), (Y, {∗F })) is a lift of f through π . Thus, (3.2.4) translates

into the sequence
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· · · ∂−→ πn(F)
j∗−→ πn(Y )

π∗−→ πn(X)
∂−→ πn−1(F)

j∗−→ πn−1(Y )
π∗−→ πn−1(X)

∂−→ · · ·
· · · j∗−→ π1(Y )

π∗−→ π1(X)
∂−→ π0(F)

j∗−→ π0(Y ), (3.2.6)

where up to the last two, all mappings are group homomorphisms. This sequence is
referred to as the homotopy sequence of the fibration π . Exactness of (3.2.4) implies
the following.

Theorem 3.2.8 The homotopy sequence of a Serre fibration is exact. �

According to Corollary 3.2.5, this sequence applies in particular to a principal G-
bundle π : P → M . In this case, one can identify πn(F) with πn(G) by means of
an equivariant diffeomorphism κ : F → G sending the base point of F to the unit
element 1. Under this identification, the boundary homomorphism reads

∂ : πn(M) → πn−1(G), ∂([ f ]) = [κ ◦ f̃�∂ I n ], (3.2.7)

where f ∈ C∗
(
(I n, ∂ I n), (M, {∗M})) and f̃ ∈ C∗

(
(I n, ∂ I n), (P, F)

)
is a lift of f

through π .
Recall that π0(G) can be identified with the set of connected components of

G and thus carries a natural group structure. This group acts on πn(G) by those
automorphisms which are induced by the inner automorphisms of G:

(aG0) · ([ f ]) = (Ca)∗([ f ]), (3.2.8)

where a ∈ G and f ∈ C∗
(
(I n, ∂ I n), (G,1)

)
. Here, G0 denotes the identity compo-

nent of G and Ca denotes conjugation by a.
Recall further that π1(M) acts on πn(M) from the right by automorphisms as

follows. Given [γ ] ∈ π1(M) and [ f ] ∈ πn(M), choose an extension h̃ : I n × I →
M of the mapping

h : (I n × {0}) ∪ ({0} × I ) → M

defined by h(t, 0) = f (t) and h(0, t) = γ (t) and put ϕ[γ ]([ f ]) := [g], where g(t) =
h̃(t, 1). Then, ϕ[γ ] is a group automorphism of πn(M) for every [γ ] ∈ π1(M) and the
assignment of ϕ[γ ] to [γ ] is a group anti-homomorphism π1(M) → Aut

(
πn(M)

)
.

For simplicity, we will write [γ ] · [ f ] := ϕ[γ ]([ f ]).
Proposition 3.2.9 Let P be a topological principal G-bundle over M. For every
[γ ] ∈ π1(M) and [ f ] ∈ πn(M),

∂
([γ ] · [ f ]) = ∂

([γ ]) · ∂
([ f ]).

That is, via the boundary homomorphism in dimension 1, the boundary homomor-
phism in dimension n intertwines the action of π1(M) on πn(M) with the action of
π0(G) on πn−1(G).
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Proof Let γ and f be given and choose a representative g ∈ C∗
(
(I n, ∂ I n), (M, ∗M)

)

of [γ ] · [ f ] ∈ πn(M). There exists a homotopy H : I n × I → M satisfying
H(0, t) = γ (t) for all t .5 Choose a lift f̃ of f through π : P → M and let
H̃ : I n × I → P be a lift of H through π with initial condition f̃ . Then, the curve
γ̃ : I → P defined by

γ̃ (t) := H̃(0, t)

is a lift of γ and belongs to C∗
(
(I, ∂ I ), (P, F)

)
. Hence, according to (3.2.7), under

the identification of π0(G) with the group of connected components of G,

∂([γ ]) = [κ ◦ γ̃�∂ I ] ≡ aG0, a := κ
(
γ̃ (1)

)
.

Thus, on the one hand, according to (3.2.7) and (3.2.8), we have

∂([γ ]) · ∂([ f ]) = [Ca ◦ κ ◦ f̃�∂ I n ].

On the other hand, Ψa−1 ◦ H̃1 is a lift of g and belongs to C∗
(
(I n, ∂ I n), (P, F)

)
.

Hence,

∂
([γ ] · [ f ]) = ∂([g]) = [κ ◦ (Ψa−1 ◦ H̃1)�∂ I n ] = [Ra−1 ◦ κ ◦ (H̃1)�∂ I n ],

where Ra−1 denotes right translation by a−1. Thus, to prove the assertion, we have to
show that Ca ◦ κ ◦ f̃�∂ I n is pointed homotopic to Ra−1 ◦ κ ◦ (H̃1)�∂ I n .

To see this, consider the (topological) principal G-bundle γ ∗P over I . Since γ̃

is a global section of γ ∗P , it defines a global trivialization and hence a continuous
equivariantmapping κ̃ : γ ∗P → G which sends γ̃ (t) to1 for all t ∈ I . Since, by con-
struction, π ◦ H̃(t, t) = H(t, t) = γ (t) for all t ∈ ∂ I n , we can define a continuous
mapping

h : ∂ I n × I → G, h(t, t) := κ̃
(
γ (t), H̃(t, t)

)
.

Since κ̃
(
γ (0), γ̃ (0)

) = 1 = κ
(
γ̃ (0)

)
, the equivariant mappings κ̃ and κ coincide on

the fibre over t = 0. Hence,

h0 = κ ◦ (H̃0)�∂ I n = κ ◦ f̃�∂ I n .

Since κ̃
(
γ̃ (1)

) = 1 = a−1κ
(
γ̃ (1)

)
, the equivariantmappings κ̃ andLa−1 ◦ κ coincide

on the fibre over t = 1.6 Therefore,

h1 = La−1 ◦ κ ◦ (H̃1)�∂ I n .

5A homotopy with this property is referred to as a homotopy along γ .
6Note that we could write κ̃

(
γ̃ (1)

) = � = κ
(
γ̃ (1)

)
a−1 as well. This does however not mean that

κ̃ coincides with Ra−1 ◦ κ , because the latter mapping is not equivariant.
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Since, in addition, we have h(0, t) = κ̃
(
γ̃ (t)

) = 1 for every t ∈ I , it follows that
Ca ◦ h yields the desired homotopy. �

Example 3.2.10 The exact homotopy sequence (3.2.6) can be used to compute the
homotopy groups of the quotients of free group actions.Here,we give three examples.

1. Consider the complex Hopf bundle S3
S1→ S2, cf. Example 1.1.20. Here, (3.2.6)

reads
. . . → πi (S

1) → πi (S
3) → πi (S

2) → πi−1(S
1) → . . . .

Since πi (S1) = πi−1(S1) = 0 for i > 2, we find πi (S3) ∼= πi (S2) for all i > 2,
where the isomorphism is induced by the projection (the Hopf mapping). This
implies, in particular,

π3(S
2) = π3(S

3) = Z,

where the generator is given by the Hopf mapping itself, because the generator
of π3(S3) is the identical mapping.

2. Consider the action of the cyclic group of order two on Sn generated by the
antipodal mapping. The quotient manifold is the real projective space RPn . Since
π0(Z2) = Z2 and πk(Z2) = 0 for k > 0, we find πk(RPn) ∼= πk(Sn) for all k > 1
and π1(RPn) = 0 for n > 1. For k = 1 and n = 1, we obtain the piece

0 → Z → π1(RP1) → Z2 → 0, (3.2.9)

so that the sequence does not give sufficient information aboutπ1(RP1). However,
we know that RP1 is homeomorphic to S1 and hence π1(RP1) = Z. In fact, under
this identification, the second arrow in (3.2.9) is induced from the mapping S1 →
S1 defined by taking the square.

3. By a similar analysis, using πi
(
U(1)

) = πi (S1) = Z for i = 1 and πi
(
U(1)

) = 0
otherwise, one finds

πi (CPn) =

⎧
⎪⎨

⎪⎩

0 k = 0, 1,

Z k = 2,

πk(S2n+1) k > 2.

(3.2.10)

The argument for RPn and CPn breaks down for HPn , because the group acting
is Sp(1) which is homeomorphic to S3 and thus has nontrivial higher homotopy
groups (which are not even known in full).

4. The exact homotopy sequence is also used to prove the vanishing of the lower
homotopy groups of the Stiefel manifolds, see the proof of Theorem 3.4.10. �

Next, we discuss the path-loop fibration associated with a pointed Hausdorff space
X . As before, let t = 0 be the base point of I . By definition, the path space of X is

PX := C∗(I, X)

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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endowed with the compact-open topology. This space consists of the continuous
curves in X starting at the base point ∗. As a base point of PX , we take the constant
curve at ∗. By assigning to every curve its endpoint, we obtain a pointed mapping

π : PX → X, π(γ ) := γ (1). (3.2.11)

This mapping is continuous, because the preimage of an open subset O ⊂ X is given
by the open subset M({1}, O) of PX .

Theorem 3.2.11 The mapping (3.2.11) is a Hurewicz fibration with fibre

π−1(∗) = ΩX.

Therefore, the mapping (3.2.11) is referred to as the path-loop fibration of X .

Proof Let Z be a topological space and consider the lifting problem for π defined
by some f : Z × I → X and an appropriate initial condition f̃0 : Z × {0} → PX .
By Proposition 3.1.1/3, via the relation

f̂ (z, t, s) = (
f̃ (z, t)

)
(s),

solutions f̃ : Z × I → PX of the lifting problemcorrespond to continuousmappings
f̂ : Z × I × I → X . In terms of f̂ , the condition that f̃ maps Z × I to PX reads

f̂ (z, t, 0) = ∗, (3.2.12)

the lifting condition π ◦ f̃ = f reads

f̂ (z, t, 1) = f (z, t) (3.2.13)

and the initial condition f̃�Z×{0} = f̃0 reads

f̂ (z, 0, s) = (
f̃0(z, 0)

)
(s). (3.2.14)

Hence, by passing from f̃ to f̂ , we have turned the lifting problem into an extension
problem: the desired solution f̂ is an extension to Z × I × I of the mapping

(Z × I × {0, 1}) ∪ (Z × {0} × I ) → X

defined by (3.2.12)–(3.2.14). Since the subset (I × {0, 1}) ∪ ({0} × I ) is a retract
of I × I (Exercise 3.2.2), the subset (Z × I × {0, 1}) ∪ (Z × {0} × I ) is a retract
of Z × I × I . Therefore, the existence of f̂ , and hence of f̃ , follows from the fact
that if a topological space X is a retract of A ⊂ X , then every continuous mapping
f : A → Y to a topological space Y has a continuous prolongation to X . �
Proposition 3.2.12 The path space PX is contractible.
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Proof Consider the mapping

F : PX × I → PX,
(
F(γ, t)

)
(s) := γ

(
(1 − t)s

)
.

Using Proposition 3.1.1/3, one can check that F is continuous. Since it is a strong
deformation retraction of PX to the constant curve at ∗, the assertion follows. �

As a consequence, the homotopy groups of PX are trivial. Thus, in view of Theorems
3.2.8 and 3.2.11, Proposition 3.2.12 implies the following.

Corollary 3.2.13 Forn ≥ 1, the boundaryhomomorphism ∂ : πn(X) → πn−1(ΩX)

is an isomorphism. �

In fact, the boundary homomorphism coincides with the isomorphism provided by
Theorem 3.1.5 (Exercise 3.2.3).

Now, we turn to the discussion of pullbacks of fibrations.7 To begin with, let π :
Y → X be a continuous mapping (not necessarily a fibration). Let Z be a topological
space and let f : Z → X be a continuous mapping. Define

f ∗Y := {(z, y) ∈ Z × Y : f (z) = π(y)}

with the induced topology. By restriction, the natural projections to the factors of
Z × Y induce continuous mappings

π f : f ∗Y → Z , Ff : f ∗Y → Y,

fitting into the commutative diagram

f ∗Y
Ff ��

π f

��

Y

π

��
Z

f �� X

(3.2.15)

Themappingπ f is referred to as the pullback ofπ by f . Pullbacks have the following
universal property.

Proposition 3.2.14 Let W be a topological space. For every pair of mappings
ρ : W → Z and F : W → Y such that π ◦ F = f ◦ ρ, there exists a unique map-
ping f̃ : W → f ∗Y such that F = Ff ◦ F̃ and ρ = π f ◦ F̃ and this mapping is
continuous.

7This generalizes the pullback construction for principal bundles, cf. Remark 1.1.9.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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The situation can be summarized in the diagram

W
F

������������������

��
ρ

���
��

��
��

��
��

��
��

f ∗Y
Ff

��

π f

��

Y

π

��
Z

f �� X

with F̃ being represented by the dotted arrow.

Proof Since π ◦ F = f ◦ ρ, the mapping

W
Δ−→ W × W

ρ×F−−→ Z × Y

takes values in the subset f ∗Y ⊂ Z × Y . Hence, it induces a continuous mapping
F̃ : W → f ∗Y . It is immediate that F̃ fulfils Ff ◦ F̃ = F and π f ◦ F̃ = ρ and that
any mapping fulfilling these two relations must coincide with F̃ . �

Proposition 3.2.15 The pullback of a Serre fibration is a Serre fibration. An analo-
gous statement holds for Hurewicz fibrations.

Proof Since the argument does not depend on the type of fibration, we give it for
Serre fibrations. Thus, assume that π is a Serre fibration and consider the homotopy
lifting problem for π f defined by a mapping g : Dn × I → Z and an appropriate ini-
tial condition g̃0 : Dn × {0} → f ∗Y . Using (3.2.15), we check that the induced map-
ping f ◦ g : Dn × I → X and the induced initial condition Ff ◦ g̃0 : Dn × {0} → Y
define a homotopy lifting problem for π . Let h̃ : Dn × I → Y be a solution. Then,
π ◦ h̃ = f ◦ g. Hence, application of Proposition 3.2.14 toW = Dn × I , F = h̃ and
ρ = g yields a unique continuous mapping g̃ : Dn × I → f ∗Y such that Ff ◦ g̃ = h̃
and π f ◦ g̃ = g. Then,

Ff ◦ g̃�Dn×{0} = h̃�Dn×{0} = Ff ◦ g̃0, π f ◦ g̃�Dn×{0} = g�Dn×{0} = π f ◦ g̃0

and hence, by uniqueness, g̃�Dn×{0} = g̃0. Since, furthermore, the second equation
means that g̃ is a lift of g through π f , it follows that g̃ is a solution of the homotopy
lifting problem under consideration. �

To conclude this section, we show how to turn an arbitrary continuous mapping into
a Hurewicz fibration. Given f : Y → X , define

E f := {(y, γ ) ∈ Y × C(I, X) : f (y) = γ (0)} (3.2.16)

and the mappings
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p f : E f → X, p f (y, γ ) := γ (1), j f : Y → E f , j f (y) := (y, γ f (y)),

(3.2.17)
where γ f (y) denotes the constant path at f (y). By construction,

f = p f ◦ j f .

We endow E f with the relative topology induced from the product topology of
Y × C(I, X), where C(I, X) carries the compact-open topology.

Proposition 3.2.16 The mapping p f is a Hurewicz fibration. The mapping j f is a
homeomorphism onto its image and the image is a strong deformation retract of E f .

Proof First, consider the mapping p f . Let pr1 and pr2 denote the natural projections
to the first and the second factor of Y × C(I, X), respectively.

By Proposition 3.1.1/2, p f is continuous. To see that it is a fibration, consider the
lifting problem given by some g : Z × I → X and an appropriate initial condition
g̃0 : Z × {0} → E f . Then, p f ◦ g̃0(z) = g(z, 0) for all z ∈ Z ,meaning that the curve
pr2 ◦g̃0(z) in X runs from f ◦ pr1 ◦g̃0(z) to g(z, 0). Hence, for every t ∈ I , we may
take the concatenation with the curve

γz,t : I → X, γz,t (s) := g(z, st)

running from g(z, 0) to g(z, t). That the curves γz,t are indeed continuous follows
from point 3 of Proposition 3.1.1, because the mapping I × (Z × I ) → X sending
(s, (z, t)) to g(z, st) is certainly continuous. In addition, this point yields that the
mapping

Z × I → C(I, X), (z, t) �→ γz,t ,

is continuous. Define

g̃ : Z × I → E f , g̃(z, t) := (
pr1 ◦g̃0(z), pr2 ◦g̃0(z) · γz,t

)
.

Clearly, p f ◦ g̃(z, t) = γz,t (1) = g(z, t), hence g̃ is a lift of g. To see that g̃ is con-
tinuous, it remains to show that the mapping from the subset

Δ := {(γ1, γ2) ∈ C(I, X) × C(I, X) : γ1(1) = γ2(0)} ⊂ C(I, X) × C(I, X)

to C(I, X) defined by concatenation is continuous. In view of point 3 of Proposition
3.1.1, it suffices to check that the mapping

Δ × I → X, ((γ1, γ2), t) �→ γ1 · γ2(t),

is continuous. Continuity in t for all fixed (γ1, γ2) is obvious. Continuity in (γ1, γ2)

for each fixed t follows from point 2 of Proposition 3.1.1, because the image is either
γ1(2t) or γ2(2t − 1).
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Now, consider the mapping j f . For every subset A ⊂ Y , one has j f (A) =
pr−1

1 (A) ∩ j f (Y ). Hence, if A is open, so is j f (A) in j f (Y ). This shows that j f is a
homeomorphism onto its image. Given γ ∈ C(I, X) and s ∈ I , define γs ∈ C(I, X)

by γs(t) := γ ((1 − s)t). Thus, γ0 = γ and γ1 is the constant curve at γ (0). Since the
mapping I × (C(I, X) × I ) → X sending

(
t, (γ, s)

)
to γs(t) is continuous, Propo-

sition 3.1.1/3 implies that the mapping C(I, X) × I → C(I, X) sending (γ, s) to γs
is continuous. Hence, so is the mapping

E f × I → E f ,
(
(y, γ ), s

) �→ (y, γs).

It provides a strong deformation retraction of E f to the subset j f (Y ). �

Remark 3.2.17 One can show that the fibres p−1(x) over a pathwise connected
component of a fibration f : Y → X are all homotopy equivalent [288, Prop. 4.61].
The homotopy type of the fibres is usually referred to as the homotopy fibre of
the fibration. Proposition 3.2.16 allows to extend this notion to arbitrary mappings
f : Y → X by defining the homotopy fibre of f to be the homotopy fibre of the
associated fibration p f . �

Exercises

3.2.1 Complete the proof of Proposition 3.2.3/1 by showing that for all k ≥ 1, the
pair

(
Dk × I, (Dk × {0}) ∪ (∂Dk × I )

)
is homeomorphic to (Dk × I,Dk × {0}).

Hint. Solve the case k = 0 first.

3.2.2 Complete the proof of Lemma3.2.7 by showing that the subset (I n × {0, 1}) ∪
({0} × I ) is a strong deformation retract of I n × I .

3.2.3 Prove that for every pointed Hausdorff space X , the boundary homomorphism
∂ : πn(X) → πn−1(ΩX) associated with the path-loop fibration of X coincides with
the isomorphism provided by Theorem 3.1.5.

3.3 The Covering Homotopy Theorem

We are now addressing the classification problem of principal bundles. The final
result will be that, for a given Lie group G and a given smooth base manifold M , the
vertical isomorphism classes of smooth principal G-bundles over M are in bijective
correspondence with the homotopy classes of continuous mappings from M to some
topological space BG to be constructed. We will solve the classification problem for
topological principal bundles under the additional assumptions that G is a Lie group
with finitely many connected components and that the base space is paracompact
Hausdorff and of CW-homotopy type, meaning that it is homotopy equivalent to a
CW-complex. This situation is particularly simple, and it is all we need.

Wewill proceed in three steps. First, in the present section, we prove the Covering
Homotopy Theorem. Then, in Sect. 3.4, we classify topological principal bundles.
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Finally, in Sect. 3.6, we show that the vertical isomorphism classes of smooth princi-
pal G-bundles over M are in bijective correspondence with the vertical isomorphism
classes of topological principal bundles over M .

Let X be a paracompact Hausdorff space and let I = [0, 1]. Since we want to
relate bundle isomorphisms with homotopies of mappings defined on X , we need to
know how topological principal bundles over X × I look like. One particular type
is given by bundles of the form Q × I , where Q is a topological principal G-bundle
over X and where G acts trivially on I .

Theorem 3.3.1 (Topological principal bundles over X × I ) Let G be a Lie group
and let X be a paracompact Hausdorff space. Every topological principal G-bundle
P over X × I is vertically isomorphic to P0 × I , where P0 = P�X×{0} is viewed as
a bundle over X. The isomorphism can be chosen so that its restriction to P0 ⊂ P
coincides with the inclusion P0 → P0 × I given by p0 �→ (p0, 0).

Under the assumption that X is aCW-complex, the assertion follows fromProposition
3.2.3/1 and the fact that topological fibre bundles are Serre fibrations (Exercise 3.3.1).
For the proof, we need the following fact.

Lemma 3.3.2 Under the assumptions of Theorem 3.3.1, there exists a locally finite
open covering {Ui : i = 1, 2, . . . } of X such that P is trivial over Ui × I for all i .

Proof of the Lemma. We proceed in two steps. First, we show that every x ∈ X
possesses an open neighbourhoodU such that P is trivial overU × I . Second, from
the open covering so obtained, we construct a locally finite and countable one.

Let x ∈ X be given. By local triviality, for every t ∈ I , there exists an open
neighbourhood Vt of x and an open interval It containing t such that P is trivial
over Vt × It . By compactness of I , we can find 0 < t1 < · · · < tk < 1 such that
It1 , . . . , Itk cover I . Denote Vi := Vti and Ii := Iti and define

Ui :=
i⋂

j=1

Vj , Ji :=
i⋃

j=1

I j .

Clearly, P is trivial over U1 × J1. We will show that a trivialization χ1 of P over
U1 × J1 and a trivialization χ̃2 of P over V2 × I2 induce a trivialization χ2 of P over
U2 × J2. We have

(U1 × J1) ∩ (V2 × I2) = U2 × (J1 ∩ I2).

If J1 ∩ I2 is empty, we can choose χ2 = χ1 on P�U1×J1 and χ2 = χ̃2 on P�V2×I2 .
If J1 ⊂ I2 or I2 ⊂ J1, we can choose χ2 = χ̃2 or χ2 = χ1, respectively. Otherwise,
consider the transition function ρ : U2 × (J1 ∩ I2) → G defined byχ1(p) = χ̃2(p) ·
ρ
(
π(p)

)
, where on the right hand side, ρ

(
π(p)

)
acts by right translation on the

second factor. Choose c ∈ J1 ∩ I2 and a continuous function f : I2 → J1 ∩ I2 such
that f (t) = t for all t ≤ c to define
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ρ̃ : U2 × I2 → G, ρ̃(x, t) := ρ
(
x, f (t)

)
.

By construction, ρ and ρ̃ coincide on U2 × ([0, c] ∩ I2
)
. Hence, the mapping

χ2 : P�U2×J2 → (U2 × J2) × G

defined by

χ2(p) =
{

χ1(p) | π(p) ∈ U2 × [0, c]
χ̃2(p) · ρ̃

(
π(p)

) | π(p) ∈ U2 × I2

yields a trivialization of P overU2 × J2. By iterating this argument, we finally obtain
that P is trivial over U × I , where U = Uk . As a result, we find an open covering
U = {Uα : α ∈ A} of X such that P is trivial over Uα × I for all α.

Next, fromU , we construct an open coveringwhich is locally finite and countable.
Since X is paracompact, we may assume that U is locally finite. Since X is in
addition Hausdorff, there exists a subordinate partition of unity { fα : α ∈ A}, that is,
supp( fα) ⊂ Uα for all α. For a given finite subset S ⊂ A, define a subsetUS of X by

US := {x ∈ X : (
fα − fα′

)
(x) > 0 for all α ∈ S, α′ /∈ S}.

The subsets US are open: for every x ∈ US , there exists an open neighbourhood Vx

of x in X such that fα′(x) �= 0 for only finitely many α′. Hence,US ∩ Vx is the subset
of Vx where a given finite number of continuous functions take nonzero values. It
follows thatUS ∩ Vx is open in Vx and hence in X . This shows thatUS is open in X .

Now, for i = 1, 2, . . . , letUi be the union of allUS with S ⊂ A having i elements.
The family {Ui : i = 1, 2, . . . } covers X , because x ∈ Uix , where ix is the number
of elements α of A such that fα �= 0 in some neighbourhood of x . It is locally finite,
because x /∈ Ui for all i > ix .

It remains to show that P is trivial over Ui × I for each i . On the one hand, P is
trivial over US × I for all S, because US ⊂ supp( fα) and hence US ⊂ Uα for every
α ∈ S. On the other hand, the US with S ⊂ A having i elements form a disjoint
decomposition ofUi , because if S �= S′, then S \ S′ contains an element α and S′ \ S
contains an element α′. Elements x of US ∩US′ would fulfil fα(x) > fα′(x) and
fα(x) < fα′(x), which is a contradiction. �
Proof of Theorem 3.3.1. By Lemma 3.3.2, there exists a locally finite open covering
U = {Ui : i = 1, 2, . . . } of X such that P is trivial over Ui × I for all i . For each
i , let χi be a trivialization of P�Ui×I and let χ̂i denote the induced trivialization of
(P0�Ui ) × I .

Since X is paracompact Hausdorff, there exists a closed covering {Wi : i =
1, 2, . . . } subordinate to U , that is, Wi ⊂ Ui ,8 and this covering is locally finite,
too. Consider the nested sequence of closed subsets covering X which is formed by
the unions W̃i := ⋃i

j=1 Wj . We will construct the desired isomorphism by induction

8For example, one may choose Wi = supp( fi ) for a partition of unity subordinate to U .
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on i , that is, we will successively construct open neighbourhoods Vi of W̃i and ver-
tical isomorphisms Φi over Vi × I . Since P�U1×I and hence (P0�U1) × I are trivial,
we may put V1 = U1 and choose a vertical isomorphism

Φ1 : P�V1×I → (P0�V1) × I

so that (Φ1)�(P0�V1 ) = id(P0�V1 ). Now, assume that we have found an open neighbour-

hood Vi of W̃i and a vertical isomorphism

Φi : P�Vi×I → (P0�Vi ) × I

satisfying (Φi )�(P0�Vi ) = id(P0�Vi ). Via the trivializations χi+1 and χ̂i+1, Φi is repre-
sented over (Vi × I ) ∩ (Ui+1 × I ) = (Vi ∩Ui+1) × I by a continuous mapping

g : (Vi ∩Ui+1) × I → G

satisfying g(x, 0) = 1G for all x ∈ Vi ∩Ui+1. Since paracompact Hausdorff spaces
are normal, there exist open subsets O1, O2 such that

W̃i ⊂ O1, O1 ⊂ O2, O2 ⊂ Vi

and, by Urysohn’s Lemma, a continuous function h : Vi ∪Ui+1 → I which takes
the constant value 1 on O1 and has support in O2. Using h, we define a mapping

g̃ : Ui+1 × I → G, g̃(x, t) :=
{
g
(
x, h(x)t

) | x ∈ O2,

1G | x /∈ O2.

Via the trivializationsχi+1 and χ̂i+1, themapping g̃ represents a vertical isomorphism

Φ̃ : P�Ui+1×I → (P0�Ui+1) × I.

Let Vi+1 := O1 ∪Ui+1. Since on (Ui+1 × I ) ∩ (O1 × I ) = (Ui+1 ∩ O1) × I , the
mapping g̃ coincides with g, the isomorphisms Φ̃ and (Φi )�(P�O1×I ) coincide on their
common domain. Hence, they combine to a vertical isomorphism

Φi+1 : P�Vi+1×I → (P0�Vi+1) × I.

Finally, since g̃(x, 0) = 1G for all x ∈ Ui+1, we have Φ̃�(P0�Ui+1 )
= id(P0�Ui+1 )

and
hence (Φi+1)�(P0�Vi+1 )

= id(P0�Vi+1 )
. This proves the theorem. �

Remark 3.3.3 By analogy, the proof of Lemma 3.3.2 carries over to smooth principal
G-bundles. �

There are two consequences of Theorem 3.3.1 which are important for what follows.
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Corollary 3.3.4 (CoveringHomotopy Theorem) Let X and Y be paracompact Hau-
dorff spaces and let P and Q be topological principal G-bundles over X and
Y , respectively. Let H : X × I → Y be a continuous mapping. Every principal
G-bundle morphism P → Q covering H0 has a prolongation to a principal G-
bundle morphism P × I → Q covering H.

Since the projection Q → Y is a Serre fibration, we already know from Proposition
3.2.3/1 that the lifting problem defined by the mapping H ◦ (πP × id I ) : P × I →
M and the initial condition H̃0 has a solution.What theCoveringHomotopyTheorem
states in addition is that the solution can be chosen to consist of principal G-bundle
morphisms.

Proof Let H̃0 : P → Q be a principal G-bundle morphism covering H0. Then,
according to Remark 1.1.9/1, the mapping

λ : P → H∗
0 Q, λ(p) := (

π(p), H̃0(p)
)
,

is a vertical isomorphism over X . Moreover, by Theorem 3.3.1, there exists a vertical
isomorphism

Φ : H∗Q → H∗
0 Q × I

over X × I satisfying Φ
(
(x, 0), q

) = (
(x, q), 0

)
. Together with the natural mor-

phism pr2 : H∗Q → Q, the isomorphisms λ and Φ combine to a morphism

H̃ : P × I
λ×id I−−−→ H∗

0 Q × I
Φ−1−−→ H∗Q

pr2−−→ Q

covering H . Since

H̃(p, 0) = pr2 ◦Φ−1
((

π(p), H̃0(p)
)
, 0

)
= pr2

((
π(p), 0

)
, H̃0(p)

)
= H̃0(p),

H̃ is a prolongation of H̃0. �

The other consequence of Theorem 3.3.1 leads, in effect, to the idea of classifying
principal bundles in terms of homotopy classes of mappings.

Corollary 3.3.5 (Homotopy implies isomorphism) Let G be a Lie group and let
Q be a topological principal G-bundle over a topological space B. Let X be a
paracompact Hausdorff space and let f, g : X → B be continuous mappings. If f
and g are homotopic, then the topological principal G-bundles f ∗Q and g∗Q over
K are vertically isomorphic.

Proof Let H : X × I → B be a homotopy from f to g, that is, H(·, 0) = f and
H(·, 1) = g. Consider the topological principal G-bundle P := H∗Q over X × I .
Let Pt := P�X×{t}, viewed as a bundle over X . Clearly, P0 = f ∗Q and P1 = g∗Q. By
Theorem 3.3.1, P is vertically isomorphic to P0 × I . By restricting an isomorphism

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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to the subbundle P1 ⊂ P , we obtain a vertical isomorphism from P1, viewed as a
bundle over X , to P0. �

Exercises

3.3.1 Use Proposition 3.2.3/1 and the fact that topological fibre bundles are Serre
fibrations to prove Theorem 3.3.1 under the assumption that the base space is a
CW-complex.

3.4 Universal Principal Bundles

In this section, we classify topological principal bundles over paracompact Hausdorff
spaces of CW-homotopy type up to vertical isomorphisms.

For a Lie group G and a topological space X , let PFB(G, X) denote the totality
of vertical isomorphism classes of topological principal G-bundles over X . As a
consequence of Corollary 3.3.5, given a topological principal G-bundle Q over B,
for every paracompact Hausdorff space X , the assignment of the pullback bundle
f ∗Q to a continuous mapping f : X → B induces a mapping

[X, B] → PFB(G, X). (3.4.1)

Definition 3.4.1 (Topological universal bundle) Let G be a Lie group and let E be
a pathwise connected topological principal G-bundle over a paracompact Hausdorff
space B of CW-homotopy type.

1. E is called a universal bundle for G and B is called a classifying space for G
if the mapping (3.4.1) is a bijection for all paracompact Hausdorff spaces X of
CW-homotopy type.

2. For n = 1, 2, . . . , E is called an n-universal bundle for G and B is called an
n-classifying space for G if the mapping (3.4.1) is a bijection for all paracompact
Hausdorff spaces X of the homotopy type of a CW-complex of dimension n or
less.

In either case, given a principalG-bundle P over a space X , anymapping f : X → B
such that P ∼= f ∗E is said to be a classifying mapping for P .

Clearly, a topological principal G-bundle is universal iff it is n-universal for all n.
In what follows, we first discuss uniqueness and then existence of universal bun-

dles. Uniqueness is a direct consequence of the fact that, by our definition, the base
space of a universal bundle is paracompact Hausdorff of CW-homotopy type.

Definition 3.4.2 Two topological principal G-bundles P1 over X1 and P2 over X2

are said to be G-homotopy equivalent if there exist G-morphisms F1 : P1 → P2 and
F2 : P2 → P1 such that F2 ◦ F1 and F1 ◦ F2 are homotopic through G-morphisms
to vertical automorphisms of P1 and P2, respectively.
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Clearly,G-homotopy equivalent principalG-bundles have homotopy equivalent base
spaces.

Proposition 3.4.3 Any two classifying spaces for G are homotopy equivalent. Any
two universal bundles for G are G-homotopy equivalent.

It is, therefore, common to speak of the universal bundle and the classifying space for
G, and to write EG and BG for (representatives9 of) the corresponding equivalence
classes.

Proof Let Ei be universal G-bundles over Bi , i = 1, 2. Since E2 is universal, and
since B1 is paracompactHausdorff ofCW-homotopy type, E1 is vertically isomorphic
to f ∗

1 E2 for an appropriate classifying mapping f1 : B1 → B2. By analogy, E2 is
vertically isomorphic to f ∗

2 E1 for an appropriate classifyingmapping f2 : B2 → B1.
Then, E1 is vertically isomorphic to f ∗

1 ( f ∗
2 E1) and hence to ( f2 ◦ f1)∗E1. Since E1

is universal, and since E1 = id∗
B1

E1, it follows that f2 ◦ f1 is homotopic to idB1 .
An analogous argument shows that f1 ◦ f2 is homotopic to idB2 . Hence, f1 and f2
provide a homotopy equivalence between B1 and B2.

Now, consider the total spaces E1 and E2. The natural G-morphism f ∗
1 E2 → E2

combines with a vertical isomorphism E1 → f ∗
1 E2 to a G-morphism F1 : E1 → E2

covering f1. Analogously, we obtain a G-morphism F2 : E2 → E1 covering f2.
Then, F2 ◦ F1 is a G-automorphism of E1 covering f2 ◦ f1. Since f2 ◦ f1 is homo-
topic to idB1 , by the Covering Homotopy Theorem 3.3.4, there exists a homotopy
through G-morphisms from F2 ◦ F1 to some G-morphism of E1 covering idB1 , that
is, to some vertical automorphism of E1. An analogous argument shows that F1 ◦ F2

is homotopic through G-morphisms to a vertical automorphism of E2. Thus, F1 and
F2 provide a G-homotopy equivalence between E1 and E2. �

Now, we are going to discuss the existence of universal bundles. Before entering the
actual construction, we derive a criterion for universality in terms of the homotopy
groups of the total space E .We start with a criterion for the extendability of sections10

in topological fibre bundles over CW-complexes.

Lemma 3.4.4 (Prolongation of sections) Let K be a CW-complex and let L ⊂ K
be a subcomplex. Let E be a topological fibre bundle over K with typical fibre V . If
πi (V ) = 0 for all i < dim K, then every section of E�L can be extended to a section
of E.

Proof We give the argument for an infinite dimensional CW-complex. The finite
dimensional case is then obvious.

By possibly refining the CW-complex structure, we may assume that E is trivial
over every cell of K . For i = 0, 1, 2, . . . , let K (i) denote the i-skeleton of K . We
will prove the assertion by induction on i . Since K (0) is discrete, the given section
of E over L extends to a section s0 over L ∪ K (0). Thus, for i > 0, assume that

9A particular representative is called a model of the classifying space for G.
10Recall that sections in topological fibre bundles are assumed to be continuous.
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si is a section of E over L ∪ K (i) and let α : Di+1 → K be an (i + 1)-cell. Since
α(∂Di+1) ⊂ K (i), si induces a section s̃i of (α∗E)�∂Di+1 . We have to show that s̃i
extends to a section of α∗E . By the assumption that E is trivial over every cell of
K , α∗E is a trivial fibre bundle over Di+1 with typical fibre V . Hence, sections
correspond to mappings Di+1 → V and we have to show that every continuous
mapping fi : ∂Di+1 → V extends to a continuous mapping fi+1 : Di+1 → V . Since
πi (V ) = 0, fi is homotopic to a constant mapping via H : ∂Di+1 × I → V . Since
H1 maps ∂Di+1 to the base point of V , H induces a continuous mapping Ĥ from
the cone over ∂Di+1 to V . Since the cone over ∂Di+1 is homeomorphic to Di+1, we
obtain an extension fi+1.

As a result, we obtain a family of sections {si : i = 0, 1, 2, . . . } over the skeleta.
By Proposition 3.1.12, this family defines a continuous mapping s : K → E . By
construction, s is a section. �

By applying Lemma 3.4.4 to the case where L consists of a single point, we obtain
the following.

Corollary 3.4.5 (Existence of sections) Let E be a topological fibre bundle over a
CW-complex K with typical fibre V . If πi (V ) = 0 for all i < dim K, then E admits
a section. �

Now, we can formulate the criterion for universality announced above.

Theorem 3.4.6 (Universality criterion) Let G be a Lie group and let E be a topo-
logical principal G-bundle over a paracompact Hausdorff space B of CW-homotopy
type. If πi (E) = 0 for all i ≤ n, then E is n-universal for G. If πi (E) = 0 for all i ,11

then E is universal.

Proof Clearly, it suffices to prove n-universality. Let K be a CW-complex of dimen-
sion dim(K ) ≤ n. First, we show that the mapping (3.4.1) is bijective for X = K .

To check surjectivity, let P be a topological principalG-bundle over K . It suffices
to find a G-morphism P → E , because the pullback of E by the projection of
such a morphism is vertically isomorphic to P . For that purpose, recall that the G-
morphisms P → E correspond to the sections in the associated fibre bundle P ×G E .
Since this bundle has typical fibre E and since πi (E) = 0 for all i < n, the assertion
follows from Corollary 3.4.5.

To check injectivity, let there be given continuous mappings f0, f1 : K → B
and assume that there exists a vertical isomorphism Φ : f ∗

0 E → f ∗
1 E . Let Fi :

f ∗
i E → E be the naturalG-morphisms. Then, F1 ◦ Φ : f ∗

0 E → E is aG-morphism
covering f1. It suffices to find a G-morphism H : f ∗

0 E × I → E such that

H(·, 0) = F0, H(·, 1) = F1 ◦ Φ,

because the projection h : K × I → B of H then satisfies

11That is, if E is weakly contractible.
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h(·, 0) = f0, h(·, 1) = f1

and thus yields a homotopy from f0 to f1. To find H , it suffices to find a section in the
associated fibre bundle ( f ∗

0 E × I ) ×G E whose restrictions to K × {0} and K × {1}
correspond to the morphisms F0 and F1 ◦ Φ, respectively. Since this bundle has
typical fibre E , and since πi (E) = 0 for all i < dim(K × I ) ≤ n + 1, the existence
of such a section follows from the Prolongation Lemma 3.4.4. This proves injectivity.

Now, let X be a paracompact Hausdorff space which is homotopy equivalent to
K . Let h : X → K and k : K → X be a homotopy equivalence.

To see that the mapping (3.4.1) is surjective, let P be a topological principal G-
bundle over X . Then, k∗P is a topological principal G-bundle over K and hence
vertically isomorphic to f ∗E for some continuous mapping f : K → B. It follows
that we have the vertical isomorphisms

( f ◦ h)∗E → h∗( f ∗E) → h∗(k∗P) → (k ◦ h)∗P → P,

where the last one is due to Corollary 3.3.5.
To see that the mapping (3.4.1) is injective, let there be given continuous map-

pings f1, f2 : X → B and assume that f ∗
1 E be vertically isomorphic to f ∗

2 E . Then,
the topological principal G-bundles k∗( f ∗

1 E) and k∗( f ∗
2 E) over K are vertically

isomorphic. Hence, f1 ◦ k is homotopic to f2 ◦ k and thus f1 ◦ k ◦ h is homotopic
to f2 ◦ k ◦ h. Since k ◦ h is homotopic to idX , then f1 is homotopic to f2. �

In addition to Theorem 3.4.6, we will also need a criterion which applies to universal
bundles for closed subgroups of G. Let E be a topological principal G-bundle over
B and let H ⊂ G be a closed subgroup. Recall that the action of G on E reduces
to an action of H and that the latter makes E into a principal H -bundle over the
topological quotient E/H .

Lemma 3.4.7 Let G be a compact Lie group and let E be a topological principal
G-bundle over a paracompact Hausdorff space B of CW-homotopy type. For every
closed subgroup H ⊂ G, the quotient space E/H is paracompact Hausdorff of CW-
homotopy type.

Proof We use that the induced projection E/H → B is a topological fibre bun-
dle with typical fibre being the homogeneous space G/H . Since B and G/H are
Hausdorff, so is E/H (Exercise 3.4.1). Since B is paracompact, by Proposition 3.2.6,
the induced projection is a Hurewicz fibration. Since, in addition, B is pathwise con-
nected and both G/H and B are of CW-homotopy type, Theorem 5.4.2 in [221]
yields that E/H is of CW-homotopy type.

To see that E/H is paracompact, let U = {Ui : i ∈ I } be an open covering of
E/H . We have to find a locally finite open refinement ofU . Since B is paracompact,
π admits a system of local trivializations {(Vα, χα) : α ∈ A} such that the open
covering V = {Vα : α ∈ A} is locally finite. For each α, we find an open subset
Wα ⊂ Vα such that the closure Wα ⊂ Vα and {Wα : α ∈ A} is an open covering
of B; for example one may put Wα = {x ∈ B : fα(x) �= 0} for a partition of unity
{ fα : α ∈ A} subordinate to V . By intersecting the members of U with π−1(Wα),
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we obtain an open covering Uα of π−1(Wα). Since this space is homeomorphic to
the direct product of the paracompact space Wα with the compact space G/H , it
is paracompact.12 Hence, Uα admits a locally finite refinement. By intersecting the
members of Uα with π−1(Wα), we obtain a locally finite family of open subsets of
E/H covering π−1(Wα). By taking the union of these families over all α, we then
obtain an open refinement of U . It is locally finite, because so is V and hence the
family {π−1(Wα) : α ∈ A}. �
In view of Lemma 3.4.7, Theorem 3.4.6 implies the following.

Corollary 3.4.8 Let G be a compact Lie group and let H ⊂ G be a closed subgroup.
Let E be a topological principal G-bundle over a paracompact Hausdorff space B
of CW-homotopy type. If πi (E) = 0 for all i ≤ n, the induced principal H-bundle
E → E/H is n-universal for H. If πi (E) = 0 for all i , this bundle is universal
for H. �
Remark 3.4.9 If πi (E) = 0 for all i ≤ n, the exact homotopy sequence (3.2.6)
implies

π1(BG) = G/G0, πi (BG) = πi−1(G) for 2 ≤ i ≤ n, (3.4.2)

where G0 denotes the identity component of G. �

Now, we are going to prove that universal bundles exist for all Lie groups with a finite
number of connected components. We start with discussing the classical compact
Lie groups O(k), U(k) and Sp(k).

Let K = R, C or H and let k < l be positive integers. Consider the Stiefel bundle

SK(k, l) → GK(k, l),

where SK(k, l) denotes the Stiefel manifold of k-frames in K
l and GK(k, l) denotes

the Graßmann manifold of k-dimensional subspaces ofK
l and the projection assigns

to a frame the subspace spanned by that frame. According to Example 1.1.24, the
Stiefel bundle is a smooth principal bundle with structure group O(k) in caseK = R,
U(k) in case K = C and Sp(k) in case K = H.

Theorem 3.4.10 The Stiefel bundleSK(k, l) → GK(k, l) fulfilsπi
(
SK(k, l)

) = 0 for
all i ≤ n and is thus n-universal

1. for O(k) in case K = R and l ≥ n + 1 + k,
2. for U(k) in case K = C and l ≥ n/2 + k,
3. for Sp(k) in case K = H and l ≥ n/4 − 1/2 + k.

Proof Since the base spaces are manifolds, they are paracompact Hausdorff of CW-
homotopy type.13 Hence, according to Theorem 3.4.6, it suffices to check the homo-
topy groups of the Stiefel manifolds. We claim that

12This argument is the reason why G is assumed to be compact.
13In fact, GK(k, l) admits a canonical CW-complex structure, see Sect. 6 in [451].

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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πi (SK(k, l)) = 0 for all i ≤ d(l − k) + d − 2, (3.4.3)

where d denotes the dimension of K over R. From this, one obtains points 1–3 by
plugging in n for i .

Consider the case K = R. The exact sequence of homotopy groups (3.2.6) for the
principal O(l − k)-bundle

O(l) → O(l)/O(l − k) ∼= SR(k, l)

contains the pieces

πi (O(l − k))
ι∗→ πi (O(l)) → πi (SR(k, l))

∂→ πi−1(O(l − k))
ι∗→ πi−1(O(l)),

(3.4.4)
where

ι : O(l − k) → O(l), ι(a) =
[
1k 0
0 a

]
.

We decompose ι into the sequence of embeddings

O(l − k)
ι1−→ O(l − k + 1)

ι2−→ · · · ιk−→ O(l).

Since ι1 makes O(l − k + 1) into a principal bundle over Sl−k with structure group
O(l − k), from (3.2.6) we obtain exact sequences

πi+1(S
l−k) −→ πi (O(l − k))

ι1 ∗−→ πi (O(l − k + 1)) −→ πi (S
l−k),

showing that ι1 ∗ is an isomorphism for i < l − k − 1 and surjective for i = l − k − 1.
By replacing k by k − 1, . . . , 1 in this argument, we obtain that the homomorphisms
of the i-th homotopy groups induced by, respectively, ι2, . . . , ιk are isomorphisms
for all i ≤ l − k − 1. Consequently,

ι∗ = ι1 ∗ ◦ · · · ◦ ιk ∗ : πi
(
O(l − k)

) → πi
(
O(l)

)

is an isomorphism for all i < l − k − 1 and surjective for i = l − k − 1. Now,
exactness of (3.4.4) implies that for i ≤ l − k − 1, we have πi

(
SR(k, l)

) = 0.
This proves (3.4.3) for K = R. The arguments for K = C and K = H are similar
(Exercise 3.4.2). �

For the Lie groups O(1) ∼= Z2, U(1) and Sp(1), Theorem 3.4.10 yields, respectively,
the n-universal bundles

Sl → RPl , l ≥ n + 2,
S2l+1 → CPl , l ≥ n/2,
S4l+3 → HPl l ≥ n/4 − 1/2.
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As a consequence of Corollary 3.4.8, by embedding the cyclic group Zr as

Zr → U(1), s �→ e2π is/r , (3.4.5)

from the Stiefel bundle S2l+1 → CPl , we obtain the n-universal bundle

S2l+1 → L2l+1
r ≡ S2l+1/Zr , l ≥ n/2,

for Zr . The quotient manifold L2l+1
r is referred to as a lens space. It has the structure

of a smooth principal bundle over CPl with structure group U(1)/Zr
∼= U(1).

As another consequence of Corollary 3.4.8, for the subgroups SO(k) ⊂ O(k) and
SU(k) ⊂ U(k), Theorem 3.4.10 yields, respectively, the n-universal bundles

SR(k, l) → G̃R(k, l) ≡ SR(k, l)/SO(k), l ≥ n + k + 1,

SC(k, l) → G̃C(k, l) ≡ SC(k, l)/SU(k), l ≥ n/2 + k.

The quotient manifold G̃R(k, l) has the structure of a smooth principal bundle over
GR(k, l) with structure group O(k)/SO(k) ∼= O(1). Accordingly, the quotient man-
ifold G̃C(k, l) has the structure of a smooth principal bundle over GC(k, l) with
structure group U(k)/SU(k) ∼= U(1).

Remark 3.4.11

1. The principal bundle structure in the classifying spaces of Zr , SO(k) and SU(k)
observed here generalizes to arbitrary closed normal subgroups, see Proposition
3.7.5 below.

2. In the situation of a closed subgroup H of O(k), it is actually not necessary to
use Lemma 3.4.7 to prove Corollary 3.4.8, because the action of O(k) on SR(k, l)
restricts to a smooth free proper action of H on SR(k, l) and Corollary 6.5.1
in Part I implies that the topological quotient SR(k, l)/H is a smooth manifold.
Hence, it is automatically paracompact Hausdorff of CW-homotopy type. A sim-
ilar statement holds true for closed subgroups of U(k) and Sp(k). �

The existence ofn-universal bundles for the orthogonal groups entails the existence of
n-universal bundles for all Lie groups with a finite number of connected components
by the following argument.

First, by a theorem due to Iwasawa [341] andMalcev [420], there exists amaximal
compact subgroup K ⊂ G and a submanifold N ⊂ G, diffeomorphic to a real vector
space, such that the mapping

μ : K × N → G, μ(k, n) := kn, (3.4.6)
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is a diffeomorphism.14 This generalizes the polar decomposition of GL(n, R) and
GL(n, C), cf. Exercise 5.1.9 in Part I. In the case where G is simply connected, the
theorem is due to É. Cartan [122].

Second, being compact, K admits a finite-dimensional faithful real representation,
see Remark 3.4.14 below. By Proposition 5.5.6 in Part I, this representation admits
an invariant scalar product. Thus, by choosing an orthonormal basis, we obtain a Lie
subgroup embedding K → O(k) for some k. Then, the action of O(k) on SR(k, l)
restricts to a smooth free proper action of K , thus turning SR(k, l) into a smooth
principal K -bundle over SR(k, l)/K . By extending the structure group from K to G,
we finally obtain the smooth principal G-bundle

SR(k, l) ×K G → SR(k, l)/K . (3.4.7)

Corollary 3.4.12 Let G be a Lie group with finitely many connected components, let
K be a maximal compact subgroup of G and let K ⊂ O(k) via a faithful orthogonal
representation. For l ≥ n + k + 1, the topological principal G-bundle underlying
(3.4.7) fulfils πi (SR(k, l) ×K G) = 0 for all i ≤ n and is thus n-universal for G.

In particular, n-universal bundles exist for all Lie groups with a finite number of
connected components and all n.

Proof Denote E := SR(k, l). Since by Theorem 3.4.10, the assertion holds true for
E , it suffices to show that E ×K G is a deformation retract of E . In the following
argument, details are left to the reader (Exercise 3.4.3).

Let I = [0, 1] and let prK : G → K and prN : G → N denote the mappings
obtained by composing the inverse of the diffeomorphism (3.4.6) with the natural
projections in the direct product K × N . Since N is diffeomorphic to a vector space,
there exists a strong deformation retractionϕN : N × I → N of N onto the one-point
subset {1}. Then,

ϕG : G × I → G, ϕG(a, t) := μ
(
prK (a), ϕN

(
prN (a), t

))
,

is a strong deformation retraction of G onto K . For all a ∈ G, k ∈ K and t ∈ I , we
have prK (ka) = k prK (a) and prN (ka) = prN (a), and hence ϕG(ka, t) = kϕG(a, t).
Therefore, ϕG induces a mapping

ϕ : (E ×K G) × I → E ×K G, ϕ ([(e, a)] , t) := [(e, ϕG(a, t))] .

It is not hard to see that ϕ is a strong deformation retraction of E ×K G onto the
subset E ×K K = E . This proves the corollary. �
Example 3.4.13 (Principal bundles over spheres) Consider the case where M = Sn

and G is a connected Lie group. Let E → B be an n-universal bundle for G. Since
E is pathwise connected, so is B. Since G is connected, (3.4.2) yields π1(B) = 0.

14For a detailed proof, see Sect. 3.7 of [302] or Theorem XV.3.1 of [310].
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Since for a pathwise connected topological space X , the mapping πn(X) → [Sn, X ]
induced by the natural inclusion mapping C∗(Sn, X) → C(Sn, X) descends to a
bijection from πn(X)/π1(X) onto [Sn, X ], this implies [Sn, B] = πn(B).15 On the
other hand, according to (3.4.2), we have πn(B) ∼= πn−1(G). It follows that the ver-
tical isomorphism classes of principal G-bundles over Sn are in bijective correspon-
dence with the elements of πn−1(G). This is consistent with the Čech cohomological
description of these bundles in terms of transition mappings: we can cover Sn by
two contractible open subsets whose intersection can be retracted to the equator
Sn−1. Hence, according to Proposition 1.1.10 and Theorem 1.1.11, since G is con-
nected, vertical isomorphism classes of topological principal G-bundles over Sn are
in bijective correspondence with homotopy classes of continuous mappings from
Sn−1 → G.

For example, in case G = U(1), we obtain that nontrivial U(1)-bundles over Sn

exist for n = 2 only and that, in this case, they are classified by an integer. For a
detailed discussion of principal bundles over spheres, we refer to [599]. �
Remark 3.4.14 The fact that every compact Lie groupG admits a finite-dimensional
faithful representation is a consequence of a central result in the theory of compact Lie
groups, the Peter-WeylTheorem.This theorem states that the representative functions
form a dense subset of the Hilbert space L2(G, v) of real or complex valued functions
on G which are square integrable with respect to a bi-invariant volume form16 v, see
for example [105, Theorem III.3.1]. Recall that a representative function is a linear
combination of functions of the form

G → K, a �→ 〈η, ρ(a)v〉 (3.4.8)

where v ∈ V and η ∈ V ∗ for some C-vector space V carrying a finite-dimensional
irreducible representation ρ : G → Aut(V ). To conclude from this that G admits a
finite-dimensional faithful representation, let a1 ∈ G such that a1 �= 1. Since the
elements of L2(G, v) separate the points of G and since functions of the form
(3.4.8) are dense in L2(G, v), there exists a function of this form satisfying f (a1) �=
f (1). This means that there exists a finite-dimensional irreducible K-representation
ρ1 : G → Aut(V1) such that a1 /∈ ker(ρ1) and hence K1 := ker(ρ1) is properly con-
tained in G. If ρ1 is faithful, we are done. Otherwise, there exists a2 ∈ K1 such that
a2 �= 1. By the same argument as above, we can find a function f of the form (3.4.8)
such that f (a2) �= f (1), and hence a finite-dimensional irreducibleK-representation
ρ2 : G → Aut(V2) such that a2 /∈ ker(ρ2). Then, K2 := K1 ∩ ker(ρ2) is properly
contained in K1. Iterating this argument, we obtain a sequence K1, K2, . . . of closed
subgroups of G with Ki+1 being properly contained in Ki . Since G is compact, so
are the Ki . By the Theorem on Invariance of Domain,17 if Ki and Ki+1 have the same
dimension, then Ki+1 is open in Ki and hence is a union of connected components of

15The quotient πn(X)/π1(X) is the set of orbits of the natural action of π1(X) on πn(X). The latter
was explained prior to Proposition 3.2.9.
16A Haar measure, cf. Sect. 5.5 in Part I.
17See the footnote on page 159 in Part I.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Ki . Thus, each Ki+1 must have smaller dimension or fewer connected components
than Ki . Since, by compactness, the number of connected components is finite, the
sequence must be finite, and hence must end with the subgroup Kr = {1}. Then, the
representation

ρ1 × · · · × ρr : G → Aut (V1 ⊕ · · · ⊕ Vr )

has kernel ker(ρ1) ∩ · · · ∩ ker(ρr ) = K1 ∩ · · · ∩ Kr = {1} and is thus faithful. �

From the Stiefel bundles SK(k, l) → GK(k, l)we can construct universal bundles by
taking the direct limits l → ∞. To be definite, let us explain the construction for the
case K = R.

Let R
∞ be the direct sum of countably many copies of R. Recall that R

∞ is a
real vector space whose elements are infinite sequences (x1, x2, . . . ) with xi �= 0 for
only finitely many i . It carries an obvious scalar product. Let SR(k,∞) denote the
set of orthonormal k-frames inR

∞ and let GR(k,∞) denote the set of k-dimensional
subspaces ofR

∞. GR(k,∞) is known as the infinite Graßmannian. Every element of
R

l can be made into an element of R
∞ by appending zero entries. This way, we may

identify R
l with a subset of R

∞, SR(k, l) with a subset of SR(k,∞) and GR(k, l)
with a subset of GR(k,∞). By construction, then R

l is a subset of R
l+1, SR(k, l)

is a subset of SR(k, l + 1) and GR(k, l) is a subset of GR(k, l + 1) for every l. We
topologize SR(k,∞) and GR(k,∞) by the final topologies defined by the natural
inclusion mappings SR(k, l) → SR(k,∞) and GR(k, l) → GR(k,∞), respectively.
That is, a subset of SR(k,∞) is open iff its intersectionwith the subset SR(k, l) is open
for all l. An analogous statement holds for GR(k,∞). Note that SR(k,∞) may be
identified with the direct limit of the directed system given by the topological spaces
SR(k, l) and the natural inclusion mappings SR(k, l) → SR(k, l + 1), l = 1, 2, . . . .
Again, a similar statement holds for GR(k,∞). To make SR(k,∞) into a principal
O(k)-bundle over GR(k,∞), we define a mapping

π : SR(k,∞) → GR(k,∞) (3.4.9)

by assigning to a k-frame inR
∞ the subspace spanned by this k-frame and amapping

Ψ : SR(k,∞) × O(k) → SR(k,∞) (3.4.10)

by letting O(k) act on the first k entries of the elements of R
∞. This is a free action.

Then, denoting the natural projection SR(k, l) → GR(k, l) by π(l) and the action of
O(k) on SR(k, l) by Ψ (l), we have

π�SR(k,l) = π(l), Ψ�SR(k,l)×O(k) = Ψ (l), (3.4.11)

where we have omitted the natural inclusion mappings. This implies that π is con-
tinuous and that Ψ is a topological right action (Exercise 3.4.4).
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Lemma 3.4.15 The tuple
(
SR(k,∞),GR(k,∞),O(k), π, Ψ

)
is a principal fibre

bundle.

This bundle is referred to as the infinite real Stiefel bundle.

Proof It remains to construct local trivializations. Thus, letW0 ∈ GR(k,∞) be given.
We construct a local section in (3.4.9) at W0 as follows. There exists l0 such that
W0 ∈ GR(k, l0). Define

Ul0 := {W ∈ GR(k, l0) : dim PW (W0) = k},

where PW : R
l0 → R

l0 denotes orthogonal projection to W . Choose an orthonormal
basis {ei } in R

l0 whose first k elements span W0. For every W ∈ Ul0 ,

{
PW (e1), . . . , PW (ek), PW⊥(ek+1), . . . , PW⊥(el0)

}

is a basis in R
l0 . By applying the standard orthonormalization procedure to this

basis, we obtain an orthonormal basis {ei (W )} whose first k elements span W and
thus define an element sl0(W ) belonging to the fibre over W of the Stiefel bun-
dle SR(k, l0) → GR(k, l0). To see that the mapping W �→ sl0(W ) is continuous and
hence a local section in that bundle, we view SR(k, l0) as the homogeneous space
O(l0)/O(l0 − k). Then, sl0(W ) is given by the coset of the matrix built from the
columns e1(W ), . . . , el0(W ). Using that PW (v) depends continuously on W for all
v ∈ R

l0 , it is not hard to see that each of the vectors ei (W ) depends continuously
on W . Hence, so does the corresponding matrix and, therefore, its coset. Now, we
view W0 as an element of GR(k, l0 + 1), define Ul0+1 in the same way as before and
construct a local section sl0+1 : Ul0+1 → SR(k, l0 + 1) using an orthonormal basis
in R

l0+1 whose first l0 elements coincide with the elements of the basis used before.
Then, Ul0 ⊂ Ul0+1 and sl0+1 coincides with sl0 on Ul0 . Continuing in this way, we
obtain a family of continuous mappings sl : Ul → SR(k, l), l ≥ l0, where Ul is an
open neighbourhood of W0 in GR(k, l) and

Ul ⊂ Ul+1, sl+1�Ul = sl

for all l. By Proposition 3.1.14, this family defines a continuous mapping s from⋃
l≥l0

Ul to SR(k,∞) and this mapping is a local section of the projection (3.4.9). �

In a similar way, one constructs the infinite complex and quaternionic Stiefel bundles.

Theorem 3.4.16 The infinite Stiefel bundle fulfils πi
(
SK(k,∞)

) = 0 for all i . It is
universal for O(k) in case K = R, for U(k) in case K = C, and for Sp(k) in case
K = H.

Proof Again, we apply Theorem 3.4.6. The Graßmannian GR(k, l) admits a canoni-
cal cell decomposition consisting of a total of

(l
k

)
cells [177, 451]. The cell complex

structure so obtained has the property that GR(k, l) is a subcomplex of GR(k, l + 1)



228 3 Homotopy Theory of Principal Fibre Bundles. Classification

for every l > k. It follows that the infinite Graßmannian GR(k,∞) inherits a natural
CW-complex structure.18 In particular, it is paracompact Hausdorff. To check that
πi

(
SK(k,∞)

) = 0 for all i , let f : Si → SK(k,∞) be a continuous mapping. Since
Si and hence f (Si ) is compact, there exists l0 such that f (Si ) is contained in SK(k, l0)
and hence in SK(k, l) for any l ≥ l0. By (3.4.3), for large enough l, f is homotopic
in SK(k, l) to a constant mapping. Hence, it is so in SK(k,∞). �
Example 3.4.17

1. For k = 1, Theorem 3.4.16 states that the bundle S∞ → KP∞ is universal for
O(1) in case K = R, U(1) in case K = C and Sp(1) in case K = H.

2. In view of the fact that πi (SK(k,∞) = 0 for all i , Corollary 3.4.8 yields that via
the embedding (3.4.5), from the case K = C we obtain the universal bundle

S∞ → L∞
r ≡ S∞/Zr

for the cyclic group Zr . Here, L∞
r is the infinite lense space. Like in finite dimen-

sion, L∞
r is a topological principal U(1)-bundle over the infinite complex projec-

tive space CP∞.
3. Corollary 3.4.8 yields the universal bundles

SR(k,∞) → G̃R(k,∞) ≡ SR(k,∞)/SO(k),

SC(k,∞) → G̃C(k,∞) ≡ SC(k,∞)/SU(k)

for SO(k) and SU(k), respectively. Here, G̃R(k,∞) is a topological principal
O(1)-bundle over GR(k,∞) and G̃C(k,∞) is a topological principal U(1)-bundle
over GC(k,∞). �

As in the n-universal case, the existence of universal bundles for the orthogonal
groups entails the existence of universal bundles for all Lie groups with a finite
number of connected components.

Corollary 3.4.18 Let G be a Lie group with a finite number of connected compo-
nents, let K be a maximal compact subgroup of G and let K ⊂ O(k) via a faithful
orthogonal representation. Then, the principal G-bundle

SR(k,∞) ×K G → SR(k,∞)/K

is universal for G. In particular, universal bundles exist for all Lie groups with a
finite number of connected components.

Proof By Lemma 3.4.7, SR(k,∞)/K is paracompact Hausdorff of CW-homotopy
type. By the argument used in the proof of Corollary 3.4.12, SR(k,∞) ×K G is a
deformation retract of SR(k,∞). �

18The number of r -cells of this structure coincides with the number of ways to write r as a sum of
at most k positive integers. For a detailed description, see Sect. 6 in [451].
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Remark 3.4.19 According to Proposition 3.4.3, the classifying space BG may be
chosen to be a CW-complex. �

Having constructed universal bundles,we can now show that the universality criterion
given in Theorem 3.4.6 is sharp. By Proposition 3.4.3, every universal G-bundle
E is G-homotopy equivalent to SR(k,∞) ×K G for some faithful k-dimensional
orthogonal representation of a maximal compact subgroup K . As was shown in the
proof of Theorem 3.4.16, then πi (E) = 0 for all i . Hence, Theorem 3.4.6 implies
the following.

Proposition 3.4.20 Let G be a Lie group with finitely many connected components.
A topological principal G-bundle E is universal iff πi (E) = 0 for all i . �

In view of this, Corollary 3.4.8 translates into the following statement.

Corollary 3.4.21 Let G be compact and let H ⊂ G be a closed subgroup. Then, the
induced bundle EG → EG/H is universal for H and the quotient space EG/H is
a classifying space for H. �

Remark 3.4.22 Let G1 and G2 be Lie groups with a finite number of connected
components. By Proposition 3.4.20, one has

πi (EG1 × EG2) = πi (EG1) × πi (EG2) = 0

for all i , and this implies that the topological principal (G1 × G2)-bundleEG1 × EG2

over BG1 × BG2 is universal. It follows that the classifying space B(G1 × G2) of the
direct product of Lie groups may be realized by the direct product of the classifying
spaces BG1 × BG2. For an alternative proof, see Exercise 3.4.5.

Under this assumption, if P1 and P2 are principal Gi -bundles over the same base
space B and if fi → BGi are classifying mappings for Pi , then ( f1 × f2) ◦ Δ is a
classifying mapping for the principal (G1 × G2)-bundle P1 ×B P2 (fibre product).
Indeed, one can check that the assignment

(
b, (y1, y2)

) �→ (
(b, y1), (b, y2)

)
induces

a vertical isomorphism from
(
( f1 × f2) ◦ Δ

)∗
(EG1 × EG2) onto the fibre product

( f ∗
1 EG1) ×B ( f ∗

2 EG2). �

Finally, let us summarize the discussion of this section.

Theorem 3.4.23 (Classification Theorem) For every Lie group G with a finite
number of connected components, there exists a topological principal G-bundle
EG → BG with the following property. For every paracompact Hausdorff topolog-
ical space X of CW-homotopy type, the vertical isomorphism classes of topological
principal G-bundles over X are in bijective correspondence with homotopy classes
of continuous mappings f : X → BG. The correspondence is given by assigning to
f the bundle f ∗EG. �
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Exercises

3.4.1 Let E be a topological fibre bundle over B with typical fibre F . Show that if
B and F are Hausdorff, then E is Hausdorff.

3.4.2 Work out the proof of (3.4.3) for the cases K = C and K = H.

3.4.3 Check that themappings ϕN , ϕG and ϕ defined in the proof of Corollary 3.4.12
are strong deformation retractions.

3.4.4 Use the relations (3.4.11) to show that the mapping π defined by (3.4.9) is
continuous and that the mapping Ψ defined by (3.4.10) is a topological right action.

3.4.5 Let G1 and G2 be Lie groups and let P be a principal (G1 × G2)-bundle over
a smooth manifold M . By embedding G1 and G2 in the obvious way into G1 × G2,
the action of G1 × G2 on P induces actions of G1 and G2. Convince yourself that
P/G1 can be made into a principal G2-bundle over M , and vice versa. Show that
P is vertically isomorphic to the principal (G1 × G2)-bundle Δ∗(P/G2 × P/G1),
where Δ : M → M × M denotes the diagonal mapping. Use this to prove that the
classifying space of G1 × G2 may be realized as the direct product BG1 × BG2, cf.
Remark 3.4.22.

3.5 The Milnor Construction

In this section, we discuss the Milnor construction, which provides a topological
principal G-bundle whose total space is contractible rather than weakly contractible.
While being less intuitive than the construction of the infinite Stiefel bundles, the
Milnor construction has two advantages. First, it applies to anyHausdorff topological
group. In particular, in the case of a Lie group there is no need to assume a finite
number of connected components. Second, it classifies topological principal bundles
over all paracompact Hausdorff spaces, and not just those of CW-homotopy type.
In fact, it classifies all principal bundles admitting a system of trivializations with a
subordinate partition of unity. Such bundles are called numerable.

In a first step, we construct a topological principal G-bundle G(l) → B(l) for
every positive integer l. Let I = [0, 1]. In what follows, elements of the direct prod-
ucts Gl and I l will be denoted by a = (a1, . . . , al) and t = (t1, . . . , tl), respectively.
The l-join G(l) is the topological quotient of the subset

{
(a, t) ∈ Gl × I l : t1 + · · · + tl = 1

}
(3.5.1)

of Gl × I l with respect to the equivalence relation

(a, t) ∼ (b,u) iff t = u and ai = bi for all i such that ti > 0. (3.5.2)
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Elements of G(l) will be denoted by [(a, t)]. The free right action of G on Gl × I l

given by (
g, (a, t)

) �→ (
(a1g, . . . , alg), (t1, . . . , tl)

)

leaves the subset (3.5.1) invariant and hence descends to a topological free right
action Ψ (l) of G on G(l). Let B(l) denote the topological quotient of this action and
let π(l) : G(l) → B(l) denote the natural projection to orbits. To see that Ψ (l) makes
G(l) into a topological principalG-bundle over B(l), it suffices to cover B(l) by local
sections of π(l), that is, by continuous mappings s : U → G(l), where U ⊂ B(l) is
open, satisfying π(l) ◦ s = idU . For i = 1, . . . , l, define subsets

S(l)
i := {[(a, t)] : ai = 1, ti > 0}, U (l)

i := π(l)
( {[(a, t)] : ti > 0} )

of G(l) and B(l), respectively. The subsets U (l)
i cover B(l). They are open, because

π(l) is an open mapping.19 Since U (l)
i = π(l)

(
S(l)
i

)
, by restriction, π(l) induces a

continuous surjective mapping

π
(l)
i : S(l)

i → U (l)
i .

It is easy to see that π(l)
i is injective. We show that it is open. Let [(a, t)] ∈ S(l)

i . We
have to show that π

(l)
i maps neighbourhoods of [(a, t)] in S(l)

i to neighbourhoods
of π

(l)
i

([(a, t)]) in B(l). For an open neighbourhood W of 1 in G and ε > 0, let
V (W, ε) denote the open subset of G(l) obtained by intersecting

{
(b, s) ∈ Gl × I l : bi ∈ aiW, si ∈ (ti − ε, ti + ε) ∩ I

}

with the subset (3.5.1) and passing to classes with respect to the equivalence relation
(3.5.2). Every neighbourhood of [(a, t)] in S(l)

i contains a neighbourhood of the form
V (W, ε) ∩ S(l)

i with appropriately chosen W and ε. By continuity of the multipli-
cation and inversion mappings of G, we can find an open neighbourhood W̃ ⊂ W
of 1 in G such that W̃ W̃−1 ⊂ W . Then, V (W̃ , ε) is a neighbourhood of [(a, t)] in
G(l) and hence, since π

(l)
i is an open mapping, π

(l)
i

(
V (W̃ , ε)

)
is a neighbourhood

of π
(l)
i

([(a, t)]) in B(l). Then, so is π
(l)
i

(
V (W, ε) ∩ S(l)

i

)
, because

π
(l)
i

(
V (W̃ , ε)

) ⊂ π
(l)
i

(
V (W̃ W̃−1, ε) ∩ S(l)

i

) ⊂ π
(l)
i

(
V (W, ε) ∩ S(l)

i

)
.

This shows that themappingsπ
(l)
i are open and hence homeomorphisms.By inverting

them, we obtain the desired local sections

19See Proposition 6.1.5/2 in Part I. The argument given there for Lie group actions applies to
topological group actions as well.

http://dx.doi.org/10.1007/978-94-024-0959-8_6
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s(l)
i : U (l)

i → G(l).

As a result, for every l, G(l) is a topological principal G-bundle over B(l).
In a second step, we use the bundles G(l) → B(l) to construct a topological

principal bundle G-bundle G(∞) → B(∞) in much the same way as the infinite
Stiefel bundles. Let G∞ denote the set of infinite sequences a = (a1, a2, . . . ) with
ai ∈ G. Let I∞ denote the set of infinite sequences t = (t1, t2, . . . ) with ti ∈ I and
only finitely many ti > 0. Define the infinite join G(∞) to be the set of equivalence
classes of the elements of the subset

{(a, t) ∈ G∞ × I∞ : t1 + t2 + · · · = 1} (3.5.3)

of G∞ × I∞ with respect to the equivalence relation (3.5.2). The free right action
of G on Gl × I l given by

(
g, (a, t)

) �→ (
(a1g, a2g, . . . ), (t1, t2, . . . )

)

leaves invariant the subset (3.5.3) and hence descends to a free right actionΨ (∞) ofG
on the set G(∞). Let B(∞) denote the set of orbits and let π(∞) : G(∞) → B(∞)

denote the natural projection. To equipG(∞) and B(∞)with a topology, we observe
that every element ofGl can be made into an element ofG∞ by appending an infinite
sequence with entries 1 and every element of I l can be made into an element of I∞
by appending an infinite sequence with zero entries. It is easy to check that, in
this way, G(l) and B(l) are made into subsets of G(∞) and B(∞), respectively, for
every n. Thus, we can topologizeG(∞) and B(∞) by the final topologies defined by
the corresponding natural inclusion mappings. These topologies coincide with those
inherited from the final topology on G∞ × I∞ induced by the family of natural
inclusion mappings Gl × I l → G∞ × I∞ by taking subsets and quotients. Then,
the obvious relations

π
(∞)

�G(l) = π(l), Ψ
(∞)

�G×G(l) = Ψ (l),

holding for all l ≥ i , imply that π(∞) and Ψ (∞) are continuous. To construct local
sections of the projection π(∞) : G(∞) → B(∞), for every positive integer i we
define a subset

Ui := π(∞)
( {[(a, t)] ∈ G(∞) : ti > 0} )

of B(∞) and a mapping
si : Ui → G(∞)

by assigning to π(∞)
([(a, t)]) the unique representative with ai = 1. This mapping

is continuous, because its restriction to U (l)
i coincides with s(l)

i for all l ≥ i , and it
satisfies π(∞) ◦ si = idUi . Since the subsets Ui cover B(∞), this shows that G(∞)

is a topological principal G-bundle over B(∞).
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Theorem 3.5.1 The assignment (3.4.1) induced by the topological principal G-
bundle G(∞) over B(∞) is a bijection for all paracompact Hausdorff spaces X.

Proof First, assume that we are given a topological principal G-bundle π : P → X .
We aim at constructing a classifying mapping f : X → B(∞).

By applying Lemma 3.3.2 to the bundle P × I , we find a locally finite open
covering {Ui : i = 1, 2, . . . } of X such that P is trivial over Ui for each i . Since X
is paracompact, there exists a subordinate partition of unity {ϕi : i = 1, 2, . . . }. That
is, supp(ϕi ) ⊂ Ui for all i .

Using a system of local trivializations {χi }, we can define the associated map-
pings κi := prG ◦χi : π−1(Ui ) → G. Extending them to all of P by assigning to
p /∈ π−1(Ui ) the value 1, we can define a mapping

P → G(∞), p �→ [((
κ1(p), κ2(p), . . .

)
,
(
ϕ1 ◦ π(p), ϕ2 ◦ π(p), . . .

))]
.

It is easy to see that this mapping is continuous and a principal G-bundle morphism.
According to Remark 1.1.9/1, the projection f : X → B(∞) yields the desired clas-
sifying mapping.

Conversely, let f0, f1 : X → B(∞) be continuousmappings such that there exists
an isomorphismλ : f ∗

0 G(∞) → f ∗
1 G(∞) and let Fi : f ∗

i G(∞) → G(∞), i = 0, 1,
denote the corresponding natural morphisms. To prove that f0 and f1 are homotopic,
we define mappings F± : G(∞) → G(∞) by

F−([(a, t)]) := [(
(a1,1, a2,1, . . . ), (t1, 0, t2, 0, . . . )

)]
,

F+([(a, t)]) := [(
(1, a1,1, a2, . . . ), (0, t1, 0, t2, . . . )

)]
.

Since, for every l, the restriction of F± to G(l) is a composition of the natural inclu-
sion mappings G(l) → G(2l) and G(2l) → G(∞) with an intermediate mapping
G(2l) → G(2l) induced by a simultaneous permutation of the entries of the elements
of G2l × I 2l , the mappings F± are continuous. In fact, they are principal G-bundle
morphisms.We show that they are homotopic through principalG-bundlemorphisms
to idG(∞), and hence that their projections f ± : B(∞) → B(∞) are homotopic to
idB(∞). Consider the mappings

H± : G(∞) × I → G(∞), H±([(a, t)], s) := [(a′, t′)],

where for any positive integer n such that s ∈ [1 − 2−n, 1 − 2−n−1],

(
a′
i , t

′
i

) =

⎧
⎪⎪⎨

⎪⎪⎩

(ai , ti ) | i − n ≤ 1(
an+ i−n+1

2
, (2n+1 − 1 − 2n+1s)tn+ i−n+1

2

)
| i − n > 1 and odd,

(
an+ i−n+2

2
, (2n+1s − 2n+1 + 2)tn+ i−n+2

2

)
| i − n > 1 and even,

in case of H− and

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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(
a′
i , t

′
i

) =

⎧
⎪⎪⎨

⎪⎪⎩

(ai , ti ) | i − n ≤ 0(
an+ i−n+1

2
, (2n+1s − 2n+1 + 2)tn+ i−n+1

2

)
| i − n > 0 and odd,

(
an+ i−n

2
, (2n+1 − 1 − 2n+1s)tn+ i−n

2

)
| i − n > 0 and even,

in case of H+. By an explicit calculation one can check that the definition is consistent
for s = 2k , where n can be chosen as k or as k − 1. Continuity follows by observing
that, for every l, the restriction of H± to G(l) × I is a composition of a certain
mapping G(l) × I → G(2l), which can be read off from the definition of H± and
which is obviously continuous, with the natural inclusion mapping G(2l) → G(∞).
Since H± is equivariantwith respect to the action ofG, it yields the desired homotopy
through principal G-bundle morphisms between F± and idG(∞).

As a result of these considerations, it suffices to show that f − ◦ f0 is homotopic
to f + ◦ f1. For that purpose, we define a mapping H : f ∗

0 G(∞) × I → G(∞) by

H(x, s) := [(
(a1, b1, a2, b2, . . . ), ((1 − s)t1, su1, (1 − s)t2, su2, . . . )

)]
,

where [(a, t)] = F0(x) and [(b,u)] = F1 ◦ λ(x). Thedefinitionmakes sense, because
if ti = 0 or ui = 0 (so thatai or bi are indeterminate), then, respectively, (1 − s)ti = 0
or sui = 0. To see that H is continuous, we write it as a composition of the mapping

(F− ◦ F0) × (F+ ◦ F1 ◦ λ) : G(∞) → G(∞) × G(∞)

with the mapping G(∞) × G(∞) → G(∞) which assigns to a pair
([(a, t)],

[(b,u)]) the single element

[( (
a1, b2, a3, b4, . . .

)
,
(
(1 − s)(t1 + t2), s(u1 + u2),

(1 − s)(t3 + t4), s(u3 + u4), . . .
) )]

and check that the restriction to G(l) × G(l) of the latter mapping is continuous
for all l. Since H is equivariant, it yields a homotopy through principal G-bundle
morphisms between F− ◦ F0 and F+ ◦ F1 ◦ λ and hence a homotopy between the
respective projections, that is between f − ◦ f0 and f + ◦ f1. This completes the proof
of the theorem. �
Remark 3.5.2

1. From the construction of classifying mappings used in the proof of Theorem
3.5.1, it is clear that none of the topological principal G-bundles G(l) → B(l)
can be n-universal for some n > 1, in contrast to the Stiefel bundles.

2. Let G be a Hausdorff topological group. On the one hand, the principal G-bundle
G(∞) → B(∞) is numerable, because for i = 1, 2, . . . , the assignment of ti to
[(a, t)] descends to a continuous function fi on B(∞). Clearly, the family of these
functions is a partition of unity. Moreover, G(∞) is trivial overUi := f −1

i (0, 1],
with trivialization given by
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π−1(Ui ) → Ui × G, [(a, t)] �→ (
π

([(a, t)]), ai
)
.

On the other hand, it is not hard to see that the proofs of the Covering Homotopy
Theorem 3.3.1 and of Theorem 3.5.1 work for numerable principal G-bundles
as well. As a consequence, the assignment (3.4.1) induced by G(∞) → B(∞)

is well defined for all topological spaces X and it maps [X, B(∞)] bijectively
onto the isomorphism classes of numerable topological principal G-bundles over
X . Thus, for an arbitrary Hausdorff topological group G, and in particular for a
Lie group, the principal G-bundle G(∞) → B(∞) is universal in the realm of
numerable principal G-bundles.

3. The total space G(∞) is contractible [628, Theorem 14.4.6]. �

3.6 Classification of Smooth Principal Bundles

In this section, we use the classification result for topological principal bundles
to complete the classification of smooth principal bundles. In addition, from the
classification of principal bundles, we derive the classification of vector bundles.

We start with showing that for a given Lie groupG, every topological principalG-
bundle over a smooth manifold admits a compatible smooth structure. The argument
is based on the following fact.

Theorem 3.6.1 For smooth manifolds M and N, every continuous mapping M →
N is homotopic to a smooth mapping.

Proof This is an immediate consequence of the fact that C∞(M, N ) is dense in
C0(M, N ) in the strong topology20 and hence in the weaker compact-open topology
[303, Theorem 2.2.6]. �

Combining this with the observation that the n-universal G-bundle provided by
Corollary 3.4.12 happens to be smooth, we obtain the following result.

Proposition 3.6.2 Let G be a Lie group and let M be a smooth manifold. Every
topological principal G-bundle over M is continuously vertically isomorphic to a
smooth principal G-bundle over M.

Thus, every topological principal G-bundle over a smooth manifold admits a com-
patible smooth structure.

20For given f ∈ C0(M, N ), a basis for the neighbourhoods of f in the strong topology is given
by the following subsets. Let {(Ui , κi ) : i ∈ I } be a locally finite atlas on M , let {Ki : i ∈ I } be
a family of compact subsets of M satisfying Ki ⊂ Ui for all i , let {(Vi , κi ) : i ∈ I } be an atlas
on N satisfying f (Ki ) ⊂ Vi for all i , and let {εi : i ∈ I } be a sequence of positive numbers. The
neighbourhoodof f defined by these data consists of allmappings g : M → N such that g(Ki ) ⊂ Vi
and supKi

|ρi ◦ g ◦ κi − ρi ◦ f ◦ κi | < εi for all i ∈ I . See [303, Sect. 2.1] for details.
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Fig. 3.1 Smoothening
procedure for the mapping fi
in the proof of Lemma 3.6.3:
admissible choices of the
elements of the open
covering {Vα : α = 1, 2, . . . }
of Ui+1. The mapping is
smoothened in step α1, but is
left unchanged in step α2

Bi+1

Wi+1
Ui+1

Vα2

Vα1

not admissible for Vα

Proof According to Corollary 3.4.12, there exists a smooth principal G-bundle
E → B such that the mapping [M, B] → PFB(G, M) defined by f �→ f ∗E is a
bijection for M . Hence, for every topological principal G-bundle P over M , there
exists a continuous mapping f : M → B such that P is vertically isomorphic to the
topological principal G-bundle f ∗E . By Theorem 3.6.1, f is homotopic to a smooth
mapping g : M → B. Hence, P is continuously vertically isomorphic to the smooth
principal G-bundle g∗E . �

Next, we show that smooth principal G-bundles over M are vertically isomorphic if
so are their underlying topological principal bundles. The crucial step is the following
smoothening result.

Lemma 3.6.3 Let E be a smooth fibre bundle over a smoothmanifold M. If E admits
a continuous section, then it admits a smooth section.

Proof Let F be the typical fibre of E . Let ϕ0 be a continuous section in E . By
Lemma 3.3.2 and Remark 3.3.3, we can choose a locally finite open covering {Ui :
i = 1, 2, . . . } of M such that E is trivial over each Ui . Then, there exists a closed
covering {Bi : i = 1, 2, . . . } such that Bi ⊂ Ui ; for example given by the supports
of a partition of unity subordinate to the Ui . Since manifolds are normal spaces, for
every i , there exists an open subset Wi such that Bi ⊂ Wi and Wi ⊂ Ui . Starting
with ϕ0, by induction on i , we will construct continuous sections ϕi of E which are
smooth on a neighbourhood Ũi of B̃i := ⋃i

j=1 Bj and coincide with ϕi outside Wi .
Clearly, ϕ0 may be chosen to be smooth. Thus, assume that we have constructed ϕi .
Since E is trivial over Ui+1, the restriction ϕi �Ui+1 is represented by a continuous
mapping fi : Ui+1 → F which is smooth on Ũi ∩Ui+1. We choose a countable atlas
for F and coverUi+1 by open subsets Vα , α = 1, 2, . . . , such that fi (Vα) is contained
in the domain of a single chart of that atlas on F and such that either Vα ⊂ Wi+1 or
Vα ∩ Bi+1 = ∅; see Fig. 3.1. Now, we apply to fi the usual smoothening procedure
by induction on α from the proof that C∞(Ui+1, F) is dense in C0(Ui+1, F) in the
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strong topology,21 with the followingmodification. If Vα ∩ Bi+1 = ∅, themapping is
left unchanged in stepα. Thisway,we obtain a continuousmapping fi+1 : Ui+1 → F
which is smooth in a neighbourhood Ṽi+1 of Bi+1 and coincides with fi+1 outside
Wi+1. This mapping corresponds to a continuous section ϕ̃i+1 in E�Ui+1 which is
smooth on Ṽi+1 and coincides with ϕi on Ui+1 \ Wi+1. It follows that

ϕi+1(m) :=
{

ϕi (m) | m ∈ M \ Wi+1,

ϕ̃i+1(m) | m ∈ Ui+1

defines a continuous section in E which is smooth on the neighbourhood Ũi+1 :=
Ũi ∪ Ṽi+1 of B̃i+1 and which coincides with ϕi outside Wi+1. This completes the
proof of the existence of the sections ϕi .

Now, letm ∈ M . SinceWi ⊂ Ui for all i and since the covering {Ui : i = 1, 2, . . . }
is locally finite, there exists a neighbourhood V of m in M such that V ∩ Wi is
nonempty for only finitely many i . Out of these, let i1, . . . , ir be the numbers for
which m /∈ Wi . Then, Ṽ := V \ (Wi1 ∪ · · · ∪ Wir ) is an open neighbourhood of m.
This shows that the function

m �→ i(m) := max{i ∈ N : m ∈ Wi }

is well defined and locally constant. We define a section ϕ of E by

ϕ(m) := ϕi(m)(m), m ∈ M.

Since the function m �→ i(m) is locally constant, ϕ coincides with ϕi(m) on some
neighbourhood of any m. On the other hand, since Bi ⊂ Wi and m /∈ Wi for all
i > i(m), every m belongs to some Bi with i ≤ i(m) and hence to B̃i(m). Since ϕi(m)

is smooth in a neighbourhood of B̃i(m), it follows that ϕ is smooth in a neighbourhood
of m for every m ∈ M . This proves the lemma. �
Let P and Q be smooth principalG-bundles overM . By Corollary 1.2.7, smooth ver-
tical isomorphisms P → Q correspond bijectively to smooth sections of the smooth
fibre bundle P ×G,M Q over M . An analogous statement holds for continuous ver-
tical isomorphisms and continuous sections of this bundle. Hence, Lemma 3.6.3
implies

Proposition 3.6.4 Let G be a Lie group, let M be a smooth manifold and let P and
Q be smooth principal G-bundles over M. If P and Q are vertically isomorphic as
topological principal G-bundles, they are vertically isomorphic as smooth principal
G-bundles. �
Remark 3.6.5 Using Proposition 1.2.6, one can prove a similar result for
G-morphisms P → Q, where P and Q are smooth principal G-bundles over dif-
ferent manifolds. Since we do not need this, we leave it to the interested reader to

21See, for example, [303, Theorem 2.2.6].

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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work out a proof. The problem is that such morphisms need not be isomorphisms,
so that one has to make sure that the smoothened morphism can be chosen to be an
isomorphism. This requires the following arguments.

1. The smoothened section of Lemma 3.6.3 can be chosen arbitrarily close to the
original section in the strong topology induced from C0(M, P ×G Q).

2. The assignment of morphisms to sections is continuous in the strong topologies
induced from C0(M, P ×G Q) and C0(P, Q), respectively.

The assertion then follows from the fact that the subset of homeomorphisms is open
in C0(P, Q) in the strong topology [303, Theorem 1.1.7]. �

Now, we can prove that vertical isomorphism classes of smooth principal G-bundles
over a smooth manifold M correspond bijectively to vertical isomorphism classes of
topological principal G-bundles over M .

Theorem 3.6.6 Let G be a Lie group and let M be a smooth manifold. Forgetting
about the smooth structure defines a bijection from the set of vertical isomorphism
classes of smooth principal G-bundles over M onto the set of vertical isomorphism
classes of topological principal G-bundles over M.

Proof Forgetting about the smooth structure clearly defines an assignment on the
level of vertical isomorphism classes. By Proposition 3.6.2, this assignment is sur-
jective. By Proposition 3.6.4, it is injective. �

Combining this with Corollary 3.4.12, we obtain that, given a smooth manifold
of dimension dim(M) ≤ n, every n-universal bundle E → B for G establishes a
bijection between vertical isomorphism classes of smooth principal G-bundles over
M and homotopy classes of continuous mappings M → B. However, since smooth
n-universal bundles exist, it makes sense to use them for directly classifying smooth
principal G-bundles in terms of smooth classifying mappings, without taking the
detour through topological bundles.

Theorem 3.6.7 (Classification Theorem) Let G be a Lie group, let E → B be an
n-universal bundle for G which is smooth, and let M be a smooth manifold with
dim(M) ≤ n. Then, the assignment of f ∗E to f : M → B induces a bijection from
the set of (continuous) homotopy classes of smoothmappings to vertical isomorphism
classes of smooth principal G-bundles over M.

Proof The assignment induces amapping of the classes: if f, g : M → B are smooth
mappings which are homotopic through a continuous homotopy, then f ∗E and g∗E
are vertically isomorphic as topological principal bundles. By Proposition 3.6.4, they
are isomorphic as smooth principal bundles then.

The induced mapping is surjective: let P be a smooth principal G-bundle over
M . Since E is n-universal, P is vertically isomorphic, as a topological principal
G-bundle, to f ∗E for some continuous mapping f : M → B. By Theorem 3.6.1, f
is homotopic to a smooth mapping g : M → B. By Corollary 3.3.5, then P and g∗E
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are vertically isomorphic as topological principal G-bundles. By Proposition 3.6.4,
they are vertically isomophic as smooth principal G-bundles then.

The induced mapping is injective: let f, g : M → B be smooth mappings. If f ∗E
and g∗E are vertically isomorphic as smooth principalG-bundles, they are vertically
isomorphic as topological principal G-bundles. Since E is n-universal, then f and
g are homotopic. �

To conclude this section, we use the classification results for principal bundles
obtained above to classify vector bundles.

Let M be a smoothmanifold and let k be a positive integer. As in Example 1.2.9/2,
for K = R, C or H, let UK(k) denote, respectively, the group O(k), U(k) or Sp(k).
Given a principal UK(k)-bundle P over M , one has the associated K-vector bundle
of rank k given by P ×UK(k) K

k , where UK(k) acts onK
k via the basic representation.

This bundle carries a natural fibre metric, induced from the natural scalar product on
K

k .

Theorem 3.6.8 For K = R, C, H, the assignment P �→ P ×UK(k) K
k induces a

bijection between the isomorphism classes of principal UK(k)-bundles over M and
the isomorphism classes of K-vector bundles of rank k over M.

Proof By Proposition 1.2.8/3, the assignment P �→ P ×UK(k) K
k induces a mapping

of isomorphism classes. By Example 1.2.9/2, the induced mapping is surjective.
The induced mapping is injective: it suffices to show that for every principal

UK(k)-bundle P over M , P is isomorphic to the orthonormal frame bundle O(E)

of the associated K-vector bundle E = P ×UK(k) K
k , equipped with its natural fibre

metric. Consider the mapping

P → O(E), p �→ ([(p, e1)], . . . , [(p, ek)]
)
, (3.6.1)

where e1, . . . , ek are the elements of the standard basis of K
k . It is injective, because

[(p, e1)] = [(q, e1)] implies p = q. It is surjective, because every ordered orthonor-
mal basis in a fibre of P ×UK(k) K

k is of the form [(p, a j
ie j )] = [(Ψa(p), ei )] for

some p ∈ P and some a ∈ UK(k) and hence is the image ofΨa(p). Finally, the local
representative of (3.6.1) with respect to the local trivialization of P induced by a
local section s and a local trivialization of P ×UK(k) K

k induced by the local frame
m �→ [(

s(m), ei
)]
is given by the identical mapping. Thus, (3.6.1) is an isomorphism

of principal UK(k)-bundles over M . This proves the theorem. �

CombiningTheorem3.6.8withTheorems 3.6.6 and 3.6.7, aswell as Theorems 3.4.10
and 3.4.16, we obtain the following.

Corollary 3.6.9 Let K = R, C or H, let M be a smooth manifold of dimension n,
let k be a positive integer and let d = dimR(K).

1. For every l ≥ n+2
d + k − 1, the assignment f �→ f ∗(SK(k, l) ×UK(k) K

k
)
induces

a bijection between homotopy classes of smooth mappings M → GK(k, l) and
isomorphism classes of smooth K-vector bundles over M of rank k.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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2. Forgetting about the smooth structure induces a bijection from the set of iso-
morphism classes of smooth K-vector bundles over M of rank k onto the set of
isomorphism classes of topological K-vector bundles over M of rank k.

3. The assignment f �→ f ∗(SK(k,∞) ×UK(k) K
k
)
induces a bijection between

homotopy classes of continuous mappings M → GK(k,∞) and isomorphism
classes of topological K-vector bundles over M of rank k. �

Remark 3.6.10

1. According to point 3 of Corollary 3.6.9, for every topological K-vector
bundle E of rank k over B, there exists a classifying mapping, that is, a con-
tinuous mapping f : B → GK(k,∞) such that E is vertically isomorphic to
f ∗(SK(k,∞) ×UK(k) K

k
)
, and this mapping is unique up to homotopy. According

to Proposition 1.2.8/4, up to homotopy, a principal UK(k)-bundle P has the same
classifying mapping as the associated vector bundle P ×UK(k) K

k , and a K-vector
bundle of rank k has the same classifying mapping as its orthonormal frame
bundle O(E) with respect to some chosen positive definite fibre metric.

2. The notions of n-universal principal bundle and universal principal bundle carry
over in an obvious way to vector bundles of a prescribed rank. Using this, points
1 and 3 of Corollary 3.6.9 may be restated as follows.

1. For every l ≥ n+2
d + k − 1, the associated vector bundle SK(k, l) ×UK(k) K

k

is n-universal for K-vector bundles of rank k.
3. The associated vector bundle SK(k,∞) ×UK(k) K

k is universal for K-vector
bundles of rank k.

If, on the other hand, one just wants to classify vector bundles, one may skip the
detour through principal bundles and construct smooth n-universal vector bundles
EK(k, l) → GK(k, l) of rank k directly by defining

EK(k, l) := {(W, v) ∈ GK(k, l) × K
k : v ∈ W },

where l ≥ n+2
d + k − 1. In complete analogy with the construction of the infinite

Stiefel bundles, by taking the direct limit l → ∞, one obtains a universal topo-
logical vector bundle EK(k,∞) → GK(k,∞) of rank k, see Sect. 1.2 in [287].

�

3.7 Classifying Mappings Associated with Lie Group
Homomorphisms

Throughout this section, let G, H be Lie groups with finitely many connected com-
ponents and let X be a paracompact Hausdorff space of CW-homotopy type. We
choose universal bundles EG → BG and EH → BH .

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Given aLie group homomorphismλ : G → H , we can form the associated bundle
EG[λ] = EG ×G H , cf. (1.2.8). Right translation on H defines an action of H on
EG[λ] and this action makes EG[λ] into a topological principal H -bundle over BG.

Definition 3.7.1 ThemappingBλ : BG → BH associatedwithλ is defined to be the
classifying mapping of the principal H -bundle EG[λ], that is, the mapping fulfilling

EG[λ] ∼= (Bλ)∗(EH). (3.7.1)

Clearly, the mapping Bλ is determined up to homotopy. In what follows, we discuss
its properties.

Proposition 3.7.2 Let λ : G → H be a Lie group homomorphism.

1. Let P be a topological principal G-bundle over X and let f be a classifying
mapping for P. Then, Bλ ◦ f is a classifying mapping for P [λ].

2. Let Q be a topological principal H-bundle over X and let g be a classifying
mapping for Q. The vertical isomorphism classes of topological principal G-
bundles P over X having the property that P [λ] is vertically isomorphic to Q
correspond bijectively to the homotopy classes of mappings f : X → BG such
that Bλ ◦ f is homotopic to g.

Proof 1. By definition of Bλ, the principal H -bundle (Bλ)∗EH over BG is ver-
tically isomorphic to EG[λ]. Combining this with Proposition 1.2.5, we obtain the
vertical isomorphisms

(Bλ ◦ f )∗EH ∼= f ∗(Bλ)∗EH ∼= f ∗(EG[λ]) ∼= ( f ∗EG)[λ] ∼= P [λ].

2. It suffices to show that for a continuous mapping f : X → BG, the composi-
tion Bλ ◦ f is homotopic to g iff ( f ∗EG)[λ] is vertically isomorphic to Q. By point
1, Bλ ◦ f is a classifying mapping for ( f ∗EG)[λ]. Hence, the assertion follows from
the universality of EH . �

Point 2 of Proposition 3.7.2 applies in particular to Lie subgroup embeddings.

Corollary 3.7.3 The vertical isomorphism classes of reductions of a topological
principal H-bundle Q over X to a Lie subgroup λ : G → H correspond bijectively
to the homotopy classes of mappings f : X → BG such that Bλ ◦ f is a classifying
mapping for Q. �

Next, we discuss the functorial properties of Bλ.

Proposition 3.7.4 Up to homotopy, the following holds true.

1. For λ1 : G → H and λ2 : H → K, one has B(λ2 ◦ λ1) = Bλ2 ◦ Bλ1.
2. One has B idG = idBG. More generally, if λ is an inner automorphism of G, then

Bλ = idBG.
3. For the constant homomorphism, Bλ is homotopic to a constant mapping.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Proof 1. By definition, B(λ2 ◦ λ1) is a classifyingmapping for EG[λ2◦λ1]. By Propo-
sition 3.7.2/1, Bλ2 ◦ Bλ1 is a classifying mapping for

(
EG[λ1])[λ2]. We leave it to the

reader to check that the mapping

EG × K → (EG × H) × K , (y, k) �→ (
(y,1H ), k

)
(3.7.2)

descends to a vertical K -morphism, and hence isomorphism, from EG[λ2◦λ1] onto(
EG[λ1])[λ2] (Exercise 3.7.1).
2. The action mapping Ψ : EG × G → EG descends to a vertical isomorphism

EG[idG ] → EG. More generally, let λ be given by conjugation by b ∈ G, that is,
λ(a) = bab−1. We leave it to the reader to prove that the mapping EG × G → EG
defined by (y, g) �→ Ψb−1g(y) descends to a vertical isomorphism from EG[λ] onto
EG.

3. The mapping π × idH : EG × H → BG × H descends to a vertical isomor-
phism EG[λ] → BG × H . �

In the special case where λ : G → H is a Lie subgroup embedding, Bλ inherits a
bundle structure.

Proposition 3.7.5 Let G be a compact Lie group.

1. If λ : H → G is a Lie subgroup embedding, then the classifying mapping Bλ :
BH → BG can be realized as the projection in the topological fibre bundle
EG/H → BG with typical fibre G/H.

2. If λ : H → G is a normal Lie subgroup embedding, thenBH can be realized as a
topological principal bundle over BG with structure group G/H and projection
Bλ. This bundle has classifying mappingBp, where p : G → G/H is the natural
projection.

Proof 1. By Corollary 3.4.21, the induced bundle EG → EG/H , with H acting
via λ, is universal for H . Hence, EH = EG up to H -homotopy equivalence and
BH = EG/H up to homotopy equivalence. Moreover, the induced projection f :
BH ≡ EG/H → BG is a topological fibre bundle with typical fibre G/H . To see
that f realizes Bλ, it suffices to check that the principal G-bundles f ∗EG and EH [λ]
are vertically isomorphic. We leave it to the reader to show that the mapping

EG × G → BH × EG, (y, h) �→ (
π(y), Ψh(y)

)
(3.7.3)

where π : EG → EG/H ≡ BH denotes projection to orbits and Ψ denotes the
action ofG onEG, induces a vertical isomorphismEH [λ] → f ∗EG (Exercise 3.7.2).

2. The first assertion follows from point 1 by recalling that, in the present case,
the induced projection EG/H → BG has the structure of a principal bundle with
structure group G/H . For the second assertion, we observe that the mapping EG →
EG × (G/H) descends to a vertical G/H -morphism, and hence isomorphism, from
BH to EG[p]. �
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Proposition 3.7.6 Let P, Q be topological principal bundles over topological
spaces BP, BQ with structure groups G, H, respectively, and let F : P → Q be a
morphismwith Lie group homomorphism λ : G → H and projection f : BP → BQ.

1. If fP : BP → BG and fQ : BQ → BH are classifying mappings for P and Q,
respectively, then fQ ◦ f is homotopic to Bλ ◦ fP . That is, the diagram

BP
fP ��

f

��

BG

Bλ

��
BQ

fQ �� BH

commutes up to homotopy.
2. If f is a homeomorphism, then the mapping P × H → Q, (p, h) �→ Ψ

Q
h

(
F(p)

)

descends to a principal H-bundle isomorphism P [λ] → Q projecting to f .

Proof 1. Consider the associated principal H -bundle P [λ]. One can check that the
mapping

P × H → BP × Q, (p, h) �→ (
πP(p), Ψ Q

h (F(p))
)

(3.7.4)

takes values in f ∗Q ⊂ BP × Q and that it descends to a vertical isomorphism of
principal H -bundles from P [λ] to f ∗Q (Exercise 3.7.3). Hence, according to Propo-
sition 3.7.2/1, Bλ ◦ fP : BP → BH is a classifying mapping for f ∗Q. It is therefore
homotopic to fQ ◦ f .

2. The mapping under consideration is the composition of (3.7.4), viewed as a
mapping to f ∗Q ⊂ BP × Q, with the natural principal bundlemorphism f ∗Q → Q
given by projecting to the second entry. Since the latter is an isomorphism if f is a
homeomorphism, the assertion follows. �

Finally, recall fromRemark 3.4.22 that the universal bundle and the classifying space
for a direct productG1 × G2 of Lie groups with finitelymany connected components
may be realized by the direct products EG1 × EG2 and BG1 × BG2, respectively.
Under this assumption, we have the following.

Proposition 3.7.7 Up to homotopy, the following holds true.

1. For i = 1, 2, let Gi , Hi be Lie groups with finitely many connected
components and let λi : Gi → Hi be Lie group homomorphisms. Then,

B(λ1 × λ2) = Bλ1 × Bλ2.

2. For the diagonal mappingsΔG : G → G × G andΔBG : BG → BG × BG, one
has BΔG = ΔBG.

Proof 1. By Proposition 1.2.5/3, we have the vertical isomorphisms

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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(EG1 × EG2)
[λ1×λ2] ∼= EG1

[λ1] × EG2
[λ2]

∼= (Bλ1)
∗EH 1 × (Bλ2)

∗EH 2

∼= (Bλ1 × Bλ2)
∗(EH 1 × EH 2),

where the last one is induced by the rearrangement

(BG1 × EH 1) × (BG2 × EH 2) → (BG1 × BG2) × (EH 1 × EH 2).

2. Let Ψ : EG × G → EG denote the principal action mapping. We leave it to
the reader to check that the mapping

EG × (G × G) → EG × EG,
(
y, (a, b)

) �→ (
Ψa(y), Ψb(y)

)
,

descends to a principal (G × G)-bundlemorphism fromEG[Δ] toEG × EG covering
ΔBG . Then, the assertion follows from Remark 1.1.9/1. �

Exercises

3.7.1 Show that the mapping (3.7.2) induces a vertical G-morphism EG[λ2◦λ1] →(
EG[λ1])[λ2].

3.7.2 Show that the mapping (3.7.3) induces a vertical H -morphism, and hence
isomorphism, from EG[λ] onto f ∗EH .

3.7.3 Complete the proof of Proposition 3.7.6 by showing that the mapping defined
in (3.7.4) takes values in f ∗Q and that it descends to a vertical morphism of principal
H -bundles from P [λ] to f ∗Q.

3.8 Universal Connections

In this section, we extend the discussion of n-universal objects from bundles to
bundles with connections.

Definition 3.8.1 A connection ω0 on an n-universal principal G-bundle E → B is
called n-universal if for every connection ω on a principal G-bundle P → M with
dim(M) ≤ n there exists a G-morphism ϑ : P → E such that ω = ϑ∗ω0.

Necessarily, the projection of ϑ is then a classifying mapping for P . We will proceed
in two steps.

(a) We present the classical result of Narasimhan and Ramanan [476] for compact
Lie groups, see also [560] and, for an algebraic reformulation, [396]. In particular,
the natural connections on the Stiefel bundles, given in Example 1.3.20, provide
n-universal connections for the classical compact Lie groups.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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(b) For the case of an arbitrary Lie group, there are at least two different approaches.
The one of Narasimhan and Ramanan [477] is, similarly to their method used
in the compact case, by patching together local solutions. The one presented in
[81] is more geometric and uses the tautological connection on the section jet
bundle of an n-universal G-bundle.22 This is the approach we follow here.

Unfortunately, the result in the compact case seemingly cannot be obtained directly
as a special case of (b).

To start with, recall the canonical connection ωc on the Stiefel bundle

SK(k, n) ∼= UK(n)/UK(n − k) → GK(k, n) ∼= UK(n)/(UK(n − k) × UK(k)) ,

cf. Example 1.3.20. According to (1.3.19), in terms of the matrix-valued function u
which assigns to the k-frame built from uα = a j

αe j the (n × k)-matrix a j
α , it reads

ωc = u†du. (3.8.1)

By Theorem 3.4.10, the Stiefel bundles are n-universal for the classical compact Lie
groups. We will show that ωc provides universal connections for these groups. In
our presentation we follow [476]. To be definite, we restrict attention to the unitary
group, that is, K = C. The starting point is the following technical lemma. For the
proof we refer to Sect. 3 in [476].

Lemma 3.8.2 LetU ⊂ R
n be an open subset and let V ⊂ U be a relatively compact

subset whose closure is contained in U. Let l = (2n + 1)k2. For every 1-form α with
values in u(k), there exist smooth mappings f1, . . . , fl : V → Mk(C) such that

l∑

i=1

f †i fi = 1k,

l∑

i=1

f †i d fi = α.

�

Lemma 3.8.3 Let P be a principal U(k)-bundle over a manifold M of dimension
≤ n and let ω be a connection form on P. Let V ⊂ M be a relatively compact open
subset whose closure is contained in a coordinate neighbourhood U over which P
is trivial. Then, there exists a bundle morphism ϑ : PV → SC(k, lk) such that

ϑ∗ωc = ω�PV ,

where PV is the restriction of P to V .

Proof Recall that thematrix-valued functionu onSC(k, lk)mentioned above realizes
SC(k, lk) as the subset of the vector space of complex (lk) × k-matrices which is

22This point of view has already been outlined before in [169].

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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defined by the relation A†A = 1k . In this realization, the action of the structure group
U(k) is given by right multiplication.

Let π : P → M denote the canonical projection. Choose a local trivialization of
P over U , let κ : PU → U(k) be the corresponding equivariant mapping and let s :
U → P be the associated local section. Consider the local representativeA := s∗ω.
By Lemma 3.8.2, using a chart on U , we can find smooth mappings f1, . . . , fl :
V → Mk(C) satisfying

∑l

i=1
f †i fi = 1k,

∑l

i=1
f †i d fi = A .

Define a mapping

ϑ : PV → SC(k, lk), ϑ(p) :=
⎡

⎢
⎣

f1
(
π(p)

)
κ(p)

...

fl
(
π(p)

)
κ(p)

⎤

⎥
⎦ .

This makes sense, because

ϑ(p)†ϑ(p) = κ(p)†
(∑l

i=1

(
fi
(
π(p)

))†
fi
(
π(p)

))
κ(p) = 1k,

so that ϑ takes values in SC(k, lk), indeed. It is easy to see that ϑ is equivariant
and hence a morphism of principal U(k)-bundles. Using (3.8.1) and κ ◦ s = 1k , we
finally compute

s∗ϑ∗ωc = s∗(ϑ†dϑ) = (ϑ ◦ s)†d(ϑ ◦ s) =
∑l

i=1
f †i d fi = A .

Hence, ϑ∗ωc = ω over V . �
Theorem 3.8.4 Let P be a principal U(k)-bundle over a manifold M of dimension
≤ n and let m := (n + 1)kl. For every connection form ω on P, there exists a bundle
morphism ϑ : P → SC(k,m) such that ϑ∗ωc = ω.

Proof According to [480], there exists an open covering {W1, . . . ,Wn+1} of M such
that eachWi decomposes into a disjoint union of relatively compact open subsets Vi j

whose closure is contained in a coordinate neighbourhood over which P is trivial. To
each Vi j , we can apply Lemma 3.8.3. For each fixed i , the resulting U(k)-morphisms
ϑi j : PVi j → SC(k, lk) combine to U(k)-morphisms ϑi : PVi → SC(k, lk) satisfying
ω�PVi = ϑ∗

i ωc. Extend the ϑi arbitrarily to smooth mappings from P to the space of
complex (lk × k)-matrices. Choose a partition of unity {ϕ1, . . . , ϕn+1} subordinate
to the covering {W1, . . . ,Wn+1} and define a mapping

ϑ : P → SC

(
k, (n + 1)lk

)
, ϑ(p) :=

⎡

⎢⎢⎢
⎣

√
ϕ1

(
π(p)

)
ϑ1(p)

...√
ϕn+1

(
π(p)

)
ϑn+1(p)

⎤

⎥⎥⎥
⎦

.
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This makes sense, because

ϑ(p)†ϑ(p) =
∑n+1

i=1
ϕi

(
π(p)

)
ϑi (p)

†ϑi (p) = 1k,

as ϑi (p)†ϑi (p) = 1k whenever ϕ
(
π(p)

) �= 0. Finally, we compute

ϑ∗ωc = ϑ† dϑ =
∑n+1

i=1
(π∗ϕi ) ϑ

†
i dϑi +

∑n+1

i=1
(ϑ

†
i ϑi )

√
π∗ϕi d

√
π∗ϕi .

Since (π∗ϕi ) ϑ
†
i dϑi = ϑ∗

i ωc = ω whenever π∗ϕi �= 0, the first term yields ω. Since
ϑ
†
i ϑi = 1k whenever π∗ϕi �= 0, and since

∑n+1

i=1

√
π∗ϕi d

√
π∗ϕi = 1

2 d
(∑n+1

i=1
π∗ϕi

)
= 0,

the second term vanishes. �

Corollary 3.8.5 Let G be a compact Lie group and let P be a principal G-bundle.
There exists a principal G-bundle E → B and a connection form ω0 on E such
that for every connection form ω on P, there exists a bundle morphism ϑ : P → E
fulfilling ϑ∗ω0 = ω.

Proof By [105, Theorem 4.1], G admits a faithful unitary representation on C
k for

some k. Let λ : G → U(k) be the corresponding Lie subgroup embedding. Consider
the principal U(k)-bundle P [λ] and let j : P → P [λ] be the induced mapping, given
by j (p) = [(p,1k)]. By Corollary 1.3.14, there exists a unique connection ω1 on
P [λ] such that j∗ω1 = dλ ◦ ω. By Theorem 3.8.4, there exists a positive integer
m and a U(k)-morphism ϑ1 : P [λ] → SC(k,m) such that ϑ∗

1ωc = ω1. Via λ, the
structure group G acts freely and properly on E := SC(k,m) and thus turns E into
a principal G-bundle over the quotient manifold B := E/G. On the one hand, there
exists a unique G-morphism ϑ : P → E satisfying ϑ1 ◦ j = ϑ . On the other hand,
since U(k) is compact, we have a reductive decomposition u(k) = dλ(g) ⊕ m. Let
prg : u(k) → dλ(g) → g denote the corresponding projection. One can check that
ω0 := prg ◦ωc is a connection form on the principal G-bundle E → B (Exercise
3.8.1, cf. also Example 1.3.19). We compute

ϑ∗ω0 = prg ◦(ϑ∗ωc) = prg ◦( j∗ϑ∗
1ωc) = prg ◦( j∗ω1) = prg ◦ dλ ◦ ω = ω.

�

Now, we turn to the discussion of universal connections for arbitrary Lie groups.
Let P be a principal G-bundle over the base manifold M with action Ψ and
projection π . By point 2 of Remark 1.3.3, every connection ω on P defines a hor-
izontal lift �ω

p : Tπ(p)M → Tp P for every p ∈ P . It is evident that the assignment
p �→ �ω

p defines a smooth section in the vector bundle Hom(π∗TM,TP) over P and
that this section takes values in the subset

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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J1P := {
�p ∈ Hom(π∗TM,TP) : π ′

p ◦ �p = idTπ(p)M
}
, (3.8.2)

where the lower index p means that �p belongs to the fibre over p. We show that
J1P inherits the structure of a fibre bundle over P from Hom(π∗TM,TP). There are
natural surjective mappings

π1 : J1P → P, π1(�p) := p, π0 : J1P → M, π0 := π ◦ π1,

called the target projection and the source projection, respectively. For p ∈ P and
m ∈ M , denote

J1p P := π−1
1 (p) , J1m P := π−1

0 (m).

Consider the vertical vector bundle morphism

τ : Hom(π∗TM,TP) → End(π∗TM), τ (�p) := π ′
p ◦ �p.

According to Example 2.7.7 of Part I, ker τ is a vertical vector subbundle of
Hom(π∗TM,TP) of rank r = dim(M) · dim(G). It is not hard to see that, for every
p ∈ P , the subset J1p P is an affine subspace of Hom

(
(π∗TM)p,Tp P

)
with trans-

lation vector space given by the linear subspace ker τp. Given p0 ∈ P , we find an
open neighbourhood U ⊂ P , a local frame {s1, . . . , sr } in ker τ over U ⊂ P and a
local section s in Hom(π∗TM,TP) over U taking values in J1P (for example, the
section defined by a connection on P). Then, the mapping

ψ : U × R
r → π−1

1 (U ), ψ(p, x) := s(p) +
r∑

i=1

xi si (p), (3.8.3)

is a bijection. We leave it to the reader to check that the transition mappings between
two such bijections are smooth (Exercise 3.8.2). Hence, the collection of mappings
(3.8.3) defines on J1P the structure of a smooth manifold. With respect to this struc-
ture, J1P endowed with the projection π1 : J1P → P is a fibre bundle with typical
fibre R

r . More precisely, it is an affine bundle with translation vector bundle ker τ
and an affine subbundle of Hom(π∗TM,TP). Note that J1P is a concrete realization
of the first jet manifold of sections in P . It is therefore referred to as the first section
jet bundle of P .

Next, we are going to endow J1P with the structure of a principalG-bundle. Recall
from Example 6.1.2/5 of Part I that the action Ψ of G on P induces an action of G
on TP by the tangent mappings (Ψa)

′, a ∈ G. Moreover, G acts on the vector bundle
π∗TM by

(
a, (p, X)

) �→ (
Ψa(p), X

)
. Since both these actions coverΨ , they induce

a smooth action of G on Hom
(
π∗TM,TP

)
by assigning to an element �p in the

fibre over p the element (Ψa)
′
p ◦ �p in the fibre over Ψa(p) (Exercise 3.8.3). Since

for �p ∈ J1P we have

π ′
Ψa(p) ◦ (Ψa)

′
p ◦ �p = π ′

p ◦ �p = idTπ(p)M ,

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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the submanifold J1P is invariant under this action. Since J1P is a vertical sub-
bundle of Hom(π∗TM,TP), an argument similar to that for vertical vector sub-
bundles in Example 2.7.2 of Part I shows that J1P is an embedded submanifold
of Hom(π∗TM,TP) (Exercise 3.8.4). Hence, by restriction, the action of G on
Hom(π∗TM,TP) induces the action

Ψ 1 : G × J1P → J1P, Ψ 1
a (�p) = (Ψa)

′
p ◦ �p, (3.8.4)

of G on J1P . By construction, the action Ψ 1 covers Ψ . By Remark 6.3.9 of Part I,
this implies that it is free and proper. As a consequence, the orbit space

C1P := (J1P)/G

carries a unique smooth manifold structure such that the natural projection

ρ : J1P → C1P

to classes is a submersion. With respect to this structure, J1P is a principal G-bundle
over C1P with action Ψ 1 and projection ρ, cf. Sect. 6.5 of Part I.

Another consequence of the fact that Ψ 1 covers Ψ is that the projection π1 :
J1P → P is a morphism of G-bundles. The induced mapping of the base manifolds

δ : C1P → M

is a surjective submersion. To summarize, we have the commutative diagram

J1P
π1 ��

π0

		�������������

ρ

��

P

π

��
C1P

δ �� M

Using the mappings (3.8.3) and local sections σ of P over V ⊂ M , one can cover
C1P by local diffeomorphisms of the type

ρ ◦ χ ◦ (σ × idRr ) : V × R
r → δ−1(V ).

Hence, C1P inherits from J1P the structure of a fibre bundle over M with typical fibre
R

r (Exercise 3.8.5). In fact, one can show that it inherits the structure of an affine
bundle with translation vector bundle Hom(TM,Ad(P)).

Lemma 3.8.6 If (U, χ) is a local trivialization of P, then

χ̃ : π−1
0 (U ) → δ−1(U ) × G, χ̃(�) := (

ρ(�), prG ◦χ ◦ π1(�)
)

is a local trivialization of ρ.

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6


250 3 Homotopy Theory of Principal Fibre Bundles. Classification

Proof As in Chap.1, we denote κ := prG ◦χ . It suffices to show that the subset

S := {� ∈ π−1
0 (U ) : κ ◦ π1(�) = 1}

of π−1
0 (U ) is an embedded submanifold transversal to the fibres of ρ, because, then,

ρ induces a diffeomorphism from S onto δ−1(U ). Obviously, the inverse of this
diffeomorphism is a local section of ρ over δ−1(U ) and χ̃ is the corresponding local
trivialization.

Since κ and π1 are submersions, κ ◦ π1 is a submersion, too. Hence, by Corollary
1.8.3 of Part I, S is an embedded submanifold and T�S = ker(κ ◦ π1)

′
� for all � ∈ S.

To check that S is transversal to the fibres of ρ, let A ∈ g and let A1∗ denote the
Killing vector field on J1P generated by A. We have to show that (κ ◦ π1)

′
�(A

1∗)� = 0
implies (A1∗)� = 0. Since π1 and κ are equivariant, we have

(κ ◦ π1)
′
�(A

1
∗)� = (

Lκ◦π1(�)

)′
�
A.

Since left translation by κ ◦ π1(�) is a diffeomorphism of G and hence
(
Lκ◦π1(�)

)′
�
is

bijective, it follows that A = 0 and hence (A1∗)� = 0, as asserted. �

Now, we will relate connections on P to sections of π1 and δ. As noted above, every
connection ω on P defines a section ω̌ of π1 by assigning to p ∈ P the horizontal
lift �ω

p : Tπ(p)M → Tp P . By the equivariance property of connections, we have

�ω
Ψa(p) = (Ψa)

′
p�

ω
p .

Therefore, ω̌ is equivariant and hence amorphismof principalG-bundles.As a conse-
quence, it projects to a smoothmapping ω̂ : M → C1P andwe have the commutative
diagram

P
ω̌ ��

π

��

J1P

ρ

��
M

ω̂ �� C1P

Since ω̌ is a section of π1, ω̂ is a section of δ.

Proposition 3.8.7 Let P be a principal G-bundle over M.

1. The assignment ω �→ ω̌ defines a bijection between connections on P and G-
equivariant sections of π1 : J1P → P or, equivalently, principal G-bundle mor-
phisms P → J1P satisfying π1 ◦ ω̌ = idP .

2. Theassignmentω �→ ω̂ defines a bijection between connections on P and sections
of δ : C1P → M.

Proof 1. Every G-equivariant section σ of π1 defines an equivariant distribution on
P by assigning to p the subspace im

(
σ(p)

) ⊂ Tp P . Since π ′
p ◦ σ(p) = idTπ(p)M ,

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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this distribution is complementary to VP and hence defines a connection σ . We have
σ̌ = σ and ω̌ = ω.

2. Given a section σ of δ, we define a section σ̌ : P → J1P by assigning to p the
unique representative of the class σ

(
π(p)

)
in the fibre (J1P)p. Since Ψ 1 projects to

Ψ , this section is equivariant. Let χ be a local trivialization of P . Composing σ̌ with
the induced local trivialization χ̃ of ρ provided by Lemma 3.8.6, we obtain

χ̃ ◦ σ̌ (p) = (
σ ◦ π(p), prG ◦χ(p)

)
.

Hence, σ̌ is smooth. This shows that for every section σ of δ there exists a
unique equivariant section of π1 projecting to σ . In view of point 1, this yields the
assertion. �

As a consequence of point 2 of Proposition 3.8.7, C1P is usually referred to as
the bundle of connections. However, more appropriately, it could also be called the
manifold of equivariant tangent lifts of P . Accordingly, the jet manifold J1P could
also be called the manifold of tangent lifts of P .

Our next aim is to show that the principal G-bundle ρ : J1P → C1P carries a
tautological connection. The key observation is that we have a tautological mapping

h : T(J1P) → TP, h(X�) := �(π ′
0X�). (3.8.5)

Associated with h, we have the mapping

v : T(J1P) → TP, v := π ′
1 − h . (3.8.6)

Lemma 3.8.8 The mappings h and v are equivariant23 vector bundle morphisms
covering π1.

Proof It suffices to prove the assertion for h, because, then, both h and π ′
1 project to

π1 and the assertion for v follows.
Obviously, h preserves fibres, projects to π1 and is fibrewise linear. To see that it

is smooth, we decompose it into the smooth mapping

T(J1P) → J1P × π∗TM, X� �→ (
�, τ (π ′

1X�)
)
,

restricted in range to the embedded submanifold J1P ×P π∗TM , and the evaluation
mapping

Hom(π∗TM,TP) ×P π∗TM → TP, (�, X) �→ �(X).

For a proof that the latter is smooth, see Exercise 3.8.6. Equivariance is obvious. �

The vector bundle morphisms h and v satisfy the obvious relations

23W.r.t. the actions induced by Ψ 1 and Ψ on the tangent bundles T(J1P) and TP , respectively.
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h + v = π ′
1, π ′ ◦ h = π ′

0, π ′ ◦ v = 0. (3.8.7)

According to the last relation, v maps T(J1P) to the vertical subbundle VP ⊂ TP .
Hence, we can view it as a mapping v : T(J1P) → VP and thus compose it with the
mapping K : VP → g defined on the fibre over p ∈ P as the inverse of Ψ ′

p to obtain
a smooth mapping

ω0 := K ◦ v : T(J1P) → g. (3.8.8)

Since v and K are fibrewise linear, so is ω0. Hence, it defines a 1-form on J1P with
values in g. This 1-form will be denoted by the same symbol.

Proposition 3.8.9 The 1-form ω0 defined by (3.8.8) is a connection form on the
principal G-bundle ρ : J1P → C1P.

Proof According to Proposition 1.3.6, we have to check conditions 2 and 3 of
Proposition 1.3.5. First, let a ∈ G. Since v and K are equivariant, one has ω0 ◦
(Ψ 1

a )′ = Ad(a−1) ◦ ω0. If we interpret ω0 as a g-valued 1-form, this equation reads
(Ψ 1

a )∗ω0 = Ad(a−1) ◦ ω0.
Now, let A ∈ g and let A1∗ and A∗ denote the Killing vector fields generated

by A on J1P and P , respectively. Since π0 ◦ Ψ 1
a = π0, for every � ∈ J1P , we have

π ′
0

(
A1∗(�)

) = 0 and hence v
(
A1∗(�)

) = π ′
1

(
A1∗(�)

)
. Since π1 is equivariant, the trans-

formation property of Killing vector fields24 yields

v
(
A1

∗(�)
) = A∗

(
π1(�)

)
.

Applying K to both sides of this equation, we obtain ω0
(
A1∗(�)

) = A. �
Definition 3.8.10 The connection defined byω0 is called the tautological connection
of the principal G-bundle ρ : J1P → C1P .

The most important property of ω0 is that via pullback it can reproduce every con-
nection on P .

Proposition 3.8.11 For every connectionω on P and the corresponding equivariant
section (or principal G-bundle morphism) ω̌ : P → J1P, one has ω̌∗ω0 = ω.

Proof Let ω be given and let p ∈ P and X ∈ Tp P . Then, ω̌′(X) is a tangent vector
of J1P at �ω

p . Using this and the obvious relations π1 ◦ ω̌ = idP and π0 ◦ ω̌ = π , we
calculate

(ω̌∗ω0)(X) = K ◦ v
(
ω̌′(X)

)

= K
(
(π1 ◦ ω̌)′p(X) − �ω

p ◦ (π0 ◦ ω̌)′p(X)
)

= K
(
X − horω X

)

= ω(X).

�

24See Proposition I/6.2.4.
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Remark 3.8.12 The tautological connection ω0 is the unique connection on the prin-
cipal G-bundle ρ : J1P → C1P with the property stated in Proposition 3.8.11, see
Exercise 3.8.7. That is, one may define it by that property. �

With the tautological connection of ρ : J1P → C1P we have a connection at hand
which is universal for the connections on P . To obtain the desired n-universal connec-
tion, we apply the above construction to the following principalG-bundle. By Corol-
lary 3.4.12, there exists a smooth principal G-bundle πE : E → B with πi (E) = 0
for all i ≤ n. Define

B̃ := B × R
2n, Ẽ := E × R

2n

and let G act on Ẽ by acting on the first factor. Obviously, Ẽ is a principal G-bundle
over B̃, where the projection is given by the direct product of πE with the identical
mapping of R

2n . It is not hard to see that the mapping

Ẽ → pr∗B E, (e, x) �→ (
πE (e), x

)

is a principal G-bundle isomorphism over B̃.

Theorem 3.8.13

1. The principal G-bundle ρ̃ : J1Ẽ → C1Ẽ is n-universal.
2. The tautological connection on ρ̃ : J1Ẽ → C1Ẽ is n-universal.

Proof 1. Since J1Ẽ → Ẽ is a fibre bundle with contractible fibres, the exact homo-
topy sequence (3.2.6) yields πi (J1Ẽ) = πi (Ẽ) for all i . Since R

2n is contractible, we
have πi (Ẽ) = πi (E) for all i . Since πi (E) = 0 for all i ≤ n, Theorem 3.4.6 yields
the assertion.

2. Denote the tautological connection on J1Ẽ by ω0. Let π : P → M be a prin-
cipal G-bundle over M with dim(M) ≤ n and let ω be a connection on P . We have
to construct a morphism of principal G-bundles ϑ : P → J1Ẽ such that ϑ∗ω0 = ω.

By Corollary 3.4.12, there exists a smooth mapping f1 : M → B such that
P ∼= f ∗

1 E . By the strong Whitney Embedding Theorem,25 there exists a smooth
embedding f2 : M → R

2n . Define

f : M → B̃, f (m) := (
f1(m), f2(m)

)
.

Since f2 is an embedding, so is f . Hence, by the Tubular Neighbourhood Theorem
for embedded submanifolds,26 there exists a diffeomorphism χ from an open neigh-
bourhood U of f (M) in B̃ onto an open neighbourhood of the zero section s0 in the
normal bundle NM ⊂ f ∗TB̃ such that χ ◦ f = s0. Define

H : U × [0, 1] → U, H(x, t) := χ−1((1 − t)χ(x)
)
.

25Every smooth n-dimensional manifold can be smoothly embedded into R
2n [7, Theorem II.2.2].

26See Remark 6.4.7 in Part I.

http://dx.doi.org/10.1007/978-94-024-0959-8_6
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This mapping is a smooth strong deformation retraction of U to the subset f (M).
There exists a uniquemappingϕ : U → M such that f ◦ ϕ = H1. In the terminology
of Part I, ϕ is the restriction in range of H1 to the embedded submanifold (M, f ).
By Proposition 1.6.10 of Part I, ϕ is smooth. Consider the pullback bundle ϕ∗P over
U . Using ϕ∗P , we will construct three morphisms ϑ1, ϑ2 and ϑ3 whose composition
will yield the desired morphism ϑ .

First, sinceϕ ◦ f = idM , we haveϕ ◦ f ◦ π = π . Hence,we candefine amapping

ϑ1 : P → ϕ∗P, ϑ1(p) := (
f ◦ π(p), p

)
.

This mapping is easily seen to be a principal G-bundle morphism projecting to f .
Second, let ẼU denote the restriction of Ẽ to U . We claim that there exists an

isomorphism
ϑ2 : ϕ∗P → ẼU .

To see this, let prB : B̃ → B denote the projection to the first factor. It is easy to see
that pr∗B E is isomorphic over B̃ to Ẽ . Using this and prB ◦ f = f1, we find that

P ∼= f ∗
1 E = f ∗ pr∗B E ∼= f ∗ Ẽ

over M . Viewing f as a mapping to U rather than to B̃, we may replace Ẽ by ẼU

on the right hand side. Taking now the pullback by ϕ, using that f ◦ ϕ = H1 is
homotopic to H0 = idU and applying Corollary 3.3.5, we find that

ϕ∗P ∼= ϕ∗ f ∗ ẼU = H∗
1 ẼU

∼= ẼU

over U , as asserted.
Third, via the natural bundle morphism Φ : ϕ∗P → P given by Φ(x, p) = p,

the connection ω on P induces the connection Φ∗ω on the pullback bundle ϕ∗P and
hence the connection (ϑ−1

2 )∗Φ∗ω on ẼU . Let

ϑ3 : ẼU → J1ẼU ⊂ J1Ẽ

be the corresponding principal G-bundle morphism provided by Proposition 3.8.7.
Finally, we compose ϑ1, ϑ2 and ϑ3 to obtain the principal G-bundle morphism

ϑ : P ϑ1−→ ϕ∗P ϑ2−→ ẼU
ϑ3−→ J1Ẽ .

To check that it has the desired property, using Proposition 3.8.11 and the obvious
identity Φ ◦ ϑ1 = idP , we compute

ϑ∗ω0 = ϑ∗
1ϑ∗

2ϑ∗
3ω0 = ϑ∗

1ϑ∗
2

(
(ϑ−1

2 )∗Φ∗ω
) = ω.

This completes the proof of Theorem 3.8.13. �

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Exercises

3.8.1 Let P be a principal G-bundle and let H ⊂ G be a closed subgroup admitting
a reductive decomposition g = h ⊕ mwith associated projection prh : g → h. Show
that for every connection form ω on P , the h-valued 1-form prh ◦ω is a connection
form on the principal H -bundle P → P/H .

3.8.2 Complete the construction of a smooth manifold structure on the jet manifold
J1P by showing that the transition mappings between the inverses of the mappings
(3.8.3) are smooth.

3.8.3 Prove the following. For i = 1, 2, let Ei be vector bundles over a smooth
manifold M and let Ψ (i) be actions of G on Ei by vector bundle automorphisms. If
both these actions project to the same action Ψ of G on M , they define an action of
G on Hom(E1, E2) by

(a, �m) �→ (
Ψ (2)
a

)
m ◦ �m ◦ (

Ψ
(1)
a−1

)
Ψa(m)

and this action projects to Ψ .
Hint. To prove smoothness, use that Hom(E1, E2) ∼= E2 ⊗ E∗

1 .

3.8.4 Use the argument for vertical vector subbundles in Example 2.7.2 of Part I to
show that a vertical subbundle is always embedded.

3.8.5 Show that C1P inherits from J1P the structure of a fibre bundle over M .

3.8.6 Let E1, E2 be vector bundles over M . Prove that the evaluation mapping
Hom(E1, E2) ×M E1 → E2, (μ, x) �→ μ(x), is smooth.
Hint. Use the local trivializations of E1, E2 and Hom(E1, E2) induced by a local
frame in E1 and a local frame in E2, both defined over the same open subset of M .

3.8.7 Prove that the tautological connectionω0 on the principalG-bundleρ : J1P →
C1P associated with a principal G-bundle P is uniquely determined by the property
that ω̌∗ω0 = ω for all connections ω on P .
Hint. Show that for a vector bundle π : E → M , the tangent space at a point e ∈ E
is spanned by vertical vectors and by tangent vectors of the form σ ′X , where σ is
a (global) section of E with e in its image and X ∈ Tπ(e)M . Use a section in the
affine bundle δ : C1P → M to carry over this statement from the translation vector
bundle. Use this and Proposition 3.8.7/2 to prove that for every � ∈ J1P , the subspace
of T�(J1P) spanned by vectors of the form ω̌′(X), where ω is a connection on P and
X ∈ Tπ1(�)P , contains a complement of the tangent space of the G-orbit through �.
Since connections on ρ : J1P → C1P necessarily coincide on the latter subspace,
this proves the assertion.

http://dx.doi.org/10.1007/978-94-024-0959-8_2


Chapter 4
Cohomology Theory of Fibre Bundles.
Characteristic Classes

In Chap.3, we have seen that principal bundles with a given structure group and
a given base manifold are classified up to vertical isomorphisms by the homotopy
classes of continuousmappings from the basemanifold to the classifying space of the
structure group. While this description is complete in that it provides exact labels for
the isomorphism classes, for many problems it is ineffective. Characteristic classes,
on the other hand, allow for applying the machinery of algebraic topology. The price
one has to pay for this is that they are only able to distinguish between the isomor-
phism classes to the extent to which cohomology can resolve homotopy. We will
view characteristic classes as being defined by generators of the cohomology ring
of the classifying space, rather than being defined axiomatically. Accordingly, we
proceed as follows. In Sect. 4.2, we study the cohomology rings with coefficients
in Z or Z2 of the classifying spaces for the classical compact Lie groups and use
their generators to define the Chern, Pontryagin and Stiefel–Whitney classes. The
main tool here is the Euler class of an oriented real vector bundle and the corre-
sponding Gysin sequence. Then, in Sects. 4.3 and 4.4, we derive the main properties
of the characteristic classes so constructed, including the Whitney Sum Formula,
the Splitting Principle and the relations induced by field extension and field restric-
tion. In Sect. 4.6, we discuss the Weil homomorphism, which provides a geometric
description of characteristic classes in terms of de Rham cohomology. In Sect. 4.7,
we deal with genera and the Chern character as examples of formal power series
in the characteristic classes. Finally, in Sect. 4.8, we explain a method to construct
an approximation of the classifying space in terms of Eilenberg–MacLane spaces,
known as the Postnikov tower. It allows for proving, for example, that the Chern
classes classify U(n)-bundles over manifolds of small dimension. This method will
also be used in the discussion of gauge orbit types in Chap. 8.
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4.1 Basics

We assume the reader to be familiar with the basics of homology and cohomology
theory. To fix the notation, let a topological space X be given. We denote

• the group of singular k-chains in X by Ck(X),
• the k-th singular homology group of X by Hk(X),
• the k-th singular cohomology group with coefficients in the commutative ring R
by Hk

R(X),
• H∗

R(X) =⊕∞
k=0 H

k
R(X).

Recall thatHk
R(X) is a module over R and thatH∗

R(X) is a ring with respect to the cup
product. The cup product of α, β ∈ H∗

R(X)will be denoted by α ∪ β or simply by αβ.
We use the convention Hk

R(X) = 0 for k < 0. Given a subset A ⊂ X, let Ck(X,A),
Hk(X,A),Hk

R(X,A) andH∗
R(X,A) denote the corresponding relative objects. We will

use a number of basic tools from algebraic topology, notably

• the Hurewicz Theorem, cf. Sect.VII.10 in [104],
• the Universal Coefficient Theorems, cf. Sect. 5.5 in [598],
• the Künneth Theorem for cohomology, cf. [598, Theorem 5.5.11].

In the first part of this section, we introduce the notion of characteristic class and
discuss its basic properties. While characteristic classes can be defined for general
fibre bundles, we restrict our attention to the case of principal bundles and vector
bundles.

Definition 4.1.1 LetG be a Lie group and let R be a commutative ring. An R-valued
characteristic class for principal G-bundles assigns to every topological principal G-
bundle P → B a cohomology class α(P) ∈ H∗

R(B) such that the following holds. For
every continuous mapping f : B′ → B one has

α(f ∗P) = f ∗α(P) .

Characteristic classes for vector bundles are defined by analogy.
First, let us discuss characteristic classes for principal G-bundles. These are

closely related to the cohomology of the classifying space BG. Let ξ ∈ H∗
R(BG).

For a topological principal G-bundle P over B, define

α(P) := f ∗
P ξ (4.1.1)

with some classifying mapping fP : B → BG for P. This makes sense, because fP
is determined up to homotopy, and homotopic mappings induce the same homo-
morphism in cohomology. For the same reason, by the universality of the principal
G-bundle EG → BG, one has α(P1) = α(P2) whenever P1 and P2 are vertically
isomorphic.
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Proposition 4.1.2 For every cohomology class ξ ∈ H∗
R(BG), the assignment (4.1.1)

defines an R-valued characteristic class for principal G-bundles. Every R-valued
characteristic class for principal G-bundles arises in this way.

Proof To see that α defined by (4.1.1) is a characteristic class, let f : B′ → B be
given. If fP : B → BG is a classifying mapping for P, then fP ◦ f : B′ → BG is a
classifying mapping for f ∗P. Hence,

α(f ∗P) = (fP ◦ f )∗ξ = f ∗ ◦ f ∗
P (ξ) = f ∗(α(P)

)
.

Conversely, let α̃ be a characteristic class for principal G-bundles. Define

ξ := α̃(EG) ∈ H∗
R(BG)

and let α denote the characteristic class defined by ξ via (4.1.1). Since α̃ is a char-
acteristic class, for any principal G-bundle P with classifying mapping fP, we have

α̃(P) = f ∗
P α̃(EG) = f ∗

P ξ = α(P) .

�

Since the cohomology elements of the classifying space BG correspond bijectively
to the characteristic classes for principal G-bundles, they are often referred to as the
universal characteristic classes for G.

Proposition 4.1.3 Let λ : G1 → G2 be a Lie group homomorphism and let ξ ∈
H∗

R(BG2). Let α be the characteristic class for G2-bundles defined by ξ and let α̃ be
the characteristic class for G1-bundles defined by (Bλ)∗ξ ∈ H∗

R(BG1). Then, given
topological principal Gi-bundles Pi over Bi and a morphism ϑ : P1 → P2 whose
group homomorphism coincides with λ, we have

α̃(P1) = f ∗α(P2) ,

where f : B1 → B2 denotes the projection of ϑ .

Proof Let fi : Bi → BGi be classifying mappings for Pi, i = 1, 2. According to
Proposition 3.7.6, then f2 ◦ f is homotopic to Bλ ◦ f1. Hence,

f ∗α(P2) = f ∗(f ∗
2 ξ) = f ∗

1

(
(Bλ)∗ξ

) = α̃(P1) .

�

In the special case where P2 = P1
[λ] and ϑ : P1 → P2 is the natural morphism send-

ing p to [(p,1G2)], Proposition 4.1.3 yields the following.

Corollary 4.1.4 Let λ : G1 → G2 be a Lie group homomorphism and let ξ ∈
H∗

R(BG2). Let α be the characteristic class for G2-bundles defined by ξ and let
α̃ be the characteristic class for G1-bundles defined by (Bλ)∗ξ ∈ H∗

R(BG1). Then,

http://dx.doi.org/10.1007/978-94-024-0959-8_3
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α̃(P) = α
(
P[λ])

for every topological principal G1-bundle P. �

Now, let us turn to characteristic classes for vector bundles. Let K = R, C, H and
let UK(n) denote O(n) for K = R, U(n) for K = C and Sp(n) for K = H. Let ξ ∈
H∗

R(BUK(n)). For a K-vector bundle E of rank n over a topological space B, define

α(E) := f ∗
E ξ (4.1.2)

with some classifying mapping fE : B → BUK(n) = GK(n,∞) for E, cf. Remark
3.6.10/1. By the same argument as in the case of principal bundles, this makes sense
and one has α(E1) = α(E2) whenever E1 and E2 are vertically isomorphic.

Proposition 4.1.5 For every ξ ∈ H∗
R(BUK(n)), the assignment (4.1.2) defines an

R-valued characteristic class for K-vector bundles of rank n. Every R-valued char-
acteristic class for K-vector bundles of rank n arises in this way.

Proof The argument proving that α defined by (4.1.2) is a characteristic class is
analogous to that for principal bundles. To see that every characteristic class arises
in this way, let α̃ be a characteristic class for K-vector bundles of rank n. Define

ξ := α̃
(
EUK(n) ×UK(n) K

n
) ∈ H∗

R(BUK(n))

and let α denote the characteristic class defined by ξ via (4.1.2). Since α̃ is a charac-
teristic class, for any K-vector bundle E of rank n with classifying mapping fE , we
have

α̃(E) = f ∗
E α̃
(
EUK(n) ×UK(n) K

n
) = f ∗

E ξ = α(E) ,

because E is vertically isomorphic to f ∗
E

(
EUK(n) ×UK(n) K

n
)
. �

Remark 4.1.6

1. Let ξ ∈ H∗
R(BUK(n)) and let α stand for both the corresponding characteristic

class for principal UK(n)-bundles and the corresponding characteristic class for
K-vector bundles of rank n. According to Remark 3.6.10/1, for every principal
UK(n)-bundle P, one has α(P) = α(P ×U(n) K

n) and for every K-vector bundle
E of rank n one has α(E) = α(O(E)), where the orthonormal frame bundle is
taken with respect to some chosen positive definite fibre metric.

2. Since a trivial principal G-bundle P over M has constant classifying mapping,
for any characteristic class of degree k > 0, one has α(P) = 0. An analogous
statement holds for trivial vector bundles. �

In the second part of this section, we discuss the main tools needed for the study
of the characteristic classes for the classical compact Lie groups. Our discussion is
based, in effect, on the Leray–Hirsch Theorem, which we cite here for completeness.

http://dx.doi.org/10.1007/978-94-024-0959-8_3
http://dx.doi.org/10.1007/978-94-024-0959-8_3
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Given a topological fibre bundle E over B with projection π and a commutative ring
R, we can define a mapping

H∗
R(B) × H∗

R(E) → H∗
R(E) , (α, γ ) 
→ (π∗α) ∪ γ .

This yields an action of the ring H∗
R(B) on the Abelian group H∗

R(E) and thus makes
H∗

R(E) into a module over H∗
R(B). For b ∈ B, let jb : Eb → E denote the natural

inclusion mapping of the fibres. Recall that a finitely generated module M over a
ring R is said to be free if it is isomorphic to the Cartesian product Rr for some r,
and that a basis of M is said to be free if it corresponds to such an isomorphism.

Theorem 4.1.7 (Leray–Hirsch) Let E be a topological fibre bundle over B with
projection π and typical fibre Fand let R be a commutative ring. Assume that H∗

R(F)

is a finitely generated free R-module and that there exist elements τ1, . . . , τr ∈ Hki
R (E)

such that j∗bτ1, . . . , j
∗
bτr form a free basis of H∗

R(Eb) as an R-module for every b ∈ B.
Then, τ1, . . . , τr form a free basis of H∗

R(E) as a H∗
R(B)-module. �

For the proof we refer to [287]. Explicitly, this theorem states that the mapping

(H∗
R(B))r → H∗

R(E) , (α1, . . . , αr) 
→
r∑

i=1

(π∗αi) ∪ τi , (4.1.3)

is an isomorphism of H∗
R(B)-modules, and thus in particular of Abelian groups. As a

consequence of the Leray–Hirsch Theorem,H∗
R(E) is isomorphic, as anR-module, to

H∗
R(B) ⊗R H∗

R(F). Thus, the cohomology of a topological fibre bundle whose typical
fibre meets the assumption of the theorem is completely determined by that of the
base and the typical fibre and does not depend on the topological type of that bundle.

As we have seen above, to determine the characteristic classes for the classical
compact Lie groups, we have to determine the cohomology of the corresponding
classifying spaces. This will be done by induction on the rank. Without loss of
generality, for given n, we choose the inclusion jn−1,n : UK(n − 1) → UK(n) to be
induced by the inclusion mapping

K
n−1 → K

n , (x1, . . . , xn−1) 
→ (x1, . . . , xn−1, 0) .

According to Proposition 3.7.5/1, the classifying space BUK(n − 1) can be realized
as a topological fibre bundle over BUK(n) with projection Bjn−1,n and typical fibre
UK(n)/UK(n − 1). Since

UK(n)/UK(n − 1) ∼= Sdn−1,

where d is the dimension of K over R, the typical fibres are spheres. For sphere
bundles, theGysin sequence, to be discussed below, connects the cohomology groups
of the base space with those of the total space, and it does so using the Euler class.

http://dx.doi.org/10.1007/978-94-024-0959-8_3
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Both the Euler class and the Gysin sequence are provided by the Thom Isomorphism
Theorem, which we will give now without proof.

Let B be a topological space and let E be a Riemannian vector bundle of rank n
over B with projection π . For e ∈ E, let ‖e‖ denote the corresponding fibre norm.
Define subsets

DE := {e ∈ E : ‖e‖ ≤ 1} , SE := {e ∈ E : ‖e‖ = 1} .

In the respective relative topology, DE is a vertical subbundle of E with typical fibre
Dn and SE is a vertical subbundle of DE with typical fibre Sn−1. Let

πD : DE → B , πS : SE → B

denote the corresponding projections, induced from π by restriction. Thus, DE is a
disk bundle and SE is its boundary sphere bundle. Recall that an orientation of E is
given by a covering by local trivializations whose transition mappings have positive
determinant. Via these local trivializations, an orientation of E defines an orientation
of every fibre Eb of E. The latter defines a generator of Hn

Z
(DEb,SEb) as follows.

By the Universal Coefficient Theorem, Hn
Z
(DEb,SEb) = Hom

(
Hn(DEb,SEb), Z

)
.

The desired generator corresponds to the homomorphism which assigns the value 1
to the generator of Hn(DEb,SEb) represented by the orientation preserving homeo-
morphisms of the n-simplex to DEb ⊂ Eb.

In what follows, let p : Ck(DE) → Ck(DE,SE) denote the natural projection to
classes. Recall that the cup product induces a bi-additive mapping

∪ : H∗
R(DE) × H∗

R(DE,SE) → H∗
R(DE,SE)

by the condition that
p∗(α ∪ β) = α ∪ p∗β (4.1.4)

for all α ∈ H∗
R(DE) and β ∈ H∗

R(DE,SE). Note that jb induces a pair mapping
(DEb,SEb) → (DE,SE) denoted by the same symbol.

Theorem 4.1.8 (Thom Isomorphism Theorem) Let E be a Riemannian vector bun-
dle of rank n over a connected topological space B with projection π . Let R = Z2,
or let R = Z and assume that E is oriented.

1. There exists a unique element τ ∈ Hn
R(DE,SE) such that for every b ∈ B, j∗bτ

is the generator of Hn
R(DEb,SEb) (defined by the induced orientation in case

R = Z).
2. The homomorphism Hk

R(B) → Hk+n
R (DE,SE) defined by α 
→ (π∗

Dα) ∪ τ is an
isomorphism for all k ≥ 0 and Hk

R(DE,SE) = 0 for all k < n.

Proof The proof uses a relative version of the Leray–Hirsch Theorem, see Theorem
4D.10 and Corollary 4D.9 in [287]. �
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Point 2 states that the single element τ forms a free basis of the moduleH∗
R(DE,SE)

over H∗
R(B). For further use, we note that the theorem implies, in particular, that

j∗b : Hk
R(DE,SE) → Hk

R(DEb,SEb) is an isomorphism in dimension k ≤ n for all
b ∈ B.

Definition 4.1.9 (Thom class and Euler class) Let E be a Riemannian vector bundle
of rank n over a connected topological space B. Let R = Z2, or let R = Z and assume
that E is oriented.

1. The class τ ∈ Hn
R(DE,SE) provided by Theorem 4.1.8 is called the Thom class

of E.
2. Let sD : B → DE denote the zero section. The class e(E) := s∗D ◦ p∗(τ ) inHn

R(B)

is called the Euler class of E.

Thus, every Riemannian vector bundle has an Euler class in Z2-cohomology. If it is
oriented, it has in addition an Euler class in Z-cohomology.

For a topological space X and a commutative ring R, let

δ : Hom (Ck(X),R
)→ Hom

(
Ck+1(X),R

)

denote the coboundary operator and let Zk
R(X) ⊂ Hom

(
Ck(X),R

)
denote its kernel

(that is, the subgroup of closed singular cochains in X with coefficients in R).

Theorem 4.1.10 (Gysin sequence) Let E be a Riemannian vector bundle of rank n
over a connected topological space B. Let R = Z2, or let R = Z and assume that E
is oriented. Then one has a long exact sequence of Abelian groups

· · · ϕ−→ Hk
R(B)

∪ e(E)−−−→ Hk+n
R (B)

π∗
S−→ Hk+n

R (SE)
ϕ−→ Hk+1

R (B)
∪ e(E)−−−→ · · ·

where k ∈ Z and the connecting homomorphism ϕ is defined by the condition

ϕ([γ ]) ∪ e(E) = s∗D[δγ̃ ] .

Here, γ ∈ Zk+n
R (SE) and γ̃ ∈ Hom(Ck+n(DE),R) is some extension of γ from

Ck+n(SE) to Ck+n(DE).

Proof Consider the long exact cohomology sequence of the pair (DE,SE), cf. [287,
Sect. 3.1]

· · · −→ Hk
R(DE,SE)

p∗−→ Hk
R(DE)

j∗−→ Hk
R(SE)

ϕ̃−→ Hk+1
R (DE,SE) −→ · · · (4.1.5)

where, on the level of representatives γ ∈ Zk
R(SE), the connecting homomorphism

ϕ̃ is determined by
p∗ϕ̃([γ ]) = [δγ̃ ] , (4.1.6)
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with γ̃ ∈ Hom(Ck(DE),R) being some extension of γ from Ck(SE) to Ck(DE).
According to the Thom Isomorphism Theorem, we can replace Hk

R(DE,SE) by
Hk−n

R (B). Since DE is homotopy equivalent to B via the mappings πD and sD, the
induced homomorphisms s∗D : Hk

R(DE) → Hk
R(B) and π∗

D : Hk
R(B) → Hk

R(DE) are
mutually inverse isomorphisms. Hence, we can furthermore replace Hk

R(DE) by
Hk

R(B). Thus, from (4.1.5), we obtain the long exact sequence

· · · −→ Hk−n
R (B)

ϕ1−→ Hk
R(B)

ϕ2−→ Hk
R(SE)

ϕ−→ Hk−n+1
R (B) −→ · · ·

with the homomorphisms ϕ1, ϕ2 and ϕ given by, respectively,

ϕ1(α) = s∗D ◦ p∗(π∗
Dα ∪ τ) , ϕ2(α) = j∗ ◦ π∗

D , π∗
D

(
ϕ([γ ])) ∪ τ = ϕ̃([γ ])

for all α ∈ Hk−n
R (B) and γ ∈ Zk

R(SE). Clearly, ϕ2 = π∗
S . According to (4.1.4),

ϕ1(α) = s∗D
(
(π∗

Dα) ∪ p∗τ
) = α ∪ e(E) .

To read off ϕ from the last equation, we apply s∗D ◦ p∗ to both sides. By (4.1.4) and
(4.1.6), we obtain

ϕ([γ ]) ∪ e(E) = s∗D[δγ̃ ] .

This yields the asserted formula for ϕ. �

Remark 4.1.11 The Euler class and the Gysin sequence exist for any sphere bundle
(fibre bundle with typical fibre a sphere). In the general case, the role of DE is
played by the mapping cone of the projection of that sphere bundle. While the Thom
class depends on the fibre metric of E, the Euler class does not. The latter follows by
observing that the disk bundles DE defined by different fibre metrics are deformation
retracts of each other. �

Proposition 4.1.12 (Properties of the Euler class)

1. If the rank of a connected oriented real vector bundle E is odd, then 2e(E) = 0.
2. The Z2-Euler class of a connected oriented real vector bundle coincides with the

Z2-reduction of the integral Euler class of that bundle.
3. Let E1,E2 be connected real vector bundles over B1,B2, respectively. Let F :

E1 → E2 be a vector bundle morphism and let f : B1 → B2 be its projection.
Let R = Z2 or let R = Z and assume that E1 and E2 are oriented and that F
preserves the orientations. If the fibre mappings of F are isomorphisms, then
f ∗e(E2) = e(E1).

4. Let E1 and E2 be connected real vector bundles over B. Let R = Z2 or let R = Z

and assume that E1 and E2 are oriented and that E1 ⊕ E2 carries the orientation
induced by concatenation of frames. Then, e(E1 ⊕ E2) = e(E1) ∪ e(E2).

Proof 1. This holds trivially true in the case R = Z2. Thus, assume that E is oriented
and that R = Z. Choose an auxiliary Riemannian fibre metric on E and let τ denote
the corresponding Thom class. Multiplication by −1 defines an isometric vertical
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vector bundle automorphism of E and, thus, a vertical bundle automorphism F of
DE. Since F is vertical, for all b ∈ B, we have j∗b ◦ F∗(τ ) = F∗

b ◦ j∗b(τ ). Since n is
odd, Fb reverses the orientation of the fibre (DE)b. Hence, F∗

b ◦ j∗b(τ ) = −j∗b(τ ). By
uniqueness of τ , this implies F∗τ = −τ . Using F ◦ sD = sD and p∗ ◦ F∗ = F∗ ◦ p∗,
we finally obtain e = −e. This yields the assertion.

2. It suffices to show that the Z2-Thom class of an oriented connected vector
bundle coincides with the Z2-reduction of the integral Thom class. In view of the
Thom Isomorphism Theorem, this follows from the fact that the Z2-reduction of a
generator of Hn

Z
((DE)b, (SE)b) is a generator of Hn

Z2
((DE)b, (SE)b).

3. Since F is fibrewise a vector space isomorphism, E1 and E2 must have the
same rank n. We can choose Riemannian fibre metrics on E1 and E2 such that F
is isometric (Exercise 4.1.1). Then, F induces a bundle morphism F : DE1 → DE2,
denoted by the same symbol, which sends SE1 to SE2 and whose fibre mappings are
homeomorphisms. Let τi ∈ Hn

R(DEi,SEi) denote the Thom class of Ei, i = 1, 2. For
every b ∈ B1,

j∗b ◦ F∗(τ2) = F∗
b ◦ j∗f (b)(τ2) .

As a consequence of the Thom Isomorphism Theorem, j∗f (b)(τ2) is a generator of
Hn

R((DE2)f (b), (SE2)f (b)). Since Fb is a homeomorphism, F∗
b maps this generator to

a generator of Hn
R((DE1)b, (SE1)b). Since Fb preserves the orientations, the latter

coincides with j∗bτ1. Since j∗b is an isomorphism in dimension n, we conclude that
F∗(τ2) = τ1 .The assertion now follows by observing that the zero sections si : Bi →
DEi fulfil F ◦ s1 = s2 ◦ f .

4.Wegive the proof forR = Z. The proof forR = Z2 can be obtained by forgetting
about the orientation.

Denote E⊕ := E1 ⊕ E2. We choose auxiliary Riemannian fibre metrics on E1 and
E2 and equip E⊕ with their direct sum. For i = 1, 2,⊕, let ni denote the rank of
Ei, write Di := DEi and Si := SEi, and let τi ∈ Hni

Z
(Di, Si) denote the Thom class

of Ei. Moreover, define D× := D1 ×B D2 and S× := (S1 ×B D2) ∪ (D1 ×B S2). For
i = 1, 2,⊕,×, let ji,b : Di,b → Di denote the natural inclusionmappings of thefibres.

Define a mapping

F : E⊕ → E⊕ , F(e1, e2) :=
{

max{‖e1‖,‖e2‖}
‖(e1,e2)‖ (e1, e2) (e1, e2) �= 0 ,

0 (e1, e2) = 0 .

Since
max{‖e1‖, ‖e2‖} ≤ ‖(e1, e2)‖ ≤ √

2 max{‖e1‖, ‖e2‖} ,

F is a homeomorphism and thus a fibre bundle isomorphism. Since

‖F(e1, e2)‖ = max{‖e1‖, ‖e2‖} ,

it maps D× onto D⊕ and S× onto S⊕ and hence induces a pair homeomorphism
(D×, S×) → (D⊕, S⊕), denoted by the same symbol. For every b ∈ B, we have
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F ◦ j×,b = j⊕,b ◦ Fb , (4.1.7)

and hence
j∗×,b(F

∗τ⊕) = F∗
b

(
j∗⊕,bτ⊕

)
.

Since the fibre mappings Fb are pair homeomorphisms and since they preserve
orientations, the class on the right hand side is the generator of Hn⊕

Z
(D×,b, S×,b)

corresponding to the product orientation. On the other hand, consider the relative
cohomology cross product1

τ1 × τ2 ∈ Hn1+n2
Z

(D1 × D2, S1 × D2 ∪ D1 × S2)

and the natural inclusion mapping ι : D× → D1 × D2. One can check that one has
j1,b × j2,b = ι ◦ j×,b and that j1,b × j2,b and ι induce pair mappings from (D×,b, S×,b)

and (D×, S×), respectively, to
(
D1 × D2, S1 × D2 ∪ D1 × S2

)
. As a consequence,

j∗×,b

(
ι∗(τ1 × τ2)

) = (j∗1,bτ1) × (j∗2,bτ2) .

Since Hk
Z
(Di,b, Si,b) is finitely and freely generated over Z for all k, the relative

Künneth Theorem for cohomology yields that the right hand side provides a gener-
ator of Hn⊕

Z
(D×,b, S×,b). Clearly, this is the generator corresponding to the product

orientation. Thus,
j∗×,b

(
ι∗(τ1 × τ2)

) = j∗×,b(F
∗τ⊕) . (4.1.8)

According to (4.1.7), since F and Fb are pair homeomorphisms and since j∗⊕,b is an
isomorphism in degree n⊕, so is j∗×,b. Therefore, (4.1.8) implies

ι∗(τ1 × τ2) = F∗τ⊕ . (4.1.9)

Now, for i = 1, 2,⊕,×, let pi : Cni(Di) → Cni(Di, Si) denote the natural projections
to relative chains (with n× = n⊕) and let si : B → Di, i = 1, 2,⊕ denote the zero
sections. We apply s∗× ◦ p∗× to (4.1.9). Using F ◦ s× = s⊕, for the right hand side, we
obtain

s∗× ◦ p∗
×
(
F∗τ⊕

) = s∗⊕ ◦ p∗
⊕(τ⊕) = e(E1 ⊕ E2) .

Using ι ◦ s× = (s1 × s2) ◦ Δ, where Δ : B → B × B denotes the diagonal mapping,
for the left hand side we obtain

s∗× ◦ p∗
×
(
ι∗(τ1 × τ2)

) = Δ∗((s∗1 ◦ p∗
1(τ1)) × (s∗2 ◦ p∗

2(τ2))
) = e(E1) ∪ e(E2) .

This yields the assertion. �

1Forα ∈ Hk
R(X,A) andβ ∈ Hl

R(Y ,B),α × β = (pr∗Xα) ∪ (pr∗Yβ) ∈ Hk+l
R (X × Y ,A × Y ∪ X × B).
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Exercises

4.1.1 Complete the proof of point 3 of Proposition 4.1.12 by showing that one can
choose Riemannian fibre metrics on E1 and E2 such that the vector bundle isomor-
phism F under consideration is isometric. Hint. Choose an arbitrary Riemannian
fibre metric on E2 and pull it back to f ∗E2. Then, show that the vertical vector bundle
morphism F : E1 → f ∗E2 defined by F(e) = (π1(e),F(e)

)
, where π1 : E1 → B1 is

the bundle projection, is an isomorphism.

4.2 Characteristic Classes for the Classical Groups

In this section, we determine the integral cohomology rings for BU(n), BSU(n) and
BSp(n) and the Z2-cohomology rings of BO(n) and BSO(n). All of these rings will
turn out to be polynomial. The integral cohomology of BO(n) and BSO(n) is more
involved and will be given without proof in Theorem 4.2.23.

To begin with, let us introduce some terminology and notation. Given a finite
set X = {x1, . . . , xN } and an Abelian group A, the ring of formal polynomials in the
commuting variables xi with coefficients from Awill be referred to as the polynomial
ring generated over A by X.

For a K-vector space V and a subfield L ⊂ K, let VL denote the L-vector space
obtained from V by field restriction, that is, by restricting multiplication by scalars to
the subfield L. The same notation will be used for vector bundles. For details about
field restriction and field extension we refer to Appendix A. For our construction of
characteristic classes for U(n) and Sp(n), we will use the concrete real vector space
isomorphisms R

2n → C
n
R
given by

(x1, . . . , x2n) 
→ (x1 + x2i, . . . , x2n−1 + x2ni) , (4.2.1)

and R
4n → H

n
R
given by mapping (x1, . . . , x4n) to

(x1 + x2i + x3j + x4k , . . . , x4n−3 + x4n−2i + x4n−1j + x4nk) , (4.2.2)

as well as the complex vector space isomorphism C
2n → H

n
C
given by

(z1, . . . , z2n) 
→ (
z1 + jz2, . . . , z2n−1 + jz2n

)
. (4.2.3)

By further field restriction toR, the isomorphism (4.2.3) yields a real vector space iso-
morphism C

2n
R

→ H
n
R
. Composition of the latter with the isomorphism R

4n → C
2n
R

given by (4.2.1) yields the isomorphism R
4n → H

n
R
given by sending (x1, . . . , x4n)

to

(x1 + x2i + x3j − x4k , . . . , x4n−3 + x4n−2i + x4n−1j − x4nk) . (4.2.4)

This isomorphism does not coincide with the one defined by (4.2.2).
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Given a complex vector bundle E, the real vector bundle ER obtained from E by
field restriction is called the realification of E. We endow ER with an orientation2 as
follows. If (e1, . . . , en) is an ordered local frame in E, then

(e1, ie1, . . . , en, ien) (4.2.5)

is an ordered local frame in ER. Clearly, the transition mapping between two local
frames of the form (4.2.5) is given by the composition of the transition mapping
between the original frames in E with the Lie subgroup embedding GL(n, C) →
GL(2n, R) defined by the isomorphism (4.2.1). Since the latter takes values in
the identity connected component, the transition mapping has positive determinant.
Thus, the ordered local frames in ER of the form (4.2.5) define an orientation in ER.
We will refer to this orientation as the orientation induced by E.3 In terms of local
trivializations, the induced orientation is given by the family of local trivializations
of ER which are obtained from local trivializations of E by composition with the
isomorphisms (4.2.1).

An analogous argument applies in the case where E is a quaternionic vector
bundle. Here, the induced orientation of the realification ER is defined by the ordered
local frames of the form

(e1, e1i, e1j, e1k, . . . , en, eni, enj, enk) , (4.2.6)

for some ordered local frame (e1, . . . , en) in E.
Both for complex and quaternionic vector bundles, the induced orientation on the

realification has the property that every real vector bundle morphism (E1)R → (E2)R

which is obtained by field restriction from a complex or quaternionic vector bundle
morphism E1 → E2 automatically preserves the orientations. Moreover, in case E1

and E2 have the same base, the induced orientation in (E1 ⊕ E2)R coincides with the
orientation in (E1)R ⊕ (E2)R defined by the induced orientations in (E1)R and (E2)R

and by concatenation of ordered local frames.

Now, we are prepared to discuss the characteristic classes of the classical groups.
We start with the integral characteristic classes for the unitary groups U(n). Define

EU
n := (EU(n) ×U(n) C

n
)
R

,

where U(n) acts on C
n in the basic representation, and endow EU

n with the induced
orientation. From the characterization of this orientation in terms of local trivial-
izations it is clear that, fibrewise and via the isomorphism (4.2.1), this orientation
corresponds to the standard orientation of R

2n. Let cU(n)
n ∈ H2n

Z
(BU(n)) denote the

corresponding Euler class, that is,

2Recall the notion of orientation of a K-vector bundle from Example 1.6.6/1.
3Note that E itself need not be oriented here.

http://dx.doi.org/10.1007/978-94-024-0959-8_1


4.2 Characteristic Classes for the Classical Groups 269

cU(n)
n = e(EU

n ) .

For 0 < k ≤ n, let
jUk,n : U(k) → U(n)

denote the Lie subgroup embedding induced by the linear subspace embedding

C
k → C

n , (z1, . . . , zk) 
→ (z1, . . . , zk, 0, . . . , 0) . (4.2.7)

By construction, for 0 < k ≤ l ≤ n,

jUl,n ◦ jUk,l = jUk,n . (4.2.8)

Theorem 4.2.1 (Integral cohomology of BU(n)) For k = 1, . . . , n − 1, there exists
a unique element cU(n)

k of H2k
Z

(BU(n)) such that

(BjUk,n)
∗cU(n)

k = cU(k)

k .

The ring H∗
Z
(BU(n)) is the polynomial ring over Z in the generators cU(n)

1 , . . . , cU(n)
n .

Proof As explained earlier, the strategy of the proof is to relate the cohomology of
BU(n − 1) with that of BU(n) by means of the Gysin sequence. Taking the real part
of the standard scalar product on the complex vector space C

n, we obtain a scalar
product on the real vector space C

n
R
and thus a Riemannian fibre metric on the real

vector bundle EU
n . Then,

DEU
n = EU(n) ×U(n) D

2n , SEU
n = EU(n) ×U(n) S

2n−1 ,

where D2n and S2n−1 stand for the unit disk and the unit sphere in C
n
R
. The sphere

bundle SEU
n is related to the sphere bundle BjUn−1,n : BU(n − 1) → BU(n) as fol-

lows. By Proposition 3.7.5/1, in the latter, the total space BU(n − 1) is realized as
EU(n)/U(n − 1).4 By point 1 of Example 1.2.4, there exists a vertical fibre bundle
isomorphism

F : BU(n − 1) → SEU
n ,

for all n = 1, 2, . . . Using this isomorphism, in the Gysin sequence of EU
n , we

can replace Hk
Z
(SEU

n ) by Hk
Z
(BU(n − 1)), the homomorphism π∗

S by F∗ ◦ π∗
S =

(BjUn−1,n)
∗ and the connecting homomorphism ϕ by ϕ ◦ (F∗)−1, which we continue

to denote by ϕ. This way, for l ∈ Z and n = 1, 2, . . . , we obtain the exact sequence

· · · ϕ−→ Hl
Z
(BU(n))

∪ cU(n)
n−−−−→ Hl+2n

Z
(BU(n))

(BjUn−1,n)
∗

−−−−−→ Hl+2n
Z

(BU(n − 1))
ϕ−→ Hl+1

Z
(BU(n)) → · · ·

(4.2.9)
Now, we can prove the assertion of the theorem by induction on n.

4This holds also for n = 1, provided we define U(0) as the trivial group consisting of one element.
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For n = 1, we have to show that H∗
Z
(BU(1)) is the free polynomial ring in the

generator cU(1)

1 . Since U(0) is the trivial group, the total space BU(0) coincides with
EU(1) and BjU0,1 coincides with the bundle projection EU(1) → BU(1). Since EU(1)
is contractible, Hk

Z
(EU(1)) = 0 for k �= 0. Hence, (4.2.9) yields that multiplication

by cU(1)

1 defines an isomorphism from Hl
Z
(BU(1)) onto Hl+2

Z
(BU(1)) for all l �= −2.

It follows that Hl
Z
(BU(1)) = 0 for odd l. Moreover, since BU(1) is connected and

hence H0
Z
(BU(1)) is the free Abelian group generated by 1BU(1), it follows that for

every non-negative integer k, H2k
Z

(BU(1)) is the free Abelian group generated by
(
cU(1)

1

)k
. Thus, H∗

Z
(BU(1)) is the free polynomial ring in the generator cU(1)

1 , indeed.
Now, assume that the assertion holds for n − 1. We aim at showing that it holds

true for n. First, we construct the classes cU(n)

k for k = 1, . . . , n − 1. If, for such k, we
plug l = 2(k − n) into (4.2.9), we find that (BjUn−1,n)

∗ is an isomorphism in degree
2k. Hence, there exists a unique element cU(n)

k of H2k
Z

(BU(n)) such that

(
BjUn−1,n

)∗
cU(n)

k = cU(n−1)

k .

By the induction assumption, cU(n−1)

k is the unique element ofH2k
Z

(BU(n − 1)) fulfill-
ing
(
BjUk,n−1

)∗
cU(n−1)

k = cU(k)

k . Now, the relation (4.2.8) yields the first assertion.
It remains to prove that H∗

Z
(BU(n)) is the polynomial ring in the generators

cU(n)

1 , . . . , cU(n)
n . For that purpose, we first show that ϕ = 0 in (4.2.9). By the induction

assumption, Hl
Z
(BU(n − 1)) is the free Abelian group generated by all monomi-

als of degree l in cU(n−1)

1 , . . . , cU(n−1)

n−1 . Since
(
BjUn−1,n

)∗
preserves products, each of

these monomials is the image under
(
BjUn−1,n

)∗
of the corresponding monomial in

cU(n)

1 , . . . , cU(n)

n−1. Therefore,
(
BjUn−1,n

)∗
is surjective. By exactness of (4.2.9), it follows

that ϕ = 0, indeed. As a result, (4.2.9) splits into the short exact sequences

0 → Hl
Z
(BU(n))

∪ cU(n)
n−−−→ Hl+2n

Z
(BU(n))

(BjUn−1,n)
∗

−−−−−→ Hl+2n
Z

(BU(n − 1)) → 0 .

(4.2.10)
We use this sequence to show that, for all k, Hk

Z
(BU(n)) is the free Abelian group

generated by the monomials of degree k in cU(n)

1 , . . . , cU(n)
n .

For l < 0, (4.2.10) implies that
(
BjUn−1,n

)∗
is an isomorphism in degree k < 2n.

Hence, here the assertion follows from the induction assumption and the fact that a
monomial of degree k < 2n cannot contain cU(n)

n .
For l ≥ 0, since we know Hl+2n

Z
(BU(n − 1)), the sequence (4.2.10) allows for

reconstructingHl+2n
Z

(BU(n)) fromHl
Z
(BU(n)). As a consequence, it suffices to show

that if the assertion holds in degree l, then it holds in degree l + 2n. Thus, assume that
the assertion holds for l. Then, by exactness, Hl

Z
(BU(n)) ∪ cU(n)

n is the free Abelian
group generated by the monomials of degree l + 2n in cU(n)

1 , . . . , cU(n)
n with at least one

factor cU(n)
n . On the other hand, consider the subgroup A of Hl+2n

Z
(BU(n)) generated

by the monomials of degree l + 2n in cU(n)

1 , . . . , cU(n)

n−1. These monomials are mapped
via
(
BjUn−1,n

)∗
to the corresponding monomials in cU(n−1)

1 , . . . , cU(n−1)

n−1 . By the induction
assumption, the latter are free generators ofHl+2n

Z
(BU(n − 1)). Hence, the former are
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free generators of A and
(
BjUn−1,n

)∗
maps A isomorphically onto Hl+2n

Z
(BU(n − 1)).

This finally implies that Hl+2n
Z

(BU(n)) is the direct sum of Hl
Z
(BU(n)) ∪ cU(n)

n and A.
Thus, the assertion is true for l + 2n. It follows that the assertion holds for all k ≥ 2n.

�

Definition 4.2.2 (Chern classes) For k = 1, . . . , n, the element cU(n)

k of H2k
Z

(BU(n))
provided by Theorem 4.2.1 is called the k-th universal Chern class of U(n). The
element

cU(n) := 1 + cU(n)

1 + · · · + cU(n)
n

of H∗
Z
(BU(n)) is called the total universal Chern class of U(n).

Remark 4.2.3

1. For l ≤ n, one has
(
BjUl,n

)∗
cU(n)

k =
{
cU(l)

k 1 ≤ k ≤ l ,

0 l < k ≤ n .
(4.2.11)

Indeed, if k ≤ l, due to (4.2.8), the element
(
BjUl,n

)∗
cU(n)

k of H2k
Z

(BU(l)) fulfils

(
BjUk,l

)∗((
BjUl,n

)∗
cU(n)

k

) = cU(k)

k .

Hence, by Theorem 4.2.1, it coincides with cU(l)

k . If k > l, we may use (4.2.8) to
write (

BjUl,n
)∗
cU(n)

k = (BjUl,k−1

)∗ ◦ (BjUk−1,k

)∗ ◦ (BjUk,n
)∗(

cU(n)

k

)
.

By exactness of the Gysin sequence (4.2.9),

(
BjUk−1,k

)∗ ◦ (BjUk,n
)∗(

cU(n)

k

) = (BjUk−1,k

)∗
cU(k)

k = 0 .

In view of Theorem 4.2.1, equation (4.2.11) implies that (BjUl,n)
∗ is surjective and

that its kernel coincides with the ideal inH∗
Z
(BU(n)) generated by cU(n)

l+1, . . . , c
U(n)
n .

In particular, (BjUk,l)
∗ is injective in degree less than 2l + 2, so that, for k ≤ l, cU(n)

k

is the only element of H2k
Z

(BU(n)) satisfying (4.2.11).
2. Owing to the Universal Coefficient Theorem for cohomology in the form of

Theorem 5.5.10 of [598],5 Theorem 4.2.1 implies that H∗
R
(BU(n)) is the poly-

nomial ring over R in the Chern classes. and that H∗
Z2

(BU(n)) is the polynomial
ring over Z2 in the mod 2 reductions of the Chern classes. �

The classes cU(n)

k and cU(n) define characteristic classes for principal U(n)-bundles and
complex vector bundles. The latter are denoted, respectively, by ck(P), c(P), ck(E)

and c(E). By construction,

5The assumption made there that Hk(X) be finitely generated for every k is met by all topological
spaces of CW-homotopy type.
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c(P) = 1 + c1(P) + · · · + cn(P) , c(E) = 1 + c1(E) + · · · + cn(E) .

Moreover,

cU(n)

k = ck
(
EU(n)

) = ck
(
EU(n) ×U(n) C

n
)

, k = 1, . . . , n .

Remark 4.2.4

1. The top Chern class cn(E) of a complex vector bundle E of rank n coincides
with the Euler class of the real vector bundle ER obtained by field restriction and
endowed with the induced orientation,

cn(E) = e(ER) . (4.2.12)

To see this, let B be the base space of E and let f : B → BU(n) be a classifying
mapping for E. By definition of cU(n)

n ,

cn(E) = f ∗cU(n)
n = f ∗e(EU

n ) .

Let F : E → EU(n) ×U(n) C
n be the complex vector bundle morphism obtained

by composing a vertical isomorphism E → f ∗(EU(n) ×U(n) C
n) with the natural

morphism associated with the pullback. The morphism F projects to f . By field
restriction, it induces a real vector bundle morphism ER → EU

n . Since the latter
preserves the induced orientations, Proposition 4.1.12/3 yields e(ER) = f ∗e(EU

n ).
This proves (4.2.12).

2. In view of Remark 4.1.6, it follows from point 1 that the top Chern class cn(P) of
a principal U(n)-bundle P coincides with the Euler class of the real vector bundle
obtained by field restriction from the complex vector bundle P ×U(n) C

n associ-
ated with P via the basic representation, endowed with the induced orientation:

cn(P) = e
(
P ×U(n) C

n
R

)
. (4.2.13)

3. Let P be a principal U(n)-bundle over a manifold M. Via the natural surjective
homomorphism H2k

Z
(M) → Hom(H2k(M), Z), the Chern classes ck(P) define

homomorphismsH2k(M) → Z. Given a set of generators {s1, . . . , sr} ofH2k(M),
the integers obtained by evaluating ck(P) on the si are called the Chern indices
of P and are denoted by ck,1(P), . . . , ck,r(P). Accordingly, one defines the Chern
indices ck,i(E) of a complex vector bundle E. �

Next, we discuss the special unitary groups SU(n). Let jSU,U
n : SU(n) → U(n) denote

the natural inclusion mapping. Since SU(n) is a normal subgroup of U(n),

BjSU,U
n : BSU(n) → BU(n)

is a principal bundle with structure group U(n)/SU(n) ∼= U(1), cf. Proposition
3.7.5/1.
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Theorem 4.2.5 (Integral cohomology of BSU(n)) One has
(
BjSU,U

n

)∗
cU(n)

1 = 0. The
ring H∗

Z
(BSU(n)) is the polynomial ring over Z in the generators

cSU(n)

k := (BjSU,U
n )∗cU(n)

k , k = 2, . . . , n.

Proof Let Edet
n denote the real vector bundle obtained by field restriction from the

associated vector bundle EU(n) ×U(n) C, where U(n) acts on C via the determinant,
and endow Edet

n with the induced orientation.
We claim that the Euler class of Edet

n is given by cU(n)

1 . For n = 1, this holds
trivially, because Edet

1 = EU
1 as oriented vector bundles. For n > 1, we realize BU(1)

as EU(n)/U(1), where U(1) acts on EU(n) via jU1,n. Then, E
det
1 = EU(n) ×U(1) CR,

and the natural projection to classes EU(n) × CR → Edet
n descends to an orientation-

preserving vector bundle morphism Edet
1 → Edet

n which projects to BjU1,n and whose
fibre mappings are isomorphisms. Hence, Proposition 4.1.12/3 yields that

(
BjU1,n

)∗

maps the Euler class of Edet
n to that of Edet

1 , that is, to cU(1)

1 . Then, Theorem 4.2.1 yields
the assertion.

Next, similar to the proof of Theorem 4.2.1, we use the vertical isomorphism
BSU(n) ∼= SEdet

n provided by Example 1.2.4 to replace SEdet
n by BSU(n) in the

Gysin sequence of Edet
n :

· · · ϕ−→ Hl
Z
(BU(n))

∪ cU(n)
1−−−−→ Hl+2

Z
(BU(n))

(BjSU,U
n )∗−−−−−→ Hl+2

Z
(BSU(n))

ϕ−→ Hl+1
Z

(BU(n)) → · · ·
(4.2.14)

For l = 0, exactness implies
(
BjSU,U

n

)∗
cU(n)

1 = 0. Second, Theorem 4.2.1 yields that
multiplication by cU(n)

1 is injective. By exactness, then ϕ = 0 and, therefore, (BjSU,U
n )∗

is surjective in each degree. Third, Theorem 4.2.1 yields that the monomials of
degree l + 2 in cU(n)

2 , . . . , cU(n)
n freely generate a subgroup of Hl+2

Z
(BU(n)) which is

complementary to Hl
Z
(BU(n)) ∪ cU(n)

1 . By exactness again, (BjSU,U
n )∗ maps that sub-

group isomorphically onto Hl+2
Z

(BSU(n)). This proves the theorem. �

Definition 4.2.6 For k = 2, . . . , n, the element cSU(n)

k of H2k
Z

(BSU(n)) is called the
k-th universal Chern class of SU(n). The element

cSU(n) := 1 + cSU(n)

2 + · · · + cSU(n)
n

of H∗
Z
(BSU(n)) is called the total universal Chern class of SU(n).

By construction, (
BjSU,U

n

)∗
cU(n) = cSU(n) . (4.2.15)

The Chern classes and the total Chern class of SU(n) define characteristic classes for
principal SU(n)-bundles, denoted by ck(P) and c(P), respectively. By construction,

c(P) = 1 + c2(P) + · · · + cn(P) .

Moreover, cSU(n)

k = ck
(
ESU(n)

) = ck
(
ESU(n) ×SU(n) C

n
)
for k = 2, . . . , n. Let us

add that, for convenience, we sometimes use the notation cSU(n)

1 = 0 and, for principal
SU(n)-bundles, c1(P) = 0.
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Remark 4.2.7

1. According to Theorem 4.2.5, (BjSU,U
n )∗ is surjective and its kernel is the ideal in

H∗
Z
(BU(n)) generated by cU(n)

1 .
2. For l ≤ n, let jSUl,n : SU(l) → SU(n) denote the Lie subgroup embedding induced

by (4.2.7). Then,
jSU,U
n ◦ jSUl,n = jUl,n ◦ jSU,U

l

and (4.2.11) remains valid if we replace jUl,n by jSUl,n and cU(l)

k by cSU(l)

k . In view
of Theorem 4.2.5, this implies that (BjSUl,n)

∗ is surjective and that its kernel is
the ideal in H∗

Z
(BSU(n)) generated by cSU(n)

l+1 , . . . , cSU(n)
n . In particular, (BjSUl,n)

∗ is
injective in degree less than 2l + 2, so that, in this case, cSU(n)

k is the only element
of H2k

Z
(BSU(n)) satisfying (4.2.11).

3. Point 2 of Remark 4.2.3 carries over to the present case in an obvious way. �

Corollary 4.2.8 (Obstructions to orientability in the complex case)

1. Let P be a principal SU(n)-bundle and let Q be the extension of P to the structure
group U(n). Then,

c(Q) = c(P) .

In particular, if a principal U(n)-bundle Q admits a reduction to the structure
group SU(n), then c1(Q) = 0.

2. If a complex vector bundle E is orientable, then c1(E) = 0.

In Sect. 4.8 we will prove that the vanishing of the first Chern class is also sufficient
for a principal U(n)-bundle to admit a reduction to the structure group SU(n) and
for a complex vector bundle to be orientable, cf. Corollary 4.8.2.

Proof
1. Let f be a classifying mapping for P. According to Proposition 3.7.2/1, then

BjSU,U
n ◦ f is a classifying mapping for the extension Q. Hence, (4.2.15) yields

c(Q) = f ∗ ◦ (BjSU,U
n

)∗(
cU(n)
) = f ∗cSU(n) = c(P) .

If now Q is a principal U(n)-bundle and P is a reduction of Q to the structure group
SU(n), then Q is vertically isomorphic to the extension of P to the structure group
U(n). Since vertically isomorphic principal bundles have the same characteristic
classes, c(Q) coincides with the total Chern class of the extension. As was just
shown, then c(Q) = c(P) and, therefore, c1(Q) = 0.

2. This follows from point 1 by observing that if E is orientable, then the orthonor-
mal frame bundle of E with respect to some auxiliary fibre metric admits a reduction
to the structure group SU(n) (Exercise 4.2.1). �

Next, we pass to the discussion of the compact symplectic groups Sp(n). The argu-
ments are largely analogous to those for U(n). Let
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ESp
n = (ESp(n) ×Sp(n) H

n
)
R

,

where Sp(n) acts on H
n in the basic representation, and endow ESp

n with the induced
orientation. Let pSp(n)

n ∈ H4n
Z

(BU(n)) denote the corresponding Euler class, that is,

pSp(n)
n = e

(
ESp
n

)
.

For 0 < k ≤ n, let jSpk,n : Sp(k) → Sp(n) denote the Lie subgroup embedding induced
by the linear subspace embedding

H
k → H

n , (q1, . . . , qk) 
→ (q1, . . . , qk, 0, . . . , 0) . (4.2.16)

By construction, for 0 < k ≤ l ≤ n,

jSpl,n ◦ jSpk,l = jSpk,n . (4.2.17)

Theorem 4.2.9 (Integral cohomology of BSp(n))For k = 1, . . . , n − 1, there exists
a unique element pSp(n)

k of H4k
Z

(BSp(n)) such that

(BjSpk,n)
∗pSp(n)

k = pSp(k)

k .

The ring H∗
Z
(BSp(n)) is the polynomial ring overZ in the generators pSp(n)

1 , . . . , pSp(n)
n .

Proof By taking the real part of the standard scalar product onH
n, we obtain a scalar

product on the real vector space H
n
R
and thus a Riemannian fibre metric on the real

vector bundle ESp
n . Then,

DESp
n = ESp(n) ×Sp(n) D

4n , SESp
n = ESp(n) ×Sp(n) S

4n−1 ,

where D4n and S4n−1 stand for the unit disk and the unit sphere in H
n. By an

argument analogous to that for U(n), one can show that the fibre bundle BjSpn−1,n :
BSp(n − 1) → BSp(n) is vertically isomorphic to SESp

n for all n = 1, 2 . . . , where
Sp(0) is defined as the trivial group. Under this isomorphism, the Gysin sequence of
ESp
n translates into the exact sequence

· · · ϕ−→ Hl
Z
(BSp(n))

∪ p
Sp(n)
n−−−−→ Hl+4n

Z
(BSp(n))

(BjSpn−1,n)
∗

−−−−−→ Hl+4n
Z

(BSp(n − 1))
ϕ−→ Hl+1

Z
(BSp(n)) → · · ·

where l ∈ Z. Now, the assertion is proved by induction on n in a similar way as for
U(n) (Exercise 4.2.2). �

Definition 4.2.10 (Symplectic Pontryagin classes) For k = 1, . . . , n, the element
pSp(n)

k ofH4k
Z

(BSp(n)) provided by Theorem 4.2.9 is called the k-th universal Pontrya-
gin class of Sp(n) and the element

pSp(n) := 1 + pSp(n)

1 + · · · + pSp(n)
n

of H∗
Z
(BSp(n)) is called the total universal Pontryagin class of Sp(n).
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Remark 4.2.3 carries over in an obvious way to the present case (Exercise 4.2.3).
The classes pSp(n)

k and pSp(n) define characteristic classes for principal Sp(n)-bundles
and quaternionic vector bundles. The latter are denoted, respectively, by pk(P), p(P),
pk(E) and p(E). By construction,

p(P) = 1 + p1(P) + · · · + pn(P) , p(E) = 1 + p1(E) + · · · + pn(E) .

By means of the natural homomorphism H4k
Z

(M) → Hom(H4k(M), Z), for every
principal Sp(n)-bundle P and every quaternionic vector bundle one can define the
Pontryagin indices pk,i(P) and pk,i(E), respectively, relative to a chosen set of gen-
erators of H4k(M).

Finally, we discuss the orthogonal groups O(n) and the special orthogonal groups
SO(n). The standard action of O(n) on R

n, n = 1, 2, 3, . . . , defines the associated
real vector bundle

EO
n = EO(n) ×O(n) R

n .

SinceEO
n is universal for real vector bundles of rank n, it cannot be orientable, because

otherwise every real vector bundle of rank n would be orientable. It is known that
this is not true. An argument will be given below. Thus, EO

n has an Euler class in
Z2-cohomology only, and the Gysin sequence of EO

n can provide information about
theZ2-cohomology of BO(n) only. Nevertheless, Gysin sequences allow for deriving
the integral cohomology of H∗

Z
(BSO(n)) and H∗

Z
(BO(n)). The arguments involved

are sophisticated though.
Let wO(n)

n denote the Z2-Euler class of EO
n , that is,

wO(n)
n = e

(
EO
n

) ∈ Hn
Z2

(BO(n)) .

For 0 < k ≤ n, let jOk,n : O(k) → O(n) denote the Lie subgroup embedding induced
by the linear subspace embedding

R
k → R

n , (x1, . . . , xk) 
→ (x1, . . . , xk, 0, . . . , 0) . (4.2.18)

By construction, for 0 < k ≤ l ≤ n,

jOl,n ◦ jOk,l = jOk,n . (4.2.19)

Theorem 4.2.11 (Z2-cohomology of BO(n)) For k = 1, . . . , n − 1, there exists a
unique element wO(n)

k of Hk
Z2

(BO(n)) such that

(BjOk,n)
∗wO(n)

k = wO(k)

k .

The ringH∗
Z2

(BO(n)) is the polynomial ring overZ2 in the generatorsw
O(n)

1 , . . . ,wO(n)
n .

Proof The standard scalar product onR
n defines a Riemannian fibremetric onEO

n . As
in the case ofU(n), one can show that the sphere bundle jOn−1,n : BO(n − 1) → BO(n)
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is vertically isomorphic to SEO
n for n = 1, 2, . . . , where O(0) is defined as the trivial

group. Under this isomorphism, the Gysin sequence in Z2-cohomology of EO
n with

the chosen Riemannian fibre metric translates into the exact sequence

· · · ϕ−→ Hl
Z2

(BO(n))
∪wO(n)

n−−−−→ Hl+n
Z2

(BO(n))
(BjOn−1,n)

∗
−−−−−→ Hl+n

Z2
(BO(n − 1))

ϕ−→ Hl+1
Z2

(BO(n)) → · · ·

where l ∈ Z. Now, the assertion is proved by induction on n in a similar way as for
U(n) (Exercise 4.2.4). �

Definition 4.2.12 (Stiefel–Whitney classes) For k = 1, . . . , n, the element wO(n)

k of
Hk

Z2
(BO(n)) provided by Theorem 4.2.11 is called the k-th universal Stiefel–Whitney

class of O(n) and the element

wO(n) := 1 + wO(n)

1 + · · · + wO(n)
n

of H∗
Z2

(BO(n)) is called the total universal Stiefel–Whitney class of O(n).

The classes wO(n)

k and wO(n) define characteristic classes for principal O(n)-bundles
and real vector bundles, denoted by, respectively, wk(P), w(P), wk(E) and w(E). By
construction,

w(P) = 1 + w1(P) + · · · + wn(P) , w(E) = 1 + w1(E) + · · · + wn(E) .

Remark 4.2.13
By analogy with Remark 4.2.3, one can check the following (Exercise 4.2.5).

1. For l ≤ n, one has

(BjOl,n)
∗wO(n)

k =
{
wO(l)

k 1 ≤ k ≤ l ,

0 l < k ≤ n .
(4.2.20)

Moreover, (BjOl,n)
∗ is surjective and its kernel is the ideal inH∗

Z2
(BO(n)) generated

bywO(n)

l+1, . . . ,w
O(n)
n . In particular, for k ≤ l,wO(n)

k is the only element ofHk
Z2

(BO(n))
satisfying (4.2.20).

2. The top Stiefel–Whitney classwn(E) of a real vector bundle E of rank n coincides
with the Z2-Euler class of that vector bundle.

3. The top Stiefel–Whitney classwn(P) of a principal O(n)-bundle P coincides with
the Z2-Euler class of the real vector bundle P ×O(n) R

n associated with P by
means of the basic representation of O(n). �

Now, we turn to the discussion of the special orthogonal groups SO(n). We derive
the Z2-cohomology of BSO(n) from that of BO(n) in complete analogy with the dis-
cussion for SU(n). Let jSO,O

n : SO(n) → O(n) denote the natural inclusion mapping.
Since SO(n) is a normal subgroup of O(n), the fibre bundle

BjSO,O
n : BSO(n) → BO(n)
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is a principal bundle with structure group O(n)/SO(n) ∼= O(1) ∼= Z2.

Theorem 4.2.14 (Z2-cohomology of BSO(n)) One has
(
BjSO,O

n

)∗
wO(n)

1 = 0. The ring
H∗

Z2
(BSO(n)) is the polynomial ring overZ2 in the generatorsw

SO(n)

k := (BjSO,O
n )∗wO(n)

k ,
k = 2, . . . , n.

As a consequence, the homomorphism
(
BjSO,O

n

)∗ : H∗
Z2

(BO(n)) → H∗
Z2

(BSO(n)) is
surjective.

Proof The proof is completely analogous to that of Theorem 4.2.5. Starting with the
real line bundle EO(n) ×O(n) R, with O(n) acting via the determinant, one just has to
carry out the obvious modifications and forget about orientations. This leads to the
exact sequence

· · · ϕ−→ Hl
Z2

(BO(n))
∪wO(n)

1−−−−→ Hl+1
Z2

(BO(n))
(BjSO,O

n )∗−−−−−→ Hl+1
Z2

(BSO(n))
ϕ−→ Hl+1

Z2
(BO(n)) → · · ·

to which the rest of the argument can be adapted easily. �

Definition 4.2.15 For k = 2, . . . , n, the element wSO(n)

k of Hk
Z2

(BSO(n)) is called the
k-th universal Stiefel–Whitney class of SO(n). The element

wSO(n) := 1 + wSO(n)

2 + · · · + wSO(n)
n

of H∗
Z2

(BSO(n)) is called the total universal Stiefel–Whitney class of SO(n).

By construction, (
BjSO,O

n

)∗
wO(n) = wSO(n) . (4.2.21)

The classes wSO(n)

k and wSO(n) define characteristic classes for principal SO(n)-bundles,
denoted by wk(P) and w(P), respectively. One has

w(P) = 1 + w2(P) + · · · + wn(P) .

Moreover,

wSO(n)

k = wk
(
ESO(n)

) = wk
(
ESO(n) ×SO(n) R

n
)

, k = 2, . . . , n .

As for the Chern classes, for convenience, we sometimes use the notation wSO(n)

1 = 0.

Remark 4.2.16

1. Point 1 of Remark 4.2.13 carries over to the case of SO(n) in an obvious way.
2. According to Theorem 4.2.14, (BjSO,O

n )∗ is surjective and its kernel is the ideal in
H∗

Z2
(BO(n)) generated by wO(n)

1 . �

The proof of the following corollary of Theorem 4.2.14 is completely analogous to
that of Corollary 4.2.17 and is left to the reader.
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Corollary 4.2.17 (Obstructions to orientability in the real case)

1. Let P be a principal SO(n)-bundle and let Q be the extension of P to the structure
group O(n). Then,

w(Q) = w(P) .

In particular, if a principal O(n)-bundle Q admits a reduction to the structure
group SO(n), then w1(Q) = 0.

2. If a real vector bundle E is orientable, then w1(E) = 0. �

In Sect. 4.8, we will prove that the vanishing of the first Stiefel–Whitney class is
also sufficient for a principal O(n)-bundle to admit a reduction to the structure group
SO(n) and for a real vector bundle to be orientable, cf. Corollary 4.8.4.

Example 4.2.18 We determine the Chern class of the canonical U(1)-bundle Pn =
SC(1, n + 1) over GC(1, n + 1) = CPn, cf. Remark 1.1.21/3 and Example 1.1.24.
Let Ln denote the tautological line bundle over CPn, obtained by attaching to each
point of CPn the subspace of C

n+1 represented by this point. One can check that the
mapping

Pn ×U(1) C → Ln , [(z, ζ )] 
→ ζz ,

is a vertical isomorphism. Hence, c(Pn) = c(Ln). We show that c1(Ln) is a generator
of H2

Z
(CPn). For that purpose, we write down the integral Gysin sequence of the

realification (Ln)R endowed with the induced orientation and with the Riemannian
fibre metric induced from the standard scalar product on C

n+1
R

,

· · · → Hk
Z
(CPn)

∪ e((Ln)R)−−−−−→ Hk+2
Z

(CPn)
π∗
S−→ Hk+2

Z
(SLn)

ϕ−→ Hk+1
R (CPn) → · · ·

By Remark 4.2.4/1, we can replace e
(
(Ln)R

) = c1(Ln). Since

SLn = {(p, z) ∈ CPn × C
n+1 : z ∈ p , ‖z‖= 1} = {(p, z) ∈ CPn×S2n+1 : z ∈ p} ,

we can define mutually inverse continuous mappings

SLn → S2n+1 , (p, z) 
→ z , S2n+1 → SLn , z 
→ ([z], z) .

That is, SLn is homeomorphic to S2n+1. Hence, for k < 2n − 1, the Gysin sequence
splits into the pieces

0 → Hk
Z
(CPn)

∪ c1(Ln)−−−−→ Hk+2
Z

(CPn)
π∗
S−→ 0 . (4.2.22)

By setting k = 0, we obtain that c1(Ln) = c1(Pn) is a generator of H2
Z
(CPn). Thus,

H∗
Z
(CPn) is the free Abelian group generated by 1, c1(Ln), . . . , c1(Ln)n. As a special

case, we obtain that the first Chern class of the complex Hopf bundle is a generator
of the second integral cohomology group of CP1 ∼= S2.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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The arguments given for CPn can be adapted to RPn and HPn. This leads to the
following results (Exercise 4.2.18).

1. The first Stiefel–Whitney class of the canonical O(1)-bundle PR

n (canonical real
line bundle LR

n ) over RPn is a generator of H1
Z2

(RPn) and hence H∗
Z2

(RPn) is
the Z2-module freely generated by 1, w1(LR

n ), . . . ,w1(LR

n )n. In particular, the
first Stiefel–Whitney class of the real Hopf bundle is a generator of the first
Z2-cohomology group of RP1 ∼= S1.

2. The first Pontryagin class of the canonical Sp(1)-bundle PH

n (canonical quater-
nionic line bundle LH

n ) over HPn is a generator of H1
Z
(HPn) and hence H∗

Z
(HPn)

is the free Abelian group generated by 1, p1(LH

n ), . . . , p1(LH

n )n. In particular, the
first Pontryagin class of the quaternionic Hopf bundle is a generator of the fourth
integral cohomology group of HP1 ∼= S4. �

To conclude this section, we give a survey of the integral cohomology of BO(n) and
BSO(n). This wasworked out independently in [107, 193].Wewill confine ourselves
to citing the result and adding a comment on how to derive it using Gysin sequences.

For x ∈ R, let �x� denote the integer part of x. Define

qn := � n−1
2 � , Kn := {1, . . . , qn} , q̄n := � n

2� , K̄n := { 1

2
} ∪ {1, . . . , q̄n} .

One type of generators ofH∗
Z
(BO(n)) andH∗

Z
(BSO(n)) is given by the Chern classes

of U(n).

Definition 4.2.19 (Pontryagin classes) For k = 1, . . . , q̄n, the element

pO(n)

k := (−1)k
(
BjO,U

n

)∗
cU(n)

2k

of H4k
Z

(BO(n)) is called the k-th universal Pontryagin class of O(n). The sum

pO(n) := 1 + pO(n)

1 + · + pO(n)

q̄n

is called the total universal Pontryagin class of O(n). By analogy, one defines the
Pontryagin classes of SO(n) via the embedding jSO,U

n .

The other type of generators is related to the Stiefel–Whitney classes. Recall that,
for every topological space X, the exact sequence of coefficient groups

0 −→ Z
2·−→ Z −→ Z2 −→ 0

induces a long exact sequence in cohomology,

· · · −→ Hk
Z
(X)

2·−→ Hk
Z
(X)

ρ2−→ Hk
Z2

(X)
β−→ Hk+1

Z
(X) −→ · · · ,

where ρ2 denotes reduction modulo 2. The connecting homomorphism β is usually
referred to as the (integral) Bockstein homomorphism.
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Definition 4.2.20 (Integral Stiefel–Whitney classes) Given a nonempty subset I ⊂
K̄n, the element

WO(n)

I := β

(∏

l∈I
wO(n)

2l

)

of H
1+∑l∈I 2l
Z

(BO(n)) is called the universal integral Stiefel–Whitney class of type
I of O(n). By analogy, given a nonempty subset I ⊂ Kn, one defines the universal
integral Stiefel–Whitney class of type I of SO(n), denoted by WSO(n)

I .

For SO(n), there will be one further generator, the universal integral Euler class

eSO(n) := e
(
ESO(n) ×SO(n) R

n
) ∈ Hn

Z
(BSO(n)) ,

where the orientation is given fibrewise by the standard orientation of R
n.

Remark 4.2.21

1. As a consequence of (4.2.11), for l ≤ n, one has

(
BjOl,n

)∗
pO(n)

k =
{
pO(l)

k 1 ≤ k ≤ q̄l ,

0 q̄l < k ≤ q̄n ,
(4.2.23)

and an analogous formula for SO(n). Moreover, by construction,

(
BjSO,O

n

)∗
pO(n) = pSO(n) . (4.2.24)

2. By the naturality property6 of the Bockstein homomorphism β, for l ≤ n and
I ⊂ K̄n, one has

(
BjOl,n

)∗
WO(n)

I =
{
WO(l)

I I ⊂ K̄l ,

0 I �⊂ K̄l ,
(4.2.25)

and an analogous formula for SO(n). Using in addition (4.2.21), as well as the
fact that for even n the mod 2 reduction of β(wO(n)

n ) is given by wO(n)

1 wO(n)
n , cf. [598,

p. 281],7 we obtain
(
BjSO,O

n

)∗
WO(n)

I =
{
WSO(n)

I I ⊂ Kn

0 I �⊂ Kn
(4.2.26)

for all I ⊂ K̄n.
3. By Proposition 4.1.12/1, one has 2eSO(n) = 0 if n is odd. �

6That is, β intertwines the homomorphism induced by a continuous mapping in Z2-cohomology
with that induced in integral cohomology.
7Composition of mod 2 reduction with the integral Bockstein homomorphism yields the Steenrod
square.
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The universal Pontryagin and integral Stiefel–Whitney classes define characteristic
classes for principal O(n)-bundles, principal SO(n)-bundles and real vector bundles.
These are denoted, respectively, by pk(P), p(P),WI(P), pk(E), p(E), andWI(E). In
addition, the universal Euler class defines a characteristic class for principal SO(n)-
bundles and for oriented real vector bundles, denoted by e(P) and e(E), respectively,
where the latter is due to the fact that ESO(n) ×SO(n) R

n is universal for oriented real
vector bundles.

Remark 4.2.22

1. In terms of the integral cohomology class WO(n)

{ 12 } = β(wO(n)

1 ), the necessary ori-

entability condition of Corollary 4.2.17 reads as follows. If a principal O(n)-
bundle P admits a reduction to the subgroup SO(n), then W{ 12 }(P) = 0. If a real
vector bundle E is orientable, then W{ 12 }(E) = 0.

2. By analogy with the structure groups U(n) and Sp(n), using the natural homo-
morphism H4k

Z
(M) → Hom(H4k(M), Z), for every principal O(n)-bundle P and

every real vector bundle E one can define the Pontryagin indices pk,i(P) and
pk,i(E), respectively, relative to a given set of generators of H4k(M). �

The following was proved independently in [107, 193].

Theorem 4.2.23 (Integral cohomology of BSO(n) and BO(n)) Let n ≥ 2.

1. The ring H∗
Z
(BSO(n)) is generated by pSO(n)

k with k = 0, . . . , qn, by WSO(n)

I with
I ⊂ Kn nonempty and, in case n is even, by eSO(n). The subring generated by
pSO(n)

1 , . . . , pSO(n)
qn and, in case n is even, by eSO(n), is torsion-free.

2. The ring H∗
Z
(BO(n)) is generated by pO(n)

k with k = 0, . . . , q̄n and by WO(n)

I with
I ⊂ K̄n nonempty. The subring generated by pSO(n)

1 , . . . , pSO(n)
qn is torsion-free. �

For the corresponding torsion ideals and the free quotient rings, we read off the
following.

Corollary 4.2.24

1. The torsion ideals of H∗
Z
(BSO(n)) and H∗

Z
(BO(n)) are generated by the corre-

sponding integral Stiefel–Whitney classes. In particular, every torsion element
has order 2.

2. The free quotient ring of H∗
Z
(BSO(n)) is the polynomial ring over Z in the Pon-

tryagin classes pSO(n)

1 , . . . , pSO(n)
qn and, if n is even, the Euler class eSO(n). The free

quotient ring of H∗
Z
(BO(n)) is the polynomial ring over Z in the Pontryagin

classes pO(n)

1 , . . . , pO(n)

q̄n
. �
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Remark 4.2.25

1. In addition, in [107, 193], the following was shown. For I ⊂ K̄n and i ∈ K̄n,
denote Ii := I\{i}. For I, J ⊂ K̄n, let I ∪ J := (I ∪ J)\(I ∩ J) (exclusive ‘or’).
PutWSO(n)

∅
= WO(n)

∅
= 0 and pO(n)

1
2

:= WO(n)

{ 12 } . The defining relations between the gen-
erators of H∗

Z
(BSO(n)) are

WSO(n)

I WSO(n)

J =
∑

i∈I

(
WSO(n)

{i} WSO(n)

Ii∪J
∏

j∈Ii∩J
pSO(n)

j

)
for all I, J ⊂ Kn, I �= ∅,

with the convention that
∏

j∈Ii∩J p
SO(n)

j = 1 in case Ii ∩ J = ∅. The defining rela-
tions between the generators of H∗

Z
(BO(n)) are

WO(n)

I WO(n)

J =
∑

i∈I

(
WO(n)

{i} W
O(n)

Ii∪J
∏

j∈Ii∩J
pO(n)

j

)
for all I, J ⊂ K̄n, I �= ∅,

holding for all n, and

WO(n)

{ 12 ,q̄n}∪J = WO(n)

{q̄n}W
O(n)

J , WO(n)

{q̄n}W
O(n)

{q̄n}∪J = pO(n)

q̄n
WO(n)

{ 12 }∪J for all J ⊂ Kn,

holding for even n only.
2. Theorem 4.2.23 and the relations given in point 1 can be proved by fairly elemen-

tary means, using the Gysin sequence with integral coefficients of the oriented
universal vector bundle ESO(n) ×SO(n) R

n to derive H∗
Z
(BSO(n)) and the Gysin

sequence with local coefficients for the (non-oriented) universal vector bundle
EO(n) ×O(n) R

n to derive H∗
Z
(BO(n)) from H∗

Z
(BSO(n)).

3. In view of the Universal Coefficient Theorem for cohomology in the form of
Theorem 5.5.10 of [598], point 1 of Corollary 4.2.24 implies that it suffices to
control the real and the Z2-valued cohomology of BSO(n) and BO(n). While the
latter is given by Theorems 4.2.11 and 4.2.14, the former can be read off from
point 2 of Corollary 4.2.24. Thus, H∗

R
(BSO(n)) is the polynomial ring over R in

the Pontryagin classes pSO(n)

1 , . . . , pSO(n)
qn and, if n is even, the Euler class eSO(n), and

H∗
R
(BO(n)) is the polynomial ring overR in the Pontryagin classes pO(n)

1 , . . . , pO(n)

q̄n
.

�

Exercises

4.2.1 Complete the proof of Corollary 4.2.8/2 by showing that if a complex vector
bundle is orientable, then its orthonormal frame bundlewith respect to some auxiliary
fibremetric admits a reduction to the structure groupSU(n). Prove a similar statement
for real vector bundles and the structure group SO(n).

4.2.2 Complete the proof of Theorem 4.2.9 by adapting the induction argument
given for U(n) in the proof of Theorem 4.2.1 to Sp(n).
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4.2.3 Carry over the statements ofRemark 4.2.3 to the case of the symplectic groups.

4.2.4 Complete the proof of Theorem 4.2.11 by adapting the induction argument
given for U(n) in the proof of Theorem 4.2.1 to O(n).

4.2.5 Prove the statements of Remark 4.2.13.

4.2.6 Adapt the arguments given for CPn in Example 4.2.18 to RPn and HPn to
prove points 1 and 2 in that example.

4.3 Whitney Sum Formula and Splitting Principle

We start with deriving the Whitney Sum Formula. This formula expresses the char-
acteristic classes of the direct sum of vector bundles in terms of the characteristic
classes of the constituents.

In the course of the discussion, we will use that the classifying space of a direct
product of Lie groups G1 × G2 can be realised by BG1 × BG2. Recall that for ele-
ments αi ∈ Hk

Z
(BGi), the cohomology cross product α1 × α2 ∈ Hk+l

Z
(BG1 × BG2)

is defined by
α1 × α2 := (pr∗1 α1) ∪ (pr∗2 α2) , (4.3.1)

where pri : BG1 × BG2 → BGi for i = 1, 2 denotes the natural projection to the
i-th factor. For further use, we note that

(α1 × α2) ∪ (β1 × β2) = (−1)deg(α2) deg(β1)(α1 ∪ β1) × (α2 ∪ β2) . (4.3.2)

Moreover, for the diagonal mapping ΔB : B → B × B,

Δ∗
B(α1 × α2) = α1 ∪ α2 . (4.3.3)

The Whitney Sum Formula will be a consequence of the following.

Theorem 4.3.1
For the standard blockwise embeddings

jO : O(n1) × O(n2) → O(n1 + n2) ,

jU : U(n1) × U(n2) → U(n1 + n2) ,

jSp : Sp(n1) × Sp(n2) → Sp(n1 + n2) ,

one has

(BjO)
∗wO(n1+n2) = wO(n1) × wO(n2) ,

(BjU)
∗cU(n1+n2) = cU(n1) × cU(n2) ,

(BjSp)
∗pSp(n1+n2) = pSp(n1) × pSp(n2) .
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Analogous formulae hold for the special orthogonal and the special unitary groups
(Exercise 4.3.2).

Proof To be definite, we give the proof for the unitary groups and leave the rest to
the reader. Let us write j ≡ jU and n = n1 + n2 and let us put c

U(n)

k := 0 for all k > n.
We have to show that

(Bj)∗cU(n)

k =
k∑

i=0

cU(n1)

i × cU(n2)

k−i (4.3.4)

for all k = 0, . . . , n. For that purpose, we will fix k and let n run. That is, we will
prove (4.3.4) by induction on n, starting with n = k. Thus, let k be chosen and let
n1, n2 be such that n = k. Consider the pullback principal U(n)-bundle (Bj)∗EU(n).
By definition of Bj, it is vertically isomorphic to the associated principal U(n)-
bundle P := (EU(n1) × EU(n2)

)[j]. By Proposition 1.2.8, this isomorphism induces
a vertical isomorphism

P ×U(n) C
n
R

∼= (Bj)∗EU
n .

On the other hand, by Proposition 1.6.7, P ×U(n) C
n
R
is vertically isomorphic to the

associated vector bundle

(
EU(n1) × EU(n2)

)×U(n1)×U(n2) C
n
R

,

whereU(n1) × U(n2) acts onC
n via the composition of jwith the basic representation

of U(n). One can check that this vector bundle, in turn, is vertically isomorphic to
the direct sum

(
pr∗1 EU

n1

)⊕ ( pr∗2 EU
n2

)
(Exercise 4.3.1). Putting all this together, we

end up with a vertical isomorphism

(
pr∗1 E

U
n1

)⊕ ( pr∗2 EU
n2

) ∼= (Bj)∗EU
n . (4.3.5)

In local trivializations induced from local trivializations of the corresponding prin-
cipal bundles, this isomorphism is given fibrewise by the obvious identification
R

2n1 ⊕ R
2n2 ≡ R

2n. Hence, it preserves the orientations. Now, using points 3 and
4 of Proposition 4.1.12, for the Euler classes we find

(Bj)∗e
(
EU
n

) = e
(
(Bj)∗EU

n

)

= e
(
(pr∗1 E

U
n1) ⊕ (pr∗2 E

U
n2)
)

= e
(
pr∗1 E

U
n1

)
e
(
pr∗2 E

U
n2

)

= ( pr∗1 e
(
EU
n1

))(
pr∗2 e

(
EU
n2

))

= e
(
EU
n1

)× e
(
EU
n2

)
.

This proves (4.3.4) for k = n.
Now, let n1, n2 be such that n > k and assume that (4.3.4) holds for all m1, m2

such thatm1 + m2 < n. Since, as a module over Z,Hl
Z
(BU(n2)) is finitely and freely

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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generated for all l, the Künneth Theorem for cohomology yields that the group
homomorphism

H∗
Z
(BU(n1)) ⊗ H∗

Z
(BU(n2)) → H∗

Z
(BU(n1) × BU(n2)) (4.3.6)

defined by α1 ⊗ α2 
→ α1 × α2 is an isomorphism of Abelian groups. By restricting
to degree 2k, and by using that the cohomology of BU(m) is trivial in odd degree,
we obtain an isomorphism

k⊕

j=0

H2j
Z

(BU(n1)) ⊗ H2k−2j
Z

(BU(n2)) → H2k
Z

(BU(n1) × BU(n2)) .

The inverse of this isomorphism combines with the natural projections associated
with the direct sum to homomorphisms

pj : H2k
Z

(BU(n1) × BU(n2)) → H2j
Z

(BU(n1)) ⊗ H2k−2j
Z

(BU(n2)) .

Consider a given i with 0 ≤ i ≤ k. Since k < n = n1 + n2, either i < n1 or k − i <

n2. Without loss of generality, we give the argument for the first case and leave it to
the reader to adapt this to the second case. Replacing n1 by i in the above argument,
we obtain homomorphisms

p̃j : H2k
Z

(BU(i) × BU(n2)) → H2j
Z

(BU(i)) ⊗ H2k−2j
Z

(BU(n2)) .

Let
j̃ : U(i) × U(n2) → U(i + n2)

denote the standard blockwise embedding and let ϕ : U(i + n2) → U(n) denote the
embedding induced by the vector subspace embedding

C
i+n2 → C

n , (z1, . . . , zi+n2) 
→ (z1, . . . , zi, 0, . . . , 0, zi+1, . . . , zi+n2) .

Then, the diagram of Lie group homomorphisms

U(i) × U(n2)
j̃ ��

jUi,n1×id

��

U(i + n2)

ϕ

��
U(n1) × U(n2)

j �� U(n)

commutes. It induces a commutative diagram
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H2k
Z

(BU(n))
(Bj)∗ ��

(Bϕ)∗

��

H2k
Z

(BU(n1) × BU(n2))

(BjUi,n1×id)∗

��
H2k

Z
(BU(i + n2))

(Bj̃)∗ �� H2k
Z

(BU(i) × BU(n2))

Since ϕ and jUi+n2,n
differ by an inner automorphism of U(n), and since U(n) is

connected, Bϕ andBjUi+n2,n
are homotopic and hence induce the same homomorphism

in cohomology.Using this and composing (Bj)∗ and (Bj̃)∗ with pi and p̃i, respectively,
we obtain the commutative diagram

H2k
Z

(BU(n))
pi◦(Bj)∗ ��

(BjUi+n2 ,n)
∗

��

H2i
Z

(BU(n1)) ⊗ H2k−2i
Z

(BU(n2))

(BjUi,n1 )
∗⊗id

��
H2k

Z
(BU(i + n2))

p̃i◦(Bj̃)∗ �� H2i
Z

(BU(i)) ⊗ H2k−2i
Z

(BU(n2))

Applying this to cU(n)

k and using (4.2.11), we find

(
(BjUi,n1)

∗ ⊗ id
) (
pi
(
(Bj)∗cU(n)

k

)) = p̃i ◦ (Bj̃)∗
(
cU(i+n2)

k

)
.

Since i + n2 < n, by the induction assumption, (4.3.4) holds with n1 replaced by i
and j replaced by j̃. Hence,

(
(BjUi,n1)

∗ ⊗ id
) (
pi
(
(Bj)∗cU(n)

k

)) = cU(i)

i ⊗ cU(n2)

k−i .

On the other hand, by (4.2.11),

(
(BjUi,n1)

∗ ⊗ id
) (

cU(n1)

i ⊗ cU(n2)

k−i

) = cU(i)

i ⊗ cU(n2)

k−i .

Thus,

(
(BjUi,n1)

∗ ⊗ id
) (
pi
(
(Bj)∗cU(n)

k

)) = ((BjUi,n1)∗ ⊗ id
) (

cU(n1)

i ⊗ cU(n2)

k−i

)
. (4.3.7)

Since i < n1, Theorem 4.2.1 yields that (BjUi,n1)
∗ is injective onH2i

Z
(BU(n1)). Hence,

(BjUi,n1)
∗ ⊗ id is injective on H2i

Z
(BU(n1)) ⊗ H2k−2i

Z
(BU(n2)). Therefore, (4.3.7)

implies
pi
(
(Bj)∗cU(n)

k

) = cU(n1)

i ⊗ cU(n2)

k−i .

Since this holds for all i = 0, . . . , k, and since the pi sum up to the inverse of the
isomorphism (4.3.6), formula (4.3.4) follows. This proves the theorem. �

Theorem 4.3.2 (Whitney Sum Formula) For K-vector bundles E1 and E2 over the
same base space,
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α(E1 ⊕ E2) = α(E1)α(E2) ,

where α stands for the total Stiefel–Whitney class w in case K = R, for the total
Chern class c in case K = C and for the total symplectic Pontryagin class p in case
K = H.

Proof As before, we give the proof for the complex case. Let ni be the rank of Ei and
let n = n1 + n2. Choose auxiliary fibre metrics on E1 and E2. Their orthogonal direct
sum defines a fibremetric onE1 ⊕ E2. LetPi andP⊕ denote the corresponding ortho-
normal frame bundles of Ei and E1 ⊕ E2, respectively. Pi has structure group U(ni)
and P⊕ has structure group U(n). Choose classifying mappings fi : B → BU(ni) for
Pi and f⊕ : B → BU(n) for P⊕. By definition,

c(Ei) = f ∗
i c

U(ni ) , c(E1 ⊕ E2) = f ∗
⊕ cU(n) . (4.3.8)

Consider the principal
(
U(n1) × U(n2)

)
-bundleP1 ×B P2. It has the classifyingmap-

ping (f1 × f2) ◦ Δ, where Δ : B → B × B is the diagonal mapping. By combining
orthonormal frames in (E1)b with orthonormal frames in (E2)b to orthonormal frames
in (E1 ⊕ E2)b = (E1)b ⊕ (E2)b, we obtain a vertical morphism of principal bundles
P1 ×B P2 → P⊕ with associated Lie group homomorphism given by the standard
blockwise embedding j : U(n1) × U(n2) → U(n). Hence, Proposition 3.7.6 yields
that f⊕ is homotopic to Bj ◦ (f1 × f2) ◦ Δ. Using this, together with formula (4.3.8)
and Theorem 4.3.1, we find

c(E1 ⊕ E2) = f ∗
⊕c

U(n)

= Δ∗ ◦ (f1 × f2)
∗ ◦ Bj∗

(
cU(n)
)

= Δ∗ ◦ (f1 × f2)
∗(cU(n1) × cU(n2)

)

= Δ∗((f ∗
1 c

U(n1)) × (f ∗
2 c

U(n2))
)

= Δ∗(c(E1) × c(E2)
)

= c(E1)c(E2) .

�

Recall that two K-vector bundles E1, E2 over a topological space B are said to be
stably equivalent if there exist non-negative integers r1, r2 such that E1 ⊕ (B × K

r1)

is vertically isomorphic to E2 ⊕ (B × K
r2).

Corollary 4.3.3 Stably equivalent real (complex, quaternionic) vector bundles have
the same Stiefel–Whitney (Chern, symplectic Pontryagin) classes.

Proof We give the argument for the complex case. Let E1 and E2 be complex vector
bundles over B. If the vector bundles E1 ⊕ (B × C

r1) and E2 ⊕ (B × C
r2) are ver-

tically isomorphic, they have the same Chern class. By Remark 4.1.6/2, we have
c(M × C

ri) = 1. Hence, the Whitney Sum Formula implies

http://dx.doi.org/10.1007/978-94-024-0959-8_3


4.3 Whitney Sum Formula and Splitting Principle 289

c
(
Ei ⊕ (B × C

ri)
) = c(Ei) , i = 1, 2 .

This yields the assertion. �

Corollary 4.3.3 implies that the Chern (Stiefel–Whitney, Pontryagin) classes yield
invariants in complex (real, quaternionic) K-theory.

Another important consequence of the Whitney Sum Formula is the following.
Let σk(x1, . . . , xn) denote the elementary symmetric polynomial of order k in the
indeterminates x1, . . . , xn, that is,

σk(x1, . . . , xn) =
∑

i1<···<ik

xi1 · · · xik .

Corollary 4.3.4 Let K = R, C or H and let L1, . . . ,Ln be K-line bundles over a
topological space B. Then,

αk (L1 ⊕ · · · ⊕ Ln) = σk
(
α1(L1), . . . , α1(Ln)

)
,

where α = w in case K = R, α = c in case K = C and α = p in case K = H.

Proof Let E := L1 ⊕ · · · ⊕ Ln. In the complex case, by the Whitney Sum Formula,

c(E) =
n∏

i=1

c(Li) .

By plugging in c(Li) = 1 + c1(Li) and expanding the product, we obtain

c(E) = 1 + σ1
(
c1(L1), . . . , c1(Ln)

)+ · · · + σn
(
c1(L1), . . . , c1(Ln)

)
.

The real and the quaternionic case are analogous. �

The characteristic classes c1(L1), . . . , c1(Ln) are referred to as the Chern roots of E.
By analogy, one speaks of the Stiefel–Whitney roots of E in the real case and the
Pontryagin roots of E in the quaternionic case. Thus, Corollary 4.3.4 states that if a
complex vector bundle splits into a sum of line bundles, its Chern classes are given
by the elementary symmetric polynomials in the first Chern classes of its factors,
and that analogous statements hold for real and quaternionic vector bundles.

Behind Corollary 4.3.4, there is a relation between the corresponding universal
characteristic classes, which we now derive from Theorem 4.3.1. We show that by
iterated application of this theorem, we can embed H∗

Z
(BU(n)) into H∗

Z
(BU(1)n),

H∗
Z2

(BO(n)) into H∗
Z2

(BO(1)n) and H∗
Z
(BSp(n)) into H∗

Z
(BSp(1)n). By the Künneth

Theorem for cohomology, H∗
Z
(BU(1)n) is the polynomial ring over Z in the genera-

tors

cU(1)

1 × 1 × · · · × 1, 1 × cU(1)

1 × 1 × · · · × 1, . . . , 1 × · · · × 1 × cU(1)

1 .
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This ring contains the symmetric polynomials as a subring. Using (4.3.1), the gen-
erators can be rewritten in terms of the natural projections prk : U(1)n → U(1) as

cU(1)

1 × 1 × · · · × 1 = (Bpr1)
∗cU(1)

1 , . . . , 1 × · · · × 1 × cU(1)

1 = (Bprn)
∗cU(1)

1 .

Similar statements hold for H∗
Z2

(BO(1)n) and H∗
Z
(BSp(1)n).

Proposition 4.3.5 For the standard diagonal embeddings

jOn : O(1)n → O(n) , jUn : U(1)n → U(n) , jSpn : Sp(1)n → Sp(n) ,

one has

(
BjOn
)∗
wO(n)

k = σk
(
(Bpr1)

∗wO(1)

1 , . . . , (Bprn)
∗wO(1)

1

)
,

(
BjUn
)∗
cU(n)

k = σk
(
(Bpr1)

∗cU(1)

1 , . . . , (Bprn)
∗cU(1)

1

)
,

(
BjSpn
)∗
pSp(n)

k = σk
(
(Bpr1)

∗pSp(1)

1 , . . . , (Bprn)
∗pSp(1)

1

)
.

In particular, the homomorphisms (BjOn)
∗, (BjUn)∗ and (BjSpn )∗ are injective and their

images are the subrings of symmetric polynomials.

Proof As usual, we give the argument for the complex case and leave the other cases
to the reader. By iterated application of Theorem 4.3.1, we obtain

(
BjUn
)∗
cU(n) = cU(1) × · · · × cU(1) .

By plugging in cU(1) = 1 + cU(1)

1 and evaluating the product in degree k, we find that(
BjUn
)∗
cU(n)

k equals the sum over all cross products having a factor cU(1)

1 in k places and
a factor 1 in n − k places. By (4.3.2), this sum coincides with

σk
(
cU(1)

1 × 1 × · · · × 1, . . . , 1 × · · · × 1 × cU(1)

1

)
.

Rewriting the generators in terms of the natural projections prk , we obtain the asserted
formula. Finally, since the ring of symmetric polynomials in n indeterminates with
coefficients inZ coincides with the polynomial ring generated over Z by the elemen-
tary symmetric polynomials [399, Sect. IV.6], it follows that (BjUn)

∗ is injective and
that its image is the subring of H∗

Z
(BU(1)n) of symmetric polynomials. �

In view of Corollary 4.1.4 and the fact that a principalG-bundle P admits a reduction
Q to a Lie subgroup j : H → G iff it is vertically isomorphic toQ[j], Proposition 4.3.5
entails the following.

Corollary 4.3.6 If P is a principalUK(n)-bundle which admits a reduction Q to the
subgroup UK(1)n, then

αk(P) = σk
(
α1
(
Q[pr1]), . . . , α1

(
Q[prn])) ,
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where α = w for K = R, α = c for K = C and α = p for K = H. �

Taking up the terminology for vector bundles, in case of the structure group U(n),
the characteristic classes c1

(
Q[pr1]), . . . , c1

(
Q[prn]) of a reduction Q are referred to

as the Chern roots of P. By analogy, one speaks of the Stiefel–Whitney roots of P in
case of the structure group O(n) and the Pontryagin roots of P in case of the structure
group Sp(n).

Next, we prove that the situation of Corollaries 4.3.4 and 4.3.6 can be achieved
for every vector bundle and every principal bundle with structure group O(n), U(n)
or Sp(n) by passing to an appropriate pullback bundle. This result is known as the
Splitting Principle. We treat the case of principal bundles first.

Theorem 4.3.7 (Splitting Principle for principal bundles) Let G = O(n), U(n) or
Sp(n) and let H denote, respectively, the subgroup O(1)n, U(1)n or Sp(1)n. Let P be
a principal G-bundle over a topological space B and let ρ : P/H → B denote the
induced projection. Let R = Z2 for G = O(n) and R = Z for G = U(n) or Sp(n).

1. The principal G-bundle ρ∗P over P/H admits a reduction to the subgroup H.
2. The induced homomorphism ρ∗ : H∗

R(B) → H∗
R(P/H) is injective.

Proof 1. Let pr : P → P/H denote the natural projection to classes. One can check
that the mapping

P → ρ∗P , p 
→ (
pr(p), p

)
,

is well defined and yields a reduction of ρ∗P to the subgroup H.
2. The proof boils down to another application of the Leray–Hirsch Theorem. To

be definite, we give it for G = U(n). Let Ψ denote the action of U(n) on P. Define

Q0 := P/
({1} × U(n − 1)

)
, Y0 := P/

(
U(1) × U(n − 1)

)
.

Clearly, Q0 is a principal U(1)-bundle over Y0 and Y0 is a fibre bundle over B with
typical fibre

U(n)/
(
U(1) × U(n − 1)

) ∼= CPn−1 .

Let ρ0 : Y0 → B denote the induced projection. Choose p ∈ P and letm = π(p). The
mapping Ψp : U(n) → P induced by Ψ is equivariant with respect to the action of
U(1) × U(n − 1) on U(n) by right translation and thus descends to a mapping

j : CPn−1 → Y0

ofCPn−1 onto the fibre (Y0)m. Consider the induced principal U(1)-bundle j∗Q0 over
CPn−1. One can check that the mapping

U(n) → CPn−1 × Q0 , a 
→ ([a], [Ψa(p)]
)
, (4.3.9)
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induces a vertical isomorphism from the canonical U(1)-bundle over CPn−1, which
has U(n)/

({1} × U(n − 1)
) ∼= S2n−1 as its bundle space,8 onto j∗Q0 (Exercise 4.3.3).

According to Example 4.2.18, then the cohomology classes

1, c1(j
∗Q0), . . . , c1(j

∗Q0)
n−1

form a free basis of H∗
Z
(CPn−1) as a Z-module. Since c1(j∗Q0) = j∗c1(Q0), the

Leray–Hirsch Theorem 4.1.7 implies that the cohomology classes

1, c1(Q0), . . . , c1(Q0)
n−1

form a free basis of H∗
Z
(Y0) as a module over H∗

Z
(B). In particular, the mapping

H∗
Z
(B) → H∗

Z
(Y0) given by α 
→ α · 1 is injective. Since α · 1 = ρ∗

0α, this means
that the induced homomorphism ρ∗

0 : H∗
Z
(B) → H∗

Z
(Y0) is injective.

Now, in the above argument, we replace the principal U(n)-bundle P over B by
the principal U(n − 1)-bundle P1 := P/

(
U(1) × {1n−1}

)
over Y0. This yields a fibre

bundle over Y0 with bundle space

Y1 := P1/
(
U(1) × U(n − 2)

) ≡ P/
(
U(1)2 × U(n − 2)

)

and typical fibre CPn−2, whose projection ρ1 : Y1 → Y0 induces an injection ρ∗
1 :

H∗
Z
(Y0) → H∗

Z
(Y1). Iterating this, we finally arrive at a bundle projection

ρn−2 : Yn−2 ≡ P/U(1)n → Yn−3 ≡ P/
(
U(1)n−2 × U(2)

)

with fibre CP1, inducing an injection

ρ∗
n−2 : H∗

Z
(Yn−3) → H∗

Z
(Yn−2) ≡ H∗

Z
(P/U(1)n) .

Since ρ0 ◦ · · · ◦ ρn−2 = ρ, this proves point 2. �

From theSplittingPrinciple for principal bundleswe canderive theSplittingPrinciple
for vector bundles.

Corollary 4.3.8 (Splitting Principle for vector bundles) Let K = R, C or H and let
R = Z2 for K = R and R = Z for K = C or H. For every K-vector bundle E over a
topological space B, there exists a fibre bundle ρ : Y → B such that

1. ρ∗E is vertically isomorphic to a direct sum of line bundles,
2. the induced homomorphism ρ∗ : H∗

R(B) → H∗
R(Y) is injective.

Proof As before, to be definite, we give the proof for K = C. Let n denote the rank
of E. Choose a fibre metric on E and consider the corresponding orthonormal frame
bundleO(E), which is a principal U(n)-bundle over B. Define Y := O(E)/U(1)n and

8In fact, this is the Stiefel bundle SC(1, n) → GC(1, n).
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let ρ : Y → B denote the induced projection. Then, Y is a fibre bundle over B, with
typical fibre U(n)/U(1)n. Point 2 of Theorem 4.3.7 yields point 2 of the corollary.
By point 1 of that theorem, ρ∗O(E) admits a reduction Q to the subgroup U(1)n.
Then, on the one hand, using Propositions 1.6.7 and 1.2.5/2 and Theorem 3.6.8, we
obtain the vertical isomorphisms

Q ×U(1)n C
n ∼= (ρ∗O(E)

)×U(n) C
n ∼= ρ∗(O(E) ×U(n) C

n
) ∼= ρ∗E .

On the other hand,

Q ×U(1)n C
n ∼= (Q ×U(1)n C1

)⊕ · · · ⊕ (Q ×U(1)n Cn
)
,

where U(1)n acts on Ci via multiplication by the i-th entry. �

Remark 4.3.9 According to the proof of Corollary 4.3.8, if E has rank n, the fibre
bundle ρ : Y → B of Corollary 4.3.8 can be chosen to have typical fibre O(n)/O(1)n

in case K = R, U(n)/U(1)n in case K = C and Sp(n)/Sp(1)n in case K = H. �

The Splitting Principle implies that for proving an algebraic relation between the
Chern (Stiefel–Whitney, Pontryagin) classes of complex (real, quaternionic) vec-
tor bundles, it suffices to prove this relation under the assumption that all bundles
involved are sums of line bundles. Let us illustrate this by deriving a formula for the
total Chern class of a tensor product of complex vector bundles.

Define a polynomial Tn,m in the real variables x1, . . . , xn and y1, . . . , ym by

Tn,m(x1, . . . , xn, y1, . . . , ym) :=
n∏

i=1

m∏

j=1

(1 + xi + yj) . (4.3.10)

Since Tn,m is symmetric under separate permutations of the xi and the yj, it can be
written in the form

Tn,m(x1, . . . , xn, y1, . . . , ym)

=Pn,m
(
σ1(x1, . . . , xn), . . . , σn(x1, . . . , xn) , σ1(y1, . . . , ym), . . . , σm(y1, . . . , ym)

)

with a unique polynomial in n + m variables Pn,m. For the explicit form of Pn,m, see
Remark 4.3.12.

Proposition 4.3.10 For complex vector bundles E of rank n and F of rank m over a
topological space B, one has

c(E ⊗ F) = Pn,m
(
c1(E), . . . , cn(E), c1(F), . . . , cm(F)

)
.

Proof By the Splitting Principle, it suffices to prove the assertion under the assump-
tion that E =⊕n

i=1 Li and F =⊕m
j=1 Kj for appropriate line bundles Li and Kj.

According to Corollary 4.3.4, then

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_3


294 4 Cohomology Theory of Fibre Bundles. Characteristic Classes

ck(E) = σk
(
c1(L1), . . . , c1(Ln)

)
, ck(F) = σk

(
c1(K1), . . . , c1(Km)

)
.

Thus, we have to show that

c(E ⊗ F) = Tn,m
(
c1(L1), . . . , c1(Ln), c1(K1), . . . , c1(Km)

)
.

By the Whitney Sum Formula,

c(E ⊗ F) =
n∏

i=1

m∏

j=1

c(Li ⊗ Kj) .

Hence, the proof boils down to showing that for arbitrary line bundles L and K , one
has

c1(L ⊗ K) = c1(L) + c1(K) . (4.3.11)

To prove this, we use that L ⊗ K can be written as an associated vector bundle as fol-
lows. Wemay assume that L andK are associated with principal U(1)-bundles P and
Q, respectively, via the basic representation of U(1) on C. Consider the fibre product
P ×B Q. This is a principal (U(1) × U(1))-bundle over B. Since U(1) is Abelian,
the multiplication mapping μ : U(1) × U(1) → U(1) is a group homomorphism.
Hence, we can form the associated principal U(1)-bundle (P ×B Q)[μ] and, in turn,
the associated line bundle

E = ((P ×B Q)[μ])×U(1) C ,

where U(1) acts on C in the basic representation. We leave it to the reader to show
that the mapping (P × C) ×B (Q × C) → (

(P ×B Q) × U(1)
)× C defined by

(
(p, z), (q,w)

) 
→ ((
(p, q), 1

)
, zw
)

(4.3.12)

descends to a vertical vector bundle isomorphism L ⊗ K → E (Exercise 4.3.4). It
follows that

c1(L ⊗ K) = c1
(
(P ×B Q)[μ]) .

According to Remark 3.4.22 and Proposition 3.7.2/1, if P and Q have classifying
mappings f , g : B → BU(1), respectively, then (P ×B Q)[μ] has classifyingmapping
Bμ ◦ (f × g) ◦ Δ. Hence,

c1(L ⊗ K) = Δ∗ ◦ (f ∗ × g∗) ◦ (Bμ)∗
(
cU(1)

1

)
. (4.3.13)

An easy computation yields (Exercise 4.3.4)

(Bμ)∗cU(1)

1 = cU(1)

1 × 1 + 1 × cU(1)

1 . (4.3.14)

http://dx.doi.org/10.1007/978-94-024-0959-8_3
http://dx.doi.org/10.1007/978-94-024-0959-8_3
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Plugging this into (4.3.13), we obtain (4.3.11). �

From the proof we extract the formula for the Chern class of the tensor product of
complex line bundles L1 and L2 over B,

c(L1 ⊗ L2) = 1 + c1(L1) + c1(L2) . (4.3.15)

In combination with the Splitting Principle, this formula allows for computing the
Chern class of the dual vector bundle. To formulate the result, define the conjugate
universal Chern classes and the conjugate total universal Chern class by, respectively,

cU(n)

k := (−1)kcU(n)

k , cU(n) := 1 + cU(n)

1 + · · · + cU(n)

n . (4.3.16)

There correspond the conjugate Chern classes of principal U(n)-bundles and of com-
plex vector bundles.

Corollary 4.3.11 For the dual bundle E∗ of a complex vector bundle E, one has

c(E∗) = c(E) .

Proof By the Splitting Principle, it suffices to prove the assertion for the case where
E is a sum of line bundles, E = L1 ⊕ · · · ⊕ Ln. Then, E∗ = L∗

1 ⊕ · · · ⊕ L∗
n . By the

Whitney Sum Formula,

c(E) = (1 + c1(L1)
) · · · (1 + c1(Ln)

)
, c(E∗) = (1 + c1(L

∗
1)
) · · · (1 + c1(L

∗
n)
)
.

To compute c1(L∗
i ), we observe that Li ⊗ L∗

i
∼= End(Li) and that End(Li) is trivial,

because the identity homomorphisms of the fibres of Li combine to a global nonzero
section. Hence, c1(Li ⊗ L∗

i ) = 0 and (4.3.15) implies

c1(L
∗
i ) = −c1(Li) , i = 1, . . . , n .

Thus, the Chern classes of E and E∗ built from an even number of factors c1(Li)
coincide and those built from an odd number have opposite sign. �

Remark 4.3.12 In concrete situations, the polynomial Pn,m may be read off directly
fromTn,m by expanding the product and expressing everything in terms of elementary
symmetric polynomials. For example, for m = 1, one finds

Tn,1(x1, . . . , xn, y) =
n∏

i=1

(
(1 + y) + xi

) =
n∑

k=0

σk(x1, . . . , xn)(1 + y)k ,

from which we read off

Pn,1(a1, . . . , an, b1) =
n∑

k=0

ak(1 + b1)
k . (4.3.17)
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Hence, for a complex vector bundle E of rank n over B and a complex line bundle L
over B, we obtain

c(E ⊗ L) =
n∑

k=0

ck(E)c(L)k .

By a similar argument one finds that the first and the second Chern classes of E ⊗ F
are given by

c1(E ⊗ F) = m c1(E) + n c1(F) , (4.3.18)

c2(E ⊗ F) = m c2(E) + n c2(F) + (m2
)
c1(E)2 + (n2

)
c1(F)2

+ (mn − 1)c1(E)c1(F) , (4.3.19)

where n and m denote the ranks of E and F, respectively (Exercise 4.3.5).
For general n and m, the polynomial Pn,m can be expressed in terms of Schur

functions, see Example 5 in Sect. 1.4 of [418]. �

Example 4.3.13 As an application, we consider a principal SU(n)-bundle P and
determine the second Chern class of the complexification of the adjoint bundle
Ad(P) = P ×SU(n) su(n). We have

(
Ad(P)

)
C

= P ×SU(n) sl(n, C) ,

where the action of SU(n) on sl(n, C)maybe viewed as being induced from the repre-
sentation of SU(2) on the vector space End(Cn) defined by conjugation. The natural
isomorphism End(Cn) ∼= C

n ⊗ (Cn)∗ intertwines this representation with the tensor
product of the basic representation of SU(n)with its dual representation. Hence, this
natural isomorphism embeds sl(n, C) as an invariant subspace of codimension 1 in
C

n ⊗ (Cn)∗. By complete reducibility, the representation of SU(n) on sl(n, C) thus
differs from that on C

n ⊗ (Cn)∗ by taking the direct sum with a one-dimensional
representation. Since the latter is necessarily trivial, it follows that

(
Ad(P)

)
C
dif-

fers from P ×SU(n)
(
C

n ⊗ (Cn)∗
)
by taking the direct sum with a trivial line bun-

dle. By Corollary 4.3.3, the two bundles have the same Chern classes then. Now,
P ×SU(n)

(
C

n ⊗ (Cn)∗
)
is vertically isomorphic to E ⊗ E∗, where E = P ×SU(n) C

n

with SU(n) acting in the basic representation. Thus, formula (4.3.19), Corollary
4.3.11 and the identity c(E) = c(P) imply

c2
(
Ad(P)C

) = 2nc2(P) (4.3.20)

and hence
p1
(
Ad(P)

) = −2nc2(P) . (4.3.21)

�
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Exercises

4.3.1 Complete the proof of Theorem 4.3.1 by showing that the mapping

(
pr∗1 E

U
n1

)⊕ ( pr∗2 EU
n2

)→ (
EU(n1) × EU(n2)

)×U(n1)×U(n2) C
n
R

defined by

(
(x1, x2),

([(y1, z1)], [(y2, z2)]
)) 
→ [(

(y1, y2), (z1, z2)
)]

,

where zi ∈ C
ni , xi ∈ BU(ni) and yi ∈ EU(ni) in the fibre over xi, i = 1, 2, is a vertical

vector bundle isomorphism.

4.3.2 Use the formulae for (BjO)∗ and (BjU)∗ given in Theorem 4.3.1 to calculate
(BjSO)∗ and (BjSU)∗ for the standard blockwise embeddings

jSO : SO(n1) × SO(n2) → SO(n1 + n2) ,

jSU : SU(n1) × SU(n2) → SU(n1 + n2) .

4.3.3 Show that themapping (4.3.9) induces a vertical isomorphism from the canon-
ical U(1)-bundle overCPn−1 onto the principal U(1)-bundle j∗Q0 defined in the proof
of Theorem 4.3.7.

4.3.4 Complete the proof of Proposition 4.3.10 by showing that themapping (4.3.12)
descends to a vertical vector bundle isomorphism from L ⊗ K to E and by proving
formula (4.3.14).

4.3.5 Prove the formulae for the first and the second Chern class of a tensor product
given in (4.3.18) and (4.3.19) by expressing the contributions of first and second
order in the polynomial Tn,m(x1, . . . , xn, y1, . . . , ym) defined in (4.3.10) in terms of
elementary symmetric polynomials.

4.4 Field Restriction and Field Extension

First, we analyze how the Chern classes behave under complex conjugation z 
→ z.
For a ∈ Mn(C), let a denote the matrix obtained from a by taking the complex
conjugate of every entry. The mapping

κ : U(n) → U(n) , κ(a) := a ,

is a Lie group isomorphism. Given a complex vector bundle E, we may redefine the
multiplication by scalars as

z · y := z y , z ∈ C , y ∈ E .
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With this new multiplication and the original fibrewise additive structure, E is a
complex vector bundle of the same rank. It is called the conjugate vector bundle of
E and is denoted by E. Let us point out the following. While the real vector bundles
ER and ER obtained by field restriction from E and E, respectively, are identical,
their induced orientations coincide only if the rank of E is even, and are opposite
otherwise. The reason is that the induced orientation ofER is defined by ordered local
frames of the form (e1, ie1, . . . , en, ien), whereas that of ER is defined by ordered
local frames of the form

(e1, i · e1, . . . , en, i · en) = (e1,−ie1, . . . , en,−ien) ,

where in both cases, (e1, . . . , en) is an ordered local frame in E (and hence in E).
Recall that c denotes the conjugate Chern class, cf. formula (4.3.16).

Proposition 4.4.1 (Complex conjugation)

1. One has (Bκ)∗cU(n) = cU(n).
2. For every complex vector bundle E, one has c(E) = c(E).

Proof 1. By definition, Bκ : BU(k) → BU(k) is the classifyingmapping of the asso-
ciated principal U(k)-bundle P := EU(k) ×U(k) U(k), where U(k) acts on itself by
left translation via κ . Hence,

(Bκ)∗cU(k)

k = ck(P) .

By Remark 4.2.4/1,
ck(P) = e(ER) .

Here, ER denotes the oriented real vector bundle induced by the complex vector
bundle E := P ×U(k) C

k with U(k) acting on C
k in the basic representation. We

leave it to the reader to check that the mapping

F : ER → EU
k , F

([( [(y, a)] , z )]) := [(y, a z)] ,

is well defined and that it yields a vertical real vector bundle isomorphism. If
(e1, . . . , ek) is an ordered local frame in E, then

(
F(e1), . . . ,F(ek)

)
is an ordered

local frame in EU
k and

(
F(e1),F(ie1), . . . ,F(ek),F(iek)

) = (F(e1),−iF(e1), . . . ,F(ek),−iF(ek)
)
.

It follows that F preserves the orientations iff k is even. Hence,

e(ER) = (−1)ke(EU
k )

and thus
(Bκ)∗cU(k)

k = (−1)kcU(k)

k = cU(k)

k . (4.4.1)
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Putting k = n, we obtain the assertion for the top Chern class cU(n)
n . For the classes

cU(n)

k with k < n, we use κ ◦ jUk,n = jUk,n ◦ κ and (4.4.1) to obtain

(
BjUk,n

)∗ ◦ (Bκ)∗
(
cU(n)

k

) = (Bκ)∗ ◦ (BjUk,n
)∗(

cU(n)

k

) = (Bκ)∗cU(k)

k = cU(k)

k .

Then, the assertion follows from Theorem 4.2.1.
2. Choose an auxiliary fibre metric h on E. Composition of h with subsequent

complex conjugation yields a fibre metric h on E. An h-orthonormal frame in E
is, at the same time, an h-orthonormal frame in E. Hence, as a set, O(E) coincides
with O(E), and the identical mapping defines a vertical isomorphism of principal
U(n)-bundles with Lie group homomorphism κ . Then, Corollary 4.1.4 and point 1
imply c

(
O(E)

) = c
(
O(E)

)
. This yields the assertion. For an alternative proof, see

Exercise 4.4.1. �

If E is a real vector bundle, the complex vector bundles EC and EC are vertically
isomorphic via (A.12). Hence, point 2 of Proposition 4.4.1 implies the following.

Corollary 4.4.2 For a real vector bundle E one has 2c2k+1(EC) = 0. �

Remark 4.4.3 Comparing point 2 of Proposition 4.4.1 with Corollary 4.3.11, we see
that c(E) = c(E∗). This is not surprising, because for every Hermitean fibre metric
h on E, the mapping E → E∗ defined by assigning to y ∈ Em the linear functional
on Em given by y′ 
→ h(y, y′) is a vertical isomorphism of complex vector bundles.
In fact, one may use this argument to deduce either one of the two assertions from
the other one. �

Now, we turn to the discussion of the relations between real, complex and quater-
nionic characteristic classes. In effect, this amounts to calculating the homomor-
phisms induced in cohomology by the classifying mappings of the Lie subgroup
embeddings

jU,O
n : U(n) → O(2n) , jSp,On : Sp(n) → O(4n) , jSp,Un : Sp(n) → U(2n) (4.4.2)

defined by field restriction and the isomorphisms (4.2.1)–(4.2.3), and by the classi-
fying mappings of the Lie subgroup embeddings

jO,U
n : O(n) → U(n) , jO,Sp

n : O(n) → Sp(n) , jU,Sp
n : U(n) → Sp(n) (4.4.3)

defined by field extension. For the conventions we use and for some standard facts
about field restriction and field extension needed below, we refer to Appendix A.

We start with the case of field restriction, that is, with the homomorphisms induced
by the classifying mappings of the embeddings (4.4.2). For G = O(n) and G =
Sp(n), define the conjugate universal Pontryagin classes and the conjugate total
universal Pontryagin class by, respectively,
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p̂G
k := (−1)kpG

k , k = 1, . . . , qn or n, respectively,

p̂G := 1 + p̂G
1 + p̂G

2 + · · · = 1 − pG
1 + pG

2 − · · · .

There correspond the conjugate Pontryagin classes of principal O(n) or Sp(n)-
bundles and of real or quaternionic vector bundles. Recall that ρ2 denotes reduction
modulo 2.

Proposition 4.4.4 For n = 1, 2, 3, . . . , one has

(
BjU,O

n

)∗
wO(2n) = ρ2

(
cU(n)
)
,

(
BjSp,On

)∗
wO(4n) = ρ2

(
pSp(n)

)
, (4.4.4)

(
BjSp,Un

)∗
cU(2n) = p̂Sp(n) , (4.4.5)

(
BjU,O

n

)∗
p̂O(2n) = cU(n)cU(n) ,

(
BjSp,On

)∗
pO(4n) = (pSp(n)

)2
, (4.4.6)

(
BjU,O

n

)∗
WO(2n)

I = 0 ,
(
BjSp,On

)∗
WO(4n)

I = 0 , (4.4.7)
(
BjU,SO

n

)∗
eSO(2n) = cU(n)

n ,
(
BjSp,SOn

)∗
eSO(4n) = p̂Sp(n)n . (4.4.8)

Since jU,O
n (U(n)) ⊂ SO(2n) and jSp,Un (Sp(n)) ⊂ SU(2n), there follow analogous for-

mulae with O(n) replaced by SO(n) and/or U(n) replaced by SU(n).

Proof To prove the first formula in (4.4.4), we have to show that for k = 1, . . . , n,

(
BjU,O

n

)∗
wO(2n)

2k−1 = 0 ,
(
BjU,O

n

)∗
wO(2n)

2k = ρ2
(
cU(n)

k

)
.

The first formula is due to the fact that the integral cohomology of BU(n) vanishes
in odd degree. To prove the second formula, we realize EU(k) as EO(2k), with U(k)
acting via jU,O

k , and viewEU
k as the real vector bundle obtained from the complex vector

bundle EO(2k) ×U(k) C
k by field restriction. Then, by taking the direct product of

the identical mapping of EO(2k) with the real vector space isomorphism C
k → R

2k

given by (4.2.1) and passing to quotients, we obtain a real vector bundle morphism
F : EU

k → EO
2k which projects to BjU,O

k and whose fibre mappings are isomorphisms.
Hence, point 3 of Proposition 4.1.12 yields that

(
BjU,O

k

)∗
maps the Z2-Euler class

wO(2k)

2k of ER

2k to the Z2-Euler class of EU
k . By point 2 of that proposition, the latter is

given by the mod 2-reduction of the integral Euler class of EU
k . Thus,

(
BjU,O

k

)∗ (
wO(2k)

2k

) = ρ2
(
cU(k)

k

)
. (4.4.9)

Putting k = n, we obtain the assertion for the top classes. For k < n, using

jU,O
n ◦ jUk,n = jO2k,2n ◦ jU,O

k

and Theorem 4.2.11, we find

(
BjUk,n

)∗ ((
BjU,O

n

)∗
wO(2n)

2k

) = (BjU,O

k

)∗ ((
BjO2k,2n

)∗
wO(2n)

2k

) = (BjU,O

k

)∗
wO(2k)

2k .
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By (4.4.9), the right hand side equals ρ2
(
cU(k)

k

)
. Now, the assertion for k < n fol-

lows from Theorem 4.2.1. The proof of the second formula in (4.4.4) is completely
analogous to that for jU,O

n and is therefore left to the reader.
To prove (4.4.5), we have to show that for k = 1, . . . , n,

(
BjSp,Un

)∗
cU(2n)

2k−1 = 0 ,
(
BjSp,Un

)∗
cU(2n)

2k = (−1)kpSp(n)

k .

The first formula is due to the fact that the integral cohomology of BSp(n) vanishes in
degree 4k − 2. The proof of the second formula is similar to that for jU,O

n , except for the
fact thatwe have to keep track of the orientations here. By analogywith jU,O

n , we use the
real vector space isomorphism H

k → C
2k given by (4.2.3) to construct a real vector

bundle morphism F : ESp

k → EU
2k which projects to BjSp,Uk and whose fibre mappings

are isomorphisms. F preserves the orientations iff so does the isomorphism R
4k →

H
k → C

2k → R
4k defined by composition of the isomorphisms (4.2.2), (4.2.3) and

(4.2.1). According to (4.2.4), this isomorphism is given by

(x1, . . . , x4k) 
→ (x1, x2, x3,−x4, . . . , x4k−3, x4k−2, x4k−1,−x4k) .

Hence, F preserves the orientations if k is even, and Proposition 4.1.12/3 yields

(
BjSp,Uk

)∗
cU(2k)

2k = (−1)kpSp(k)

k .

This proves the assertion for the top classes. The case k < n then follows by the same
argument as for jU,O

n .
To prove the first formula in (4.4.6), we recall that, by definition of pO(2n)

k ,

(
BjU,O

n

)∗
p̂O(2n)

k = (B(jO,U

2n ◦ jU,O
n )
)∗
cU(2n)

2k .

One can check that there exists b ∈ U(2n) such that

jO,U

2n ◦ jU,O
n = Cb ◦ jU ◦ (idU(n) ×κ) ◦ ΔU(n)

with the diagonal mapping ΔU(n) : U(n) → U(n) × U(n), the complex conjugation
mapping κ : U(n) → U(n), the standard blockwise embedding jU : U(n) × U(n) →
U(2n) and the inner automorphism Cb : U(2n) → U(2n) defined by b (Exercise
4.4.2). By points 1 and 2 of Proposition 3.7.4, then B(jO,U

2n ◦ jU,O
n ) is homotopic to the

mapping B
(
jU ◦ (idU(n) ×κ) ◦ ΔU(n)

)
. By Proposition 3.7.7, then

(
BjU,O

n

)∗
p̂O(2n)

k = Δ∗
BU(n) ◦ (B idU(n) ×Bκ

)∗ ◦ (BjU
)∗(

cU(2n)

2k

)
.

Using Theorem 4.3.1, Proposition 4.4.1 and (4.3.3), for the right hand side we obtain(
cU(n)cU(n)

)
2k . Since by (4.4.15), c

U(n)cU(n) has contributions in degree 0 modulo 4 only,
summation over k yields cU(n)cU(n).

http://dx.doi.org/10.1007/978-94-024-0959-8_3
http://dx.doi.org/10.1007/978-94-024-0959-8_3
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To prove the second formula in (4.4.6), we use jSp,On = jU,O

2n ◦ jSp,Un and the
first formula to obtain

(
BjSp,On

)∗
p̂O(4n) = (BjSp,Un

)∗(
cU(2n)cU(2n)

)
. By (4.4.5), we have(

BjSp,Un

)∗
cU(2n) = (BjSp,Un

)∗
cU(2n) = p̂Sp(n). Hence,

(
BjSp,On

)∗
p̂O(4n) = (p̂Sp(n)

)2
.

A direct calculation shows that
(
p̂Sp(n)

)2
4k = (−1)k

(
pSp(n)

)2
4k for all k. This yields the

assertion.
Formula (4.4.7) is due to H∗

Z
(BU(n)) and H∗

Z
(BSp(n)) having no torsion.

Finally, to prove (4.4.8), by analogywith the proof of (4.4.4), we construct a vector
bundle morphism F : EU

n → ESO
2n covering BjU,SO

n whose fibre mappings are induced
by the inverse of the isomorphism R

2n → C
n given by (A.1). Then, F preserves the

orientations and hence Proposition 4.1.12/3 yields

(
BjU,SO

n

)∗
eSO(2n) = (BjU,SO

n

)∗
e
(
ESO
2n

) = e
(
EU
n

) = cU(n)
n .

The second formula then follows by means of (4.4.5). �

In view of Corollary 4.1.4, Proposition 4.4.4 implies the following.

Corollary 4.4.5

1. For the principal SO(2n)-bundle Q obtained from a principal U(n)-bundle P by
extension of the structure group via jU,SO

n , one has

w(Q) = ρ2
(
c(P)

)
, p̂(Q) = c(P)c(P) , e(Q) = cn(P) .

2. For the principal SO(4n)-bundle Q obtained from a principal Sp(n)-bundle P by
extension of the structure group via jSp,SOn , one has

w(Q) = ρ2
(
p(P)

)
, p(Q) = p(P)2 , e(Q) = p̂n(P) .

3. For the principal SU(2n)-bundle Q obtained from a principal Sp(n)-bundle P by
extension of the structure group via jSp,SUn , one has c(Q) = p̂(P) . �

From Corollary 4.4.5, we read off the following obstructions to the existence of
bundle reductions.

Corollary 4.4.6 For a principal SO(2n)-bundle to admit a reduction to the sub-
group U(n), its Stiefel–Whitney classes must vanish in odd degree. For a princi-
pal SO(4n)-bundle to admit a reduction to the subgroup Sp(n), its Stiefel–Whitney
classes must vanish in any degree not divisible by 4. For a principal SU(2n)-bundle
to admit a reduction to the subgroup Sp(n), its Chern classes must vanish in degrees
2 mod 4. �

For vector bundles, Proposition 4.4.4 implies the following.
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Corollary 4.4.7

1. For the real vector bundle ER obtained from a complex vector bundle E by field
restriction, one has

w(ER) = ρ2
(
c(E)

)
, p̂(ER) = c(E)c(E) , e(ER) = ctop(E) .

2. For the real vector bundle ER obtained from a quaternionic vector bundle E by
field restriction, one has

w(ER) = ρ2
(
p(E)

)
, p(ER) = p(E)2 , e(ER) = p̂top(E) .

3. For the complex vector bundle EC obtained from a quaternionic vector bundle E
by field restriction, one has c(EC) = p̂(E) .

Proof We give the proof for point 1. The other points are analogous. Choose an
auxiliary fibre metric on E and consider the induced fibre metric on ER, defined
fibrewise by (A.9). According to Lemma A.1/2, there exists a vertical morphism
of principal bundles O(E) → O(ER) with Lie group homomorphism jU,O

n : U(n) →
O(2n). Hence, Corollary 4.1.4 yields

((
BjU,O

n

)∗
α
) (
O(E)

) = α
(
O(ER)

)
, α = w, p, e ,

and the assertion follows from Proposition 4.4.4 and Remark 4.1.6/1. �

From Corollary 4.4.7, we read off the following obstructions to the existence of
complex or quaternionic structures.

Corollary 4.4.8 For a real vector bundle to admit a complex (quaternionic) struc-
ture, its Stiefel–Whitney classes must vanish in odd degree (any degree not divisible
by 4).9 For a complex vector bundle to admit a quaternionic structure, its Chern
classes must vanish in degrees 2 mod 4. �

Now, we turn to the discussion of the relations between Chern, Pontryagin and
Stiefel–Whitney classes which arise by field extension. That is, we calculate the
homomorphisms induced by the classifying mappings of the embeddings (4.4.3).
Denote

WO(n) := WO(n)

{1} + · · · + WO(n)

{q̄n} .

Proposition 4.4.9 For n = 1, 2, 3, . . . , one has

ρ2
((
BjO,U

n

)∗
cU(n)
) = (wO(n)

)2
, (4.4.10)

9In view of Corollary 4.2.17/2, the vanishing of w1 follows also from the fact that a real vector
bundle admitting a complex or quaternionic structure is necessarily orientable.
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(
BjO,U

n

)∗
cU(n) = p̂O(n) + WO(n)

{ 12 }p
O(n) + (WO(n)

)
2 , (4.4.11)

ρ2
((
BjO,Sp

n

)∗
pSp(n)

) = (wO(n)
)4

, (4.4.12)
(
BjO,Sp

n

)∗
pSp(n) = (p̂O(n)

)
2 + (WO(n)

{ 12 }
)
2
(
pO(n)
)
2 + (WO(n)

)
4 , (4.4.13)

(
BjU,Sp

n

)∗
pSp(n) = cU(n)cU(n) . (4.4.14)

By an explicit calculation, one may convince oneself that

(
wO(n)

)
2 = 1 + (wO(n)

1

)
2 + (wO(n)

2

)
2 + · · · ,

(
wO(n)

)4 = 1 + (wO(n)

1

)4 + (wO(n)

4

)4 + · · · ,

and that c(E)c(E) has contributions in degrees 0 modulo 4 only, given by

(
cU(n)cU(n)

)
2k =

k∑

l=0

cU(n)

2l cU(n)

2(k−l) −
k∑

l=1

cU(n)

2l−1c
U(n)

2(k−l)+1 . (4.4.15)

In particular, the contributions to the right hand sides of (4.4.10), (4.4.12) and (4.4.14)
do indeed vanish in the degrees required by the corresponding left hand sides.

Proof To prove (4.4.10), we check that there exists b ∈ O(2n) such that

jU,O
n ◦ jO,U

n = Cb ◦ jO ◦ ΔO(n)

with the diagonal mappingΔO(n) : O(n) → O(n) × O(n) and the standard blockwise
embedding jO : O(n) × O(n) → O(2n). By the same argument as in the proof of
formula (4.4.6) in Proposition 4.4.4, this implies

(BjO,U
n )∗ ◦ (BjU,O

n )∗wO(2n) = (wO(n)
)2

.

Now, the assertion follows from the first formula in (4.4.4). A similar argument
applies to (4.4.12) and (4.4.14), where for the latter, we have to check that

jSp,Un ◦ jU,Sp
n = Cb ◦ jU ◦ (idU(n) ×κ) ◦ ΔU(n)

with the complex conjugation mapping κ : U(n) → U(n) (Exercise 4.4.2).
Now, consider (4.4.11). In degree 4k, this reproduces the definition of the Pon-

tryagin classes. In degree 4k + 2, it reads

(
BjO,U

n

)∗
cU(n)

2k+1 =
⎧
⎨

⎩

WO(n)

{ 12 } k = 0 ,

WO(n)

{ 12 }p
O(n)

k + (WO(n)

{k}
)
2 0 < k ≤ q̄n .

(4.4.16)
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According to Theorem 4.2.23, H4k+2
Z

(BO(n)) consists of torsion elements of
order 2. Therefore, it suffices to check (4.4.16) under reduction mod 2. The lat-
ter can be verified by an easy computation using (4.4.10) and the fact that ρ2 ◦ β is
the Steenrod square and thus fulfils [598, p. 281]

ρ2 ◦ β
(
wO(n)

k

) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
wO(n)

1

)2
k = 1 ,

0 1 < k ≤ n odd,

wO(n)

k+1 + wO(n)

1 wO(n)

k 1 < k < n even,

wO(n)

1 wO(n)
n k = n even.

(4.4.17)

Finally, to prove (4.4.13), we use that (4.4.14) implies

(
BjO,Sp

n

)∗
pSp(n) = (BjO,U

n

)∗(
cU(n)cU(n)

)

and apply (4.4.11). �

Remark 4.4.10 Formula (4.4.16) may be interpreted as an extension of the definition
of the Pontryagin classes. Accordingly, the classes on the right hand side of (4.4.16)
are sometimes referred to as the torsion Pontryagin classes [622]. �

In view of Corollary 4.1.4, Proposition 4.4.9 implies the following.

Corollary 4.4.11

1. For the principal U(n)-bundle Q obtained from a principal O(n)-bundle P by
extension of the structure group via jO,U

n , one has

ρ2
(
c(Q)

) = w(P)2 , c(Q) = p̂(P) + W{ 12 }(P)p(P) + W(P)2 .

2. For the principal Sp(n)-bundle Q obtained from a principal O(n)-bundle P by
extension of the structure group via jO,Sp

n , one has

ρ2
(
p(Q)

) = w(P)4 , p(Q) = p̂(P)2 + W{ 12 }(P)2p(P)2 + W(P)4 .

3. For the principal Sp(n)-bundle Q obtained from a principal U(n)-bundle P by
extension of the structure group via jU,Sp

n , one has p(Q) = c(P)c(P) . �

For vector bundles, Proposition 4.4.9 implies the following.

Corollary 4.4.12

1. For the complex vector bundle EC obtained from a real vector bundle E by field
extension, one has

ρ2
(
c(EC)

) = w(E)2 , c(EC) = p̂(E) + W{ 12 }(E)p(E) + W(E)2 .
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2. For the quaternionic vector bundle EH obtained from a real vector bundle E by
field extension, one has

ρ2
(
p(EH)

) = w(E)4 , p(EH) = p̂(E)2 + W{ 12 }(E)2p(E)2 + W(E)4 .

3. For the quaternionic vector bundle EH obtained from a complex vector bundle E
by field extension, one has p(EH) = c(E)c(E) .

Proof We give the argument for point 1. Choose an auxiliary Riemannian fibre
metric h on E and let hC be the induced Hermitean fibre metric on EC, defined by
(A.13). According to LemmaA.2/2, there exists a vertical principal bundlemorphism
O(E) → O(EC) with Lie group homomorphism jO,U

n . Now, the rest of the proof is
analogous to that of Corollary 4.4.7. �

Combining point 1 of Corollary 4.4.12 with the Whitney Sum Formula for the
Chern class of complex vector bundles, we obtain a Whitney Sum Formula for the
Pontryagin class of real vector bundles.

Corollary 4.4.13 For real vector bundles E1 and E2 over M, one has

p(E1 ⊕ E2)

= p(E1)p(E2) +
(
W{ 12 }(E1)p(E1) + W(E1)

2
) (

W{ 12 }(E2)p(E2) + W(E2)
2
)

(4.4.18)

Proof According to Corollary 4.4.12/1, Theorem 4.3.2 implies

p̂(E1 ⊕ E2) + W{ 12 }(E1 ⊕ E2)p(E1 ⊕ E2) + W(E1 ⊕ E2)
2

=
(
p̂(E1) + W{ 12 }(E1)p(E1) + W(E1)

2
) (

p̂(E2) + W{ 12 }(E2)p(E2) + W(E2)
2
)

Taking this equality in degree 0 mod 4 and changing signs in degree 4 mod 8, we
obtain the assertion. �

Remark 4.4.14 In the case where E1 and E2 are orientable, according to Remark
4.2.22/1, the Whitney Sum Formula (4.4.18) reads

p(E1 ⊕ E2) = p(E1)p(E2) + W(E1)
2W(E2)

2 . (4.4.19)

In the general case, by passing to real coefficients, from (4.4.18) we obtain

p(E1 ⊕ E2) = p(E1)p(E2) in H∗
R
(M) . (4.4.20)

Alternatively, this can be read off directly from the Whitney Sum Formula for the
Chern class with real coefficients as follows. The argument proving point 1 of Corol-
lary 4.4.12 shows that p̂k(E) = c2k(EC) in H∗

Z
(M). Combining this with Corollary
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4.4.2, we obtain p̂(E) = c(EC) in H∗
R
(M). Hence, the Whitney Sum Formula for c

yields p̂(E1 ⊕ E2) = p̂(E1)p̂(E2), which entails (4.4.20).
Let us add that this argument may be complemented as follows to provide an

alternative proof of (4.4.18), which uses computations in real and Z2-valued coho-
mology only. Since every torsion element of H∗

Z
(BO(n)) has order 2, in addition to

(4.4.20), it suffices to prove (4.4.18) under reduction mod 2. Using the first formula
in Corollary 4.4.12/1, from

p̂k(E1 ⊕ E2) = c2k
(
(E1)C ⊕ (E2)C) = [c((E1)C

)
c
(
(E2)C

)]
4k ,

one obtains

ρ2
(
p(E1 ⊕ E2)

) = ρ2
(
p(E1)p(E2)

)+ wodd(E1)
2wodd(E2)

2 , (4.4.21)

wherewodd(E) = w1(E) + w3(E) + · · · (Exercise 4.4.3). This is themod 2 reduction
of (4.4.18), indeed. �

Finally, we find the following.

Corollary 4.4.15 Stably equivalent real vector bundles have the same Pontryagin
and integral Stiefel–Whitney classes.

Proof For the Pontryagin classes, this follows from the corresponding statement
about the Chern classes in Corollary 4.3.3 by taking the second formula in point 1
of Corollary 4.4.12 in degree 4k. For the integral Stiefel–Whitney classes, it follows
from the corresponding statement about the ordinary Stiefel–Whitney classes in the
same corollary and naturality of the Bockstein homomorphism. �

Exercises

4.4.1 LetP be a principal U(n)-bundle and takeE = P ×U(n) C
n with U(n) acting in

the basic representation. Show that E is vertically isomorphic to the complex vector
bundle associated via the basic representation with P ×U(n) U(n), where U(n) acts
on itself by left translation via κ : U(n) → U(n), κ(a) = a. Use this and Proposition
1.2.8/3 to prove point 2 of Proposition 4.4.1.

4.4.2 Show that there exists b ∈ U(2n) such that for all a ∈ U(n),

jO,U

2n ◦ jU,O
n (a) = b

[
a 0
0 a

]
b−1 .

Prove a similar statement for the composition jSp,Un ◦ jU,Sp
n . (This complements the

proofs of formula (4.4.6) in Proposition 4.4.4 and formula (4.4.14) in Proposition
4.4.9.)

4.4.3 Prove formula (4.4.21) and show that it coincides with the mod 2 reduction
of the Whitney Sum Formula (4.4.18) for the Pontryagin class.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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4.5 Characteristic Classes for Manifolds

Via the tangent bundle, the characteristic classes for real or complex vector bun-
dles define characteristic classes for manifolds. If M is a smooth real manifold of
dimension n, the Stiefel–Whitney classes of M are defined by

wi(M) := wi(TM) , i = 1, . . . , n ,

and the Pontryagin classes of M are defined by

pi(M) := pi(TM) , i = 1, . . . , q̄n = � n
2� .

IfM, and thus TM, is oriented, we can define the Euler class by

e(M) := e(TM) .

By summing over the Stiefel–Whitney and Pontryagin classes, we obtain the total
Stiefel–Whitney class w(M) and the total Pontryagin class p(M), respectively.

If the tangent bundle of M carries an additional structure, like a complex or a
quaternionic structure, one can define further characteristic classes and apply the
appropriate relations of the previous section. In particular, if dim(M) = 2n and if
TM carries a complex structure, and thusM is an almost complex manifold, we can
define the Chern classes of M by

ci(M) := ci(TM) , i = 1, . . . , n ,

where TM is viewed as a complex vector bundle. Then, Propositions 4.4.4 and 4.4.9
yield

w2i−1(M) = 0 , w2i(M) = ρ2
(
ci(M)

)
, i = 1, . . . , n .

In particular, this applies ifM is a complex manifold of complex dimension n.
Analogously, if dim(M) = 4n and if TM carries a quaternionic structure, we can

define the symplectic Pontryagin classes of M by

pSp

i (M) := pi(TM) , i = 1, . . . , n ,

where TM is viewed as a quaternionic vector bundle. Here, for i = 1, . . . , n and
d = 1, 2, 3, Propositions 4.4.4 and 4.4.9 yield

w4i−d(M) = 0 , w4i(M) = ρ2
(
pSp

i (M)
)
.

Example 4.5.1 For a parallelizable manifold, TM is trivial and hence wk(M) = 0
and pk(M) = 0 for all k > 0. This applies in particular to Lie groups. �
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Example 4.5.2 ConsiderM = Sn, realized as the unit sphere inR
n+1. Recall that the

tangent space of Sn at x can be realized as the subspace ofR
n+1 orthogonal to x. Thus,

by attaching to x ∈ Sn the subspace of R
n+1 spanned by x, we obtain a realization

of the normal bundle NSn of the submanifold Sn ⊂ R
n+1. This bundle is trivial,

because by assigning to each point x ∈ Sn the vector x ∈ NxSn, we obtain a nowhere
vanishing section. Hence, TSn is stably equivalent to the trivial vector bundle TSn ⊕
NSn ∼= (TR

n+1)�Sn = Sn × R
n+1. By Corollaries 4.3.3 and 4.4.15, then wk(Sn) = 0

and pk(Sn) = 0 for all k > 0. �

Example 4.5.3 We determine the characteristic classes ofM = KPn. First, we com-
pute the Chern classes of CPn. For that purpose, recall that we may view CPn both
as the manifold of one-dimensional subspaces of C

n+1 and as the quotient manifold
of the action of U(1) on the submanifold S2n+1 ⊂ C

n+1 of unit vectors. Moreover,
recall that the tangent space of S2n+1 at x can be realized as the real subspace of C

n+1

orthogonal to x with respect to the scalar product (A.9) induced on the real vector
space C

n+1
R

by the standard scalar product on C
n+1.

We start with deriving a description of the tangent bundle T(CPn). Let Ln denote
the tautological line bundle over CPn, viewed as a vertical vector subbundle of
the trivial complex vector bundle CPn × C

n+1. Let E be the vector subbundle of
CPn × C

n+1 given by the orthogonal complements of the fibres of Ln with respect to
the standard complex scalar product on C

n+1. Let p ∈ CPn and let λ : (Ln)p → Ep

be a linear mapping. Choose an element x of the subspace p such that ‖x‖ = 1.
Then, x ∈ S2n+1 ⊂ C

n+1 and λ(x) ∈ TxS2n+1, because orthogonality inC
n+1 implies

orthogonality inC
n+1
R

, and soEp ⊂ TxS2n+1. Let pr : S2n+1 → CPn denote the natural
projection to U(1)-orbits. Then, pr′ ◦λ(x) ∈ TpCPn. If y is another element of the
subspace pwith ‖y‖ = 1, there exists α ∈ U(1) such that y = αx. Then, by linearity
of λ,

pr′ ◦λ(y) = pr′
(
αλ(x)

) = pr′
(
λ(x)

)
.

Hence, the assignment of pr′ ◦λ(x) to λ defines a mapping

Φ : Hom(Ln,E) → T(CPn)

and this mapping is a vertical complex vector bundle morphism. It is not hard to
see that Ep together with the value at x of the Killing vector field of i ∈ u(1) span
TxS2n+1 over the reals. Hence, Φ is fibrewise surjective. By counting dimensions,
we then find that Φ is a vertical isomorphism of complex vector bundles.

Now, since E ⊕ Ln = CPn × C
n+1, we have

Hom(Ln,E) ⊕ End(Ln) ∼= Hom(Ln,E ⊕ Ln)=Hom(Ln, CPn×C
n+1) ∼=

n+1⊕

k=1

L∗
n .

Since the endomorphism bundle of a line bundle is always trivial, because the identi-
cal mappings of the fibres define a nowhere vanishing section, it follows that T(CPn)

is stably equivalent to the (n + 1)-fold direct sum of the dual bundle L∗
n . As a result,
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the Whitney Sum Formula and Corollaries 4.3.3 and 4.3.11 yield

c(CPn) = (1 − c1(Ln)
)n+1

. (4.5.1)

Finally, by Example 4.2.18, c1(Ln) is a generator of H2
Z
(CPn) and hence a ring

generator of H∗
Z
(CPn). Thus, if we choose α = −c1(Ln) ≡ c1(L∗

n) as a generator,
then (4.5.1) reads

c(CPn) = (1 + α)n+1 . (4.5.2)

Since α has degree 2 and CPn has dimension 2n, the highest order term of the right
hand side is (n + 1)αn and not αn+1.

We leave it to the reader to adapt the arguments given for CPn to RPn (Exercise
4.5.1). As a result,

w(RPn) = (1 + α)n+1 , (4.5.3)

where α is the first Stiefel–Whitney class of the canonical (real) line bundle over
RPn. According to Example 4.2.18, α is a generator of H1

Z2
(RPn) and hence a ring

generator of H∗
Z2

(RPn).
For HPn, the argument is slightly different. This has to do with the fact that the

linear mappings between quaternionic vector spaces form a real vector space only.
This applies in particular to the dual space, although the latter may be endowedwith a
natural left quaternionic vector space structure. By analogywith the complex case,we
take the tautological quaternionic line bundle overHPn and construct the quaternionic
orthogonal complement E together with the mapping Φ : Hom(Ln,E) → T(HPn).
As already mentioned, here Hom(Ln,E) is just a real vector bundle and Φ is an
isomorphism of real vector bundles. Accordingly, T(HPn) is stably equivalent to the
sum of real vector bundles

⊕n+1
k=1 L

∗
n . Then, Corollary 4.4.15 implies

p(T(HPn)) = p(L∗
n)

n+1 .

Using that L∗
n is vertically isomorphic to the real vector bundle obtained from Ln by

field restriction,10 as well as Corollary 4.4.7/2, we obtain

p(T(HPn)) = (1 + p1((Ln)R)
)n+1 = (1 + 2p1(Ln)

)n+1
. (4.5.4)

Thus,
p(HPn) = (1 + α)n+1 , (4.5.5)

where α is the first Pontryagin class of the real vector bundle obtained from the
tautological (quaternionic) line bundle overHPn by field restriction, or twice the first
Pontryagin class of the tautological line bundle itself. According to Example 4.2.18,
the latter generates H∗

Z
(HPn). �

10Every quaternionic Hermitean fibre metric on Ln provides an isomorphism.
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Remark 4.5.4 In case n = 1, the tautological line bundle L1 over KP1 is associated
with the K-Hopf bundle, which we denote by PK here. We use this and the results
of Example 4.5.3 to compute the first Chern index c1(PC) of the complex Hopf bun-
dle PC and the first Pontryagin index of the quaternionic Hopf bundle PH. First,
consider the complex Hopf bundle. Here, the base space is CP1. The second homol-
ogy group H2(CP1) is generated by a single element, which may be chosen to be
represented by the diffeomorphism s : S2 → CP1 defined in Remark 1.1.21/3. To
compute c1(PC), we have to evaluate the integral cohomology class c(PC) = c(L1)
on [s]. On the one hand, according to Example 4.2.18, the class c1(L1) generates
H2

Z
(CP1) and hence the corresponding homomorphism H2(CP1) → Z generates

Hom(H2(CP1), Z). Therefore, 〈c1(PC), [s]〉 = ±1. On the other hand, by (4.5.1),
we have c1(T(CP1)) = −2c1(L1). Since c1(T(CP1)) is the top Chern class of the
complex vector bundle T(CP1), according to Remark 4.2.4/1, it coincides with the
integral Euler class of the oriented real vector bundle obtained by realification. Since
the pullback of this orientation under s coincides with the standard orientation of
S2 defined by the outward coorientation as a submanifold of R

3, we conclude that
〈c1(T(CP1)), [s]〉 is positive. As a result,

c1(PC) = 〈c1(PC), [s]〉 = −1 .

The argument for the quaternionicHopf bundlePH is similar.Wechoose the generator
ofH4(HP1) to be represented by the diffeomorphism s : S4 → HP1 defined in (B.1).
In contrast to the complex case, this diffeomorphism reverses the natural orientation
of HP1 defined by the quaternionic structure on T(HP1). The reason behind is that
the latter is inherited frommultiplication of elements ofH

2 by conjugate quaternions
from the left. However, the sign we pick up here cancels against the different sign in
(4.5.4), so that, in the end, we obtain an analogous result,

p1(PH) = 〈p1(PH), [s]〉 = −1 .

For the Chern indices, this yields c1(PH) = 0 and c2(PH) = 1. �

Exercises

4.5.1 Adapt the arguments given for CPn in Example 4.5.3 to RPn to prove (4.5.3).

4.6 The Weil Homomorphism

In the present section, we give a geometric description of characteristic classes using
connection theory. This will be accomplished via the Weil homomorphism, which
allows for constructing characteristic classes in de Rham cohomology from polyno-
mial invariants of the structure group. Necessarily, we have to restrict attention to
smooth principal bundles P(M,G).

The Weil homomorphism will be defined on the algebra PolG(g) of real-valued
Ad-invariant polynomials on the Lie algebra g ofG. Recall that a function ξ : g → R

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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is said to be polynomial if it can be written as a polynomial in the expansion coeffi-
cients of its argument with respect to some basis in g. That is, relative to a basis {ta}
in g, the function ξ is a sum of functions ξk of the form

ξk(A) = ξk(A
ata) = ξa1...akA

a1 . . .Aak (4.6.1)

(summation convention) with ξa1...ak ∈ R. Here, A = Aata. The system ξa1...ak may be
assumed to be symmetric under permutation of indices. It is then uniquely determined
by ξ and transforms like a tensor under a change of basis. Clearly, the Ad-invariant
polynomial functions form a subalgebra of C∞(g), denoted by PolG(g). As a vector
space,

PolG(g) =
∞⊕

k=0

PolkG(g) ,

where PolkG(g) ⊂ PolG(g) denotes the subspace of homogeneous polynomial func-
tions of order k.

To construct theWeil homomorphism, we have to turn homogeneous polynomials
into symmetricmultilinear forms.Let Symk

G(g)denote the vector space of real-valued
symmetric k-linear forms on g which are invariant under the adjoint action of G and
let

SymG(g) :=
∞⊕

i=0

Symk
G(g) .

With the product defined on homogeneous elements f of order k and g of order l by

(f · g)(A1, . . . ,Ak+l)

:= 1

k!l!
∑

π∈Sk+l

f
(
Aπ(1), . . . ,Aπ(k)

)
g
(
Aπ(k+1), . . . ,Aπ(k+l)

)
, (4.6.2)

SymG(g) is an infinite dimensional real associative algebra.11 Every f ∈ Symk
G(g)

defines an element f̂ of PolG(g) by

f̂ (A) := 1

k! f (A, . . . ,A) . (4.6.3)

It is easy to see that the assignment f 
→ f̂ extends to a homomorphism of algebras
from SymG(g) to PolG(g) (Exercise 4.6.1). This homomorphism is referred to as the
polarization homomorphism. One has the polarization formula

11The factor 1
k!l! in this definition is dictated by our choice of the wedge product of differential

forms, see formula (2.4.17) in Part I. In many textbooks, the coefficient in (4.6.2) is 1
(k+l)! which

corresponds to the other common choice of the wedge product. These different conventions lead to
different combinatorial factors on the way, but the final formulae for the Chern classes will be the
same. We will comment on this at the end of this section in Remark 4.6.10/2.
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f (A1, . . . ,Ak) = ∂

∂t1
· · · ∂

∂tk
f̂ (t1A1 + · · · + tkAk) , (4.6.4)

whichholds in general for all symmetric k-linear formsong, invariant or not (Exercise
4.6.2). In other words, (4.6.4) states that f (A1, . . . ,Ak) coincides with the coefficient
of the monomial t1 · · · tk in the expansion of f̂ (t1A1 + · · · + tkAk) as a polynomial
in the indeterminates ti.

Lemma 4.6.1 The polarization homomorphism is an isomorphism.

Proof Injectivity follows at once from the polarization formula (4.6.4). To prove
surjectivity, let ξ ∈ PolG(g) be homogeneous of degree k. Choose a basis and write
ξ in the form (4.6.1) with symmetric coefficients ξa1...ak . Define a k-linear form on g
by

f (A1, . . . ,Ak) := k! ξa1...akAa1
1 . . .Aak

k .

This form is symmetric and fulfils f̂ = ξ . Finally, by the polarization formula (4.6.4),
invariance of ξ implies invariance of f . �

The inverse of polarization is referred to as multilinearization. Given ξ ∈ PolG(g),
the multilinearization of ξ will be denoted by ξ̌ . By (4.6.4),

ξ̌ (A1, . . . ,Ak) = ∂

∂t1
· · · ∂

∂tk
ξ (t1A1 + · · · + tkAk) . (4.6.5)

The further analysis uses invariant horizontal forms on P(M,G). Such forms con-
stitute a subalgebra of Ω∗(P), denoted by Ω∗

G,hor(P). They are related to forms on
M as follows.

Lemma 4.6.2 Let P be a principal G-bundle over M with projection π .

1. The homomorphism π∗ maps Ω∗(M) isomorphically onto Ω∗
G,hor(P).

2. For all α ∈ Ω∗
G,hor(P), one has dα ∈ Ω∗

G,hor(P).
3. For all α ∈ Ω∗

G,hor(P) and all connections ω on P, one has Dωα = dα.

Proof 1. Since π is a surjective submersion, π∗ is injective. To see that π∗ maps
Ω∗(M) onto all of Ω∗

G,hor(P), let α ∈ Ω∗
G,hor(P) be given. It suffices to give the

argument under the assumption that α is a 1-form. Choose a covering of M by
local sections si in P over Ui and consider the local k-forms s∗i α on M. Let ρij :
Ui ∩ Uj → G denote the transition mappings. They fulfil sj(m) = Ψρij(m)

(
si(m)

)
for

all m ∈ Ui ∩ Uj. Thus,

(
sj
)′
m = (Ψa)

′
si(m) ◦ (si)

′
m + (Ψsi(m)

)′
a ◦ (ρij

)′
m ,

where a = ρij(m). Since the second term in this formula is vertical, horizontality and
invariance of α yield
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(
s∗j α
)
m(X) = αsj(m)

(
s′j X
) = αΨa◦si(m)

(
Ψ ′
a ◦ s′i(X)

) = (s∗i α
)
m(X)

for all X ∈ TmM. Hence, the local forms s∗i α combine to a global form α̂ on M. It
remains to show that π∗α̂ = α. For given i, let κi : π−1(Ui) → G be the mapping
defined by (1.1.1). Then, for all p ∈ π−1(Ui), one has p = Ψκi(p) ◦ si ◦ π(p) and hence

(si)
′
π(p) ◦ π ′

p = (Ψb)
′
p + (Ψp

)′
b ◦ (invG ◦κi)

′
p ,

where invG : G → G denotes the inversion mapping and b = κi(p)−1. Since the
second term is vertical, for Y ∈ TpP we obtain

(π∗α̂)p(Y) = αsi◦π(p)
(
s′i ◦ π ′(Y)

) = αΨb(p)
(
Ψ ′
b Y
) = αp(Y) ,

as asserted.
2. This follows from point 1 and the fact that the exterior differential commutes

with taking pullbacks.
3. By point 2, the form dα is horizontal. Hence, for p ∈ P and Y0, . . . ,Yk ∈ TpP,

we find (Dωα)(Y0, . . . ,Yk) = dα
(
horω Y0, · · · , horω Yk

) = dα(Y0, . . . ,Yk). �

Now, let α ∈ Ω2(P, g). Usingmultilinearization, we can assign to every ξ ∈ PolkG(g)
a 2k-form hα(ξ) on P by

hα(ξ) (X1, . . . ,X2k)

:= 1

k!
∑

ρ∈S2k
sign(ρ) ξ̌

(
α
(
Xρ(1),Xρ(2)

)
, . . . , α

(
Xρ(2k−1),Xρ(2k)

))
. (4.6.6)

The assignment ξ 
→ hα(ξ) extends to a linear mapping hα : PolG(g) → Ω∗(P).

Remark 4.6.3 Let {ta} be a basis in g and let αa ∈ Ω2(P) denote the corresponding
coefficient 2-forms, defined by α(Y1,Y2) = αa(Y1,Y2) ta for all p ∈ P and Y1,Y2 ∈
TpP. By plugging this expansion into the definition of hα(p) for ξ ∈ PolkG(g), we
obtain

hα(ξ) = 2k ξa1,...,ak αa1 ∧ · · · ∧ αak , (4.6.7)

where ξa1,...,ak are the symmetric coefficients of ξ defined by (4.6.1). This implies

hα(ξ) = 2kξ∧(α) , (4.6.8)

where ξ∧ means that all products in the polynomial ξ are replaced by the exterior
product. �

Lemma 4.6.4 Let α ∈ Ω2(P, g).

1. The mapping hα : PolG(g) → Ω∗(P) is an algebra homomorphism, that is,

hα(ξζ ) = hα(ξ) ∧ hα(ζ ) for all ξ, ζ ∈ PolG(g) .

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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2. For all ξ ∈ PolG(g), the following holds true.

a. If α is of type Ad, then hα(ξ) is invariant.
b. If α is horizontal, then hα(ξ) is horizontal.
c. If Ω is the curvature form of a connection, then hΩ(ξ) is closed.

3. If F : Q → P is a morphism of principal G-bundles, then, for all ξ ∈ PolG(g),

F∗hα(ξ) = hF∗α(ξ) .

Proof Points 2b and 3 are immediate. Point 2a follows from point 3 by using that α
is of type Ad and ξ is invariant. Point 1 is straightforward (Exercise 4.6.3). It remains
to prove point 2c. Assume that ξ is homogeneous of degree k. If Ω is the curvature
form of a connection ω, it is horizontal and of type Ad. Then, points 2a and 2b imply
that hΩ(ξ) is horizontal and invariant. Hence, Lemma 4.6.2/3 yields

d
(
hΩ(ξ)

) = Dω

(
hΩ(ξ)

)
.

Choose a basis {ta} in g and decompose hΩ(ξ) according to (4.6.7). Then,

Dω

(
hΩ(ξ)

) = 2kξa1,...,ak Dω

(
Ωa1 ∧ · · · ∧ Ωak

)
.

Since the forms Ωa are horizontal,

Dω

(
Ωa1 ∧ · · · ∧ Ωak

) = (DωΩa1
) ∧ · · · ∧ Ωak + · · · + Ωa1 ∧ · · · ∧ (DωΩak

)
.

By the Bianchi identity,
(
DωΩa

)
ta = DωΩ = 0 and hence DωΩa = 0 for all a. �

In view of points 2a and 2b of Lemma 4.6.4, if α is horizontal of type Ad, we
may compose hα with the inverse of the isomorphism π∗ : Ω∗(M) → Ω∗

G,hor(P),
provided by Lemma 4.6.2/1, thus obtaining an algebra homomorphism

ĥα : PolG(g) → Ω∗(M) .

By construction, ĥα is determined by

π∗ ◦ ĥα = hα . (4.6.9)

By point 2c of Lemma 4.6.4, if Ω is the curvature form of a connection, then ĥΩ

takes values in the closed forms on M and thus induces a homomorphism

wP : PolG(g) → H∗
dR(M) , wP(ξ) := [ĥΩ(ξ)

]
. (4.6.10)

Lemma 4.6.5 If Ω0 and Ω1 are the curvature forms of connections on P, then
ĥΩ1(ξ) − ĥΩ0(ξ) is exact for all ξ ∈ PolG(g).
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Proof Let ω0 and ω1 be connection forms on P and assume that ξ is homogeneous
of degree k. Define β := ω1 − ω0 and ωt := ω0 + tβ. Then, β is horizontal of type
Ad and ωt is a connection form for all t. Let Ωt denote the curvature of ωt . Choose a
basis {ta} in g and let βa andΩa

t denote the corresponding coefficient forms. Define12

φt := 2kk ξa1,...,akβ
a1 ∧ Ωa2

t ∧ · · · ∧ Ω
ak
t and φ :=

∫ 1

0
φt dt ,

where ξa1,...,ak denote the symmetric coefficients of ξ defined by (4.6.1). We claim
that φ is a potential for ĥΩ1(ξ) − ĥΩ0(ξ). One has

dφ =
∫ 1

0
dφt dt . (4.6.11)

Since β and Ωt are horizontal and of type Ad, so is φt . Hence, by Lemma 4.6.2/3,
dφt = Dωtφt . By horizontality,

Dωtφt = 2kk ξa1,...,ak

((
Dωtβ

a1
) ∧ Ωa2

t ∧ · · · ∧ Ω
ak
t

+ βa1 ∧ (DωtΩ
a2
t

) ∧ · · · ∧ Ω
ak
t + · · · + βa1 ∧ Ωa2

t ∧ · · · ∧ (DωtΩ
ak
t

))
.

By the Bianchi identity, DωtΩ
a
t = 0 for all a. Thus,

dφt = Dωtφt = 2kk ξa1,...,ak
(
Dωtβ

a1
) ∧ Ωa2

t ∧ · · · ∧ Ω
ak
t . (4.6.12)

Using β = d
dtωt and the Structure Equation (1.4.9), we find

(
Dωtβ

a
)
ta = Dωtβ = dβ + [ωt, β] = d

dt

(
dωt + 1

2
[ωt, ωt]

)
= d

dt
Ωt

and hence Dωtβ
a = d

dtΩ
a
t . Plugging this into (4.6.12) and using (4.6.7), we obtain

dφt = 2kk ξa1,...,ak

(
d

dt
Ωa1

t

)
∧ Ωa2

t ∧ · · · ∧ Ω
ak
t = d

dt
hΩt (ξ) .

Consequently, (4.6.11) yields dφ = hΩ1(ξ) − hΩ0(ξ) and hence the assertion. �

As a result, the homomorphism (4.6.10) depends on the principal bundle P only and
not on the specific connection whose curvature form is used in the definition.

Definition 4.6.6 The homomorphism wP is called the Weil homomorphism of P.

12See Remark 4.1.10/1 in Part I for the definitions of the integral and the derivative of a 1-parameter
family of differential forms and for the corresponding calculus.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Let us study how the Weil homomorphism behaves under bundle morphisms.
For a Lie group homomorphism λ : G → H, let dλ : g → h denote the induced
homomorphism of Lie algebras. It is elementary to check that (dλ)∗ maps PolH(h)
to PolG(g).

Proposition 4.6.7 Let P and Q be principal bundles over M and N with structure
groups G and H, respectively, and let ϑ : P → Q be a morphism with Lie group
homomorphism λ : G → H and projection f : M → N. Then,

wP ◦ (dλ)∗ = f ∗ ◦ wQ .

Proof The morphism ϑ can be written as the composition of the vertical morphism

Φ : P → f ∗Q , Φ(p) := (πP(p), ϑ(p)
)

whose Lie group homomorphism is given by λ with the natural principal H-bundle
morphism F : f ∗Q → Q covering f . It suffices to prove thatwP ◦ (dλ)∗ = wf ∗Q and
wf ∗Q = f ∗ ◦ wQ.

To prove the first formula, let ω be a connection form on P. By Proposition
1.3.13, ω induces a connection ω̃ on f ∗Q such that Φ∗ω̃ = dλ ◦ ω. Then, by Remark
1.4.10/2,

Φ∗Ω̃ = dλ ◦ Ω .

Using this, for ξ ∈ PolkG(h) and X1, . . . ,X2k ∈ X(P), we obtain

Φ∗(hΩ̃ (ξ)
)
(X1, . . . ,X2k) = hΩ̃ (ξ)(Φ ′ ◦ X1, . . . , Φ

′ ◦ X2k)

= 1

k!
∑

π∈Sk
sign(π)ξ̌

(
Φ∗Ω̃

(
Xπ(1),Xπ(2)

)
, . . .

)

= 1

k!
∑

π∈Sk
sign(π)ξ̌

(
dλ ◦ Ω

(
Xπ(1),Xπ(2)

)
, . . .

)

= (hΩ ◦ (dλ)∗(ξ)
)
(X1, . . . ,X2k) .

Thus, Φ∗(hΩ̃ (ξ)
) = hΩ ◦ (dλ)∗(ξ). Since Φ is vertical, formula (4.6.9) implies

π∗
P

(
ĥΩ ◦ (dλ)∗(ξ)

)
= Φ∗ ◦ π∗

P

(
ĥΩ̃ (ξ)

) = π∗
P

(
ĥΩ̃ (ξ)

)
.

It follows that ĥΩ ◦ (dλ)∗(ξ) = ĥΩ̃ (ξ) and hence wP ◦ (dλ)∗(ξ) = wf ∗Q(ξ).
To see that wf ∗Q = f ∗ ◦ wQ, let ω be a connection form on Q and let Ω be its

curvature. By Corollary 1.3.16, F∗ω is a connection form on f ∗Q and by Remark
1.4.10/2, the curvature of this connection form is given by F∗Ω . By Lemma 4.6.4/3,
for ξ ∈ PolH(h), then hF∗Ω(ξ) = F∗(hΩ(ξ)

)
. Using (4.6.9) and πQ ◦ F = f ◦ πf ∗Q,

we thus obtain

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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π∗
f ∗Q

(
ĥF∗Ω(ξ)

)
= F∗ ◦ π∗

Q

(
ĥΩ(ξ)

)
= π∗

f ∗Q ◦ f ∗ (hΩ(ξ)) .

This implies ĥF∗Ω(ξ) = f ∗
(
ĥΩ(ξ)

)
and hence wf ∗Q(ξ) = f ∗wQ(ξ). �

Corollary 4.6.8

1. Vertically isomorphic principal G-bundles define the same Weil homomorphism.
2. For every ξ ∈ PolG(g), the assignment of wP(ξ) to P defines a characteristic

class for principal G-bundles with values in the de Rham cohomology.
3. If P is a principal G-bundle and λ : G → H is a Lie group homomorphism, then

wP[λ] = wP ◦ (dλ)∗ .

Proof Point 1 is immediate.
2. For a principal G-bundle P over M, write α(P) := wP(ξ). If f : N → M is

a smooth mapping, we have a natural morphism F : f ∗P → P covering f . Hence,
Proposition 4.6.7 yields wf ∗P(ξ) = f ∗(wP(ξ)

)
and thus α(f ∗P) = f ∗(α(P)

)
.

3. This follows by observing that the mapping ι� : P → P[λ] defined by ι�(p) :=
[(p,1)], together with the Lie group homomorphism λ, provides a vertical morphism
of principal bundles over M. �

Recall that in Sect. 4.2 we have constructed characteristic classes in singular coho-
mology for the classical compact Lie groups. We are now going to analyze how
these are related to the characteristic classes in de Rham cohomology provided by
the Weil homomorphism. We start with briefly recalling the relation between de
Rham cohomology and singular cohomology, cf. Sect. 4.3 of Part I.

By the de Rham Theorem [104, Sect.V.9], there exists an isomorphism between
the de Rham cohomology ring H∗

dR(M) and the singular cohomology ring with real
coefficientsH∗

R
(M). This isomorphism is referred to as the de Rham isomorphism. It

is obtained as follows.LetC∞
k (M)denote the freeAbelian groupgenerated by smooth

k-simplices. Together with the ordinary boundary operator, the groups C∞
k (M) form

a chain complex. Recall that Hk
R
(M) may be thought of as being the (co)homology

groups of the corresponding cochain complex Hom(C∞
k (M), R). Let δ denote the

coboundary homomorphism. Given a k-form α on M, we may define a homomor-
phism α̂ : C∞

k (M) → R by assigning to each smooth simplex σ : Δk → M the inte-
gral

α̂(σ ) :=
∫

Δk

σ ∗α .

By linearity of pullback and integration, the assignment α 
→ α̂ defines a group
homomorphism Ωk(M) → Hom(C∞

k (M), R). By Stokes’ Theorem, one has d̂α =
δα̂. It follows that the mapping α 
→ α̂ induces a group homomorphism Hk

dR(M) →
Hk

R
(M). This homomorphism is the de Rham isomorphism in degree k. One can show

that the inducedgroup isomorphismH∗
dR(M) → H∗

R
(M) is in fact a ring isomorphism,

see [652, Theorem 5.45].

http://dx.doi.org/10.1007/978-94-024-0959-8_4
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Thus, by means of composition with the de Rham isomorphism, we may view the
Weil homomorphism as a mapping

wP : PolG(g) → H∗
R
(M) .

We do not distinguish in notation between these viewpoints.

Next, we determine a system of generators of the algebra PolG(g) for the classical
compact Lie groups. For that purpose, we consider a maximal Abelian subalgebra
t ⊂ g. We denote the normalizer and the centralizer of t in G by

NG(t) = {a ∈ G : Ad(a)t ⊂ t} , CG(t) = {a ∈ G : Ad(a)�t = idt} ,

respectively, and define
W := NG(t)/CG(t) .

Since CG(t) is a normal subgroup of NG(t),W is a group. It is called the Weyl group
of g. The adjoint representation induces an action ofW on t. Let PolW (t) denote the
algebra of polynomial functions on t which are invariant under the action of W . In
the theory of compact Lie groups13 it is shown thatW is finite and that the mapping

μ : G × t → g , μ(a,B) := Ad(a)B , (4.6.13)

is a surjective submersion. The latter implies, in particular, that any two maximal
Abelian subalgebras are conjugate to one another under Ad(G). As a consequence,
W does not depend on the choice of t. Another consequence is that every orbit of
the adjoint representation in g intersects t, because, obviously, every element of g
is contained in a maximal Abelian subalgebra. It is furthermore shown that any two
elements of t belong to the same G-orbit in g iff they belong to the same W -orbit
in t. Thus, more precisely, each orbit of the adjoint representation intersects t in a
W -orbit. It follows that restriction to t defines a homomorphism PolG(g) → PolW (t).

Lemma 4.6.9 The restriction homomorphism PolG(g) → PolW (t) is an isomor-
phism.

Proof Toprove injectivity, let p1, p2 ∈ PolG(g) be such that p1�t = p2�t and letA ∈ g.
Since the orbit of A under the adjoint representation intersects t, there exist B ∈ t
and a ∈ G such that A = Ad(a)B. By Ad-invariance,

pi(A) = pi
(
Ad(a)B

) = pi(B) , i = 1, 2 .

Since p1(B) = p2(B), we conclude p1(A) = p2(A) and hence p1 = p2.

13A standard reference is [105]. The arguments for the classical compact Lie groups are elementary
though, see the discussion below.
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To prove surjectivity, let q ∈ PolW (t) be given. Since for each A ∈ g, the orbit
of A under the adjoint representation of G intersects t in a W -orbit, there exists
B ∈ t such that A = Ad(a)B for some a ∈ G and any two such B are mapped to
one another by an element of W . Since q is W -invariant, we can define a mapping
p : g → R by p(A) = q(B). By construction, p is invariant. It remains to show that
p is polynomial. We may assume that q is homogeneous of degree k. Then, so is p.
Since (4.6.13) is a surjective submersion and since submersions admit local sections,
for every A ∈ g, there exists an open neighbourhood U of A and a smooth mapping
s : U → G × g such that composition of (4.6.13) with s yields idU . Hence, on U, p
coincides with s∗ ◦ pr∗t (q), where prt : G × t → t denotes the natural projection to
the second factor. This shows that p is smooth. Now, we choose a basis {ea} in g and
consider the corresponding partial derivatives, given by

∂p

∂Aa
(A) := d

dt �0
p(A + t ea) .

One can check that the functions

∂

∂Aa1
· · · ∂

∂Aal
p

are homogeneous of degree k − l for l ≤ k and that they vanish for
l > k (Exercise 4.6.4). It follows that p coincides with its k-th order Taylor poly-
nomial centered at the origin. Thus, p is polynomial. �

Now, we are going to determine PolG(g) for the classical compact Lie groups explic-
itly. We start with the case G = U(n). A maximal Abelian subalgebra tU ⊂ u(n) is
given by the subalgebra of diagonal matrices. Since every element of u(n) is skew-
adjoint, it admits an orthonormal eigenbasis. Hence, it is conjugate under the adjoint
representation to an element of tU. Since the spectrum of an element of u(n) is invari-
ant under the adjoint representation, if two elements of tU are conjugate under the
adjoint representation, they have the same eigenvalues and hence they differ by a per-
mutation of entries. In particular, the normalizer NU(n)(tU) acts on tU by permutation
of entries. Since every permutation can be represented in this way, the Weyl group
WU coincides with Sn. Thus, in the present example we see explicitly that the Weyl
group is finite and that every orbit of the adjoint representation intersects a maximal
Abelian subalgebra in a Weyl group orbit.

Let Sym
R
[x1, . . . , xn] denote the algebra of symmetric polynomials with real

coefficients in the real variables x1, . . . , xn. Since the elements of tU are skew-adjoint,
they have purely imaginary entries. Hence, every p ∈ Sym

R
[x1, . . . , xn] defines a

WU-invariant polynomial function pU on tU by14

14We will see below that the normalization factor 4π will make the cohomology classes obtained
via the Weil homomorphism match the Chern classes. In many textbooks, the factor is 2π . This
will be explained in Remark 4.6.10.
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pU(A) := p

(
i

4π
A11, . . . ,

i

4π
Ann

)
, (4.6.14)

and the assignment p 
→pU yields an algebra isomorphism Sym
R
[x1, . . . , xn] ∼=

PolWU(tU). By Lemma 4.6.9, theWU-invariant polynomial functions pU extend to Ad-
invariant polynomial functions on u(n), denoted by the same symbol, and the assign-
mentp 
→ pU defines an isomorphismof algebras Sym

R
[x1, . . . , xn] ∼= PolU(n)(u(n)).

Clearly,
pU(A) = p (λ1, . . . , λn) , (4.6.15)

where λj are the eigenvalues of i
4π A, counted with multiplicity.

Since the algebra Sym
R
[x1, . . . , xn] is generated by the elementary symmetric

polynomials σ0, . . . , σn, the algebra PolU(n)(u(n)) is generated by the corresponding
invariant polynomial functions σ U

0 , . . . , σ U
n defined by (4.6.15). Thus, in order to

control the Weil homomorphism for a given principal U(n)-bundle P over M, it
suffices to know (the cohomology classes of) the forms ĥΩ(σ U

k ) for the curvature
form Ω of some connection on P. To compute these classes, we recall that the
eigenvalues λj of i

4π A are the zeros of the characteristic polynomial

χ i
4π A

(λ) = det

(
λ1n − i

4π
A

)
.

Thus, the characteristic polynomial has the factor decomposition
∏n

j=1(λ − λj).
Expansion yields

χ i
4π A

(λ) =
n∑

k=0

(−1)kσk(λ1, . . . , λn) λn−k =
n∑

k=0

(−1)kσ U
k (A) λn−k . (4.6.16)

On the other hand, one can check that the characteristic polynomial of an arbitrary
n-dimensional complex square matrix C satisfies

χC(λ) =
n∑

k=0

(−1)k tr
(∧kC

)
λn−k , (4.6.17)

where
∧kC :∧k

C
n →∧k

C
n denotes the endomorphism induced by C via

(∧kC
)

(z1 ∧ · · · ∧ zk) = (Cz1) ∧ · · · ∧ (Czk)

for all z1, . . . , zk ∈ C
n (Exercise 4.6.5). Comparing (4.6.16) with (4.6.17), we thus

read off

σ U
k (A) =

(
i

4π

)k

tr
(∧kA

)
.
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One can further check that tr
(∧kC

) = Dk(C), where Dk denotes the polynomial
function on complex square matrices defined by

Dk(C) = 1

k!det

⎡

⎢⎢⎢
⎢⎢⎢
⎣

tr(C) k − 1 0 · · · 0

tr(C2) tr(C) k − 2
. . .

...
...

. . .
. . .

. . . 0
tr(Ck−1) · · · tr(C2) tr(C) 1
tr(Ck) tr(Ck−1) · · · tr(C2) tr(C)

⎤

⎥⎥⎥
⎥⎥⎥
⎦

. (4.6.18)

Finally, using (4.6.8), we obtain

hΩ(σ U
k ) = 2k(σ U

k )∧(Ω) = 2k
(

i

4π

)k

D∧
k (Ω) ,

that is,

hΩ(σ U
k ) =

(
i

2π

)k

D∧
k (Ω) = D∧

k

(
i

2π
Ω

)
. (4.6.19)

In particular, we have

hΩ(σ U
0 ) = 1 , (4.6.20)

hΩ(σ U
1 ) = i

2π
tr(Ω) , (4.6.21)

hΩ(σ U
2 ) = 1

8π2

(
tr(Ω ∧ Ω) − tr(Ω) ∧ tr(Ω)

)
. (4.6.22)

Here, Ω ∧ · · · ∧ Ω denotes the exterior product of gl(n, C)-valued forms induced
by the associative matrix product, cf. Remark 1.4.8/1. We obtain the same formulae
for ĥΩ(σ U

k ) by viewing the right hand sides as forms on M.

Remark 4.6.10

1. According to (4.6.19), the Weil homomorphism is formally given by plugging in
the matrix elements of iΩ

2π relative to some local frame in Ad(P), viewed as local
2-forms, into the polynomial given and replacing all products by wedge products.
Therefore, it is common to write

σk

(
i

2π
Ω

)
≡ ĥΩ(σ U

k ) , k = 0, . . . , n ,

although the actual scaling factor is 4π and not 2π , because of the factor 2k one
acquires by rewriting products as wedge products, cf. (4.6.8).

2. If for the wedge product of a k-form and an l-form onM one uses the convention
to multiply by a factor 1

(k+l)! instead of 1
k!l! , as is done for example in [383], the

construction of the Weil homomorphism has to be modified as follows.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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a. The product of a k-linear form with an l-linear form on g is defined with a
factor 1

(k+l)! .
b. Polarization reads ξ̂ (A) = ξ(A, . . . ,A).
c. For a polynomial function ξ of order k on g, the form hα(ξ) is defined with a

factor 1
(2k)! .

d. The polynomial function pU on g induced from p ∈ Sym
R
[x1, . . . , xn] is

defined by p(λ1, . . . , λn) where λi are the eigenvalues of i
2π A.

Under these modifications, the mapping hα is a homomorphism for every 2-form
α and formulae (4.6.19)–(4.6.22) hold true. �

Now, we can compare the cohomology classes wP(σ
U
k ) with the Chern classes of P.

Theorem 4.6.11 For every principalU(n)-bundle P overM and every k = 0, . . . , n,
there holds wP(σ

U
k ) = ck(P) under the de Rham isomorphism.

Proof Clearly, the assertion holds for k = 0, so that wemay assume k ≥ 1. Our proof
is along the lines of [451]. We proceed by showing the following.

1. The assertion holds if it holds for all smooth principal U(1)-bundles.
2. The assertion holds for all smooth principal U(1)-bundles if it holds for the

complex Hopf bundle.
3. The assertion holds for the complex Hopf bundle.

1. Assume that the assertion holds for all principal U(1)-bundles. First, we use
the Splitting Principle to argue that we may restrict attention to bundles P admit-
ting a reduction to U(1)n. Indeed, given an arbitrary P, let ρ : P/U(1)n → M
denote the induced projection. Since wP(σ

U
k ) and ck are characteristic classes,

one has wρ∗P(σ
U
k ) = ρ∗wP(σ

U
k ) and ck(ρ∗P) = ρ∗ck(P). By Theorem 4.3.7, then

wρ∗P(σ
U
k ) = ck(ρ∗P) implieswP(σ

U
k ) = ck(P) and ρ∗P admits a reduction to U(1)n.

This shows that without loss of generality we may assume that P itself admits a
reduction to U(1)n.

Now, if Q is a reduction of P to U(1)n, then P is vertically isomorphic to
Q[j], where j : U(1)n → U(n) denotes the natural inclusion mapping. By
Corollary 4.6.8/3, then

wP(σ
U
k ) = wQ

(
(dj)∗σ U

k

)
.

We have
(dj)∗σ U

k = σk
(
pr∗1 σ U

1 , . . . , pr∗n σ U
1

)
,

where pri : U(1)n → U(1) denotes projection to the i-th factor and σ U
1 on the right

hand side is defined on u(1). Using that wQ is a homomorphism, we thus obtain

wP(σ
U
k ) = σk

(
wQ(pr∗1 σ U

1 ), . . . ,wQ(pr∗n σ U
1 )
)
. (4.6.23)
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Applying Corollary 4.6.8/3 once again, for i = 1, . . . , n, we find

wQ(pr∗i σ U
1 ) = wQ[pri ](σ

U
1 ) .

Since Q[pri] is a principal U(1)-bundle, by assumption,

wQ[pri ](σ
U
1 ) = c1

(
Q[pri])

under the de Rham isomorphism. Let f : M → BU(1)n be a classifying mapping for
Q. By Corollary 3.7.3, then B pri ◦f is a classifying mapping for Q[pri]. Hence,

wQ[pri ](σ
U
1 ) = f ∗ ◦ (Bpri)

∗cU(1)

1 .

Plugging this into (4.6.23), we obtain

wP(σ
U
k ) = f ∗ (σk

(
(Bpr1)

∗cU(1)

1 , . . . , (Bprn)
∗cU(1)

1

))
.

By Proposition 4.3.5, then

wP(σ
U
k ) = f ∗ ◦ (Bj)∗

(
cU(n)

k

)
.

Since Bj ◦ f is a classifying mapping for Q[j] and Q[j] is vertically isomorphic to P,
we finally obtain the assertion.

2. Let Pn denote the canonical U(1)-bundle over CPn (Stiefel bundle), cf. Remark
1.1.25 and Example 4.2.18. Recall that P1 is the complex Hopf bundle and that Pn is
(n − 1)-universal, cf. Theorem 3.4.10. Thus, it suffices to prove that if the assertion
holds for P1, then it holds for Pn for all n. Let Ωn denote the curvature form of the
canonical connection on Pn, cf. Example 1.3.20.

The standard embedding of C
2 into C

n+1 induces a morphism of principal U(1)-
bundles F : P1 → Pn covering the standard embedding f : CP1 → CPn. Composi-
tion of f with the mapping

s : D2 → S2 ∼= CP1 , s(z) :=
(
z,
√
1 − |z|2

)
, (4.6.24)

yields the 2-cell of the standard cell complex structure of CPn, which is obtained
by successively attaching to CPi = {[(z0, · · · , zi, 0, · · · , 0)] : z ∈ S2i+1} ⊂ CPn the
2(i + 1)-cell given by the mapping

D2(i+1) → CPn , z 
→
[(

z0, · · · , zi,
√
1 − ‖z‖2, 0, · · · , 0

)]
,

see for example [104, Example IV.8.9]. Thus, the homology class [f ◦ s] represents
a generator of the singular homology group H2(CPn) ∼= Z. Under the identification
H2

R
(CPn) ∼= Hom(H2(CPn), R) provided by the Universal Coefficient Theorem, the

de Rham isomorphism maps the cohomology class wPn(σ
U
1 ) to the homomorphism

http://dx.doi.org/10.1007/978-94-024-0959-8_3
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_3
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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H2(CPn) → R which assigns to this generator the value

∫

D2
s∗f ∗ĥΩn(σ

U
1 ) =

∫

CP1
f ∗ĥΩn(σ

U
1 ) .

Here, we have used that s preserves the orientations (Exercise 4.6.6). Thus, what we
have to show is ∫

CP1
f ∗ĥΩn(σ

U
1 ) = 〈c1(Pn), [f ◦ s]〉 , (4.6.25)

where c1(Pn) stands for the corresponding homomorphism H2(CPn) → R. By
Lemma 4.6.4/3 and formula (4.6.9), f ∗ĥΩn(σ

U
1 ) = ĥF∗Ωn(σ

U
1 ). Via the vertical iso-

morphism P1 → f ∗Pn provided by F, the form F∗Ωn corresponds to Ω1. Hence, for
the left hand side of (4.6.25), we may write

∫

CP1
ĥΩ1(σ

U
1 ) .

Since P1 and f ∗Pn are vertically isomorphic, the right hand side of (4.6.25) can be
rewritten as 〈c1(P1), [s]〉. Thus, (4.6.25) holds for all n if

∫

CP1
ĥΩ1(σ

U
1 ) = 〈c1(P1), [s]〉 , (4.6.26)

that is, if it holds for n = 1.
3. It remains to prove (4.6.26). By Remark 4.5.4, evaluation of the right hand side

yields
〈c1(P1), [s]〉 = −1 .

To compute the left hand side of (4.6.26), we identify CP1 with S2 via the diffeo-
morphism of Remark 1.1.21/3 and the bundle manifold of P1 with S3 via the natural
diffeomorphism S3 → SC(2, 1) induced from the embedding S3 → C

2. Under these
identifications, the bundle projection is given by the mapping

S3 → S2 , z 
→
(
Re(2z1z2), Im(2z1z2),

(|z1|2 − |z2|2
)2)

(4.6.27)

and the canonical connection form is given by ω1 = z1dz1 + z2dz2, cf. Example
1.3.22. For the curvature, we obtain

Ω1 = dz1 ∧ dz1 + dz2 ∧ dz2 .

Define coordinates ϑ , ϕ, χ on S3 ⊂ C
2 by

z1 = ei/2(χ−ϕ) cos
ϑ

2
, z2 = ei/2(χ+ϕ) sin

ϑ

2
(Euler angles)

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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and coordinates θ , φ on S2 ⊂ R
3 by

x1 = sin θ cosφ , x2 = sin θ sin φ , x3 = cos θ (spherical coordinates).

We leave it to the reader to check that, in these coordinates,

(a) the fibres are parameterized by χ ,
(b) the bundle projection (4.6.27) is given plainly by (ϑ, ϕ, χ) 
→ (θ, φ) ≡ (ϑ, ϕ),
(c) ĥΩ1

(
σ U
1

) = − 1
4π sin ϑ dϑ ∧ dϕ.

Points (b) and (c) yield

ĥΩ1

(
σ U
1

) = − 1

4π
sin ϑ dϑ ∧ dϕ = − 1

4π
vS2

with the natural volume form vS2 on S2. Thus,

∫

CP1
ĥΩ1(σ

U
1 ) = − 1

4π

∫

S2
vS2 = −1 .

This proves (4.6.26) and thus completes the proof of the theorem. �

Corollary 4.6.12 Let P be a principal U(n)-bundle over a manifold M. The Chern
indices ck,i(P) of P relative to a chosen set of generators {si} of H2k(M) are given by

ck,i(P) =
∫

si

wP(σ
U
k ) .

Proof We have the commutative diagram

H2k
Z

(M) ��

��

H2k
Z

(M) ⊗ R

∼= �� H2k
R

(M)

∼=
��

Hom
(
H2k(M), Z

)
�� Hom

(
H2k(M), R

)

where the first upper horizontal arrow sends [α] to [α] ⊗ 1, the lower horizontal arrow
is defined by composition with the natural inclusion mapping Z ⊂ R and the vertical
arrows are given by the natural homomorpisms. Theorem 4.6.11 implies that integra-
tion of wP(σ

U
k ) over a closed 2k-cycle s inM yields the same result as evaluation of

ck(P), viewed via the homomorphismH2k
Z

(M) → H2k
R

(M) ∼= Hom(H2k(M), R) as a
homomorphismH2k(M) → R, on the homology class [s]. According to the diagram,
this is the same as evaluating the homomorphismH2k(M) → Z defined by ck(P) via
the left vertical arrow on [s]. �

Next, we discuss the groupsO(n) and SO(n).We start withO(n). If n = 2l, amaximal
Abelian subalgebra tO is given by the block diagonal matrices with blocks
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[
0 xi

−xi 0

]
, i = 1, . . . , l .

TheWeyl groupWO is generated by the permutations of the blocks and by the opera-
tions of taking the transpose of individual blocks. Hence, every p ∈ Sym

R
[x1, . . . , xl]

defines aWO-invariant polynomial function pO on tO by

pO

(
diag

([
0 x1

−x1 0

]
, . . . ,

[
0 xl

−xl 0

]))
:= p

(( x1
4π

)2
, . . . ,

( xl
4π

)2)
,

and the assignment p 
→ pO defines an isomorphism Sym
R
[x1, . . . , xl] ∼= PolWO(tO).

By analogy with the case of U(n), the WO-invariant polynomial function pO extends
to an Ad-invariant polynomial function on o(n), denoted by the same symbol and
given by

pO(A) := p (x1, . . . , xl) , (4.6.28)

where ix1,−ix1, . . . , ixl,−ixl are the eigenvalues of 1
4π A, counted with multiplici-

ties.15 The assignment p 
→ pO defines an algebra isomorphism Sym
R
[x1, . . . , xl] ∼=

PolO(n)(o(n)). Consequently, PolO(n)(o(n)) is generated by σ O
0 , . . . , σ O

l .
In case n = 2l + 1, the induced homomorphism djO2l,2l+1 : o(2l) → o(2l + 1)

embeds the maximal Abelian subalgebra tO of o(2l) into o(2l + 1) as a maximal
Abelian subalgebra of o(2l + 1). Moreover, it translates the Weyl group actions into
one another. As a consequence, pullback by djO2l,2l+1 defines an algebra isomorphism
PolO(2l+1)o(2l + 1) ∼= PolO(2l)o(2l). Via this isomorphism and the construction for
O(2l), eachp ∈ Sym

R
[x1, . . . , xl]defines an elementpO of PolO(2l+1)o(2l + 1).As for

n = 2l, the assignment p 
→ pO defines an algebra isomorphism Sym
R
[x1, . . . xl] ∼=

PolO(2l+1)o(2l + 1) and thus PolO(2l+1)o(2l + 1) is generated by σ O
0 , . . . , σ O

l .
Now, consider the group SO(n). Since so(n) = o(n), we may use the same maxi-

mal Abelian subalgebra, tO. In case n = 2l + 1, the group O(2l + 1) is generated by
its center and SO(2l + 1). Hence, in this case, there is no difference in the adjoint
actions of O(2l + 1) and SO(2l + 1) and thus there is no difference in the Weyl
groups, WSO = WO. Therefore,

PolSO(2l+1)so(2l + 1) = PolO(2l+1)o(2l + 1) .

In case n = 2l, however,WSO is generated by the permutations of the blocks and by the
operations of simultaneously taking the transpose of two distinct blocks. Therefore,
WSO ⊂ WO and hence PolWO(tO) is a subalgebra of PolWSO(tO) and PolO(2l)

(
o(2l)

)
is

a subalgebra of PolSO(2l)
(
so(2l)

)
. As a matter of fact, PolWSO(tO) is generated by the

subalgebra PolWO(tO) and the polynomial function

ε

(
diag

([
0 x1

−x1 0

]
, . . . ,

[
0 xl

−xl 0

]))
:= x1

4π
· · · xl

4π
, (4.6.29)

15Since A is real and the eigenvalues are purely imaginary, they come in conjugate pairs.



328 4 Cohomology Theory of Fibre Bundles. Characteristic Classes

which is WSO-invariant but not WO-invariant. Hence, PolSO(2l)
(
so(2l)

)
is generated

by σ O
0 , . . . , σ O

l and the Ad-invariant extension of (4.6.29), which we denote by the
same symbol. Thus, for A ∈ so(2l), ε(A) is given by the right hand side of (4.6.29),
where A is conjugate under SO(n) to the block diagonal matrix on the left hand
side of this equation. Note that the overall sign of the product of the xi is fixed by
requiring conjugacy under SO(n) rather than O(n). Note further that ε is related to
the Pfaffian16 pf : so(2l) → R by

ε(A) = pf

(
A

4π

)
= pf(A)

(4π)l
.

Let us compare σ O
k with the pullback of the functions σ U

k under the Lie algebra
embedding djO,U

n : o(n) → u(n) induced by jO,U
n . Recall that qn and q̄n denote the

integer part of n−1
2 and n

2 , respectively.

Lemma 4.6.13 For k = 0, . . . , q̄n, one has

(djO,U
n )∗σ U

2k+1 = 0 , (djO,U
n )∗σ U

2k = (−1)k σ O
k .

Proof It suffices to consider the case n = 2l, because the case n = 2l + 1 follows
by the identity jU2l,2l+1 ◦ jO,U

2l = jO,U

2l+1 ◦ jO2l,2l+1. Let A ∈ o(2l) and assume that A has
eigenvalues ix1,−ix1, . . . , ixl,−ixl. Then,

(
(djO,U

n )∗σ U
k

)
(A) = σ U

k (A) = 1

(4π)k
σk(−x1, x1, . . . ,−xl, xl) .

To the sum σk(−x1, x1, . . . ,−xl, xl), only the terms containing all xi in even order
contribute, because all other terms appear pairwise with opposite signs. Hence,
(djO,U

n )∗σ U
2k+1(A) = 0 and

(djO,U
n )∗σ U

2k(A) = 1

(4π)2k
σk(−x21, . . . ,−x2l ) = (−1)kσk

(( x1
4π

)2
, . . . ,

( xl
4π

)2)
.

The right hand side coincides with (−1)kσ O
k (A). �

Theorem 4.6.14 Under the de Rham isomorphism, for every principal bundle P
with structure group O(n) or SO(n), one has

wP(σ
O
k ) = pk(P) , k = 0, . . . , q̄n .

If n is even and the structure group is SO(n), in addition, one has,

wP (ε) = e(P) .

16By definition, pf(A) = 1
2l l!
∑

σ∈S2l
∏l

i=1 Aσ(2i−1),σ (2i).
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Proof Denote j = jO,U
n or jSO,U

n , respectively. By Theorem 4.6.11, under the de Rham
isomorphism,

pk(P) = (−1)kc2k
(
P[j]) = (−1)kwP[j](σ U

2k) .

ByCorollary 4.6.8/3, the right hand side coincides with (−1)kwP
(
(dj)∗σ U

2k

)
. Accord-

ing to Lemma 4.6.13, this equals wP(σ
O
k ).

For the assertion about the Euler class in the case where the structure group is
SO(2l), one may give an argument which is essentially analogous to that for the
Chern classes in the proof of Theorem 4.6.11. Let us sketch this.

By Theorem 3.4.10, it suffices to prove the assertion under the assumption that
P is a Stiefel bundle. Thus, take P = SR(2l,m) andM = GR(2l,m) for some m. By
embedding U(l) via jU,SO

l into SO(2l), we can form the quotient manifold P/U(l). It
has the structure of a locally trivial fibre bundle overM with typical fibreSO(2l)/U(l).
Let

f : P/U(l) → M (4.6.30)

be the induced projection. One can show that the homomorphism induced in coho-
mologywith real coefficients, f ∗ : H∗

R
(M) → H∗

R
(P/U(l)), is injective. For example,

according to Theorem 4.2 and Lemma 4.5 in [452], this follows from the fact that the
Serre spectral sequence of the fibre bundle (4.6.30) collapses which, in turn, is due to
the fact that the cohomology with real coefficients of both the base M = GR(2l,m)

and the fibre SO(2l)/U(l) vanish in odd degree, see [90, 621] and [452, Theorem
6.11], respectively. Thus, it suffices to prove the assertion for the principal SO(2l)-
bundle f ∗P over P/U(l). Since this bundle admits a reduction to the subgroup U(l),
we conclude that it suffices to prove the assertion for all principal SO(2l)-bundles
which admit a reduction to the subgroup U(l).

Thus, denote ι = jU,SO

l and let P be a principal SO(2l)-bundle such that P = Q[ι]
for some principal U(l)-bundle Q. By Corollary 4.6.8/3,

wP(ε) = wQ
(
(dι)∗ε

)
.

Using (A.6), for x1, . . . , xl ∈ R we compute

(dι)∗ε
(
diag(ix1, . . . , ixl)

) = ε

(
diag

([
0 −x1
x1 0

]
, . . . ,

[
0 −xl
xl 0

]))

= 1

(4π)l
(−x1) · · · (−xl)

= σ U
l

(
diag(ix1, . . . , ixl)

)
.

It follows that wP(ε) = wQ(σ U
l ). By Theorem 4.6.11, wQ(σ U

l ) = cl(Q). By Propo-
sition 3.7.2/1 and formula (4.4.8), the latter equals e(P). �

By analogy with Corollary 4.6.12, from Theorem 4.6.14, we obtain the following.

http://dx.doi.org/10.1007/978-94-024-0959-8_3
http://dx.doi.org/10.1007/978-94-024-0959-8_3
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Corollary 4.6.15 Let P be a principal O(n)-bundle over a manifold M. The
Pontryagin indices pk,i(P) of P relative to a chosen set of generators {si} of H4k(M)

are given by

pk,i(P) =
∫

si

wP(σ
O
k ) .

�

Finally, let us discuss the case of G = Sp(n). Elements of sp(n) are skew-adjoint
quaternionic matrices of dimension n, where taking the adjoint means taking the
transpose of the matrix and the quaternionic conjugate of every entry. Hence, the
entries of diagonal elements of sp(n) are linear combinations of the quaternionic
units i, j and k. To obtain a maximal Abelian subalgebra tSp we have to stick to one
of these. Let us choose

tSp = { diag(x1i, . . . , xni) : x1, . . . , xn ∈ R

}
.

The Weyl group WSp is generated by the permutations of the entries and the oper-
ations of taking the quaternionic conjugate of an individual entry, which amounts
to multiplying one of the xi by −1. Hence, every p ∈ Sym

R
[x1, . . . , xn] defines an

element pSp of PolWSptSp by

pSp
(
diag(x1i, . . . , xni)

) = p

(( x1
4π

)2
, . . . ,

( xn
4π

)2)
,

and the assignment p 
→ pSp yields an isomorphism Sym
R
[x1, . . . , xn] ∼= PolWSp(tSp).

By Ad-invariant extension, we obtain an element pSp of PolSp(n)(sp(n)), and the
assignment p 
→ pSp defines an isomorphism Sym

R
[x1, . . . , xn] ∼= PolSp(n)(sp(n)).

As a consequence, PolSp(n)(sp(n)) is generated byσ
Sp

0 , . . . , σ Sp
n . By the same argument

as for O(n) in the proof of Lemma 4.6.13, we obtain

(djSp,Un )∗σ U
2k+1 = 0 , (djSp,Un )∗σ U

2k = (−1)kσ Sp

k .

A similar calculation as in the proof of Theorem 4.6.14 then yields the following.

Theorem 4.6.16 For every principal Sp(n)-bundle P and every k = 0, . . . , n, one
has wP(σ

Sp

k ) = pk(P) under the de Rham isomorphism. �

By analogy with Corollary 4.6.12, Theorem 4.6.16 implies the following.

Corollary 4.6.17 Let P be a principal Sp(n)-bundle over a manifold M. The Pon-
tryagin indices pk,i(P) of P relative to a chosen set of generators {si} of H4k(M) are
given by

pk,i(P) =
∫

si

wP(σ
Sp

k ) .

�
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To conclude this section, we carry over the above concepts to vector bundles. The
Weil homomorphism for principal bundles induces aWeil homomorphism for vector
bundles as follows. Given a K-vector bundle E of rank n over M, choose a fibre
metric on E and let O(E) denote the corresponding orthonormal frame bundle. This
is a principal bundle with structure group G = O(n) in case K = R, G = U(n) in
case K = C and G = Sp(n) in case K = H. Thus, we can define

wE := wO(E) : SymG

(
g
)→ H∗

dR(M) .

If K = R and E is orientable, O(E) admits a reduction O+(E) to the subgroup
G = SO(n). In this case, we can define the oriented Weil homomorphism of E by

w̃E := wO+(E) : SymSO(n)

(
so(n)

)→ H∗
dR(M) .

Now,Theorems 4.6.11, 4.6.14 and 4.6.16 imply that under the deRham isomorphism,
for K = C, R, H, one has

• wE(σ U
k ) = ck(E) for k = 0, . . . , n,

• wE(σ O
k ) = pk(E) for k = 0, . . . , q̄n,

• wE(σ
Sp

k ) = pk(E) for k = 0, . . . , n.

Moreover, Theorem 4.6.14 implies that in case K = R, if E is orientable and has
even rank n, one has, in addition

w̃E(ε) = e(E) . (4.6.31)

More generally, a part of the construction of the Weil homomorphism carries over
to vector bundles. This allows for defining genuine characteristic classes of vector
bundles, notably the twisted Chern character of a graded vector bundle and the
relative Chern character of a graded Dirac bundle, to be discussed in Sect. 5.8. For
a real vector bundle E, let Pol(E) and Sym(E) denote the algebra bundles whose
fibres over m ∈ M are, respectively, the algebra of real polynomial functions on Em

and the algebra generated by the real symmetric multilinear forms on Em. Fibrewise
polarization and multilinearization define mutually inverse vertical algebra bundle
isomorphisms

ˆ : Sym(E) → Pol(E) and ˇ : Pol(E) → Sym(E) . (4.6.32)

The spaces of sections in Pol(E) and Sym(E) form real algebras with respect to
pointwise multiplication

(f · g)(m) := f (m) · g(m) ,

where on the right hand side the product is taken in the corresponding fibre over
m, that is, in Pol(Em) and in Sym(Em), respectively. The vertical isomorphisms

http://dx.doi.org/10.1007/978-94-024-0959-8_5
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(4.6.32) defined by fibrewise polarization and multilinearization induce mutually
inverse algebra isomorphisms

ˆ : Γ ∞(Sym(E)
)→ Γ ∞(Pol(E)

)
and ˇ : Γ ∞(Pol(E)

)→ Γ ∞(Sym(E)
)
.

Given α ∈ Ω2(M,E), we can define a mapping

hα : Γ ∞(Pol(E)
)→ Ω∗(M)

by assigning to κ ∈ Γ ∞(Polk(E)
)
the 2k-form

(
hα(κ)

)
(X1, . . . ,X2k)

:= 1

k!
∑

π∈S2k
sign(π)κ̌

(
α(Xπ(1),Xπ(2)), . . . , α(Xπ(2k−1),Xπ(2k))

)
. (4.6.33)

Note that the construction directly produces forms onM, so there is no need to project
here.

Lemma 4.6.18

1. The mapping (4.6.33) is a homomorphism of algebras.
2. Let Φ : E1 → E2 be a vertical vector bundle morphism and let α ∈ Ω2(M,E1)

and q ∈ Pol(E2). Then, Φ ◦ α ∈ Ω2(E2), q ◦ Φ ∈ Pol(E1) and

hΦ◦α(q) = hα(q ◦ Φ).

Proof Exercise 4.6.7. �

Generally, the forms hα(f ) need not be closed and hence they need not represent
cohomology classes. Thus, if one wants to construct a characteristic class this way,
one has to ensure closedness separately. Let us discuss a special situation where
closedness is granted. In what follows, for a complex Hermitean vector bundle E, let
u(E) ⊂ End(E) denote the vertical subbundle of skew-adjoint endomorphisms. Let
P be a principal bundle overM with compact structure groupG and let σ be a unitary
representation ofG on a finite-dimensional complex Hilbert space V . Then, P ×G V
is a complex Hermitean vector bundle over M. We apply the construction of forms
hα(κ) just explained to the real vector bundle E = u(P ×G V ). Recall from Remark
1.2.9/2 that u(P ×G V ) is naturally vertically isomorphic to P ×G u(V ), where G
acts on u(V ) via the induced representation

(a,A) 
→ σ(a) ◦ A ◦ σ(a−1) . (4.6.34)

The isomorphism is given by

Φ : P ×G u(V ) → u(P ×G V ) , Φ([(p,A)]) := ιp ◦ A ◦ ι−1
p . (4.6.35)

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Let PolG
(
u(V )

) ⊂ Pol
(
u(V )

)
and SymG

(
u(V )

) ⊂ Sym
(
u(V )

)
denote the subal-

gebras consisting of elements invariant under the induced representation (4.6.34).
Under the identification (4.6.35), every κ ∈ PolkG

(
u(V )

)
defines a section κ in

Polk
(
u(P ×G V )

)
by

κm

(
Φ([p,A])) := κ(A) , m ∈ M , (4.6.36)

where p is some point in Pm. This extends to an algebra homomorphism

PolG
(
u(V )

)→ Γ ∞ (Pol
(
u(P ×G V )

))
.

Lemma 4.6.19 Let P be a principal G-bundle over M and let (V, σ ) be a uni-
tary representation of G. Let Ω be the curvature of a connection on P and let
R ∈ Ω2

(
M, u(P ×G V )

)
be the curvature endomorphism form of the corresponding

connection induced on P ×G V . Then,

hR(κ) = ĥΩ

(
(dσ)∗κ

)
(4.6.37)

for all κ ∈ PolG
(
u(V )

)
. In particular, dhR(κ) = 0.

Proof Since σ is unitary, the induced representation dσ takes values in u(V ). More-
over, dσ is equivariant with respect to the adjoint representation of G on g and the
representation (4.6.34). Hence, if κ ∈ PolG

(
u(V )

)
, then (dσ)∗κ ∈ PolG(g), so that

hΩ

(
(dσ)∗κ

)
is well defined. For the proof, we assume that κ is homogeneous of

degree k. By definition of R, cf. (1.5.13), for p ∈ P and X1,X2 ∈ TpP, one has

Rπ(p)(π
′X1, π

′X2) = Φ
([p, σ ′(Ω)p(X1,X2)]

)
.

Hence, for m ∈ M, p ∈ Pm, Y1, . . . ,Y2k ∈ TmM and X1, . . . ,X2k ∈ TpP such that
π ′Xi = Yi, we find

(
hR(κ)

)
m(Y1, . . . ,Y2k) = (hΩ(κ)

)
p(X1, . . . ,X2k) .

By plugging in hΩ(κ) = π∗ĥΩ(κ), we obtain the assertion. �

As a result, in the present situation, the assignment κ 
→ hR(κ) defines a homomor-
phism

PolG
(
u(V )

)→ H∗
dR(M) .

Now, consider the special situation where E is a Hermitean K-vector bundle of rank
n over M. For K = R, C, H, let G denote, respectively, the Lie group O(n), U(n),
Sp(n) and let g denote the corresponding Lie algebra. Recall that we have a natural
vertical isomorphism E ∼= O(E) ×G K

n and hence a vertical isomorphism

u(E) ∼= u
(
O(E) ×G K

n
)
. (4.6.38)

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Corollary 4.6.20 Let E be a K-vector bundle of rank n over M endowed with a
positive definite fibre metric and let R be the curvature endomorphism form of a
compatible connection ∇. If a section κ in Pol(u(E)) corresponds under the natural
vertical isomorphism (4.6.38) to the section κ ′ defined by some κ ′ ∈ PolG(g), then
hR(κ) is closed and represents wE(κ ′).

Proof Denote the vertical isomorphismE → O(E) ×G K
n byΨ . That κ corresponds

to κ ′ under Ψ means

κm(A) = κ ′
m(Ψm ◦ A ◦ Ψ −1

m ) , m ∈ M , A ∈ (u(E)
)
m . (4.6.39)

Via Ψ , the connection ∇ on E induces a connection ∇′ in O(E) ×G K
n. One has

∇′
Xs

′ = Ψ ◦ (∇X(Ψ −1 ◦ s′)
)
, s′ ∈ Γ ∞(O(E) ×G K

n
)
, X ∈ X(M) .

For the curvature endomorphism form R′ of ∇′, this implies

R′(X,Y) = Ψ ◦ R(X,Y) ◦ Ψ −1 , X,Y ∈ X(M) . (4.6.40)

In turn, ∇′ corresponds to a connection on O(E) with curvature form Ω ′. By
Lemma4.6.19, we have hR′(κ ′) = ĥΩ ′(κ ′), hence hR′(κ ′) represents wE(κ ′). On the
other hand, (4.6.39) and (4.6.40) imply hR′(κ ′) = hR(κ). �

Remark 4.6.21 For a given complex vector bundle E of rank n and some chosen
Hermitean fibre metric on E, consider the section σ E

k in Pol
(
u(E)

)
given by

(σ E
k )m(A) := σk

(
iλ1

4π
, . . . ,

iλn

4π

)
, A ∈ u(Em) , m ∈ M ,

whereλi are the eigenvalues ofA, countedwithmultiplicities.Under the isomorphism
(4.6.38), σ E

k corresponds to the section σk
U induced by the Ad-invariant polynomial

σ U
k on u(n) defined by (4.6.15). Hence, Theorem 4.6.11 and Corollary 4.6.20 imply

that, under the deRham isomorphism, ck(E) is represented by the formhR(σ E
k ),where

R is the curvature endomorphism form of some connection on E compatible with
the fibre metric. Finally, we observe that the computation yielding the trace formulae
(4.6.19)–(4.6.22) for the forms representing the Chern classes of a principal bundle
carries over to hR(σ E

k ). As a result, we obtain the corresponding formulae for ck(E)

with Ω replaced by R.
We leave it to the reader to derive analogous statements for the Pontryagin classes

of real and quaternionic vector bundles and for the Euler class of an oriented real
vector bundle. For the latter, one finds that under the de Rham isomorphism, e(E) is
represented by the form hR(εE), where εE denotes the section in Pol

(
o(E)

)
defined by
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εEm(A) := pf

(
A

4π

)
, A ∈ o(Em) , m ∈ M .

�

Example 4.6.22 We derive a trace formula for the first Pontryagin class of the
adjoint bundle Ad(P) associated with a given principal bundle P with compact
structure group G over some manifold M. Recall that, by definition, p1(Ad(P)) =
−c2(Ad(P)C). By choosing a G-invariant scalar product on gC, we can turn the
complexification Ad(P)C = P ×G gC into a Hermitean vector bundle. Let Ω be the
curvature of some compatible connection on P and let R ∈ Ω2

(
M,End(Ad(P))

)

be the corresponding curvature endomorphism form induced on Ad(P). By prolon-
gation to the complexification, R defines a form RC ∈ Ω2

(
M,End(Ad(P)C)

)
and

the latter is the curvature endomorphism form induced by Ω on Ad(P)C. Thus, by
Remark 4.6.21 and (4.6.22),

c2
(
Ad(P)C

) = 1

8π2
trAd(P)C(R

C ∧ RC) .

Obviously, trAd(P)C(R
C ∧ RC) = trAd(P)(R ∧ R). Computation of the pullback of

trAd(P)(R ∧ R)
)
under the projection of P yields trg(adΩ ∧ adΩ). As a result, we

may write

p1(Ad(P)) = − 1

8π2
trg(adΩ ∧ adΩ) , (4.6.41)

where the right hand side is viewed as a form on M. �

Exercises

4.6.1 Check that the mapping SymG

(
g
)→ PolG(g), f 
→ f̂ , defined by (4.6.3) sat-

isfies f̂ g = f̂ ĝ.

4.6.2 Prove the polarization formula (4.6.4).

4.6.3 Prove that the mapping hα defined by (4.6.6) is a homomorphism, cf. point 1
of Proposition 4.6.4.

4.6.4 Let f be a smooth function in n real variables which is homogeneous of
degree k. Show that the functions

∂

∂xi1
· · · ∂

∂xil
f

are homogeneous of degree k − l for l ≤ k and that they vanish for l > k.

4.6.5 Prove formulae (4.6.16) and (4.6.18) for all n-dimensional complex square
matrices C.

4.6.6 Verify that the mapping s defined in (4.6.24) preserves the orientations.

4.6.7 Prove Lemma 4.6.18.
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4.7 Genera

The discussion in the previous section carries over without change from polynomials
to formal power series. For a vector space V , let FPS(V ) denote the vector space
of formal power series on V . For a vector bundle E, let FPS(E) denote the vector
bundle whose fibre at m ∈ M is given by FPS(Em).

Given a principal G-bundle P over M, the Weil homomorphism wP extends to a
homomorphism

wP : FPSG(g) → H∗
dR(M) .

Similarly, given a complex vector bundle E, the Weil homomorphism of E extends
to a homomorphism

wE : FPSU(n)(u(n)) → H∗
dR(M) ,

and a similar statement holds for real and quaternionic vector bundles. More gener-
ally, given α ∈ Ω2(M,E), the homomorphism hα defined by (4.6.33) extends to a
homomorphism

hα : Γ ∞(FPS(E)
)→ Ω∗(M) .

This gives rise to genera of vector bundles. Let us explain this in detail for the case
of complex vector bundles. Assume that we are given a formal power series

q(x) =
∑

l

alx
l

in one real variable x with real coefficients al and constant term a0 = 1. This series
defines a symmetric formal power series in n real variables x1, . . . , xn by

q(x1, . . . , xn) := q(x1) · · · q(xn) . (4.7.1)

Being symmetric, the latter defines an element qU of FPSU(n)u(n) by (4.6.15). Then,

qU(A) = q(λ1) · · · q(λn) , (4.7.2)

where λ1, . . . , λn denote the eigenvalues of iA
4π .

Given a complex vector bundle E of rank n over a manifold M, we can define

γ (E) := wE
(
qU
) ∈ H∗

dR(M) .

The class γ (E) is called the genus of the complex vector bundle E defined by the
formal power series q, or the q-genus of E for short. In the spirit of Remark 4.6.10,
we write

γ (E) = q

(
iΩ

2π

)
,
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where Ω is the curvature form of some connection on E.
Let us express γ in terms of the Chern classes. Being symmetric, every homo-

geneous component qk of q can be expressed as a polynomial in the elementary
symmetric polynomials,

qk(x1, . . . , xn) = Kk
(
σ1(x1, . . . , xn), . . . , σn(x1, . . . , xn)

)
. (4.7.3)

The following argument shows that the polynomialsKk do not depend on the number
of independent variables n. For clarity, let us display this number by writing q(n)

k and
K (n)
k . For l < n, we have

q(n)
k (x1, . . . , xl, 0, . . . , 0) = q(l)

k (x1, . . . , xl)

and

σi(x1, . . . , xl, 0, . . . , 0) =
{

σi(x1, . . . , xl) i ≤ l ,

0 i > l .

Hence,

q(l)
k (x1, . . . , xl) = q(n)

k (x1, . . . , xl, 0, . . . , 0)

= K (n)
k

(
σ1(x1, . . . , xl, 0, . . . , 0), . . . , σn(x1, . . . , xl, 0, . . . , 0)

)

= K (n)
k

(
σ1(x1, . . . , xl), . . . , σl(x1, . . . , xl), 0, . . . , 0

)
.

This shows that K (l)
k can be obtained from K (n)

k by setting the last n − l entries to 0.
Thus, ifwe extend the notation of elementary symmetric polynomials in n variables to
arbitrary order by setting σi(x1, . . . , xn) = 0 for i > n, then K (l)

k = K (n)
k , as asserted.

SinceKk can depend on σl with l ≤ k only, irrespective of the number of independent
variables we thus have qk = Kk(σ1, . . . , σk) and hence

qU
k = Kk(σ

U
1 , . . . , σ U

k ) , k = 0, 1, 2, . . . .

Applying the Weil homomorphism and using Theorem 4.6.11, we obtain that

γ (E) = 1 + γ1(E) + γ2(E) + · · · (4.7.4)

with
γk(E) = Kk

(
c1(E), . . . , ck(E)

) ∈ H2k
dR(M) (4.7.5)

under the de Rham isomorphism. That is, in effect, γk(E) is obtained by replacing
the elementary symmetric polynomials in Kk by the Chern classes.

By analogy, the formal power series q defines a genus for real vector bundles and
a genus for quaternionic vector bundles. In the above construction, we just replace
qU
k by qO

k and qSp

k , respectively. Thus, for a real or quaternionic vector bundle E, the
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genus defined by q is given by (4.7.4) with

γk(E) = Kk
(
p1(E), . . . , pk(E)

) ∈ H4k
dR(M) . (4.7.6)

According to (4.7.5) and (4.7.6), sometimes, the q-genus for complex vector bundles
is referred to as the Chern q-genus and the q-genus for real or quaternionic vector
bundles is referred to as the Pontryagin q-genus.

Proposition 4.7.1 Let q be a formal power series in one real variable with constant
coefficient 1 and let γ be the corresponding genus for K-vector bundles, K = R, C

or H.

1. The assignment E 
→ γ (E) defines a characteristic class for vector bundles.
2. For K-vector bundles E1, E2 over M, one has γ (E1 ⊕ E2) = γ (E1)γ (E2).

3. If E has rank 1, then γ (E) = 1 in the real case, γ (E) = q
(
c1(E)

)
in the complex

case and γ (E) = q
(
p1(E)

)
in the quaternionic case.

Proof 1. This follows from Corollary 4.6.8/2.
2. First, we show that if a1, . . . , ak and b1, . . . , bk are independent variables, and

if
ck :=

∑

i+j=k

aibj ,

then
Kk(c1, . . . , ck) =

∑

i+j=k

Ki(a1, . . . , ai)Kj(b1, . . . , bj) . (4.7.7)

By uniqueness of the polynomials Kk , it suffices to check this for ai and bi being
the elementary symmetric polynomials in the independent variables x1, . . . , xk and
y1, . . . , yk , respectively. Clearly, then ci = σi(x1, . . . , xk, y1, . . . , yk) . Hence,

Kk(c1, . . . , ck) = qk(x1, . . . , xk, y1, . . . , yk) .

Since q(x1, . . . , xk, y1, . . . , yk) = q(x1, . . . , xk)q(y1, . . . , yk), we obtain

qk(x1, . . . , xk, y1, . . . , yk) =
∑

i+j=k

qi(x1, . . . , xk) qj(y1, . . . , yk)

=
∑

i+j=k

Ki(a1, . . . , ai)Kj(b1, . . . , bj) .

This proves (4.7.7). Now, we use this to prove the assertion. In the complex case,
we plug in ci(E1) for ai and ci(E2) for bi. Then, Ki(a1, . . . , ai) = γi(E1) and
Kj(b1, . . . , bj) = γj(E2). Moreover, by theWhitney SumFormula, ck = ck(E1 ⊕ E2)

and hence Kk(c1, . . . , ck) = γk(E1 ⊕ E2). Thus, (4.7.7) yields the assertion. The
quaternionic case and the real case are analogous, cf. (4.4.20) for the latter.
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3. The real case is obvious, because p(E) = 1 ifE has rank1.Consider the complex
case. The quaternionic case is analogous. For one variable x, one has σ1(x) = x and
σk(x) = 0 for all k > 1. Hence,

q(x) = 1 + K1(x) + K2(x, 0) + · · · .

Plugging in c1(E) for x, we obtain

q
(
c1(E)

) = 1 + K1
(
c1(E)

)+ K2
(
c1(E), 0

)+ · · · .

Since ck(E) = 0 for all k > 1, the right hand side equals γ (E). �

Remark 4.7.2

1. In view of the Splitting Principle (Theorem 4.3.7), in the complex and the quater-
nionic case, γ is completely determined by points 2 and 3 of Proposition 4.7.1.

2. For each k, the k-th q-genus γk for complex vector bundles is the characteristic
class defined by

γ
U(n)
k := Kk

(
cU(n)

1 , . . . , cU(n)

k

) ∈ H2k
R

(BU(n)) ,

where, as usual, cU(n)

i = 0 in case i > n. One may call γ U(n)

k the k-th total genus of
U(n) defined by q. Clearly, the family γ

U(n)

k , k = 0, 1, 2, . . . does not define an
element of H∗

R
(BU(n)) unless q is just a polynomial. Similarly, the k-th genus γk

for real or quaternionic vector bundles is the characteristic class defined by

γ
O(n)
k := Kk

(
pO(n)

1 , . . . , pO(n)

k

) ∈ H4k
R

(BO(n)) ,

γ
Sp(n)
k := Kk

(
pSp(n)

1 , . . . , pSp(n)

k

) ∈ H4k
R

(BSp(n)) ,

respectively. �

The following genera will appear in Sects. 5.8 and 5.9.

Example 4.7.3 (Genera of vector bundles)

1. The Todd genus is the genus of complex vector bundles defined by the Taylor
series of the function

f (x) = x

1 − e−x

about x = 0. One has

q(x) = 1 + x

2
+

∞∑

k=1

(−1)k+1 B2k

(2k)! x
k ,

where Bl are the Bernoulli numbers, given by

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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B0 = 1 , B2 = 1

6
, B4 = − 1

30
, B6 = 1

42
, etc.

The first terms are

q(x) = 1 + x

2
+ x2

12
+ x4

720
+ · · · .

By expressing the k-th order term of q(x1, . . . , xn) in terms of σ1, . . . , σk , we
obtain

K1(σ1) = σ1

2
, K2(σ1, σ2) = σ2 + σ 2

1

12
, K3(σ1, σ2, σ3) = σ1σ2

24
, . . . .

Thus, writing T ≡ γ , for a complex vector bundle E we read off

T1(E) = c1(E)

2
, (4.7.8)

T2(E) = c2(E) + c1(E)2

12
, (4.7.9)

T3(E) = c1(E)c2(E)

24
. (4.7.10)

The Todd genus occurs in the Riemann–Roch Theorem 5.9.8.
2. The L-genus is the genus of real vector bundles defined by the Taylor series of

the function

f (x) =
√
x

tanh
√
x

about x = 0. One has

q(x) =
∞∑

k=0

22kB2k

(2k)! xk = 1 + x

3
− x2

45
+ 2x3

945
+ · · · ,

which leads to

K1(σ1) = σ1

3
,

K2(σ1, σ2) = 7σ2 − σ 2
1

45
,

K3(σ1, σ2, σ3) = 62σ3 − 13σ1σ2 + 2σ 3
1

945
,

etc. Thus, writing L ≡ γ , for a real vector bundle E we read off

http://dx.doi.org/10.1007/978-94-024-0959-8_5
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L1(E) = p1(E)

3
, (4.7.11)

L2(E) = 7p2(E) − p1(E)2

45
, (4.7.12)

L3(E) = 62p3(E) − 13p1(E)p2(E) + 2p1(E)3

945
, (4.7.13)

etc. The L-genus appears in the Hirzebruch Signature Theorem 5.9.6.
3. The Â-genus is the genus of real vector bundles defined by the Taylor series of

the analytic function

f (x) =
√
x/2

sinh
(√

x/2
) (4.7.14)

about x = 0. One has

q(x) =
∞∑

k=0

1 − 22k−1B2k

22k−1(2k)! xk = 1 − x

24
+ 7x2

5760
+ · · · ,

which leads to

K1(σ1) = −σ1

24
,

K2(σ1, σ2) = −4σ2 + 7σ 2
1

5760
,

etc. Thus, writing Â ≡ γ , for a real vector bundle E we read off

Â1(E) = − p1(E)

24
, (4.7.15)

Â2(E) = −4p2(E) + 7p1(E)2

5760
, (4.7.16)

etc. The Â-genus appears in the Atiyah–Singer Index Theorem 5.8.14. �

Via the tangent bundle or its complexification, the genera for vector bundles define
genera formanifolds. The latter will play a role in the discussion of theAtiyah–Singer
Index Theorem and its applications in Sects. 5.8 and 5.9, as well as in the discussion
of the instanton moduli space in Sect. 6.5. In what follows, we derive the properties
needed there.

Let us start with expressing the Â-genus of a real vector bundle E of even rank
n = 2l in terms of a determinant. Let q be the Taylor series of the analytic function
(4.7.14). By construction, for A ∈ o(2l),

qO(A) = q(x21) · · · q(x2l ) ,

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_6
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where ix1,−ix1, . . . , ixl,−ixl are the eigenvalues of A/(4π). We may assume
xi ≥ 0. Hence,

qO(A) =
√
x21/2

sinh

(√
x21/2

) · · ·
√
x2l /2

sinh
(√

x2l /2
)

= x1/2

sinh (x1/2)
· · · xl/2

sinh (xl/2)

=
( −x1/2

sinh (−x1/2)

x1/2

sinh (x1/2)
· · · −xl/2

sinh (−xl/2)

xl/2

sinh (xl/2)

) 1
2

= det
1
2

(
iA
8π

sinh
(
iA
8π

)

)

, (4.7.17)

where thematrix under the determinant is defined by plugging iA
8π as an argument into

the Taylor series about y = 0 of the analytic function y 
→ y
sinh y . As a consequence,

for a given real vector bundle E, we may write symbolically

Â(E) = det
1
2

(
iΩ
4π

sinh
(
iΩ
4π

)

)

(4.7.18)

with Ω being the curvature of some connection on E, and with the convention
that the right hand side is obtained by formally plugging iΩ

4π into the polynomial
det1/2(x/ sinh(x)) and replacing all products by wedge products, cf. Remark 4.6.10.

Next, let us discuss the Chern character. The formal series qU, qO and qSp can
be assigned to an arbitrary symmetric formal power series in several variables. For
example, given a formal power series q in one variable, instead of taking the product
(4.7.1) to produce a formal power series in several variables, one may as well take
the sum q(x1) + · · · + q(xn). This way, one may produce, for example, the series

χ(x1, . . . , xn) = ex1 + · · · + exn .

The corresponding Ad-invariant formal power series χU on u(n) is given by

χU(A) = tr

(
exp

(
iA

4π

))
, A ∈ u(n) . (4.7.19)

It defines the Chern character for principal U(n)-bundles P and for complex vector
bundles E of rank n,

ch(P) := wP(χ
U) , ch(E) := wE(χU) .
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According to (4.7.19) and Remark 4.6.10, we write

ch(P) = tr

(
exp

(
iΩ

2π

))
, (4.7.20)

where Ω is the curvature of some connection on P.

Remark 4.7.4 The Chern character of a complex vector bundle E can be expressed
directly in terms of a connection on E as follows. Choose a fibre metric on E and a
compatible connection ∇ and let R denote its curvature endomorphism form. Con-
sider the section q in FPS

(
u(E)

)
defined by

qm(A) := tr
(
e

iA
4π

)
, A ∈ (u(E)

)
m .

Via the homomorphism hR : Γ ∞(FPS(u(E))
)→ Ω∗(M) defined by (4.6.37), it ren-

ders a form hR(q) on M. A discussion analogous to Remark 4.6.21 yields that this
form represents ch(E). Therefore, we can write

ch(E) = tr

(
exp

(
iR

2π

))
. (4.7.21)

�

Since ch(E) is a characteristic class, it can be expressed as a polynomial in the Chern
classes. To find this polynomial, we have to rewrite the power sums xk1 + · · · + xkn in
terms of the elementary symmetric polynomials σl. This leads to

χ =
∞∑

k=0

1

k! P
χ

k

(
σ1, . . . , σk

)
(4.7.22)

with the polynomials

Pχ

k (y1, . . . , yk) = (−1)k
∑

l1,...,lk

k(l1 + · · · + lk − 1)!
l1! · · · lk! (−y1)

l1 · · · (−yn)
lk , (4.7.23)

where the sum runs over all sequences l1, . . . , lk of non-negative integers such that

l1 + 2l2 + · · · + klk = k ,

see [437] or Example 8 in Sect. I.2 of [418]. As a result, we obtain

ch(E) =
∞∑

k=0

1

k! P
χ

k

(
c1(E), . . . , ck(E)

)
. (4.7.24)
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In low orders, instead of using the general formula (4.7.23), it is easier to read off
Pk directly from (4.7.22). This way one finds (Exercise 4.7.2), for example, that in
case dim(M) ≤ 7,

ch(E) = n + c1(E) + 1

2
c1(E)2 − c2(E) + 1

6
c1(E)3 − 1

2
c1(E)c2(E) + 1

2
c3(E) .

(4.7.25)

Lemma 4.7.5 For complex line bundles L1, . . . ,Ln over a manifold M,

ch(L1 ⊕ · · · ⊕ Ln) = ec1(L1) + · · · + ec1(Ln) .

Proof Denote E := L1 ⊕ · · · ⊕ Ln and xi := c1(Li). By (4.7.24) and Corollary 4.3.4,

ch(E) =
∞∑

k=0

1

k! P
χ

k

(
c1(E), . . . , ck(E)

)

=
∞∑

k=0

1

k! P
χ

k

(
σ1
(
c1(L1), . . . , c1(Ln)

)
, . . . , σk

(
c1(L1), . . . , c1(Ln)

))
.

Now, (4.7.22) yields ch(E) = χ
(
c1(L1), . . . , c1(Ln)

)
and hence the assertion. �

Proposition 4.7.6 For complex vector bundles E1 and E2 over a manifold M,

ch(E1 ⊕ E2) = ch(E1) + ch(E2) , (4.7.26)

ch(E1 ⊗ E2) = ch(E1) ch(E2) . (4.7.27)

Proof By the Splitting Principle, it suffices to prove the assertions under the assump-
tion that E1 and E2 split into sums of line bundles,

E1 =
n1⊕

i=1

L1i , E2 =
n2⊕

i=1

L2i .

In this case, (4.7.26) is an immediate consequence of Lemma 4.7.5. Moreover, then

E1 ⊗ E2 =
n1⊕

i=1

n2⊕

j=1

L1i ⊗ L2j

and the lemma implies

ch (E1 ⊗ E2) =
n1∑

i=1

n2∑

j=1

ec1(L1i⊗L2j) . (4.7.28)



4.7 Genera 345

Since each L1i ⊗ L2j is a line bundle, (4.3.15) yields

ec1(L1i⊗L2j) = ec1(L1i)+c1(L2j) = ec1(L1i)ec1(L2j) ,

where we have used that the ring multiplication in H∗
R
(M) is commutative in even

degree. Plugging this into (4.7.28) and using the lemma once again, we obtain the
assertion. �

Exercises

4.7.1 Compute the genus γ of real, complex or quaternionic vector bundles defined
by the polynomial q(x) = 1 + x.

4.7.2 Express the Chern character of a complex vector bundle E over a manifold of
dimension dim(M) ≤ 7 in terms of the Chern classes (formula (4.7.25)).

4.8 The Postnikov Tower and Bundle Classification

Recall from Sect. 3.4 that, given a Lie group G, principal G-bundles over a manifold
M are classified up to vertical isomorphisms by homotopy classes of mappings from
M to the classifying space BG. In this section, we explain how to extract information
about principal G-bundles over manifolds of low dimension from an approximation
of BG by means of Eilenberg–MacLane spaces. The necessary facts about these
spaces are collected inAppendixG. Let us just state here that for everyAbelian group
A and everypositive integer k, there exists aCW-complexhavinghomotopygroupA in
dimension k and trivial homotopy groups in all other dimensions. This CW-complex
is unique up to homotopy equivalence and is referred to as the Eilenberg–MacLane
space K(A, k).

First, we discuss two cases where BG happens to coincide with an Eilenberg–
MacLane space, so that no approximation is needed. The first case is that of structure
group U(1).

Theorem 4.8.1 The assignment P → c1(P) induces a bijection from the set of ver-
tical isomorphism classes of principal U(1)-bundles over a manifold M onto the
cohomology group H2

Z
(M).

Proof Since the only nontrivial homotopy group of U(1) is π1(U(1)) = Z, from
the exact homotopy sequence of the universal U(1)-bundle bundle we read off that
the only nontrivial homotopy group of BU(1) is π2(BU(1)) = Z. Thus, BU(1) =
K(Z, 2) and (G.1) implies that for every manifold M we have a bijection

[M,BU(1)] → H2
Z
(M) , f 
→ f ∗γ ,

http://dx.doi.org/10.1007/978-94-024-0959-8_3
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where γ is a characteristic element17 of H2
Z
(K(Z, 2)). Since cU(1)

1 is a generator and
thus is characteristic, we may choose it for γ . This proves the theorem. �

Theorem 4.8.1 allows for complementing Corollary 4.2.8 on the orientability of
complex vector bundles.

Corollary 4.8.2 AprincipalU(n)-bundleP admits a reduction to the structure group
SU(n) iff c1(P) = 0. A complex vector bundle E is orientable iff c1(E) = 0.

Proof We give the argument for principal bundles. By Corollary 1.6.5, a reduction
of P to SU(n) exists iff the associated bundle Q := P ×U(n) U(n)/SU(n) is triv-
ial. Combining the embedding j ≡ jU1,n : U(1) → U(n) with the natural projection
to classes p : U(n) → U(n)/SU(n), we obtain an isomorphism ϕ = p ◦ j : U(1) →
U(n)/SU(n), which we use to view Q as a U(1)-bundle. Then, by Theorem 4.8.1, Q
is trivial iff c1(Q) = 0.

It remains to show that c1(Q) = c1(P). If f : M → BU(n) is a classifyingmapping
for P, then B(ϕ−1 ◦ p) ◦ f is a classifying mapping for Q. Thus,

c1(Q) = f ∗ ◦ B(ϕ−1 ◦ p)∗cU(1)

1 . (4.8.1)

Since ϕ−1 ◦ p ◦ j = idU(1), we have (Bj)∗ ◦ (B(ϕ−1 ◦ p))∗cU(1)

1 = cU(1)

1 and hence, by
Theorem 4.2.1, (B(ϕ−1 ◦ p))∗cU(1)

1 = cU(n)

1 . Thus, (4.8.1) yields c1(Q) = c1(P), as
asserted. �

The second case where BG is an Eilenberg–MacLane space is that of structure
group Zg , where g = 2, 3, . . . . According to Example 3.4.17/2, the action of Zg as
a subgroup of U(1) on S∞ turns S∞ into the universal principal Zg-bundle over L∞

g ,
the infinite lens space of order g. Thus, L∞

g may be taken as the classifying space
BZg . On the other hand, since S∞ is weakly contractible and the only nontrivial
homotopy group of Zg is π0(Zg) = Zg , from the exact homotopy sequence of the
bundle S∞ → L∞

g we read off that L∞
g is a model of the Eilenberg–MacLane space

K(Zg, 1). Accordingly,H1
Zg

(L∞
g ) is generated by a single element δg and this element

is characteristic. We will denote the corresponding Zg-valued characteristic class for
principal Zg-bundles by the same symbol. A similar argument as in the proof of
Theorem 4.8.1 yields the following.

Theorem 4.8.3 The assignment P → δg(P) induces a bijection from the vertical
isomorphism classes of principal Zg-bundles over a manifold M onto H1

Zg
(M). �

In case g = 2, we have Z2 = O(1) and δ2 is just the Stiefel–Whitney class wO(1)

1 .
Thus, by analogy with Corollary 4.8.2, Theorem 4.8.3 allows for complementing
Corollary 4.2.17 on orientability of real vector bundles (Exercise 4.8.1).

Corollary 4.8.4 A principal O(n)-bundle P admits a reduction to SO(n) iff
w1(P) = 0. A real vector bundle E is orientable iff w1(E) = 0. �

17An element of Hk
A(K(A, k)) is called characteristic if under the bijection Hk

A(K(A, k)) ∼=
Hom

(
Hk(K(A, k)),A

)
it corresponds to an isomorphism Hk(K(A, k)) → A.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_3
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Y3

...

q2

Y2

q1

Y

y3

y2

y1
Y1

Fig. 4.1 The Postnikov tower of a pathwise connected CW-complex

As a consequence, every simply connected manifold is orientable.
Now, we turn to the general situation where BG is not just an Eilenberg–MacLane

space, so that an approximation makes sense. In our presentation, we follow [287].
Recall that a continuous mapping f : X → Y of topological spaces is called an n-
equivalence if the induced homomorphism f∗ : πk(X) → πk(Y) is an isomorphism
for k < n and a surjection for k = n. An ∞-equivalence is the same as a weak
homotopy equivalence.

Theorem 4.8.5 (Postnikov tower) Let Y be a pathwise connected CW-complex. For
n = 1, 2, . . . , there exist CW-complexes Yn and continuous mappings yn : Y → Yn
and qn : Yn+1 → Yn such that, for every n,

1. yn is an n-equivalence,
2. qn ◦ yn+1 = yn,
3. Y1 is contractible and πk(Yn) = 0 for k ≥ n.

The assertion can be summarized by saying that one has an infinite commutative
diagram as shown in Fig. 4.1, with the spaces Yn being CW-complexes having prop-
erty 3.

Proof Let n be given. Since Y is a CW-complex, πn(Y) is finitely generated. Hence,
there exists a finite number of mappings

fi : (Sn, e1) → (Y , y0)

whose homotopy classes generate πn(Y). We use these mappings as attaching map-
pings for (n + 1)-cells to construct from Y a CW-complex X1. Consider the natural
inclusion mapping j : Y → X1. Being cellular, by the Cellular Approximation Theo-
rem,18 the inducedhomomorphism j∗ : πk(Y) → πk(X1)depends on the restriction of
j to the (k + 1)-skeletons Y (k+1) → X(k+1)

1 only. For k < n, we have Y (k+1) = X(k+1)
1

and hence j∗ is an isomorphism here. For k = n, by the Cellular Approximation The-
orem, up to homotopy, every mapping f : Sn → X1 may be chosen to take values in

18Every continuous mapping between CW-complexes is homotopic to a cellular mapping [287,
Theorem 4.8].
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X(n)
1 = Y (n), which implies that j∗ is surjective here. Thus, j is an n-equivalence. In

particular, πn(X1) is generated by the homotopy classes of the mappings j ◦ fi. Since
through the cells attached, the latter are homotopic to the constant mapping at y0,
we have πn(X1) = 0. Now, we repeat the procedure with Y replaced by X1 and n
replaced by n + 1 to embed X1 via an (n + 1)-equivalence into a CW-complex X2

with πn+1(X2) = 0. Iterating this, we finally obtain a CW-complex Yn which con-
tains Y as a subcomplex such that the natural inclusion mapping yn : Y → Yn is an
n-equivalence and πk(Y) = 0 for all k ≥ n.

To see that Y1 is contractible, we observe that due to πk(Y1) = 0 for all k, the con-
stant mapping Y1 → ∗ is a weak homotopy equivalence. Since Y1 is a CW-complex,
the Whitehead Theorem [598] yields that this mapping is in fact a homotopy equiv-
alence. Hence, Y1 is contractible, indeed.

It remains to construct the mappings qn. Since yn+1 is the natural inclusion
mapping of the subcomplex Y of Yn+1, the mapping qn must be the extension of
yn : Y → Yn to the ambient complex Yn+1. Since Yn+1\Y consists of cells of dimen-
sion n + 2 and larger, whereas πk(Yn) = 0 for all k ≥ n, such an extension exists and
can be chosen to be cellular (Exercise 4.8.2). �

Remark 4.8.6 From the construction in the proof we read off that theCW-complexes
Yn can be chosen so that Y (k)

n = Y (k) for all k ≤ n. �

While the cellular construction of the spaces Yn is elementary, it requires concrete
knowledge of the cell structure of Y and is therefore hardly manageable in the case
where Y is a classifying space of a Lie group. On the other hand, in order to use
the Postnikov tower for bundle classification, there is no need to know the spaces Yn
and the mappings qn in detail. If one replaces the spaces Yn by homotopy equivalent
spaces and redefines the mappings yn and qn appropriately, then yn is still an n-
equivalence and the relations qn ◦ yn+1 = yn continue to hold up to homotopy. Thus,
it is sufficient to know the homotopy types of the spaces Yn. The following theorem
provides information on that.

Recall that a CW-complex Y is said to be simple if it is pathwise connected and
if the natural action19 of π1(Y) on πk(Y) is trivial for all k.

Theorem 4.8.7 (Postnikov tower for simpleCW-complexes) Let Y be a simple CW-
complex. For n = 1, 2, 3, . . . , the CW-complex Yn+1 provided by Theorem 4.8.5 is
weakly homotopy equivalent to the total space of the pullback of the path-loop fibra-
tion over the Eilenberg–MacLane space K(πn(Y), n + 1) under some continuous
mapping θn : Yn → K(πn(Y), n + 1).

Let us add that according to the exact homotopy sequence of the path-loop fibration
over K(πn(Y), n + 1), the homotopy fibre of this fibration is a K(πn(Y), n). More-
over, since the homotopy type of the total space of a pullback fibration depends on the
homotopy class of the mapping only [287, Proposition 4.62], it suffices to determine
the homotopy classes of the mappings θn.

19Explained prior to Proposition 3.2.9.

http://dx.doi.org/10.1007/978-94-024-0959-8_3
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Proof By passing to the mapping cylinder20 of qn, which is homotopy equivalent
to Yn, we may assume that Yn+1 is a subcomplex of Yn and that qn is the natural
inclusion mapping.

First, we prove that

πk(Yn,Yn+1) =
{

πn(Y) k = n + 1 ,

0 k �= n + 1 .
(4.8.2)

Consider the exact homotopy sequence (3.2.4) of the pair (Yn,Yn+1),

· · · −→ πk(Yn+1)
qn∗−→ πk(Yn) −→ πk(Yn,Yn+1)

∂−→ πk−1(Yn+1)
qn∗−→ πk−1(Yn) −→ · · ·

with the connecting homomorphism ∂ . By Remark 4.8.6, for k < n, we have
Y (k+1)
n = Y (k+1) = Y (k+1)

n+1 . Hence, in this case, the Cellular Approximation Theo-
rem yields that both qn∗ in this sequence are isomorphisms. By exactness, then
πk(Yn,Yn+1) = 0. For k = n, the right qn∗ is still an isomorphism, but now πk(Yn) =
0. Hence, still, πn(Xn,Xn+1) = 0. For k ≥ n + 1, we have πk(Yn) = πk−1(Yn) = 0
and thus ∂ is an isomorphism here. Putting k = n + 1, we obtain πn+1(Yn,Yn+1) =
πn(Yn+1) = πn(Y) , because yn+1 is an (n + 1)-equivalence. For all higher k, we
obtain πk(Yn,Yn+1) = πk−1(Yn+1) = 0. This proves (4.8.2).

Next, we show that

πk(Yn/Yn+1) =
{

πn(Y) k = n + 1 ,

0 k ≤ n .
(4.8.3)

That πk(Yn/Yn+1) is trivial for all k ≤ n follows from the fact that due to Y (n)
n =

Y (n) = Y (n)
n+1, the quotient space Yn/Yn+1 consists of cells of dimension n + 1 and

higher only. As a consequence, the absolute Hurewicz Theorem yields

πn+1(Yn/Yn+1) ∼= Hn+1(Yn/Yn+1) .

On the other hand, ∂ is equivariant with respect to the actions of π1(Yn+1) on
πn+1(Yn,Yn+1) and πn(Yn+1). Since yn+1 is an n-equivalence, π1(Yn+1) = π1(Y) and
πn(Yn+1) = πn(Y). It follows that simplicity of Y implies that the action of π1(Yn+1)

on πn+1(Yn,Yn+1) is trivial. Hence, in view of (4.8.2), the relative Hurewicz The-
orem21 yields πn+1(Yn,Yn+1) ∼= Hn+1(Yn,Yn+1) and thus Hn+1(Yn,Yn+1) ∼= πn(Y).
Since Hn+1(Yn/Yn+1) ∼= Hn+1(Yn,Yn+1), this proves (4.8.3).

Now, by the procedure of attaching cells used in the proof of Theorem 4.8.5 to
construct Yn from Y , we can construct a CW-complex Kn from Yn/Yn+1 which has
trivial homotopy groups in dimension n + 2 and larger and is thus a model of the

20The mapping cylinder of f : X → Y is the quotient space of (X × I) � Y obtained by identifying
each pair (x, 1) ∈ X × I with the point f (x) ∈ Y .
21See for example [287, Theorem 4.37].

http://dx.doi.org/10.1007/978-94-024-0959-8_3
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Eilenberg–MacLane space K(πn(Y), n + 1). As a base point, we choose the point
k0 ∈ Yn/Yn+1 ⊂ Kn to which Yn+1 is contracted. Define

θn : Yn → Yn/Yn+1 → Kn ,

where the first mapping is the natural projection to classes and the second mapping is
the natural inclusion mapping. Our next aim is to show that Yn+1 is weakly homotopy
equivalent to the homotopy fibre of θn.

According to Proposition 3.2.16, θn decomposes as

θn : Yn j−→ E
p−→ Kn ,

where j is a homotopy equivalence and p is a fibration. Since, by construction,
θn ◦ qn sends Yn+1 to k0, the composition j ◦ qn sends Yn+1 to the fibre F = p−1(k0).
The exact homotopy sequences of the pairs (E,F) and (Yn,Yn+1) combine to the
following commutative diagram with exact rows and with the vertical arrows given
by inclusion:

πk+1(Yn) ��

��

πk+1(Yn,Yn+1) ��

��

πk(Yn+1) ��

��

πk(Yn) ��

��

πk(Yn,Yn+1)

��
πk+1(E) �� πk+1(E,F) �� πk(F) �� πk(E) �� πk(E,F)

Since Yn is a strong deformation retract of E, the first and the fourth vertical arrow
are isomorphisms for all k. By Lemma 3.2.7, πk(E,F) = πk(Kn). Comparing this
with (4.8.2), we find that the second and the fifth vertical arrow are isomorphisms
for all k, too. Now, the Five Lemma22 implies that the central vertical arrow is an
isomorphism for all k. This proves that Yn+1 is weakly homotopy equivalent to F,
indeed.

Finally, we prove that F is homeomorphic to the total space of the pullback
fibration θ∗

nPKn. We have

θ∗
nPKn = {(y, γ ) ∈ Yn+1 × C(I,Kn) : γ (0) = k0, γ (1) = θn(y)} ,

whereC(I,Kn) carries the compact-open topology. On the other hand, from the proof
of Proposition 3.2.16 we read off

F = {(y, γ ) ∈ Yn+1 × C(I,Kn) : γ (0) = θn(y), γ (1) = k0} .

Thus, the assignment (y, γ ) 
→ (y, γ −1) yields a bijection between θ∗
nPKn and F.

Since the mapping γ 
→ γ −1 is continuous relative to the compact-open topology,
this bijection is a homeomorphism. This completes the proof of Theorem 4.8.7. �

22If the diagram is commutative, if the rows are exact and if the vertical arrows except for that in
the middle are isomorphisms, then the arrow in the middle is an isomorphism, too.

http://dx.doi.org/10.1007/978-94-024-0959-8_3
http://dx.doi.org/10.1007/978-94-024-0959-8_3
http://dx.doi.org/10.1007/978-94-024-0959-8_3
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As an application,we useTheorems 4.8.5 and 4.8.7 to classify principalU(n)-bundles
over manifolds of dimension dimM ≤ 4. This argument belongs to Avis and Isham
[43].

Denote Y = BU(n). Since π1(BU(n)) = π0(U(n)) = 0, the space Y is trivially
simple and the assumption of Theorem 4.8.7 is fulfilled. We use the option to replace
the spaces Yn provided by Theorem 4.8.5 by homotopy equivalent spaces, cf. the
discussion prior to Theorem 4.8.7.

At stage 1, Y1 is contractible and may thus be replaced by Y1 = ∗.
At stage 2, Y2 is weakly homotopy equivalent to the total space of the pullback of

the path loop fibration over K(π1(Y), 2) under a mapping θ1 : Y1 → K(π1(Y), 2).
Since Y1 = ∗, Y2 coincides with the corresponding homotopy fibre, which is a
K(π1(Y), 1). Since π1(Y) = 0, we obtain that Y2 is weakly homotopy equivalent
to ∗. Being a CW-complex, it is then homotopy equivalent to ∗ and may thus be
replaced by Y2 = ∗.

At stage 3, Y3 is weakly homotopy equivalent to the total space of the pullback of
the path loop fibration over K(π2(Y), 3) under a mapping θ2 : Y2 → K(π2(Y), 3).
Since Y2 = ∗ and π2(Y) = π1(U(n)) = Z, we obtain that Y3 is weakly homotopy
equivalent to K(Z, 2). Thinking of K(Z, 2) as being realized by a CW-complex,
it follows that Y3 is homotopy equivalent to K(Z, 2) and thus may be replaced by
Y3 = K(Z, 2).

At stage 4, Y4 is weakly homotopy equivalent to the total space of the pullback of
the path loop fibration over K(π3(Y), 4) under a mapping θ3 : Y3 → K(π3(Y), 4).
Since π3(Y) = π2(U(n)) = 0, we have K(π3(Y), 4) = ∗. Thus, Y4 is weakly homo-
topy equivalent to Y3 and may thus be replaced by Y4 = Y3 = K(Z, 2).

At stage 5, Y5 is weakly homotopy equivalent to the total space of the pullback of
the path loop fibration over K(π4(Y), 5) under a mapping θ4 : Y4 → K(π4(Y), 5).
Since π4(Y) = π3(U(n)) = Z and Y4 = Y3 = K(Z, 2), we have θ4 : K(Z, 2) →
K(Z, 5). Thus, we have to determine

[
K(Z, 2),K(Z, 5)

]
. According to (G.1), we

have a bijection [
K(Z, 2),K(Z, 5)

] = H5
Z
(K(Z, 2)) .

According to Appendix G, K(Z, 2) may be realized as CP∞ and thus has trivial
cohomology groups in odd dimension. It follows that θ4 is homotopic to a constant
mapping and thus Y5 is weakly homotopy equivalent to the direct product of K(Z, 2)
with the homotopy fibre, which is a K(Z, 4). Thus, realizing K(Z, 4) as a CW-
complex, we finally may replace

Y5 = K(Z, 2) × K(Z, 4) . (4.8.4)

Let us use this to classify principal U(n)-bundles over a manifold M of dimen-
sion 4 or less. By the very definition of the classifying space BU(n), vertical
isomorphism classes of such bundles are in bijective correspondence with homo-
topy classes [M,BU(n)]. Composition with the 5-equivalence y5 yields a bijection
[M,BU(n)] → [M,Y5]. Using in addition (4.8.4), Corollary 3.1.3 and, once again,
(G.1), we obtain a bijection

http://dx.doi.org/10.1007/978-94-024-0959-8_3
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[M,BU(n)] → H2
Z
(M) × H4

Z
(M) , f 
→ (

(pr1 ◦y5 ◦ f )∗γ2, (pr2 ◦y5 ◦ f )∗γ4
)
,

where γk is a generator ofHk
Z
(K(Z, k)). Since y5 is a 5-equivalence, (pr1 ◦y5)∗γ2 is a

generator of H2
Z
(BU(n)) and (pr2 ◦y5)∗γ4 is a generator of H4

Z
(BU(n)). By possibly

redefining γ2 and γ4, we can achieve that (pr1 ◦y5)∗γ2 = cU(n)

1 and (pr2 ◦y5)∗γ4 = cU(n)

2 .
As a consequence, we obtain a bijection

[M,BU(n)] → H2
Z
(M) × H4

Z
(M) , f 
→ (

f ∗cU(n)

1 , f ∗cU(n)

2

)
.

This translates into the following classification result.

Theorem 4.8.8 For a manifold M of dimension ≤4, the assignment

P 
→ (
c1(P), c2(P)

)

induces a bijection from the set of vertical isomorphism classes of principal U(n)-
bundles over M onto the direct product H2

Z
(M) × H4

Z
(M). �

As an immediate consequence, the assignment P 
→ c2(P) induces a bijection from
the set of vertical isomorphism classes of principal SU(n)-bundles over M onto
H4

Z
(M). Clearly, Theorem 4.8.8 carries over to complex vector bundles over M.
In Sect. 8.6, we will present another application of the approximation method

described here.

Exercises

4.8.1 Adapt the proof of Corollary 4.8.2 to the situation of Corollary 4.8.4.

4.8.2 Prove the following statement, known as the Extension Lemma. Let X, Y be
CW-complexes and let A ⊂ X be a subcomplex. If πk(Y) = 0 for every k such that
X\A contains (k + 1)-cells, then every cellular mapping A → Y admits a cellular
extension.

http://dx.doi.org/10.1007/978-94-024-0959-8_8


Chapter 5
Clifford Algebras, Spin Structures
and Dirac Operators

In this chapter we study the theory of Dirac operators in a systematic way. In
Sects. 5.1–5.3, we present the algebraic basics: we discuss the theory of Clifford
algebras and spinor groups, together with their representations. Next, in Sect. 5.4,
we study spin- and Spinc-structures on Riemannian manifolds including a num-
ber of relevant examples. The basic geometric structure of this chapter is that of a
Dirac bundle, that is, a Riemannian (or Hermitean) Clifford module bundle over a
(pseudo-)Riemannianmanifold endowedwith aClifford connection.Associatedwith
a Dirac bundle, one has a natural first order differential operator acting on sections of
that bundle, called the Dirac operator. In Sect. 5.5, all these structures are discussed
in a systematic way. In Dirac operator theory, one of the basic technical ingredi-
ents are Weitzenboeck type formulae. These will be derived in Sect. 5.6. Next, in
Sect. 5.7, we give a short introduction to the theory of elliptic differential operators
in the context of Sobolev spaces. We prove that the Dirac operator and its square
are elliptic and Fredholm and we give a proof of the Hodge Decomposition Theo-
rem. Finally, we discuss the classical elliptic complexes. Section5.8 is devoted to
the Atiyah–Singer Index Theorem. We give a complete proof of this theorem via
the heat kernel method using Getzler rescaling. We also discuss the generalization
of this theorem to families of Dirac operators in some detail, but we do not give a
proof for that case. Finally, in Sect. 5.9, we outline how the index theorems for the
classical elliptic complexes follow from the general Atiyah–Singer Index Theorem.
For the Gauß–Bonnet Theorem we give a full proof.
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354 5 Clifford Algebras, Spin Structures and Dirac Operators

5.1 Clifford Algebras

Let us consider a finite-dimensional vector space1 V over a commutative field K of
characteristic zero endowed with a quadratic form q. The pair (V , q) will be called
a quadratic space. Let

T (V) :=
∞⊕

k=0

( k⊗
V
)

be the tensor algebra over V and letIq(V) be the two-sided ideal inT (V) generated
by elements of the form {v ⊗ v − q(v)1} where v ∈ V .

Definition 5.1.1 The Clifford algebra Cl(V , q) of the quadratic space (V , q) is the
quotient algebra defined by

Cl(V , q) := T (V)/Iq(V) . (5.1.1)

By this definition, the canonical projection ρ : T (V) → Cl(V , q) is an algebra
homomorphism endowing Cl(V , q) with the structure of an associative algebra with
unit. First, note that the inclusion K → T (V) obviously descends to an inclusion
K → Cl(V , q). Next, since the elements of V generate T (V) multiplicatively, they
also generateCl(V , q). Moreover, there is a natural linear mapping j : V → Cl(V , q)
given by the restriction of ρ to the vector subspace V ⊂ T (V). By construction, j is
injective and fulfils

j(v)2 = q(v)1 , v ∈ V . (5.1.2)

Therefore, we may view V as a linear subspace of Cl(V , q).2 By (5.1.2), Cl(V , 0)
coincides as an algebra with the exterior algebra

∧∗V . Since the characteristic of K

is by assumption different from 2,

j(u) · j(v)+ j(v) · j(u) = 2η(u, v) , u, v ∈ V , (5.1.3)

where 2η(u, v) = q(u + v) − q(u) − q(v) is the unique symmetric bilinear form
obtained by polarizing q.

The Clifford algebra has the following universal property.

Proposition 5.1.2 (Universal property) Let F : V → A be a linear mapping into a
unital associative K-algebra fulfilling

F(v)2 = q(v)1 , v ∈ V . (5.1.4)

1Most of the statements of this section hold for infinite-dimensional V as well, see e.g. [407].
2If there will be no danger of confusion, we will sometimes omit the symbol j.
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Then, F extends to a unique K-algebra homomorphism F̂ : Cl(V , q)→ A fulfilling
F = F̂ ◦ j.

By analogy, in case K = C, every anti-linear mapping extends uniquely to an anti-
homomorphism.

Proof Every linearmappingF : V → A extends to a unique algebra homomorphism
F̃ : T (V)→ A and, by (5.1.4), F̃ vanishes identically onIq(V). Thus, F̃ descends
to a homomorphism F̂ : Cl(V , q)→ A fulfilling

F̂ ◦ j(v) = F̂ ◦ ρ(v) = F̃(v) = F(v) , v ∈ V .

This property implies the uniqueness of F̂, because it uniquely determines F̂ on the
set j(V) generating Cl(V , q). �

Corollary 5.1.3 For a quadratic space (V , q), the Clifford algebra Cl(V , q) is
unique up to an isomorphism. That is, any unital associative K-algebra B such
that

(a) there exists a linear mapping i : V → B,
(b) for a unital associative K-algebra A, any linear mapping F : V → A fulfilling

(5.1.4) extends to a unique algebra homomorphism F̂ : B → A fulfilling F =
F̂ ◦ i,

is isomorphic to Cl(V , q).

Proof For simplicity, let us denote C = Cl(V , q). Putting A = C and F = j, we
conclude that j extends to a unique homomorphism ĵ : B → C fulfilling j = ĵ ◦ i.
By the same arguments, i extends to a unique homomorphism î : C → B fulfilling
i = î ◦ j. Thus, we obtain

i = (î ◦ ĵ) ◦ i , j = (ĵ ◦ î) ◦ j ,

that is, the restrictions of î ◦ ĵ : B → B and ĵ ◦ î : C → C to i(V) and j(V),
respectively, coincide with the restrictions of the identical mappings idB and idC.
Thus, again by the uniqueness property of extensions, î ◦ ĵ = idB and ĵ ◦ î = idC
showing that ĵ : B → C is an algebra isomorphism. �

Wenote that the properties (a) and (b) in Corollary 5.1.3may be taken as an axiomatic
definition of the Clifford algebra. Each of the subsequent propositions of this section
is a consequence of the universal property.

Proposition 5.1.4 (Parity automorphism) Every Clifford algebra Cl(V , q) admits a
unique involutive automorphism induced from the linear mapping

F : V → Cl(V , q) , F(v) := −j(v) .
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Proof By definition of F, for every v ∈ V , we have F(v)2 = (−j(v))2 = q(v) · 1.
Thus, there exists a unique algebra homomorphism p : Cl(V , q) → Cl(V , q) such
that p ◦ j(v) = −j(v). Since, for any v ∈ V ,

p ◦ p ◦ j(v) = −p ◦ j(v) = j(v) ,

p2 is the identity on the generating set j(V) and, therefore, on the whole of Cl(V , q).
In particular, p is bijective. �

The element p ∈ Aut(Cl(V , q)) will be called the parity automorphism of Cl(V , q).
Given an algebra A, by definition, the opposite algebra AT is the unique algebra

which coincides withA as a vector space and whose multiplication ∗ is induced from
the multiplication · of A by reversing the order. Thus, the identical mapping yields
an isomorphism of algebras ϕ : A → AT fulfilling

ϕ(a · b) = ϕ(a) ∗ ϕ(b) = b · a .

Proposition 5.1.5 (Canonical anti-automorphism) Any Clifford algebra Cl(V , q)
admits a unique involutive anti-automorphism induced from the linear mapping

F : V → Cl(V , q)T , F(v) := ϕ ◦ j(v) .

Proof Let ∗ be the multiplication in Cl(V , q)T. Since, for every v ∈ V ,

F(v) ∗ F(v) = ϕ(j(v)) ∗ ϕ(j(v)) = j(v) · j(v) = q(v) · 1 ,

there exists an algebra homomorphism F̂ : Cl(V , q)→ Cl(V , q)T fulfilling F̂◦j = F.
Then,

t := ϕ−1 ◦ F̂ : Cl(V , q)→ Cl(V , q)

fulfils t ◦ j = j and, thus, it is an involution. Moreover, for any a, b ∈ Cl(V , q),

t(a · b) = ϕ−1 ◦ F̂(a · b) = ϕ−1(F̂(a) ∗ F̂(b)) = (ϕ−1 ◦ F̂(b)) · (ϕ−1 ◦ F̂(a)) ,

that is, t(a · b) = t(b) · t(a) showing that t is an anti-automorphism. �

Themapping t will be called the canonical anti-automorphism. Occasionally, we will
write t(a) ≡ aT.

Remark 5.1.6

1. The parity automorphism p induces a Z2-grading of Cl(V , q). Indeed, since p2 =
id, we may decompose the Clifford algebra into an even and an odd part:

Cl(V , q) = Cl0(V , q)⊕ Cl1(V , q) , (5.1.5)
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where Clk(V , q) = {
a ∈ Cl(V , q) : p(a) = (−1)ka

}
, k = 0, 1 , are the eigen-

spaces of p corresponding to the eigenvalues ±1. Clearly,

Clk(V , q) · Cll(V , q) ⊂ Clk+l(V , q) ,

where the indices are taken modulo 2. In particular, Cl0(V , q) is a subalgebra.
2. The canonical anti-automorphism t is obtained more directly as follows. The

tensor algebra carries a unique involutive anti-automorphismgiven by v1⊗. . .⊗vr
�→ vr ⊗ . . . ⊗ v1. Note that this mapping coincides with the identity on V ⊂
T (V) and that it leaves the ideal Iq(V) invariant. Thus, it descends to an anti-
automorphism ofCl(V , q)which coincides with t on j(V) and, thus, on the whole
of Cl(V , q).

3. Clearly, p ◦ t = t ◦ p. �
Proposition 5.1.7 The Clifford algebra of the direct sum (V1 ⊕ V2, q1 ⊕ q2) of
two quadratic spaces (V1, q1) and (V2, q2) is isomorphic to the Z2-graded tensor
product3 of their Clifford algebras,

Cl(V1 ⊕ V2, q1 ⊕ q2) ∼= Cl(V1, q1) ⊗̂Cl(V2, q2) .

Proof Consider the linear mapping

F : V1 ⊕ V2 → Cl(V1, q1) ⊗̂Cl(V2, q2) , F(v1, v2) := j1(v1)⊗ 1 + 1 ⊗ j2(v2) .

Then, omitting the symbols j1 and j2, we calculate

(F(v1, v2))
2 = (v1 ⊗ 1+ 1⊗ v2)

2 = v21 ⊗ 1+ 1⊗ v22 = (q1(v1)+ q2(v2)) · (1⊗ 1) .

That is, (F(v1, v2))2 = (q1 ⊕ q2)(v1, v2) · 1 and, thus, there exists a unique algebra
homomorphism F̂ : Cl(V1 ⊕ V2, q1 ⊕ q2) → Cl(V1, q1) ⊗̂Cl(V2, q2). Clearly, F̂
is surjective, because its image is a subalgebra containing Cl(V1, q1) ⊗ 1 and 1 ⊗
Cl(V2, q2). It is also injective, because it is one-to-one on elements of V1 ⊕ V2

generating Cl(V1 ⊕ V2, q1 ⊕ q2). �
This proposition implies the following.

Corollary 5.1.8 Let (V , q) be an n-dimensional quadratic K-vector space. Then,
the vector space Cl(V , q) has dimension 2n.

3Let A and B be two Z2-graded unital K-algebras with decompositions A = A0 ⊕ A1 and B =
B0 ⊕ B1. Then, A⊗̂B is the Z2-graded algebra whose even and odd parts are given by

(A⊗̂B)0 := (A0 ⊗ B0)⊕ (A1 ⊗ B1) , (A⊗̂B)1 := (A1 ⊗ B0)⊕ (A0 ⊗ B1) ,

and whose multiplication law reads as follows:

(a ⊗ bj) · (ai ⊗ b) := (−1)ij(a · ai)⊗ (b · bj) , a ∈ A, b ∈ B, ai ∈ Ai , bj ∈ Bj .
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Proof By a classical Theorem of Lagrange, every finite-dimensional bilinear form
can be diagonalized. Thus, the quadratic form q may be viewed as the sum of n
one-dimensional quadratic forms, q = q1 ⊕ . . .⊕ qn. Clearly, the tensor algebra of a
1-dimensional vector spaceW coincides with the polynomial ring generated by one
element, T (W) = K[a]. Thus, the Clifford algebras of the 1-dimensional quadratic
forms qi on K are given by

Cl(Vi, qi) ∼= K[a]/ {a2 − qi(v)1
}
, j(v) = a ,

that is, they are 2-dimensional. Now, Proposition 5.1.7 implies the assertion. �

Remark 5.1.9 (Basis of a Clifford algebra) Let (V , q) be an n-dimensional quadratic
space. Since V ⊂ Cl(V , q) generates Cl(V , q) multiplicatively, any basis e1, . . . , en
of V generatesCl(V , q)multiplicatively as well. Viewed as elements4 of the Clifford
algebra, the elements ei are subject to the following relations:

ei · ej + ej · ei = 2η(ei, ej) . (5.1.6)

Here, η is the bilinear form of q, cf. formula (5.1.3). Thus, the 2n elements

1, ei1 · . . . · eik , 1 ≤ i1 < . . . < ik ≤ n , 1 ≤ k ≤ n ,

span Cl(V , q) and, by Corollary 5.1.8, they form a vector space basis. In conclusion,
the relation (5.1.6) is defining for Cl(V , q). �

Given a q-orthogonal basis e1, . . . , en of V , by the above remark, the mapping

1 �→ 1 , ei1 · . . . · eik �→ ei1 ∧ · · · ∧ eik (5.1.7)

yields a vector space isomorphism Cl(V , q) ∼= ∧
V , where

∧
V denotes the exterior

algebra over V . We show that this isomorphism does not depend on the choice
of a basis. For that purpose, recall from Remark 2.7.9 the contraction mapping
ι : V∗ → End(

∧
V) and the operation of exterior multiplication ε.

Proposition 5.1.10 As vector spaces, the Clifford algebra Cl(V , q) and the exterior
algebra

∧
V are canonically isomorphic.

Proof Consider the mapping

F : V → End(
∧
V) , F(v)α := v ∧ α + η(v)�α , (5.1.8)

where η is viewed as a mapping η : V → V∗. One easily shows (Exercise 5.1.1):

F(v)2α = q(v)α , α ∈ ∧
V . (5.1.9)

4We omit the mapping j.

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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Thus, the universal property implies the existence of an algebra homomorphism
F̂ : Cl(V , q) → End(

∧
V) which, composed with the evaluation mapping at the

identity 1∧ of
∧
V , yields a linear mapping

σ : Cl(V , q)→ ∧
V , σ (a) := F̂(a)

(
1∧
)
. (5.1.10)

It is easy to check (Exercise 5.1.1) that for a chosen orthogonal basis e1, . . . , en of
V , this mapping coincides with the mapping (5.1.7). Thus, σ is an isomorphism of
vector spaces. �

Remark 5.1.11

1. The isomorphism σ will be called the symbol mapping. Via σ , the parity auto-
morphism p and the canonical anti-automorphism t are transported to

∧
V in an

obvious way. The inverse c : ∧V → Cl(V , q) of σ will be referred to as the
quantization mapping. By (5.1.7), for a chosen q-orthogonal basis e1, . . . , en of
V , it is given by c(1) = 1 and

c(ei1 ∧· · ·∧eik ) = ei1 · . . . ·eik , 1 ≤ i1 < . . . < ik ≤ n , 1 ≤ k ≤ n . (5.1.11)

In particular, we see that the Z-grading of
∧
V defined by the form degree cor-

responds to the vector space Z-grading of Cl(V , q) inherited from the tensor
algebra.

2. The Clifford algebra has a natural increasing filtration Cl(V , q) = ⋃
i Cli(V , q)

defined by

Cli(V , q) =
i⊕

k=0

c(
∧kV) ,

see [72] and [407] for further details.
3. For q = 0, c and σ are algebra isomorphisms. �

In the remainder of this section, we study the special case of the real vector space
V = R

r+s, endowed with the pseudo-Euclidean quadratic form

q(x) = x21 + . . .+ x2r − x2r+1 − . . .− x2r+s , (5.1.12)

where x = (x1, . . . , xr+s) in the standard basis of R
r+s. In the sequel, this quadratic

space will be also denoted by R
r,s. For the corresponding Clifford algebra, we write

Clr,s andwe call it the pseudo-orthogonal Clifford algebra of type (r, s). In particular,
we put Cln := Cln,0 and Cl∗n := Cl0,n.

Remark 5.1.12 By Remark 5.1.9, Clr,s is multiplicatively generated by any q-
orthonormal basis e1, . . . , er+s of R

r+s under the relations
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ei · ej + ej · ei =
{

2δij for i ≤ r ,
−2δij for i > r .

(5.1.13)

�

LetK(n) denote the algebra of n×n-matrices with entries inK. This is a real algebra
for K = R,H and a complex one for K = C.

Example 5.1.13 (Low-dimensional Clifford algebras Clr,s) By the universal prop-
erty, an associative algebra A of dimension 2r+s is isomorphic to Clr,s if there exists
a linear mapping F : R

r,s → A fulfilling

F(ei) · F(ej)+ F(ej) · F(ei) =
{

2δij for i ≤ r
−2δij for i > r

Thus, to presentClr,s explicitly asmatrix algebras, it is enough tofind such amapping.
This way, for the cases r + s ≤ 2, one obtains the isomorphisms

Cl0,1 = C , Cl1,0 = R ⊕ R , Cl0,2 = H , Cl2,0 = R(2) , Cl1,1 = R(2) ,
(5.1.14)

with F given as follows:

Cl0,1 : F(e1) = i , Cl1,0 : F(e1) = (1,−1) ,

Cl0,2 : F(e1) =
[
i 0
0 −i

]
, F(e2) =

[
0 i
i 0

]
,

Cl1,1 : F(e1) =
[
0 1
1 0

]
, F(e2) =

[
0 −1
1 0

]
,

Cl2,0 : F(e1) =
[
0 1
1 0

]
, F(e2) =

[
1 0
0 −1

]
.

The reader can check the condition (5.1.4) in each case (Exercise 5.1.2). �

Together with the Clifford algebras Clr,s, let us consider their complexifications
Clr,s ⊗R C.

Proposition 5.1.14 Let (V , q) be a real quadratic space and let (VC, qC) be its
complexification.5 Then, the following isomorphism of complex algebras holds:

Cl(VC, qC) ∼= Cl(V , q)⊗R C . (5.1.15)

5Here, qC(v ⊗ z) = z2q(v).
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Proof Consider the mapping

F : V ⊗R C → Cl(V , q)⊗R C , F(v ⊗ z) := j(v)⊗ z .

Then,
F(v ⊗ z)2 = j(v)2 ⊗ z2 = q(v)z2 · 1 ⊗ 1 = q(v ⊗ z) · 1 ,

and, thus, the universal property yields the assertion. �

We denote Clcn := Cl(Cn, qC). Since every non-degenerate quadratic form q over C

can be written in some orthonormal basis as q(z1, . . . , zn) = z21 + . . .+ z2n, we have

Clcn ∼= Cln,0 ⊗R C ∼= Cln−1,1 ⊗R C ∼= . . . ∼= Cl0,n ⊗R C , (5.1.16)

that is, all Clr,s are real forms of Clcr+s.
The first of the following two propositions allows for an explicit calculation of

the algebras Clr,s as matrix algebras over R,C or H, the second one is useful in
representation theory.

Proposition 5.1.15 For the pseudo-orthogonal Clifford algebras, the following iso-
morphisms hold:

Cln,0 ⊗ Cl0,2 ∼= Cl0,n+2 , (5.1.17)

Cl0,n ⊗ Cl2,0 ∼= Cln+2,0 , (5.1.18)

Clr,s ⊗ Cl1,1 ∼= Clr+1,s+1 . (5.1.19)

Proof We give the proof of the isomorphism (5.1.17). The proof of the remaining
two assertions is similar and is, therefore, left to the reader (Exercise 5.1.3). Let
e1, . . . , en+2 be a q-orthonormal basis of R

0,n+2 generating Cl0,n+2. Then, the first n
of these vectors generate the algebras Cl0,n and Cln,0. Viewed as generators of Cln,0,
they are denoted by e′

1, . . . , e
′
n. We define

F : R
0,n+2 → Cln,0 ⊗ Cl0,2 , F(ei) := 1 ⊗ ei , F(ek) := e′

k−2 ⊗ e1 · e2 ,

for i = 1, 2 and 3 ≤ k ≤ n + 2. We calculate, for i = 1, 2,

F(ei)2 = (1 ⊗ ei) · (1 ⊗ ei) = 1 ⊗ e2i = −1 ,

and, for 3 ≤ k ≤ n + 2,

F(ek)2 = (e′
k−2 ⊗ e1 · e2) · (e′

k−2 ⊗ e1 · e2) = (e′
k−2)

2 ⊗ e1 · e2 · e1 · e2 .

Since (e′
k−2)

2 = 1 and e1 · e2 · e1 · e2 = −e21 · e22 = −1, we get F(ek)2 = −1. Thus,
by the universal property, there exists an algebra homomorphism
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F̂ : Cl0,n+2 → Cln,0 ⊗ Cl0,2

fulfilling F̂ ◦ j = F, which is obviously surjective. By Corollary 5.1.8, dimCl0,n+2 =
dim(Cln,0 ⊗ Cl0,2) and, thus, F̂ is an isomorphism. �

Proposition 5.1.16 The following isomorphism holds:

Cl0r+1,s
∼= Cls,r . (5.1.20)

Proof Let q and q̃ be the quadratic forms in Clr+1,s and Cls,r , respectively. Let
e1, . . . , er+s+1 be a q-orthonormal basis of R

r+s+1 fulfilling q(ei) = 1 for 1 ≤ i ≤
r + 1 and q(ei) = −1 for i > r. Let R

r+s = span {ei : i �= r + 1}. We define

F : R
r+s → Cl0r+1,s , F(ei) := er+1ei

for i �= r + 1. Let x = ∑
i �=r+1 xiei ∈ R

r+s. Using e2r+1 = +1 and er+1ei = −eier+1

for any i �= r + 1, we calculate

F(x)2 =
∑

i,j

xixjer+1eier+1ej = −
∑

i,j

xixjeiej = −q(x)1 = q̃(x)1 .

Thus, by the universal property, there exists an algebra homomorphism F̂ : Cls,r →
Cl0r+1,s which is easily seen to be an isomorphism. �

Remark 5.1.17 Similarly, as in Proposition 5.1.16, one shows (Exercise 5.1.4)

Cl0r,s+1
∼= Clr,s . (5.1.21)

We conclude that Cl0r,s and Cl0s,r are isomorphic. �

Remark 5.1.18 (Classification of pseudo-orthogonal Clifford algebras) Recall the
following elementary isomorphisms:

R(n)⊗ R(m) ∼= R(nm) , R(n)⊗R C ∼= C(n) , R(n)⊗R H ∼= H(n) , (5.1.22)

and
C ⊗R C ∼= C ⊕ C , C ⊗R H ∼= C(2) , H ⊗R H ∼= R(4) . (5.1.23)

Now, using Proposition 5.1.15, together with (5.1.16) and the above isomorphisms,
one may calculate iteratively all Clifford algebras Clr,s, starting from the isomor-
phisms given in (5.1.14). On the way, one finds the following periodicity isomor-
phisms (Exercise 5.1.5), which make the classification table finite:

Cln+8,0
∼= Cln,0 ⊗ Cl8,0 , Cl0,n+8

∼= Cl0,n ⊗ Cl0,8 . (5.1.24)

For the final result, we refer the reader to Table2 in Sect. 1.4 of [407]. �
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As a simple consequence of the above discussion, we obtain the following.

Proposition 5.1.19 The following isomorphisms hold:

Clcn+2
∼= Clcn ⊗C C(2) , Clc2n ∼= C(2n) , Clc2n+1

∼= C(2n)⊕ C(2n) . (5.1.25)

Proof By (5.1.16) and (5.1.17),

Clcn+2
∼= Cl0,n+2 ⊗R C ∼= (Cln,0 ⊗ Cl0,2)⊗R C ∼= (Cln,0 ⊗R C)⊗C (Cl0,2 ⊗R C)

and, thus, Clcn+2
∼= Clcn ⊗C Clc2. In particular, by (5.1.14), we obtain

Clc2 ∼= Cl2,0 ⊗R C ∼= R(2)⊗R C ∼= C(2) ,

and, thus,Clcn+2
∼= Clcn⊗CC(2) indeed.Now, again by (5.1.14),we haveClc1 ∼= C⊕C.

Using this, together with Clc2 ∼= C(2), and iterating Clcn+2
∼= Clcn ⊗C C(2) we obtain

Clc2n ∼=
n⊗

C(2) ∼= End
( n⊗

C
2
) ∼= End

(
C

2n
)
,

and

Clc2n+1
∼= ( n⊗

C(2)
) ⊕ ( n⊗

C(2)
) ∼= End

(
C

2n
) ⊕ End

(
C

2n
)
.

�

We note that the formulae contained in (5.1.25) in fact yield representations of Clcn
by endomorphisms on a complex vector space. These will be systematically studied
in Sect. 5.3.

Remark 5.1.20 An explicit formula for the first of the isomorphisms in (5.1.25) can
be easily deduced from the proof of Proposition 5.1.15. For later use, we provide
explicit formulae for the second and the third one in terms of generators ej fulfilling
(5.1.13), see also [59]. Given R

r,s, we denote

W =
[
1 0
0 −1

]
, U =

[
0 1

−1 0

]
, V =

[
0 i
i 0

]
, τ (j) =

{
i for j ≤ r
1 for j > r

Then, for n = r+s = 2k, we define themappingγ2k : R
r,s → End

(
C

2n
) ∼= ⊗n

C(2)
by

γ2k(e2j−1) := τ(2j − 1)W ⊗ . . .⊗ W ⊗ U ⊗ 1 ⊗ . . .⊗ 1 ,

γ2k(e2j) := τ(2j)W ⊗ . . .⊗ W ⊗ V ⊗ 1 ⊗ . . .⊗ 1 ,

where thematricesU andV are at position j, respectively. It is easy to check (Exercise
5.1.6) that the matrices γ (ej) fulfil the relations (5.1.13). Thus, by universality, γ
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extends to the algebra isomorphismunder consideration.Analogously, forn = 2k+1,
we set

γ2k+1(ej) := (
γ2k(ej), γ2k(ej)

)
, 1 ≤ j ≤ 2k ,

γ2k+1(en) := (iW ⊗ . . .⊗ W ,−iW ⊗ . . .⊗ W) .

We stress that the above explicit presentation of the isomorphisms (5.1.25) is by no
means unique. �

Example 5.1.21 (Clifford algebra of Minkowski space) Recall the Minkowski space
(M, η) from Example I/4.5.9. In the above notation, M = R

1,3 and ημν =
diag(+1,−1,−1,−1) , μ, ν = 0, 1, 2, 3, in the standard basis {eμ} of R

4. Thus, the
Clifford algebra of theMinkowski space coincides withCl1,3. By Proposition 5.1.19,
we have Clc4 = Cl1,3 ⊗R C ∼= C(4). Thus, passing to the complexification, we can
represent the generators of Cl1,3 explicitly in terms of complex 4× 4-matrices. One
of the most convenient choices for the isomorphism γ : Clc4 → C(4) = End

(
C

4
)
is

as follows:

γ : M → End
(
C

4
)
, γ (eμ) :=

[
0 σμ
σ̃μ 0

]
≡ γμ , (5.1.26)

where σ̃0 = σ0 and σ̃i = −σi , i = 1, 2, 3. Here, σ0 is the identity matrix and σi
denote the Pauli matrices. It is easy to check (Exercise 5.1.6) that

γμγν + γνγμ = 2ημν1 . (5.1.27)

Thus, γ extends to the unique algebra isomorphism Clc4 → End
(
Δ4

)
given by

Proposition 5.1.19.6 We note that, associated with (5.1.26), we have the following
presentation of the generators of Cl4,0:

e1 :=
[
0 σ0
σ0 0

]
, ek :=

[
0 iσk

−iσk 0

]
, k = 2, 3, 4 . (5.1.28)

�

Exercises

5.1.1 Prove the formulae (5.1.11) and (5.1.10).

5.1.2 Prove the isomorphisms (5.1.14).

5.1.3 Prove the formulae (5.1.18) and (5.1.19).

5.1.4 Prove the statements of Remark 5.1.17.

5.1.5 Prove the isomorphisms in (5.1.24).

5.1.6 Check the relations for the γ -matrices in Remark 5.1.20 and Example 5.1.21.

6For the explicit formula, see point 2 of Example 5.2.10.
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5.2 Spinor Groups

In this section, we exhibit natural group structures within a given Clifford algebra
Cl(V , q).As before,we assume that dim V <∞ and that thefieldKhas characteristic
zero. For simplicity, we will often omit the Clifford algebra product symbol.

In the sequel, elements v ∈ V fulfilling q(v) = 0 will be called isotropic and ele-
ments fulfillingq(v) �= 0will be referred to as anisotropic.Note that every anisotropic
element is invertible, with the inverse given by v−1 = v/q(v). Thus, endowed with
the multiplication fromCl(V , q), the setCl(V , q)∗ of invertible elements ofCl(V , q)
acquires a group structure. Cl(V , q)∗ will be referred to as the group of units of
Cl(V , q). Using the parity automorphism p, we define the following Lie subgroup,
called the Clifford group of (V , q):

Γ (V , q) := {
a ∈ Cl(V , q)∗ : p(a)va−1 ∈ V for all v ∈ V

}
. (5.2.1)

By this definition, the Clifford group comes with a natural representation

Ãd : Γ (V , q)→ Aut(V) , Ãd(a)v := p(a)va−1 , (5.2.2)

called the twisted adjoint representation.

Lemma 5.2.1 The twisted adjoint representation has the following properties.

1. For any a ∈ Γ (V , q), we have Ãd(p(a)) = Ãd(a).
2. For every anisotropic element v ∈ V, themapping Ãd(v) : V → V is the reflection

about the hyperplane in V orthogonal to v, that is, for all w ∈ V,

Ãd(v)w = w − 2
η(v,w)

q(v)
v . (5.2.3)

3. If q is non-degenerate, then the kernel of Ãd coincides with the multiplicative
group K

∗ · 1 of non-zero multiples of the identity in Cl(V , q).

Proof To prove the first assertion, we apply −p to Ãd(a)v = p(a)va−1. This yields

Ãd(a)v = −p(Ãd(a)v) = avp(a−1) = Ãd(p(a))v .

Next, since v2 = q(v) · 1, we have v−1 = v(q(v))−1 and, thus,

q(v)Ãd(v)w = −q(v)vwv−1 = −vwv = v2w − 2η(v,w)v = q(v)w − 2η(v,w)v .

Thus, (5.2.3) holds. It remains to prove the third assertion. Since q is non-degenerate,
we can choose a q-orthogonal basis e1, . . . en in V such that q(ei) �= 0 for all i =
1, . . . , n. Let a ∈ ker

(
Ãd

)
. Then, for any v ∈ V , p(a)v = va and, thus,

va0 = a0v , −va1 = a1v , (5.2.4)
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where a0 and a1 denote the even and odd parts of a, respectively. Using (5.1.6),
we may write a0 = p0 + e1p1 where p0 and p1 are polynomials in the generators
e2, . . . en. Clearly, p0 is even and p1 is odd. Using (5.2.4) with v = e1, we calculate

e1p0 + e21p1 = e1(p0 + e1p1) = (p0 + e1p1)e1 = p0e1 + e1p1e1 = e1p0 − e21p1 .

Thus, e21p1 = q(e1)p1 = 0 and, hence, p1 = 0. This shows that a0 does not contain
e1. Proceeding inductively, we obtain that a0 does not contain any of the generators
ei, that is, a0 = k · 1 where k ∈ K. In the same way, one shows that a1 does not
contain any of the generators ei. Thus, being odd it must vanish. We conclude that
a = k · 1. Since, by assumption a �= 0, we have a ∈ K

∗ · 1. �
Remark 5.2.2 By point 1 of Lemma 5.2.1, for every v ∈ V , we have

Ãd(a−1p(a))v = v ,

and, by point 3 of that lemma, we conclude p(a) = ka with k ∈ K
∗. Moreover, since

p is involutive, we obtain k2 = 1. Now, by assumption,K has characteristic zero and,
thus, the only solutions of this equation are k = ±1. We conclude that any element
of Γ (V , q) has a definite parity, that is, it is either even or odd. �
Let us denote by O(V , q) the orthogonal group of the quadratic space (V , q), that
is, the subgroup of Aut(V , q) leaving q invariant. Correspondingly, let SO(V , q) ⊂
O(V , q) be the subgroup of transformations of determinant 1.

Theorem 5.2.3 Let (V , q) be a quadratic space with q non-degenerate. Then, the
twisted adjoint representation defines the short exact sequence

1→K
∗ · 1→Γ (V , q) Ãd−→ O(V , q)→1 . (5.2.5)

Proof By point 3 of Lemma 5.2.1, the kernel of Ãd coincides with K
∗ · 1. We show

Ãd(Γ (V , q)) ⊂ O(V , q). Using point 1 of Lemma 5.2.1, for any v,w ∈ V and any
a ∈ Γ (v, q), we calculate

2η(Ãd(a)v, Ãd(a)w) = Ãd(a)v · Ãd(a)w + Ãd(a)w · Ãd(a)v
= Ãd(a)v · Ãd(p(a))w + Ãd(a)w · Ãd(p(a))v
= p(a)(v · w + w · v)p(a−1)

= 2η(v,w) .

Finally, by the Cartan–Dieudonné Theorem, for a non-degenerate quadratic vector
space (V , q), any element R ∈ O(V , q) can be written as a product of k reflections,
R = R1 . . .Rk with k ≤ dim V .7 But, by point 2 of Lemma 5.2.1, every reflection

7See e.g. [23] or [439]. A reflection is, by definition, an orthogonal transformation R ∈ O(V , q)
whose fixed point set ker(R − 1) has codimension 1. It can be shown that any reflection is of the
form given by the right hand side of (5.2.3) with v unique up to a non-zero scalar.
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in (V , q) through an anisotropic vector belongs to Ãd(Γ (V , q)). Thus, since Ãd :
Γ (V , q)→ O(V , q) is a homomorphism, there exist anisotropic elements v1, . . . , vk
in V such that Ri = Ãd(vi) and, thus, R = Ãd(a) with a = v1 . . . vk . This implies
that Ãd is surjective. �

Remark 5.2.4

1. Since ker(Ãd) = K
∗ · 1 and im(Ãd) = O(V , q), any element a ∈ Γ (V , q) must

be a product of anisotropic elements vi of V , that is, a = v1 . . . vk with k ≤ dim V .
Clearly, p(a) = (−1)ka.

2. We denote
Γ 0(V , q) := Γ (V , q) ∩ Cl0(V , q)∗

and call it the special Clifford group. It clearly consists of products v1 . . . vk with
k even and we have the following short exact sequence induced from (5.2.5):

1→K
∗ · 1→Γ 0(V , q)

Ãd−→ SO(V , q)→1 . (5.2.6)

�

Next, recall the canonical anti-automorphism t of Cl(V , q) constructed in the proof
of Proposition 5.1.5. By point 3 of Remark 5.1.6, it commutes with the parity auto-
morphism p. The following is a direct consequence of the definition of Γ (V , q) and
is, therefore, left to the reader (Exercise 5.2.1).

Lemma 5.2.5 The mappings p and t induce an automorphism and an anti-
automorphism of Γ (V , q), respectively. �

For any a ∈ Cl(V , q), we define the anti-automorphism

a �→ ã := t ◦ p(a) . (5.2.7)

Clearly, ãb = b̃ã and ˜̃a = a. Correspondingly, we have a natural norm mapping

N : Cl(V , q)→ Cl(V , q) , N(a) := aã . (5.2.8)

Note that, for any v ∈ V ,
N(v) = −q(v) . (5.2.9)

Lemma 5.2.6 Let (V , q) be a quadratic space with q non-degenerate. Then, the
restriction of N to Γ (V , q) is a group homomorphism Γ (V , q)→ K

∗ · 1. Moreover,
N(p(a)) = N(a) for any a ∈ Γ (V , q).
Proof Let a ∈ Γ (V , q). Then, p(a)va−1 ∈ V for any v ∈ V . Applying t, we obtain
t(a)−1v ã = p(a)va−1, because t is the identity on V . Using this, we have
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v = t(a)p(a)v(ãa)−1 = p(ãa)v(ãa)−1 = Ãd(ãa)v ,

that is, ãa ∈ ker
(
Ãd

)
. By Lemma 5.2.5, we also have N(a) = aã ∈ ker

(
Ãd

)
and

Theorem5.2.3 implies N(Γ (V , q)) ⊂ K
∗ · 1.

Weprove that the restriction ofN is a homomorphism.UsingN(Γ (V , q)) ⊂ K
∗·1,

for any a, b ∈ Γ (V , q), we calculate

N(ab) = abb̃ã = aN(b)ã = N(a)N(b) .

Finally, again using N(Γ (V , q)) ⊂ K
∗ · 1, for any a ∈ Γ (V , q),

N(p(a)) = p(a)p(ã) = p(aã) = N(a) .

�
We define8

Pin(V , q) := {a ∈ Γ (V , q) : N(a) = 1} (5.2.10)

and
Spin(V , q) := Pin(V , q) ∩ Γ 0(V , q) . (5.2.11)

By Lemma 5.2.6, the restriction of N to Γ (V , q) is a group homomorphism
Γ (V , q)→ K

∗ ·1. Thus, Pin(V , q) and Spin(V , q) are normal subgroups of Γ (V , q)
and Γ 0(V , q), respectively.

Definition 5.2.7 The groups Pin(V , q) and Spin(V , q) will be referred to as the pin
group and the spin group of (V , q), respectively.

In general, the restrictions of Ãd to Pin(V , q) and Spin(V , q) are not surjective onto
O(V , q) and SO(V , q), respectively. However, for a special class of base fields, called
spin fields, surjectivity holds. In particular, R and C are spin fields. We refer to [407]
for a detailed discussion.

Let us consider the Clifford algebra Clr,s of the real vector space V = R
r,s

endowed with the pseudo-Euclidean quadratic form given by (5.1.12) in some detail.
In this case,wedenote the groupof units, theClifford group, the pin group and the spin
group by, respectively,Cl∗r,s, Γr,s, Pinr,s and Spinr,s. Correspondingly, the orthogonal
and the special orthogonal groups are denoted by Or,s and SOr,s, respectively. We
also write Pin(n) = Pinn,0 and Spin(n) = Spinn,0. Since Clr,s is a finite-dimensional
associative R-algebra, Cl∗r,s is a Lie group with a global chart given by the natural
inclusion mapping. By construction, Γr,s, Pinr,s and Spinr,s are Lie subgroups of
Cl∗r,s. By Remark 5.1.17, Cl0r,s and Cl

0
s,r are isomorphic. This implies that Spinr,s and

Spins,r are isomorphic, too.9 Theorem 5.2.3 implies the following.

8ForK = R, one often defines Pin(V , q) by the conditionN(a) = ±1. Then, Theorem 5.2.3 implies
surjective mappings onto O(V , q) and SO(V , q), respectively. This leads to an obvious modification
of Corollary 5.2.8.
9Note, however, that Pinr,s and Pins,r are in general not isomorphic.
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Corollary 5.2.8 For every pair (r, s), Spinr,s is a double covering of the identity
component SO0

r,s, that is, there is an exact sequence

1 → Z2 → Spinr,s → SO0
r,s → 1 . (5.2.12)

For r ≥ 2 or s ≥ 2, the group Spinr,s is connected.

Proof Since the condition N(a) = 1 yields a normalization of generators only, the
existence of the exact sequences is a direct consequence of Theorem 5.2.3. In par-
ticular, the intersection of ker(Ãd) with Pinr,s is clearly Z2. It remains to prove the
second assertion. The cases (r, s) = (0, 1) and (r, s) = (1, 0) are clearly trivial. For
(r, s) = (1, 1) one obtains SO0

1,1 = R+ and Spin1,1 = Z2 × R+ which is discon-
nected. Now, assume r ≥ 2 or s ≥ 2. By (5.2.12), the kernel of Spinr,s → SO0

r,s
is {1,−1}. Thus, it is enough to construct a path joining 1 and −1 in Spinr,s. By
the above assumption, Rr,s contains a 2-dimensional subspace isomorphic to R

2,0 or
to R

0,2. Thus, there exist two anisotropic orthogonal vectors e1, e2 ∈ R
r,s fulfilling

q(e1) = q(e2) = ±1. Now,

t �→ γ (t) = (e1 cos(t)+ e2 sin(t))(e2 sin(t)− e1 cos(t)) , t ∈ [0, π
2

] ,

is a continuous path with the required property. �

Remark 5.2.9 The spin groups are, in general, not simply connected. Using the fact
that SO0

r,s is homotopic to themaximal compact subgroup SO(r)×SO(s), one obtains
π1(SO0

r,s) = π1(SO(r))⊕ π1(SO(s)). Then, using

π1(SO(r)) =
⎧
⎨

⎩

0 for r = 1
Z for r = 2

Z2 for r > 2

one can calculate π1(SO0
r,s) for any pair (r, s). Next, using the natural embeddings

SO(r)× SO(s) → SO0
r,s, together with the corresponding embeddings on the level

of the spin group, one can calculate π1(Spinr,s) as well, see [59] for a complete
list. If both r > 2 and s > 2, then the fundamental group of SOr,s is Z2 × Z2

and, thus π1(Spinr,s) = Z2 in that case. We conclude that the spin group is simply
connected and, thus, that the covering λ : Spinr,s → SO0

r,s is universal in the cases
r > 2, s = 0, 1, and r = 0, 1 , s > 2 only. �

By Proposition 5.1.16, we have Spinr,s ⊂ Cl0r,s ∼= Cls,r−1 for any r ≥ 1. Thus, there
are two possibilities for explicit matrix realizations of Spinr,s. We illustrate this for
the spin group of the Minkowski space. Details are left to the reader (Exercise 5.2.3).

Example 5.2.10 (Spin group of the Minkowski space) We take up Example 5.1.21.
Here, we consider the spin group Spin1,3 ⊂ Cl01,3 ∼= Cl3,0 of (M, η).
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1. We construct Spin1,3 ⊂ Cl3,0. By (5.1.18) and (5.1.14),Cl3,0 ∼= C(2) = End(C2).
In terms of generators, this isomorphism reads:

e1 =
[
1 0
0 −1

]
, e2 =

[
0 1
1 0

]
, e3 =

[
0 i
−i 0

]
.

Representing the elements {1, e1, e2, e3, e1e2, e1e3, e2e3, e1e2e3} of the vector
space basis of Cl3,0 in this way, one easily calculates:

Z =
[
a b
c d

]
�→ p(Z) =

[
d −c

−b a

]
, Z =

[
a b
c d

]
�→ Z̃ =

[
d −b

−c a

]
,

where a, b, c, d ∈ C. Thus,

Z · p(Z)† = det Z · 1 , N(Z) = det Z · 1 .

The second of these equations reduces C(2) to SL(2,C). We identify

M → H(2,C) , x �→ x∗ := xμσμ ,

where H(2,C) is the space of Hermitean (2× 2)-matrices, cf. Example I/5.1.13.
For g ∈ SL(2,C), we have g·p(g)† = 1. Thus, via the automorphism g → (g−1)†

of SL(2,C), the twisted adjoint representation may be identified with

Ãd(g)x∗ = g x∗ g† , g ∈ SL(2,C) .

Finally, note that the hermiticity of x∗ implies the hermiticity of Ãd(g)x∗ for any
g ∈ SL(2,C). Thus, we obtain

Spin1,3 ∼= SL(2,C) (5.2.13)

realized in End(C2). This is one of the special isomorphisms for low-dimensional
spin groups which will be further discussed below. In this presentation, the uni-
versal covering λ : Spin1,3 → SO0

1,3 is given by (λ(g)x)∗ = g x∗ g† , cf. Example
I/5.1.13. Restricting λ to the subgroup SU(2) ⊂ SL(2,C), one obtains the uni-
versal covering homomorphism SU(2) → SO(3), see Example I/5.1.11. This,
together with (2.8.2), proves

Spin(3) ∼= SU(2) , Spin(4) ∼= SU(2)× SU(2) . (5.2.14)

2. We construct Spin1,3 ⊂ Cl01,3. By (5.1.19) and (5.1.14), Cl1,3 ∼= Cl0,2 ⊗ Cl1,1 =
H ⊗ R(2) ∼= H(2). The latter may be identified with a subalgebra of C(4),

Cl1,3 ∼=
{
Z =

[
z w
w′ z′

]
: z,w ∈ C(2)

}

http://dx.doi.org/10.1007/978-94-024-0959-8_2


5.2 Spinor Groups 371

via the mapping

γ : R
1,3 → C(4) , x �→ γ (x) =

[
0 x∗
x∗ 0

]
,

cf. (5.1.26). Here,10 x∗ = xμσ̃μ, z = zμσμ and z′ = zμσ̃μ (and the same for w).
One easily calculates

p(Z) =
[

z −w
−w′ z′

]
.

By (5.2.11), we must require N(Z) = 1 and Z ∈ Γ 0(R1,3). The latter implies
w = 0 and then, by point 1,

N(Z) =
[
det(z) 0
0 det(z)

]
.

Thus, we obtain det(z) = 1. Now, applying the twisted adjoint representation for
Z fulfilling w = 0 and det(z) = 1, we obtain

x∗ �→ Ãd(Z)x∗ = z x∗ z† .

Clearly, the hermiticity of x implies the hermiticity of z x z† and, thus,

Spin1,3 =
{
Z =

[
g 0
0 ġ

]
: g ∈ SL(2,C)

}
, (5.2.15)

where ġ = (g†)−1. �

Example 5.2.11 (Low-dimensional spin groups) The following isomorphisms
between low-dimensional spin groups and classical Lie groups can be confirmed
by analogous arguments as in Example 5.2.10. For the compact spin groups, we
have11

Spin(2) ∼= U(1) ,

Spin(3) ∼= SU(2) ,

Spin(4) ∼= SU(2)× SU(2) ,

Spin(5) ∼= Sp(2) ,

Spin(6) ∼= SU(4) .

10See Example 5.1.21 for the notation.
11The first identity is trivial, the second and the third one were shown in Example 5.2.10 and the
remaining two will be shown in Example 5.3.22.
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For a discussion of Spin(7), Spin(8) and relations between spin groups and excep-
tional groups we refer to [8, 9, 286, 407, 439]. For the non-compact spin groups, we
have12

Spin2,1 ∼= SL(2,R) ,

Spin1,3 ∼= SL(2,C) , Spin2,2 ∼= SL(2,R)× SL(2,R)

Spin1,4 ∼= Sp1,1(H) , Spin2,3 ∼= Sp(4,R) ,

Spin1,5 ∼= SL(2,H) , Spin2,4 ∼= SU(2, 2) , Spin3,3 ∼= SL(4,R) ,

where Sp1,1(H) = {
g ∈ H(2) : gTσ3g = σ3

}
. See [517] for detailed proofs. �

Next, let us consider the case V = (Cn, q) where q is the quadratic form given
by the standard Hermitean form on C

n. We denote Pin(n,C) = Pin(Cn, q) and
Spin(n,C) = Spin(Cn, q). The following statements are left to the reader (Exercise
5.2.4).

Proposition 5.2.12 The groups Pin(n,C) and Spin(n,C) are double covers of
O(n,C) and SO(n,C), respectively. Moreover, Spin(n,C) is the universal cover-
ing of SO(n,C) and Spin(n) is its maximal compact subgroup.

Note that Clcn = Cln ⊗ C contains both Spin(n) ⊂ Cln ⊗ 1 and S1 ∼= U(1) ⊂ 1⊗ C.

Definition 5.2.13 (Complex spin group) The complex spin group13 Spinc(n) is the
subgroup of Cln ⊗ C generated by Spin(n) and by U(1).

Since obviously Spin(n) ∩ U(1) = {1,−1}, we have an isomorphism

Spinc(n) ∼= (Spin(n)× U(1)) /{±1} ≡ Spin(n)×Z2 U(1) , (5.2.16)

that is, elements of Spinc(n) are equivalence classes [(g, z)] of pairs (g, z) ∈
Spin(n)×U(1) under the equivalence relation (g, z) ∼ (−g,−z). Note that Corollary
5.2.8 immediately implies the following exact sequence

1 → Z2 → Spinc(n)
p→ SO(n)× U(1)→ 1 , (5.2.17)

where
p : Spinc(n)→ SO(n)× U(1) , (g, z) �→ (ρ(g), z2) , (5.2.18)

12Recall that, by Corollary 5.2.8, for r ≥ 2 or s ≥ 2, the group Spinr,s is connected. Also recall
that Spinr,s = Spins,r .
13Also called the Spinc-group.



5.2 Spinor Groups 373

and ρ : Spin(n)→ SO(n) is the double covering given by (5.2.12). As an immediate
consequence of this sequence, we obtain

π1(Spin
c(n)) ∼= Z . (5.2.19)

Now, let n = 2k. Recall from Example 2.2.19 that we can view U(k) as a subgroup
of SO(2n). Let

f : U(k)→ SO(2k)× U(1) , f (a) := (a, det(a)), (5.2.20)

be the group homomorphism induced by this embedding. The following proposition
shows that this homomorphism admits a natural lift to the Spinc-group.

Proposition 5.2.14 There exists a homomorphism F : U(k)→ Spinc(2k) such that

Spinc(2k)

p

��
U(k)

f ��

F
�����������������

SO(2k)× U(1) .

Proof Given an element a ∈ U(k), choose a unitary basis (e1, . . . , ek) in C
k such

that
a = diag{eiϑ1 , . . . , eiϑk } .

Let J : C
k → C

k be the complex structure of C
k . Then, ej and J(ej) belong to Clcn.

We define

F(a) :=
k∏

j=1

(
cos(ϑj/2)+ sin(ϑj/2)ejJ(ej)

)
exp

⎛

⎝ i

2

k∑

j=1

ϑj

⎞

⎠ . (5.2.21)

It is easy to check that this is a group homomorphism (Exercise 5.2.6). By direct
inspection, under this mapping, the above diagram becomes commutative. �

Identify U(1) ∼= SO(2) and consider the natural embeddings SO(n) → SO(n + 2)
and SO(2)→ SO(n+ 2) induced from the decomposition R

n+2 = R
n ⊕ R

2. Corre-
spondingly, Spin(n) and U(1) ∼= SO(2)may by viewed as subgroups of Spin(n+2).
The intersection of these subgroups is {±1}. This implies the existence of an injec-
tive homomorphism f : Spinc(n) → Spin(n + 2) such that the following diagram
commutes.

Spinc(n)
f ��

p

��

Spin(n + 2)

λ

��
SO(n)× SO(2)

ι �� SO(n + 2)

(5.2.22)

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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Finally, we discuss Lie algebra structures in Cl(V , q). We assume that K be R

or C and that q be non-degenerate. Since Cl(V , q) is an associative K-algebra, it
carries a natural Lie algebra structure. We denote its Lie bracket by [·, ·]. Moreover,
the group of units, the Clifford group, the pin group and the spin group are Lie
groups. The Lie algebra cl(V , q)∗ of the group of units Cl(V , q)∗ clearly coincides
with Cl(V , q) viewed as a Lie algebra and there is an exponential mapping given by
the usual exponential series (Exercise 5.2.5),

exp : cl(V , q)∗ → Cl(V , q)∗ , exp(A) = 1

n!
∑

n

An . (5.2.23)

Using this, we can calculate the Lie algebra of the Clifford group. Limiting our
attention to the special Clifford group Γ 0(V , q), we obtain

Lie(Γ 0(V , q)) = {
A ∈ Cl0(V , q) : Av − vA ∈ V for all v ∈ V

}
.

Since, under the above assumptions, the restriction of Ãd to both the pin and the
spin group14 are covering homomorphisms onto subgroups of full dimension of the
corresponding orthogonal groups, their Lie algebras clearly coincide with the Lie
algebra of the orthogonal group. Let us denote the Lie algebras of the spin group
and of the orthogonal group by spin(V , q) and o(V , q), respectively. Consider the
subspace

Cl2(V , q) := span
{
eiej : 1 ≤ i < j ≤ dim V

} ⊂ Cl(V , q) ,

where {ei} is a q-orthogonal basis of V . By (5.1.11) and by the defining relations
(5.1.2), Cl2(V , q) is a Lie subalgebra of Cl(V , q) with Lie bracket

[eiej, ekel] = 2ei(ηkjel − ηljek)+ 2(ηkiel − ηliek)ej , (5.2.24)

where ηrs = η(er, es). By (5.1.11), c(∧2V) ∼= Cl2(V , q) as vector spaces. Thus, we
may endow

∧2V with the structure of a Lie algebra by setting

[α, β]∧2V := c−1 ◦ [c(α), c(β)] . (5.2.25)

Proposition 5.2.15 The image of the mapping15

ψ : ∧2V → End(V) , ψ(α)v := −2η(v)�α (5.2.26)

coincides with o(V , q). Moreover, ψ is a Lie algebra isomorphism.

14Viewed as real Lie groups.
15In the formula below, ψ(α)v may be viewed as the supercommutator [c(α), v], cf. [72] or [439].
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The defining equation of ψ immediately implies

ψ(u ∧ v)w = 2η(w, v)u − 2η(w, u)v , u, v,w ∈ V . (5.2.27)

Proof For any v,w ∈ V and any α ∈ ∧2V , we calculate

η(ψ(α)v,w) = η(w)�(ψ(α)v)
= −2η(w)� η(v)�α
= 2η(v)� η(w)�α
= −η(v, ψ(α)w) ,

showing that im(ψ) ⊂ o(V , q). Next, using (5.2.27) and (5.2.24), one shows that ψ
is a homomorphism (Exercise 5.2.7). Finally, ψ is obviously injective and thus, by
dimension counting, it is also surjective. �

Remark 5.2.16 Let {ei} be a q-orthogonal basis in V and let {ϑ i} be its dual, that is,
η−1(ϑ i) = ηijej. Then, using (5.2.27), one calculates

1

4
ψ(ei ∧ ej)(ek) ∧ η−1(ϑk) = ei ∧ ej .

Thus, ψ is the inverse of the isomorphism κ : o(V , q) → ∧2V given by (2.2.38).
This way, κ becomes a Lie algebra isomorphism. Combining it with c : ∧2V →
Cl2(V , q), we obtain the Lie algebra isomorphism

ϕ = c ◦ κ : o(V , q)→ Cl2(V , q) , ϕ(A) = 1

4
c
(
A(ek) ∧ η−1(ϑk)

)
, (5.2.28)

which can be easily shown to be equal to (Exercise 5.2.8)

ϕ(A) = 1

4
ηlmηknη(A ek, el) em · en = 1

4
Alkel · ek . (5.2.29)

Under the isomorphism ϕ, the action of A on an element v ∈ V is given by (Exercise
5.2.8):

A(v) = [ϕ(A), v] . (5.2.30)

Via ϕ, spin(V , q) is naturally identified with Cl2(V , q). Thus, {eiej : i < j} form a
natural basis in spin(V , q) corresponding to the basis {ψ(ei ∧ ej) : i < j} in o(V , q).
By (5.2.27), the matrix of ψ(ei ∧ ej) in the basis {ei} coincides with the matrix 2Eij,
where

(Eij)kl = ηljηki − ηliηkj . (5.2.31)

�

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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The following proposition shows that the spin group is obtained by exponentiating
Cl2(V , q) via the exponential mapping exp : Cl0(V , q)→ Cl0(V , q)∗.

Proposition 5.2.17 The following diagram commutes:

o(V , q)

exp

��

ϕ ��

��

Cl0(V , q)

exp

��
Spin(V , q) �� Cl0(V , q)∗

Proof By (5.2.30), for any A ∈ o(V , q) and v ∈ V , A(v) = ad(ϕ(A))(v) and, thus,

exp(A)(v) = exp(ad(ϕ(A)))(v) = eϕ(A)ve−ϕ(A) . (5.2.32)

Since exp(A)(v) ∈ V and ϕ(A) ∈ Cl0(V , q), we have eϕ(A) ∈ Γ 0(V , q). Since
ϕ(A)T = −ϕ(A), we obtain N

(
eϕ(A)

) = eϕ(A)eϕ(A)
T = 1 . Thus, eϕ(A) ∈ Spin(V , q).

�

Remark 5.2.18 On the right hand side of (5.2.32) we recognize the twisted adjoint
action of Spin(V , q). Thus,

Ãd
(
eϕ(A)

) = exp(A) , Ãd
′(
ϕ(A)

) = ad(ϕ(A)) = A . (5.2.33)

�

Exercises

5.2.1 Prove Lemma 5.2.5.

5.2.2 Prove the statements of Remark 5.2.9.

5.2.3 Work out the details of Example 5.2.10.

5.2.4 Prove Proposition 5.2.12.

5.2.5 Prove that the series in (5.2.5) converges.

5.2.6 Check that the mapping F defined by (5.2.21) is a group homomorphism.

5.2.7 Prove that the mapping ψ given by (5.2.26) is a homomorphism.

5.2.8 Prove the formulae (5.2.29) and (5.2.30).
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5.3 Representations

In this section, we discuss representations of the Clifford algebra and of the spin
group.

Definition 5.3.1 Let (V , q) be a quadratic vector space over a commutative field k,
let K ⊃ k be a field containing k and letW be a finite-dimensional vector space over
K. AK-representation of theClifford algebraCl(V , q) is ak-algebra homomorphism

ρ : Cl(V , q)→ EndK(W) .

The representation space W is called a Cl(V , q)-module over K.

Example 5.3.2 The Clifford algebraCl(V , q) itself, endowed with the module struc-
ture given by multiplication from the left, is a Clifford module. The exterior alge-
bra

∧
V is a Clifford module with the action given by the algebra homomorphism

F̂ : Cl(V , q) → End(
∧
V) constructed in the proof of Proposition 5.1.10. Recall

that on generators this action is given by the mapping

F : V → End(
∧
V) , F(v)α := v ∧ α + η(v)�α ,

cf. (5.1.7). The symbol mapping σ : Cl(V , q)→ ∧
V is the unique isomorphism of

Clifford modules taking 1 ∈ Cl(V , q) to 1 ∈ ∧
V . �

Let us discuss the K-representations of Clr,s for K = R, C and H. Since we know
the classification of these Clifford algebras in terms of matrix algebras, their repre-
sentation theory is provided by the classical theory of simple associative algebras.
By Theorem XVII.5.5 in [399], K(n) = End(Kn) is a simple ring and K

n is a sim-
ple K(n)-module. By Corollary XVII.4.5. in [399], this simple module provides the
unique irreducible representation of K(n). Correspondingly, the ring K(n) ⊕ K(n)
has exactly two equivalence classes of irreducible representations given by projection
onto the first and the second factor, respectively. Thus, by inspection of Table II in
Sect. 1.4 of [407], one reads off the irreducibleK-representations ofClr,s. According
to this table, the number of inequivalent irreducible representations is

νr,s =
{
2 if r + 1 − s = 0 (mod 4)
1 otherwise

Next, let us consider Clcn. By Proposition 5.1.19,

Clc2k ∼= C(2k) , Clc2k+1
∼= C(2k)⊕ C(2k) . (5.3.1)

Thus, by the above cited theorem,Clc2k has a unique faithful irreducible representation

γ2k : Clc2k → End
(
Δ2k

)
, Δ2k = C

2k , (5.3.2)
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and Clc2k+1 has a faithful representation

γ2k+1 : Clc2k+1 → End
(
Δ2k+1

) ⊕ End
(
Δ2k+1

)
, Δ2k+1 = C

2k . (5.3.3)

Thus,Clc2k+1 has two irreducible representations obtained by projecting onto the first
and onto the second summand ofΔ2k+1 ⊕Δ2k+1, respectively. Explicit formulae for
γn are given in Remark 5.1.20. By (5.1.25), the following diagram commutes:

Clc2k

��

��

��

End(Δ2k)

ι

��
Clc2k+1

�� End(Δ2k+1)⊕ End(Δ2k+1)

(5.3.4)

Here, ι denotes the diagonal embedding. In the sequel, Δn will be called the space
of complex n-spinors, or, the n-spinor module and the corresponding representation
γn will be referred to as a spin representation of Clcn. Frequently, we will omit the
index and simply write γ .

For further reference, we include the following.

Remark 5.3.3 Let E be a complex Cl(V , q)-module and let dim V be even. Then, by
Proposition 5.1.19, Cl(V , q)c ∼= End(Δn) is simple andΔn is the unique irreducible
representation. We have16

E ∼= Δn ⊗ W , (5.3.5)

where W = HomCl(V ,q)c(Δn,E) is the vector space of homomorphisms Δn → E
commutingwith theCl(V , q)c-action.BySchur’sLemma,End(W) ∼= EndCl(V ,q)c(E).
Since End(E) ∼= End(Δn)⊗ End(W), we conclude

End(E) ∼= Cl(V , q)c ⊗ EndCl(V ,q)c(E) . (5.3.6)

Note that in the second factor Cl(V , q)c may be replaced by Cl(V , q). �

Let us study the spin representations of Clcn in more detail. For that purpose, we
consider the chirality element

Γn := ini [
n+1
2 ]c(v) , (5.3.7)

where v is the natural volume element of R
n corresponding to a given orientation.

For a chosen oriented orthonormal basis {ei} of R
n we have v = e1 ∧ . . . ∧ en and

Γn = ini [
n+1
2 ]e1 · . . . · en . (5.3.8)

16See Proposition 3.1.6 in [254].
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Note that for n = 2k, we obtain

Γ2k = ike1 · . . . · e2k . (5.3.9)

Clearly, Γn does not depend on the choice of the oriented orthonormal basis.

Lemma 5.3.4 The chirality element has the following properties.

1. Γ 2
n = 1 for all n.

2. x · Γn = (−1)n−1Γn · x for all x ∈ R
n.

In particular, if n is odd, then Γn belongs to the centre of Clcn. If n is even, then

a · Γn = Γn · p(a) , a ∈ Clcn . (5.3.10)

Proof The first statement is trivial. Next, by (5.1.13), for any l = 1, . . . , n we have
el ·c(v) = (−1)n−1c(v)·el. This impliesx·c(v) = (−1)n−1c(v)·x for anyx ∈ R

n. This
proves the second assertion. The latter immediately implies the remaining statements.

�

Since Γn is an involution, we have projectors

P+ := 1

2
(1 + Γn) , P− := 1

2
(1 − Γn) , (5.3.11)

fulfilling
P+ + P− = 1 , P+P− = P−P+ = 0 . (5.3.12)

Lemma 5.3.5 If n is odd, then Γn induces a decomposition

Clcn = Cl+n ⊕ Cl−n , Cl±n := P± · Clcn = Clcn · P± , (5.3.13)

into isomorphic subalgebras fulfilling p(Cl±n ) = Cl∓n .

Proof By Lemma 5.3.4, Γn is central. Thus, P+ and P− are central, too, and Cl±n are
ideals. SinceΓn is an odd element, we have p(P±) = P∓. This implies p(Cl±n ) = Cl∓n
showing, in particular, that the two subalgebras are isomorphic. �

Clearly, the two summands in (5.3.3) correspond to Cl+n and Cl−n , respectively. This
can be checked explicitly by viewing the second isomorphism in (5.3.1) as

Clc2k+1
∼= Clc2k ⊗ (C ⊕ C) ∼= Clc2k ⊗ Clc1

and using that the parity automorphism on Clc1 is given by p(u, v) = (v, u). Since
p(Cl±n ) = Cl∓n , we also conclude that the algebra (Clcn)

0 is diagonally embedded in
the decomposition (5.3.13),
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(Clcn)
0 = {

(a, p(a)) ∈ Cl+n ⊕ Cl−n : a ∈ (Clcn)+
}
. (5.3.14)

Next, using γ (Γn)2 = γ (Γ 2
n

) = 1, we decompose the spinor module Δn for n even
into eigenspaces of γ (Γn) corresponding to the eigenvalues ±1:

Δn = Δ+
n ⊕Δ−

n , Δ±
n := {ψ ∈ Δn : γ (Γn)(ψ) = ±ψ} . (5.3.15)

The projectors onto Δ±
n are given by γ (P±).

Proposition 5.3.6 For the complexified Clifford algebra Clcn, the following hold.

1. If n is odd, then the two isomorphism classes of irreducible spinor modules are
given byΔ+

n+1 andΔ
−
n+1, respectively. In this case, there is a unique isomorphism

class of irreducible (Clcn)
0-modules of dimension 2

n−1
2 .

2. If n is even, then there are two isomorphism classes of irreducible (Clcn)
0-modules,

both of dimension 2
n
2 −1.

Proof 1. Let n be odd. By (5.1.20), (5.3.1) and (5.3.15), we have

Clcn ∼= (Clcn+1)
0 ∼= End0(Δn+1) = End0(Δ+

n+1 ⊕Δ−
n+1) . (5.3.16)

If F ∈ Hom(Δ−
n+1,Δ

+
n+1), then γ (Γ ) ◦F = −F ◦ γ (Γ ). Let F = γ (a) with a even.

Then, γ (p(a)) = γ (a) and, since Γ is central,

γ (Γ ) ◦ γ (a) = −γ (a) ◦ γ (Γ ) = −γ (a · Γ ) = −γ (Γ · a) = −γ (Γ ) ◦ γ (a) ,

that is, γ (a) = 0 and thus Hom0(Δ−
n+1,Δ

+
n+1) = 0. Also Hom0(Δ+

n+1,Δ
−
n+1) = 0

by the same argument. Moreover, for a ∈ Clcn+1 and ψ± ∈ Δ±
n+1, we have

aψ± = ±aΓ ψ± = ±Γ p(a)ψ± = p(a)ψ± .

Thus, if aΔ±
n+1 ⊂ Δ±

n+1, then a ∈ (Clcn+1)
0. As a consequence, we obtain the follow-

ing decomposition of Clcn into simple algebras:

Clcn ∼= End(Δ+
n+1)⊕ End(Δ−

n+1) . (5.3.17)

Since Γ is central, the subspaces Δ±
n+1 are Cl

c
n-invariant. This shows that Δ

±
n+1 are

irreducible Clcn-modules. Since they are distinguished by the action of Γ , they are
inequivalent. Thus, Cl±n ∼= End(Δ±

n+1). By (5.3.14), the restrictions to (Clcn)
0 of the

two irreducible representations of Clcn coincide yielding a unique isomorphism class
of (Clcn)

0-modules.
2. Let n be even. Then, (5.3.16) and (5.3.17) imply

(Clcn)
0 ∼= End(Δ+

n )⊕ End(Δ−
n ) .
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By Lemma 5.3.4, the subspaces Δ±
n are invariant under (Clcn)

0. Thus, (5.3.15) is a
decomposition of Δn into two inequivalent irreducible (Clcn)

0-modules. �

Clearly, the irreducible representations in Proposition 5.3.6 are all faithful. Since
Pinr,s ⊂ Clcn and Spinr,s ⊂ (Clcn)

0, with r + s = n, the faithful irreducible rep-
resentations of Clcn and (Clcn)

0 constructed in Proposition 5.3.6 restrict to faithful
representations of Pinr,s and Spinr,s called pin and spin representations, respectively.
For Spinr,s, we have

17

γ±
r,s : Spinr,s → Aut

(
Δ±

r+s

)
, r + s = 2k , (5.3.18)

γr,s : Spinr,s → Aut(Δr+s) , r + s = 2k + 1 . (5.3.19)

Proposition 5.3.7 The pin representations of Pinr,s and the spin representations of
Spinr,s are irreducible.

Proof If a subspace of a pin representation is invariant under Pinr,s, then it is also
invariant under the subalgebra ofClr,s generated by Pinr,s.We show that this subalge-
bra coincides with all of Clr,s. For that purpose, it suffices to prove that V is spanned
by linear combinations of elements of Pinr,s ∩ V . Obviously, the span of Pinr,s ∩ V
contains the open subset consisting of all elements v ∈ V fulfilling q(v) > 0 and,
therefore, the whole of V . The assertion for Spinr,s follows from the fact that

Spinr,s = Pinr,s ∩ Cl0r,s ,

because this implies that the subalgebra generated by Spinr,s coincides with the
intersection of the subalgebra generated by Pinr,s with Cl0r,s. �

Remark 5.3.8 (Spinc-representations) Since the complex spin groupSpinc(n) is con-
tained in the complexified Clifford algebraClcn, the spin representationΔn of Spin(n)
extends to a representation of Spinc(n) via

γ ([(g, z)])(ψ) = z · γ (g)(ψ) , (5.3.20)

for any g ∈ Spin(n), z ∈ S1 and ψ ∈ Δn. If n is even, then the splitting Δn =
Δ+

n ⊕ Δ−
n is Spinc-invariant and, thus, we have the two irreducible modules Δ±

n as
in the spin case. �

Example 5.3.9 (Spin representations of Spin1,3) By point 2 of Example 5.2.10,

Spin1,3 =
{
Z =

[
g 0
0 ġ

]
: g ∈ SL(2,C)

}
, (5.3.21)

17Often, the representations γ±
r,s are called the half-spin representations.
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where ġ = (g†)−1. This yields the two inequivalent irreducible spinor modules
S ∼= C

2 and S
∗ ∼= C

2 of Spin1,3, with S and S
∗
carrying the basic representation and

the dual of the conjugate representation of SL(2,C), respectively, that is,

S � φ �→ gφ ∈ S , S
∗ � ϕ̃ → ġϕ̃ ∈ S

∗
, g ∈ SL(2,C) .

In physics,S andS
∗
are called the space of left-handed and right-handedWeyl spinors,

respectively. Their direct sum S ⊕ S
∗ ∼= C

4 is called the bispinor space. Choosing
bases in these spaces, one obtains a frequently used calculus of dotted and undotted
spinors, φ = (φK) and ϕ̃ = (ϕ̃K̇). �

Denote n = r + s. Since R
n ⊂ Cln ⊂ Clcn, via the spin representation, any vector

x ∈ R
n may be regarded as an endomorphism of Δn. We define

μ : R
n ⊗R Δn → Δn , μ(x ⊗ ψ) := γ (x)ψ . (5.3.22)

Definition 5.3.10 The mapping μ defined by (5.3.22) will be referred to as the
Clifford multiplication.

Usually, we will simply writeμ(x⊗ψ) ≡ x ·ψ . Using the quantization isomorphism
c, the Clifford multiplication may be extended to a mapping μ : ∧R

n ⊗RΔn → Δn

as follows:
α · ψ ≡ μ(α ⊗ ψ) := γ (c(α))ψ . (5.3.23)

For any x ∈ R
n, α ∈ ∧

R
n and ψ ∈ Δn, the following holds (Exercise 5.3.1):

(x ∧ α) · ψ = x · (α · ψ)+ (x�α) · ψ . (5.3.24)

As in Remark 5.2.9, we denote the covering homomorphism induced from Ãd and
the induced Lie algebra homomorphism by

λ : Spinr,s → SO0
r,s , dλ : spinr,s → sor,s .

These mappings are given by (5.2.33).

Proposition 5.3.11 The Clifford multiplication has the following properties.

1. It is equivariant with respect to the Spinr,s-action,
18 that is, for any a ∈ Spinr,s,

α ∈ ∧
R

n and ψ ∈ Δn,

γ (a)(α · ψ) = (λ(a)α) · (γ (a)ψ) . (5.3.25)

2. Let n = 2k. Then, the Clifford multiplication with a non-zero x ∈ R
n yields a

vector space isomorphism Δ± → Δ∓.

18In other words, it is a homomorphism of Spin(r,s)-representations.



5.3 Representations 383

Proof The proof of the first assertion is by induction with respect to the degree k of
α. For k = 1, α is a vector x ∈ R

n. Then,

γ (a)(x · ψ) = γ (a)γ (x)(ψ)
= γ (a)γ (x)γ (a−1)γ (a)(ψ)

= γ (axa−1)γ (a)(ψ)

= γ (λ(a)x)(γ (a)(ψ))
= (λ(a)x) · (γ (a)(ψ)) .

Now, assume that (5.3.25) holds for all elements α ∈ ∧
R

n of degree ≤ k. Then,
using (5.3.24), for β := x ∧ α we obtain

γ (a)((x ∧ α) · ψ) = γ (a) (x · (α · ψ))+ γ (a) ((x�α) · ψ)
= (λ(a)x) · (γ (a)(α · ψ))+ (λ(a)(x�α)) · (γ (a)ψ)
= (λ(a)x) · (λ(a)α) · (γ (a)ψ)+ ((λ(a)x)�(λ(a)α)) · (γ (a)ψ)
= ((λ(a)x) ∧ (λ(a)α)) · (γ (a)ψ)
= (λ(a)β) · (γ (a)(ψ)) .

The second assertion is an immediate consequence of the fact that Γ anticommutes
with any non-vanishing vector x ∈ R

n. �

Now, let us focus on the case n = 2k. Then, there is a useful equivalent description
of the spinor modules.19 Consider the spinor moduleΔn together with its decomposi-
tion (5.3.15). As before, for n = r + s, wewriteV = R

r,s, q for the pseudo-Euclidean
quadratic form of V given by (5.1.12) and η for the corresponding bilinear form. The
extensions of q and η to VC = V ⊗ C are denoted by the same symbols. Recall that
a subspaceW ⊂ VC is called isotropic if q(w) = 0 for all w ∈ W . Given an isotropic
subspace W , one can find a complementary isotropic subspace W ′ ∼= W∗. For an
oriented orthonormal basis {ei} of VC we define

W := span
{
e2k−1 − i e2k : k = 1, . . . ,

n

2

}
, W ′ := span

{
e2k−1 + i e2k : k = 1, . . . ,

n

2

}
,

and the isomorphism ϕ : W → (W ′)∗ by ϕ(w)(w′) := η(w,w′). It is now easy to
check (Exercise 5.3.2) that for v = w′ + w , w ∈ W and w′ ∈ W ′,

η(w,w′) = 1

2
q(v) , η(w,w) = 0 = η(w′,w′) . (5.3.26)

19The following construction is at the heart of the general theory of spinor modules, see e.g. [439].
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The corresponding decomposition VC = W ′ ⊕ W ∼= W∗ ⊕ W is referred to as a
complex polarization of V . We define SW := ∧

W∗ and endow SW with the structure
of a Clifford module by defining the action of VC

∼= W∗ ⊕ W on SW by20

ρW : W∗ ⊕ W → End(SW ) , ρW (ζ,w) := √
2(ε(ζ )+ ι(w)) , (5.3.27)

where ε and ι denote exterior multiplication and contraction, respectively. Using the
anti-commutation relations for ε and ι, one can check that ρW (ζ,w)2 = q(ζ,w)1.
Thus, by universality, ρW extends to a representation of the Clifford algebra Clcn on
SW . By construction, ρW is faithful and, by dimension counting and by the uniqueness
of the spinor module, we obtain the following.

Proposition 5.3.12 For n even, the spinor module Δn is isomorphic to the Clcn-
module SW . �

We decompose
SW = ∧

W∗ = ∧+W∗ ⊕ ∧−W∗ (5.3.28)

with respect to the Z2-grading of the exterior algebra and denote S+
W = ∧+W∗ and

S−
W = ∧−W∗.

Proposition 5.3.13 The naturalZ2-grading of SW is compatiblewith theZ2-grading
defined by the chirality element, that is,Γn acts as+1on

∧+W∗ andas−1on
∧−W∗.

As a consequence,
Δ+

n
∼= S+

W , Δ
−
n

∼= S−
W . (5.3.29)

Proof We choose an oriented orthonormal basis {ei} and denote El := 1√
2
(e2l−1 −

i e2l). It is easy to calculate Γn in this basis (Exercise 5.3.2):

Γn = (E1E1 − 1) · . . . · (EkEk − 1) . (5.3.30)

Now, denoting the basis elements of SW ∼= ∧
W∗ by EIl = Ei1 ∧ . . . ∧ Eil , where

Il = {i1, . . . , il}, the action of ρW (EiEi − 1) on EIl yields obviously EIl if i /∈ Il and
−EIl if i ∈ Il. This implies

ρW (Γn)(EIl ) = (−1)lEIl ,

which proves the assertion. �

Correspondingly, we may consider SW := ∧
W . Here, the action of VC

∼= W∗ ⊕ W
is given by

ρW : W∗ ⊕ W → End(SW ) , ρW (ζ,w) := √
2(ι(ζ )+ ε(w)) , (5.3.31)

20The factor
√
2 is necessary in order to respect the Clifford algebra relations, because ε(ζ )ι(w)+

ι(w)ε(ζ ) = ζ(w) = η(η−1(ζ ),w), cf. formula (2.7.33).

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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which provides a representation ρW of Clcn on S
W . There is a natural non-degenerate

pairing between SW and SW , given by

(·, ·) : SW ⊗ SW → C , (φ, ψ) := (
ι(φT)ψ

)
[0] , (5.3.32)

where the subscript [0]means taking the zero-order component in the exterior algebra
and the superscript T is defined by

(α1 ∧ α2 . . . ∧ αk)T := αk ∧ . . . ∧ α2 ∧ α1 , αi ∈ W∗ .

Using (5.3.27) and (5.3.31), one proves (Exercise 5.3.4)

(φ, ρW (ζ,w)ψ) = (ρW (ζ,w)φ,ψ) (5.3.33)

for any ζ ∈ W∗,w ∈ W ,φ ∈ SW andψ ∈ SW . This, togetherwith the non-degeneracy
of the pairing, implies the following isomorphism of Clifford modules:

SW ∼= S∗
W . (5.3.34)

Thus, we may call SW the dual spinor module. Correspondingly, there is a natural
non-degenerate pairing on SW , given by

(·, ·)SW : SW ⊗ SW → ∧kW∗ , (φ1, φ2)SW := (
φT1 ∧ φ2

)
[top] , (5.3.35)

where the subscript [top] means taking the top-order component in the exterior alge-
bra.21 This pairing will be referred to as the canonical bilinear form on the spinor
module. One shows (Exercise 5.3.4) that, for any a ∈ Clcn,

(ρW (a)φ,ψ)SW = (φ, ρW (aT)ψ)SW . (5.3.36)

Thus, choosing a trivialization
∧kW∗ ∼= C, via (·, ·)SW we may identify SW ∼= S∗

W as
Clifford modules. Combined with (5.3.34), this yields an isomorphism SW ∼= SW .

Proposition 5.3.14 Let dim V = 2k. Then, the pairing (·, ·)SW is

1. symmetric if k = 0, 1 mod 4,
2. anti-symmetric if k = 2, 3 mod 4.

Moreover, if k = 0 mod 4 (respectively, k = 2 mod 4) it restricts to a non-degenerate
symmetric (respectively, anti-symmetric) form on both S+

W and S−
W. If k is odd, (·, ·)SW

vanishes both on S+
W and S−

W, thus, yielding a non-degenerate pairing between them.

21In complete analogy, there is a pairing on SW .
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Proof For φ ∈ ∧lW∗ and ψ ∈ ∧k−lW∗, we calculate

(ψ, φ)SW = ψT ∧ φ
= (−1)

1
2 (k−l)(k−l−1)ψ ∧ φ

= (−1)
1
2 (k−l)(k−l−1)+l(k−l)φ ∧ ψ

= (−1)
1
2 (k−l)(k−l−1)+l(k−l)+ 1

2 l(l−1)φT ∧ ψ
= (−1)

1
2 k(k−1)(φ, ψ)SW .

This proves the first assertion. The remaining statements are left to the reader (Exer-
cise 5.3.3). �

In the following example, details are left to the reader (Exercise 5.3.5).

Example 5.3.15 Here, we take up Examples 5.1.21 and 5.2.10 where we discussed
the Clifford algebraCl1,3 of theMinkowski space (M, η) and its spin group. Consider
the complexification MC = M ⊗ C ∼= C

4 together with Clc4 ∼= Clc1,3. If {ei} is the
standard basis in C

4, then ẽ0 = e0, ẽj = i ej, with j = 1, 2, 3, is an orthonormal
basis. As above, we pass to the basis defined by El := 1√

2
(ẽ2l−1 − i ẽ2l) and E′

l :=
1√
2
(ẽ2l−1+ i ẽ2l), with l = 1, 2, and interchange the role of ẽ1 and ẽ3 for convenience.

In this basis, z ∈ MC reads

z = 1√
2
(z0 + z3)E1 + 1√

2
(z0 − z3)E′

1 + 1√
2
(z1 − iz2)E2 − 1√

2
(z1 + iz2)E′

2 ,

where zμ are complex coordinates in the standard basis. This yields the complex
polarization MC = W+ ⊕ W−, where

W± = {
z ∈ MC : z0 ∓ z3 = 0 , z1 ± iz2 = 0

}
. (5.3.37)

Clearly, W+ ∼= C
2 ∼= W−. We consider the spinor module S = ∧

W+ and its
decomposition into its irreducible components

S = S+ ⊕ S− , S+ = ∧+W+ = ∧0W+ ⊕ ∧2W+ , S− = ∧−W+ = ∧1W+ .

Clearly, {1,E := E1 ∧ E2} and {E1,E2} constitute bases in S+ and S−, respectively.
Since ρ(w) = √

2ε(w) and ρ(η(w)) = √
2ι(η(w)), we have

ρ(Ei)1 = √
2Ei , ρ(Ei)Ej = √

2εijE , ρ(Ei)E = 0 ,

ρ(Ei)1 = 0 , ρ(Ei)Ej = √
2δij1 , ρ(Ei)E = √

2εijEj ,

where εij denotes the symplectic form onC
2.22 To describe the spin representation, it

is enough to specify the action ofM on S. Thus, for v = w+w ∈ M, where w ∈ W+,

22This is the natural bilinear pairing here, according to Proposition 5.3.14.
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we must apply ρ(v) = √
2(ι(η(w)) + ε(w)) to elements of the basis of S. Taking

v±
i = Ei ± Ei, we obtain

ρ(v±
i )1 = ±√

2Ei , ρ(v±
i )Ej = √

2(δij1 ± εijE) , ρ(v±
i )E = √

2εijEj .

We know that the elements {ẽiẽj}, with i < j, form a basis of the Lie algebra
spin(4,C). Rewriting this basis in terms of the elements Ei and Ej, one finds an
explicit matrix representation of spin(4,C) with respect to the bases {1,E} and
{E1,E2} in S+ and S−, respectively. From this representation one reads off that
spin(4,C) = sl(2,C)⊕ sl(2,C). Then, by Proposition 5.2.17

Spin(4,C) = SL(2,C)× SL(2,C) . (5.3.38)

Finally, by Proposition 5.3.14, the bilinear form (5.3.36) should be anti-symmetric
and should induce anti-symmetric bilinear forms on both S+ and S−. This can be
checked by direct inspection. In the above bases, the bilinear forms on S± are given
by the standard anti-symmetric form εij with i, j = 1, 2. �

In the remainder of this section, we endow every spinor module with a natural
Hermitean bilinear form, discuss its relation to the canonical bilinear form (·, ·)SW
and draw important conclusions. We limit our attention to the Euclidean case and
comment on the pseudo-Euclidean case at the end.

Thus, let (V , q) be a positive-definite quadratic space with bilinear form η. Extend
η to VC and consider the natural Hermitean bilinear form h on VC associated with
the complex bilinear form η via

h(u, v) := η(u, v) , u, v ∈ VC . (5.3.39)

Here, v �→ v denotes the complex conjugation mapping. Clearly, this mapping
extends to a conjugate linear algebra automorphism a �→ a of Cl(V , q)c. Com-
bining this with the canonical anti-automorphism t, we obtain a conjugate linear
anti-automorphism

a∗ := t(a) , (5.3.40)

that is, (ab)∗ = b∗a∗ and (λa)∗ = λa∗ for λ ∈ C. Let (E, ρ) be a complex rep-
resentation of Cl(V , q)c endowed with a Hermitean structure. It is called unitary
if

ρ(a∗) = ρ(a)∗ (5.3.41)

for all a ∈ Cl(V , q)c. Thus, in particular, the generators v ∈ V ⊂ Cl(V , q)c act as
self-adjoint operators onE. Clearly, for a unitaryCliffordmodule, the representations
of Spin(V) and Pin(V) preserve the Hermitean structure on E. Thus, they are unitary
as well.

We extend h to
∧
VC by setting h(φ,ψ) = 0 for φ,ψ ∈ ∧

VC having a different
form degree and
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h(1, 1) = 1 , h(u1 ∧ . . . ∧ uk, v1 ∧ . . . ∧ vk) = det
(
h(ui, vj)

)
, (5.3.42)

where ui, vi ∈ VC. Note that, with respect to the standard basis {eI} of∧VC induced
from an η-orthonormal basis {ei} of VC, h coincides with the standard Hermitean
form on C

n.

Example 5.3.16 We take up Example 5.3.2. Clearly, 〈a, b〉 := tr(a∗b) defines a
Hermitean inner product on Cl(V , q)c. Then, 〈a, vb〉 = 〈va, b〉, for any v ∈ V ⊂
Cl(V , q)c and a, b ∈ Cl(V , q)c. Thus, endowedwith the action by left multiplication,
Cl(V , q)c is a unitary Clifford module. Next, it is easy to see that the quantization
mapping intertwines the inner product on

∧
VC given by (5.3.42) with the above

inner product on Cl(V , q)c (Exercise 5.3.6). Thus,
∧
V is a unitary Clifford module

as well. �

Now, let dim V = 2k and let VC = W ′ ⊕ W ∼= W∗ ⊕ W be a complex polarization.
Then, by (5.3.26), W and W ′ are orthogonal with respect to h. Moreover, W = W ′.
Thus, we can restrict h toW and toW ′ and then extend these restrictions via (5.3.42)
to
∧
W and

∧
W ′, respectively. This way, we obtain a scalar product hW on the spinor

module SW and, via W ′ ∼= W∗, also a scalar product hW on SW .

Proposition 5.3.17 The spinor modules SW and SW are unitary. In particular, the
Hermitean forms hW and hW are Spin(V)-invariant.

Proof We write down the proof for SW . It is enough to show that any v ∈ V acts via
ρW as a selfadjoint operator on

∧
W . Since v is real andW = W ′, with respect to the

chosen complex polarization it decomposes as v = w + w, where w ∈ W . We prove

ι(η(w))∗ = ε(w) , ε(w)∗ = ι(η(w)) .

On the one hand, for anyφ = u1∧. . .∧uk ∈ ∧kW andψ = v1∧. . .∧vk+1 ∈ ∧k+1W ,

hW (ι(η(w))∗φ,ψ) = h(u1 ∧ . . . ∧ uk, ι(η(w))(v1 ∧ . . . ∧ vk+1))

=
k∑

i=1

(−1)i−1hW (u1 ∧ . . . ∧ uk, η(w, vi) v1 ∧ . . . v̂i . . . ∧ vk+1)

=
k∑

i=1

(−1)i−1h(w, vi) h
W (u1 ∧ . . . ∧ uk, v1 ∧ . . . v̂i . . . ∧ vk+1) .

On the other hand, hW (ε(w)φ,ψ) = hW (w ∧ u1 ∧ . . . ∧ uk, v1 ∧ . . . ∧ vk+1). Using
(5.3.42) and expanding the determinant with respect to the first line, we obtain the
assertion. Now, ρW (v)∗ = √

2(ι(η(w))∗ + ε(w)∗) = √
2(ε(w)+ ι(η(w))) = ρW (v) .

�

Let {ei}be anh-orthonormal basis inW and let {eI}be the inducedbasis inSW = ∧
W .

Let Ic denote the complement of I in {1, . . . , k}.We choose e1∧. . .∧ek as the volume
form and view the bilinear form (·, ·)SW as a C-valued mapping.
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Proposition 5.3.18 Let dim V = 2k and let VC = W∗ ⊕ W be a complex polar-
ization. Then, the scalar product hW on SW and the canonical bilinear form (·, ·)SW
are compatible, that is, there exists an anti-linear Spin(V)-equivariant mapping
C : SW → SW such that

hW (C(eI), eJ) = (eI , eJ)SW . (5.3.43)

If the canonical bilinear form is symmetric, then C2 = id. If it is anti-symmetric,
then C2 = − id. The corresponding statements are true for SW .

Proof We have
(eI , eIc)SW = εI , (5.3.44)

where εI = ±1. If (·, ·)SW is symmetric, then εI = εIc . If it is anti-symmetric, then
εI = −εIc . Now, since both hW and (·, ·)SW are non-degenerate, (5.3.43) defines
an anti-linear isomorphism C : SW → SW . Moreover, since SW is unitary and
since (·, ·)SW is Spin(n)-invariant, C is Spin(V)-equivariant. Comparing (5.3.43)
with (5.3.44), we read off

C(eI) = εI eIc . (5.3.45)

This implies C2 = id in the symmetric case and C2 = − id in the anti-symmetric
case. �

Now, recall some basic terminology from representation theory. Let S be aHermitean
vector space carrying a unitary representation of a compact Lie groupG. If there exists
an anti-linear G-equivariant mapping C : S → S fulfilling C2 = id or C2 = − id,
thenS is said to be of real or of quaternionic type, respectively.C is called the structure
mapping. In the first case, S is the complexification of the real G-representation SR

given as the fixed point set of C. In the second case, C induces on S the structure of
a quaternionic G-representation with scalar multiplication by the quaternions i, j, k
given by i = i, j = C and k = ij. In both cases, C clearly provides an isomorphism
of S and the dual module S∗. Consequently, such representations are referred to as
self-dual. If a unitaryG-representation is not self-dual, then it is said to be of complex
type.

Combining Proposition 5.3.18 with Proposition 5.3.14, we obtain the following.

Theorem 5.3.19 We have the following types of the spin representations of Spin(n):

n = 0 mod 8 : Δ±
n of real type ,

n = 2, 6 mod 8 : Δ±
n of complex type ,

n = 4 mod 8 : Δ±
n of quaternionic type ,

n = 1, 7 mod 8 : Δn of real type ,
n = 3, 5 mod 8 : Δn of quaternionic type .

Proof The first three assertions are immediate from Propositions 5.3.14 and 5.3.18.
Consider the case n = 2k − 1 with k even. Then, by (5.3.17), Δn

∼= Δ+
n+1 and the

restriction of the bilinear form yields a non-degenerate symmetric bilinear form for



390 5 Clifford Algebras, Spin Structures and Dirac Operators

k = 0 (mod 4) and an anti-symmetric bilinear form for k = 2 (mod 4), respectively.
Finally, let n = 2k − 1 with k odd. Then, according to Proposition 5.3.14, the rest-
riction of the canonical bilinear form toΔ+

n+1 vanishes. But instead one can take the
Spin(n)-invariant bilinear form

(φ,ψ) := (φ, ρ(en+1)ψ)SW , φ, ψ ∈ Δ2k−1 = Δ2(k−1) ,

which is easily seen to be symmetric for k = 1 (mod 4) and anti-symmetric for
k = 3 (mod 4), respectively. �

Remark 5.3.20 (Structure mapping) Recall the explicit k-fold tensor product repre-
sentation

Δ2k = C
2k = C

2 ⊗ . . .⊗ C
2

given by (5.3.2), together with the explicit presentation of the generators e1 and e2
of the spinor representation on C

2,

e1 =
[
0 1
1 0

]
, e2 =

[
1 0
0 −1

]
,

provided in Example 5.1.13. Using this, from (5.3.45) one can read off the structure
mapping C explicitly. Consider the case n = 8k + 4. Then, by Theorem 5.3.19, both
Δ±

n are of quaternionic type. For n = 4, we have Δ+
4 = C

2 = Δ−
4 and Δ+

4 and Δ−
4

are spanned by (e∅, e{1,2}) and (e{1}, e{2}), respectively. Taking into account that C
must be anti-linear, for Δ4 = C

2 ⊗ C
2, formula (5.3.45) yields:

C : C
2 ⊗ C

2 → C
2 ⊗ C

2 , C

([
z1
z2

]
⊗
[
z3
z4

])
=

[−z2
z1

]
⊗
[
z3
z4

]
. (5.3.46)

Then, C2 = − id, indeed. Moreover, using the explicit presentation of the Clifford
multiplication on Δ4 found in the proof of Proposition 5.1.15,

f1 = 1 ⊗ e1 , f2 = 1 ⊗ e2 , f3 = e1 ⊗ i e1e2 , f4 = e2 ⊗ i e1e2 ,

one checks by direct inspection (Exercise 5.3.7) that C commutes with the Clifford
action,

C ◦ f i = f i ◦ C , i = 1, 2, 3, 4 . (5.3.47)

This implies that C is equivariant with respect to the spin representation.23 Using the
above tensor product decomposition ofΔ2k , this constructionmay be easily extended
to n = 8k + 4 yielding a quaternionic structure mapping C commuting with the
Clifford multiplication. In a completely analogous way, the structure mappings of

23We know this already from Proposition 5.3.18.
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the remaining cases provided by Theorem 5.3.19 may be constructed. For a complete
list, we refer e.g. to [219].24 �

Remark 5.3.21 (Majorana spinors) Let S be a complex spin representation. Then, S
is calledMajorana (resp. symplectic Majorana) if it admits a real (resp. quaternionic)
structure mapping C. A spinor φ ∈ S is called Majorana if C(φ) = φ. We refer to
[633] for more details. �

Example 5.3.22 (Low-dimensional spin groups) Recall Example 5.2.11. Here, we
show that Theorem 5.3.19 yields elegant proofs of the isomorphisms between low-
dimensional spin groups and classical Lie groups. We illustrate this by proving

Spin(5) ∼= Sp(2) , Spin(6) ∼= SU(4) .

Since Δ5 is a faithful 4-dimensional representation of quaternionic type, after iden-
tifying C

4 ∼= H
2, we obtain an injective homomorphism ϕ : Spin(5) → Sp(2).

By dimension counting, this must be an isomorphism. Next, Δ6 is of complex type
and decomposes into irreducible 4-dimensional representations, Δ6 = Δ+

6 ⊕ Δ−
6 .

Thus, since the spin representation is unitary, we obtain injective homomorphisms
ϕ± : Spin(6)→ U(4). Since Spin(6) is the covering group of a simple Lie group, it
must be semisimple. Thus, its image underϕ± must lie in SU(4). Again, by dimension
counting, we conclude that ϕ± are isomorphisms. �

An analysis similar to that in Theorem5.3.19 has also been carried out for the pseudo-
Euclidean case, see [15, 286] for a detailed presentation. Here, we focus on the con-
struction of a Spin(V)-invariant Hermitean form on the spinor module.25 Given this
form, one can then proceed as in the positive-definite case. Recall from Proposition
5.3.17 that, for a positive-definite η, the Hermitean forms on the spinor modules are
Spin(V)-invariant. In the pseudo-Euclidean case, the situation is more complicated.
It can be shown that, here, there does not exist a positive definite Spin(V)-invariant
Hermitean form at all. In particular, the canonical Hermitean form on the spinor
module is only invariant with respect to the maximal compact subgroup of the spin
group, see [59] for details. There exists, however, an indefinite invariant Hermitean
form, defined as follows.

Take the canonical (positive-definite) Hermitean form

h(φ,ψ) := φ†ψ , φ,ψ ∈ Δr,s , (5.3.48)

on Δr+s
∼= C

2k , where r + s = 2k. Let {ei} be an orthonormal basis in R
r,s. Any

vector x ∈ R
r,s may be decomposed as x = x+ + x−, where x+ ∈ span {e1, . . . , er}

and x− ∈ span {er+1, . . . , er+s}. By the explicit presentation of the Clifford action
provided in Remark 5.1.20, we have γ (ej)† = ηjjγ (ej) for all j = 1, . . . , n. Thus,

24Note, however, the different conventions there.
25The Spin(V)-invariance is relevant for applications in geometry and physics. In particular, one
wants to construct Spin(V)-invariant Lagrangians for field theoretical models.
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h(x+ · φ,ψ) = h(φ, x+ · ψ) , h(x− · φ,ψ) = −h(φ, x− · ψ) . (5.3.49)

We define

Γr =
{
e1 · e2 · . . . · er if r = 0, 1 (mod 4)
i e1 · e2 · . . . · er if r = 2, 3 (mod 4)

(5.3.50)

Then, Γ 2
r = 1 and x+ · Γr = (−1)r−1Γr · x+ and x− · Γr = (−1)rΓr · x−. Thus,

h(Γr · φ,ψ) = h(φ, Γr · ψ) , (5.3.51)

for any φ,ψ ∈ Δr+s. Now, we can define a modified Hermitean form:

hΔ(φ,ψ) := h(Γr · φ,ψ) , φ,ψ ∈ Δr,s . (5.3.52)

Proposition 5.3.23 The bilinear form hΔ has the following properties.

1. It defines an indefinite Hermitean form of index 2k−1.
2. It is Spinr,s-invariant.
3. For any x ∈ R

n and any φ,ψ ∈ Δr,s,

hΔ(x · φ,ψ)+ (−1)rhΔ(φ, x · ψ) = 0 . (5.3.53)

Proof The matrix γ (Γr) is non-singular and has 2k−1 positive and 2k−1 negative
eigenvalues. Moreover, by (5.3.51),

hΔ(φ,ψ) = h(Γr · φ,ψ) = h(ψ, Γr · φ) = h(Γr · ψ, φ) = hΔ(ψ, φ) .

This proves the first assertion. Next, take any x ∈ R
n and decompose x = x+ + x−.

Then, using (5.3.49), we calculate

hΔ(x · φ,ψ) = h(Γr · x · φ,ψ)
= h(Γr · x+ · φ,ψ)+ h(Γr · x− · φ,ψ)
= (−1)r−1h(x+ · Γr · φ,ψ)+ (−1)rh(x− · Γr · φ,ψ)
= (−1)r−1h(Γr · φ, x · ψ)
= (−1)r−1hΔ(φ, x · ψ) .

This proves the third assertion. Finally, let g = x1 · . . . · x2m ∈ Spinr,s. Then, using
(5.3.53) together with N(g) = 1, we obtain

hΔ(g · φ, g · ψ) = (−1)2rm hΔ(φ,ψ) = hΔ(φ,ψ) .

�
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In applications, we will usually denote hΔ = 〈·, ·〉.
Remark 5.3.24 One can take

Γs =
{
(−1)[ s+1

2 ] er+1 · er+2 · . . . · er+s if s = 0, 1 (mod 4)
i(−1)[ s+1

2 ] er+1 · er+2 · . . . · er+s if s = 2, 3 (mod 4)
(5.3.54)

and define an (equivalent) modified Hermitean form replacing Γr by Γs in (5.3.52).
�

Example 5.3.25 We take up Example 5.3.9. Using the presentation of the Clifford
multiplication given by (5.1.26), we obtain the following Hermitean form on the
bispinor space S ⊕ S

∗
over the Minkowski space:

hΔ(Ψ1, Ψ2) = Ψ †
1 γ

0Ψ2 = φ†1 ϕ̃2 + ϕ̃†1φ2 , (5.3.55)

for any Ψ1, Ψ2 ∈ S ⊕ S
∗
decomposed as in Example 5.3.9. Comparing this with

(5.3.21), the Spin1,3-invariance of hΔ is obvious. �

Exercises

5.3.1 Prove formula (5.3.24).

5.3.2 Prove the formulae (5.3.26) and (5.3.30).

5.3.3 Complete the proof of Proposition 5.3.14.

5.3.4 Prove formulae (5.3.33) and (5.3.36).

5.3.5 Work out the details of Example 5.3.15.

5.3.6 Show that the quantization mapping intertwines the inner products in Clcn and∧
VC as defined in Example 5.3.16.

5.3.7 Prove formula (5.3.47).

5.4 Spin Structures and Spinc-Structures

Now, we consider a real orientable n-dimensional Riemannian vector bundle π :
E → M. Recall from Corollary 4.8.4 that E is orientable iff w1(E) = 0. Moreover, if
w1(E) = 0, then the distinct orientations on E are in one-to-one correspondence with
elements of H0

Z2
(M). By Example 1.6.6, the associated frame bundle of E may be

reduced to the bundle of orthonormal framesO(E) and every choice of an orientation
yields a further reduction to the bundle of oriented orthonormal frames O+(E). By
Corollary 5.2.8, there is an exact sequence

http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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1 → Z2
j→ Spin(n)

λ→ SO(n)→ 1 . (5.4.1)

Thus, we have a covering homomorphism λ : Spin(n)→ SO(n) with kernel Z2. By
Remark 5.2.9, the latter is universal for n > 2.

Definition 5.4.1 (Spin structure) Let π : E → M be a real orientable n-dimensional
Riemannian vector bundle with n > 2. Then, a spin structure onE is a pair (S(E),Λ),
where S(E) is a principal Spin(n)-bundle over M and Λ : S(E)→ O+(E), together
with λ, is a vertical bundle morphism.

Two spin structures (S1(E),Λ1) and (S2(E),Λ2) are called equivalent if there
exists a Spin(n)-equivariant mapping F : S1(E)→ S2(E) fulfilling Λ2 ◦ F = Λ1.

Note that, by (5.4.1), Λ is a two-sheeted covering.
By Example 5.2.11, Spin(2) ∼= U(1). Thus, for n = 2, we take for λ : U(1) →

U(1) the connected two-fold covering. For n = 1, a spin structure is defined as a
two-fold covering of M.

Remark 5.4.2 In the terminology of Sect. 2.2, a spin structure is yet another example
of an H-structure. In the terminology of Sect. 1.6, O+(E) is a λ-extension of S(E),
or, since λ is surjective, S(E) is a Spin(n)-extension of O+(E). We have

O+(E) = S(E)×Spin(n) SO(n) , (5.4.2)

or, on the level of vector bundles,

E ∼= O+(E)×SO(n) R
n ∼= S(E)×Spin(n) R

n . (5.4.3)

This yields an equivalent definition of a spin structure: a spin structure on E is a
pair (S(E), ϕ), where S(E) is a principal Spin(n)-bundle over M and

ϕ : E → S(E)×Spin(n) R
n

is an isomorphism of oriented Riemannian vector bundles. �

Let us discuss the question of existence and uniqueness of spin structures.

Theorem 5.4.3 Let π : E → M be a real oriented Riemannian vector bundle. Then,
there exists a spin structure on E iff the second Stiefel–Whitney classw2(E) vanishes.
Moreover, if w2(E) = 0, then the isomorphism classes of spin structures on E are in
one-to-one correspondence with the elements of H1

Z2
(M).

Proof By Proposition 3.7.5, the exact sequence (5.4.1) induces a fibration of classi-
fying spaces,

BZ2
Bj−→ BSpin(n)

Bλ−→ BSO(n) . (5.4.4)

By Appendix G, BZ2 coincides with the Eilenberg–MacLane space K(Z2, 1) and
thus, by the discussion in Sect. 4.8, the fibration (5.4.4) implies the sequence

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_3
http://dx.doi.org/10.1007/978-94-024-0959-8_4
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K(Z2, 1)
Bj−→ BSpin(n)

Bλ−→ BSO(n)
θ−→ K(Z2, 2) . (5.4.5)

Using Corollary 3.6.9 and [M,K(Z2, n)] = Hn
Z2
(M), we derive from (5.4.5) the

following exact sequence of pointed sets:

. . . −→ [M,Spin(n)] λ∗−→ [M,SO(n)] Ωθ∗−→ H1
Z2
(M)

Bj∗−→ [M,BSpin(n)]
Bλ∗−→ [M,BSO(n)] θ∗−→ H2

Z2
(M) . (5.4.6)

Now, a principal SO(n)-bundle P admits a 2-fold covering by a principal Spin(n)-
bundle iff it is contained in the image of Bλ∗, that is, according to the exactness of
this sequence iff θ∗(P) = 0. But, by definition of the Stiefel–Whitney classes, we
have

θ∗(P) = w2(P) .

The second statement also follows from the exactness of the sequence (5.4.6). �

The most important special case is provided by the choice E = TM.

Definition 5.4.4 (Spin manifold) A spin manifold is an oriented Riemannian mani-
fold with a spin structure on its tangent bundle.

Since the Stiefel–Whitney classes of a manifold M are, by definition, the Stiefel–
Whitney classes of TM, Theorem 5.4.3 implies the following.

Corollary 5.4.5 An oriented Riemannian manifold M admits a spin structure iff its
second Stiefel–Whitney class w2(M) vanishes. Moreover, if w2(M) = 0, then the
isomorphism classes of spin structures on M are in one-to-one correspondence with
the elements of H1

Z2
(M). �

Remark 5.4.6 LetL+(M) be the bundle of oriented linear frames ofM.We show that,
for any Riemannian metric on M, the manifolds O+(M) and L+(M) are homotopy
equivalent. For that purpose, let j : O+(M) → L+(M) be the natural inclusion
mapping and let p : L+(M)→ O+(M) be defined by the standard orthonormalization
procedure of linear frames. Then, clearly p ◦ j = idO+(M). Since, for any u ∈ L+(M),
the image j ◦ p(u) is obtained from u by a transformation from GL+(Rn) and, since
GL+(Rn) is connected, we conclude that j ◦p is homotopic to the identity on L+(M).
This implies that the choice of a spin structure for a givenRiemannianmetric uniquely
determines a spin structure for any other Riemannian metric. In this sense, a spin
structure does not depend on the choice of the Riemannian metric. �
Remark 5.4.7 (Pseudo-Riemannian manifolds) If (M, g) is a pseudo-Riemannian
manifold with signature (r, s), then one has the following existence criterion, see
[59] and further references therein: let TM = Er ⊕ Es be a decomposition of
TM into a time-like (positive definite) subbundle Er and an orthogonal space-
like (negative definite) subbundle Es. The manifold M admits a spin structure iff
w2(M) = w1(Er) ∪ w1(Es). In particular, a time- or a space-orientable pseudo-
Riemannian manifold admits a spin structure if its second Stiefel–Whitney class
vanishes. The spin structures are classified by the group H1

Z2
(M). We refer the

http://dx.doi.org/10.1007/978-94-024-0959-8_3


396 5 Clifford Algebras, Spin Structures and Dirac Operators

reader to [59] for a discussion of special classes of examples important in geom-
etry and physics. �

We continue with a number of examples.

Example 5.4.8 (2-connected manifolds) If M is 2-connected, then the Hurewicz
Theorem, together with the Universal Coefficient Theorem, implies thatH1

Z2
(M) and

H2
Z2
(M) vanish. Thus, M carries a unique spin structure. Examples of this type are

spheres of dimension n > 2, simply connected Lie groups and the Stiefel manifolds
SK(k, l) of k-frames in K

l fulfilling d(l − k + 1) ≥ 4, see Theorem 3.4.10. Here, d
is the dimension of K over R. �

Example 5.4.9 (Spin Structure of S4) Consider M = S4 which fits into the class
of manifolds described by Example 5.4.8. Let us calculate the spin structure S(S4)
explicitly. By Example 5.2.11, we have Spin(4) = Sp(1) × Sp(1) and Spin(5) =
Sp(2). Thus, we obtain the following commutative diagram:

Sp(1)× Sp(1) i ��

λ

��

Sp(2)

λ′

��
SO(4)

i′ �� SO(5)

Here, λ and λ′ are the covering homomorphisms and i and i′ denote the natural
inclusion homomorphisms. Next, recall from Example 1.1.24 and Remark 1.1.25
that

S4 ∼= SR(1, 5) ∼= SO(5)/SO(4) (5.4.7)

and
HP1 ∼= GH(1, 2) ∼= Sp(2)/(Sp(1)× Sp(1)) . (5.4.8)

By Example 1.1.18, the bundle of oriented orthonormal frames O+(S4) coincides
with the principal SO(4)-bundle SO(5) → SO(5)/SO(4) and, by (5.4.8), Sp(2)
carries the structure of a principal (Sp(1) × Sp(1))-bundle over S4. Thus, the pair
(λ′, λ) of Lie group homomorphisms defines a morphism of principal bundles:

Sp(2) λ′
��

��

O(S4)

��
S4

id �� S4

Since λ′ is a 2-fold covering, we conclude that Sp(2), viewed as a principal (Sp(1)×
Sp(1))-bundle over S4, coincides with the (unique) spin structure S(S4). �

Example 5.4.10 (Projective spaces) Consider the n-dimensional projective space
KPn for K = R,C or H. Then,

http://dx.doi.org/10.1007/978-94-024-0959-8_3
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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1. RPn is spin iff n = 3 (mod 4).
2. CPn is spin iff n is odd.
3. HPn is spin for all n.

In case 1we have two spin structures and in the remaining cases the spin structures
are unique. By Example 4.5.3, the total Stiefel–Whitney class of KPn is

w = 1 + w1 + w2 + . . . = (1 + ξ)n+1 ,

where ξ is the generator of the Z2-cohomology ring. This generator has degree 1,
2 and 4 for, respectively, K = R,C and H. Now, one has to analyze the conditions
w1 = 0 and w2 = 0 for each case. For K = R, they are equivalent to w1 = (n+ 1)ξ
and w2 = (n+1

2

)
ξ 2 = 0, that is,

(n + 1) = 0 (mod 2) ,
n(n + 1)

2
= 0 (mod 2) .

Moreover, H1
Z2
(RPn) is generated by ξ . This yields the assertion. For K = C or H,

the proof is obvious.
In special cases, one can give a proof by simple geometric arguments, see e.g.

Proposition 3.3 in [554] where it is shown that CP2 cannot carry a spin structure. �

Example 5.4.11 Let (M, g) be an oriented 4-dimensional Riemannian manifold.
Consider the Hodge decomposition

∧2T∗M = ∧2
+T

∗M ⊕ ∧2
−T

∗M ,

see (2.8.17). Since
∧2

+R
4 ∼= so(3) = spin(3), the subbundles E± = ∧2

±TM are
Riemannian with the fibre metric induced from the Killing form on so(3). LetO(E±)
be the principal SO(3)-bundles of (positive or negative) orthonormal frames of E±
and let S(E±) be the corresponding spin bundles. It is easy to show (Exercise 5.4.1)
that

E± ∼= Ad(S(E±)) . (5.4.9)

�

Example 5.4.12 (Compact Riemann surfaces) For a compact Riemann surface of
genus g, there are exactly 22g distinct spin structures. We refer to [407] for their
explicit construction. �

Example 5.4.13 Any complex manifoldM is orientable, because the realification of
a complex vector bundle is orientable, see Sect. 4.2. Moreover, by Corollary 4.4.7/1,
w2(M) is the mod 2-reduction of the first Chern class c1(M). Thus, a complex man-
ifold is spin iff c1(M) = 0(mod 2). �

Since a spin structure is a principal bundle, the ordinary theory of connections
as developed in Chap.1 applies. Since Λ : S(M) → O+(M) is a covering, any

http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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connection form ω in O+(M) lifts uniquely to a connection form ω̂ in S(M). The
latter is defined via the commutative diagram

TS(M)
ω̂ ��

Λ′

��

spin(n)

dλ

��
TO+(M)

ω �� so(n)

Uniqueness follows from the fact that dλ is an isomorphism of Lie algebras. Explic-
itly,

ω̂ = (dλ)−1Λ∗ω . (5.4.10)

On the other hand, according to Corollary 1.3.14, any connection in S(M) induces a
unique connection in O+(M).

Definition 5.4.14 Let (M, g) be an oriented Riemannian spin manifold and let
(S(M),Λ) be a chosen spin structure on M. Let ω be the Levi-Civita connection
of g viewed as a principal connection on O+(M). Then, the unique lift ω̂ defined by
(5.4.10) will be referred to as the spin connection on S(M).

Finally, we show that the notion of a spin structure extends to the notion of a Spinc-
structure in an obvious way. Let

λ := pr1 ◦p : Spinc(n)→ SO(n) , σ := pr2 ◦p : Spinc(n)→ U(1) ,

be the natural homomorphisms defined by the sequence (5.2.17).

Definition 5.4.15 (Spinc-structure) Letπ : E → M be a real orientable n-dimensio-
nal Riemannian vector bundle with n > 2. Then, a Spinc-structure on E is a pair
(Sc(E),Λ), where Sc(E) is a principal Spinc(n)-bundle over M and Λ : Sc(E) →
O+(E), together with λ, is a vertical principal bundle morphism.

Clearly, by the above definition, since U(1) and Spin(n) are Lie subgroups of
Spinc(n), we have

(a) Sc(E) factorised with respect to the natural right U(1)-action is isomorphic to
O+(E).

(b) Sc(E) factorised with respect to the natural right Spin(n)-action is a principal
U(1)-fibre bundle over M which we denote by P.

(c) We have a two-fold covering Sc(E)→ O+(E)×M P, where O+(E)×M P is the
fibre product26 of principal bundles overM with structure group SO(n)×U(1).

Associated with P, we have a complex line bundle

L := P ×σ C (5.4.11)

26Cf. Remark 1.1.9/2.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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which is referred to as the fundamental (or determinant) line bundle of the Spinc-
structure. As in Remark 5.4.2, on the level of vector bundles, we have

E ∼= O+(E)×SO(n) R
n ∼= Sc(E)×Spinc(n) R

n .

Thus, as before, identifying U(1) ∼= SO(2) and considering the natural embedding
i : SO(n)×SO(2)→ SO(n+2) induced from the decomposition R

n+2 = R
n ⊕R

2,
we obtain

E ⊕ L ∼= Sc(E)×i◦p (Rn ⊕ R
2) . (5.4.12)

Now, by the commutative diagram (5.2.22), we have the following.

Proposition 5.4.16 AnorientedRiemannian vector bundleE overM admits aSpinc-
structure iff there exists a complex line bundle L over M such that E ⊕ L admits a
spin structure.

Using this criterion, it is easy to discuss the obstruction against the existence of a
Spinc-structure.

Proposition 5.4.17 An oriented Riemannian vector bundle E admits a Spinc-struc-
ture iff its second Stiefel–Whitney classw2(E) is themod 2 reduction of a cohomology
class from H2

Z
(M).

Proof By Proposition 5.4.16 and Theorem 5.4.3, E admits a Spinc-structure iff there
exist a line bundle L such that w2(E ⊕L) = 0, that is, by the Whitney Sum Formula,
iff

w2(E ⊕ L) = w2(E)+ w2(L)+ w1(E)w1(L) = 0 .

Since E and L are oriented, we conclude w2(E) + w2(L) = 0. Since these are mod
2 classes, this implies

w2(E) = w2(L) .

But,w2(L) is the mod 2 reduction of c1(L). This proves the assertion in one direction.
Conversely, if w2(E) is the mod 2 reduction of an integral cohomology class α, then
we can find a complex line bundle L with first Chern class α. �

Let Spinc(E) be the set of Spinc-structures on E. By assigning to a Spinc-structure
the first Chern class of P, we obtain a mapping

Spinc(E)→ H2
Z
(M) .

It can be shown [219] that the Spinc-structures of E are classified by H2
Z
(M).
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Example 5.4.18 Note that via the natural inclusionmapping ι : Spin(n)→ Spinc(n),
every spin structure S(E) induces a Spinc-structure of E. The latter is obtained by
taking the fibre product with the trivial principal U(1)-bundle P0,

Sc(E) = S(E)×M P0 . �

Example 5.4.19 Assume that E admits a complex structure, that is, O+(E) admits
a U(k)-reduction Q. Then, by Proposition 5.2.14, there exists a homomorphism
F : U(k)→ Spinc(2k) projecting onto SO(2k)× U(1). Thus,

Sc(E) := Q ×U(k) Spin
c(2k)

is a Spinc-structure of E. �

Clearly, the most important example is E = TM.

Definition 5.4.20 (Spinc-manifold) Let M be an oriented Riemannian manifold. If
TM admits a Spinc-structure, then M is called a Spinc-manifold.

By Example 5.4.18, every spin manifold has a canonical Spinc-structure and, by
Example 5.4.19, every almost complex manifold has a canonical Spinc-structure,
too. The following deep theorem holds [305, 681].

Theorem 5.4.21 (Wu–Hirzebruch–Hopf) Every compact orientable 4-dimensional
manifold is Spinc.

As in the case of a spin structure, the ordinary theory of connections applies here. For
a given Spinc(n)-structure Sc(E) on E, a connection form ω on Sc(E) takes values
in the Lie algebra

spinc(n) = spin(n)⊕ iR ∼= so(n)⊕ iR .

Let there be given connection forms onO+(E) and P, respectively. Then, by Remark
1.3.17, they induce a connection form on the fibre product O+(E)×M P and, since
Sc(E) → O+(E)×M P is a covering, the latter lifts to a unique connection form on
Sc(E). Conversely, given a connection form on Sc(E), it induces connection forms
on O+(E) and P, respectively.

Exercise

5.4.1 Prove formula (5.4.9).

5.5 Clifford Modules and Dirac Operators

We introduce a variety of vector bundle structures associated with Clifford modules
and, in particular, with spinor modules. These structures can be defined for arbitrary
pseudo-Riemannian vector bundles E → M, but in applications in geometry and

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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physics the special case E = TM with M being a pseudo-Riemannian manifold is
the most important one. We rather focus on the Riemannian case.

First, observe that the basic representation of SO(n)on theEuclidean space (Rn, q)
induces an action of SO(n) by algebra homomorphisms on the tensor algebra over
R

n which leaves the ideal Iq(R
n) defined in Sect. 5.1 invariant. Thus, we obtain a

representation of SO(n) on the Clifford algebra Cln by algebra homomorphisms:

ρn : SO(n)→ Aut(Cln) . (5.5.1)

Definition 5.5.1 (Clifford bundle) Let E be an oriented Riemannian vector bundle
of rank n and let O+(E) be the bundle of oriented orthonormal frames. Then, the
associated algebra bundle

Cl(E) := O+(E)×ρn Cln (5.5.2)

will be referred to as the Clifford bundle of E. For an oriented Riemannian manifold
(M, g), the bundleCl(TM)will be called the Clifford bundle ofM. It will be denoted
by Cl(M).

By analogy, one defines the Clifford bundle of a Hermitean vector bundle using the
extension of ρn to Clcn. For example, we can take the complexification

Clc(E) = Cl(E)⊗ C = O+(E)×ρn Clcn . (5.5.3)

Below, we will often not distinguish in notation between Cl(E) and Clc(E) and just
write Cl(E) for both.

Note thatCl(E) is a bundle of Clifford algebras overM. In particular, the fibrewise
multiplication inCl(E) provides the space of sections ofCl(E)with a natural algebra
structure. It follows that all Clifford algebra operations carry over to Clifford bundles.
In particular, the parity automorphism induces a vertical bundle automorphism of
Cl(E) and, thus, we obtain a decomposition

Cl(E) = Cl0(E)⊕ Cl1(E) (5.5.4)

corresponding to (5.1.5). Moreover, the vector space isomorphism given by Propo-
sition 5.1.10 induces an vector bundle isomorphism

∧
E ∼= Cl(E) . (5.5.5)

Second, we consider bundles of modules over the Clifford bundle, that is, for a
given Riemannian (or Hermitean) vector bundle E → M, the fibre at m ∈ M of
such a bundle is a left module over Cl(Em). In particular, for E = TM, the fibre
at m is a left module over Cl(TmM). Such bundles will be referred to as Clifford
module bundles. We give the definition for the case E = TM. The generalization to
an arbitrary Riemannian (or Hermitean) vector bundle will then be obvious.
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Definition 5.5.2 (Clifford module bundle over Cl(M)) Let (M, g) be a Riemannian
manifold and let E → M be a real (or complex) vector bundle. If there exists a
mapping c : TM → End(E ) fulfilling

c(X)2 = g(X,X) idEm (5.5.6)

for every X ∈ TmM, then c is referred to as a Clifford mapping and E as a Clifford
module bundle over Cl(M).

By the universal property, since TM ⊂ Cl(M) generates Cl(M) fibrewise, c induces
a unique homomorphism

ĉ : Cl(M)→ End(E ) (5.5.7)

of algebra bundles fulfilling ĉ(X) = c(X) for any X ∈ TmM. This justifies the
terminology.

The special case when the typical fibre of a complex Clifford module bundle E
coincides with a spinor module Δn is of particular importance. Such a bundle will
be referred to as a spinor bundle over Cl(M). Let us assume that the Riemannian
manifold (M, g) admits a spin structure (S(M),Λ). Then, we have a canonically
associated bundle,

S (M) := S(M)×γ Δn , (5.5.8)

where γ denotes the spinor representation.

Definition 5.5.3 (Spinor bundle) The vector bundle S (M) will be referred to as
the spinor bundle of (M, g) relative to the fixed spin structure S(M).

In the sequel, S (M) will also be called the canonical spinor bundle. The general-
ization to a Hermitean vector bundle carrying a spin structure is obvious. Clearly,
S (M) is a Clifford module bundle with the Clifford mapping given by the spinor
representation γ . This follows from the fact that (Exercise 5.5.1)

Cl(M) ∼= S(M)×Spin(n) Cln (5.5.9)

with the action of Spin(n) on Cln given by conjugation,

Ad : Spin(n)× Cln → Cln , Ad(g)a := gag−1 .

Now, the spinor representation of Cln onΔn induces a fibrewise action of the associ-
ated bundle Cl(M) ∼= S(M)×Spin(n) Cln on S (M). Note that Remark 5.3.3 implies
the following.

Remark 5.5.4 Let E be a complex Clifford module bundle. Then, the isomorphism
(5.3.6) implies

End(E ) ∼= Clc(M)⊗ EndCl(M)(E ) . (5.5.10)
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Moreover, since locally every Riemannian manifold admits a spin structure, (5.3.5)
implies the following local structure for any Clifford module bundle E :

E�U ∼= S (U)⊗ W , (5.5.11)

whereU ⊂ M is an open subset,S (U) is the spinor bundle with respect to a chosen
spin structure onU andW = HomCl(M)(S (U),E ). If (M, g) admits a spin structure,
then (5.5.11) holds globally. �

According to (5.3.15), for n = 2k, S (M) splits into a direct sum of subbundles,

S (M) = S +(M)⊕ S −(M) , S ±(M) = S(M)×γ Δ±
n .

Remark 5.5.5 Let n = 2k. By point 2 of Proposition 5.3.11, the Clifford multi-
plication with any non-vanishing vector x ∈ R

n yields vector space isomorphisms
Δ±

n → Δ∓
n . This implies that the Cliffordmapping c is odd, that is, for anyX ∈ TmM,

we have a bundle isomorphism c(X) : S ±(M)→ S ∓(M). �

Remark 5.5.6 By Remark 5.3.8, in a completely analogous way, we may consider
the Spinc(n)-representation on Δn given by (5.3.20). Thus, we can build the spinor
bundle

S c(M) := Sc(M)×Spinc(n) Δn (5.5.12)

with respect to a fixed Spinc-structure. Moreover, if n is even, then we have a natural
splitting

S c(M) = S c
+(M)⊕ S c

−(M) (5.5.13)

corresponding to the spinor module splitting Δn = Δ+
n ⊕Δ−

n . Many considerations
in the sequel, spelled out for S (M), hold true for that case as well. �

Remark 5.5.7 (Projective spinor bundle) In 4-dimensional Riemannian geometry,
the projectivization of spinor bundles plays an important role. Let M be an oriented
4-dimensional spin manifold. Consider the irreducible spinor modules Δ±

4
∼= C

2 of
Spin(4). Then, for the corresponding projective spaces P(Δ±

4 ) we have

P(Δ±
4 )

∼= CP1 ∼= Sp(1)/U(1) . (5.5.14)

Thus, Spin(4) ∼= Sp(1) × Sp(1) acts naturally on P(Δ±
4 ). Indeed, denoting by λ∓ :

Sp(1)×Sp(1)→ Sp(1) the Lie group homomorphisms given by projection onto the
first and second component, respectively, we define the left actions

σ∓ : (Sp(1)× Sp(1))× (Sp(1)/U(1))→ Sp(1)/U(1) , σ∓(h)([g]) := [λ∓(h)g] .

Consequently, we can build the associated projective spinor bundles

P±(M) := S(M)×σ± P(Δ±
4 ) . (5.5.15)
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In particular, by Example 5.4.9, S(S4) = Sp(2), where Sp(2) is viewed as a principal
(Sp(1)×Sp(1))-bundle over S4. Then, using (5.5.14), we obtain P±(S4) = Sp(2)×σ±
Sp(1)/U(1) and, thus,

P+(S4) ∼= Sp(2)/(Sp(1)× U(1)) , P−(S4) = Sp(2)/(U(1)× Sp(1)) . (5.5.16)
�

Remark 5.5.8 Let M be an oriented 4-dimensional spin manifold endowed with a
conformal structure.27 We show that P±(M) carry natural almost complex structures.
Since the Clifford multiplication with any non-vanishing vector of R

n yields vector
space isomorphisms Δ±

4 → Δ∓
4 , for any non-zero spinor φ ∈ S −(M)m at a point

m ∈ M, the Clifford multiplication X �→ X · φ with X ∈ TmM yields a real vector
space isomorphism TmM ∼= S +(M)m which endows TmM with a complex structure.
It can be easily seen that the latter is compatible with any metric from the conformal
class and that it induces an orientation on TmM which is opposite to the chosen
orientation of M, see [218] for a detailed proof. Clearly, by multiplying φ with a
nonvanishing complex number, we obtain the same complex structure, that is, the
complex structures constructed this way are parameterized by the projective spaces
P−(M)m. Since the stabilizer of [φ] ∈ P−(M)m is clearly U(1)× Sp(1), we get

P−(M)m ∼= (Sp(1)× Sp(1))/(U(1)× Sp(1)) ∼= SO(4)/U(2) .

Let us fix a Riemannian metric in the conformal class. Then, the spin connection
of this metric yields a splitting of TP−(M) into the vertical distribution V and a
horizontal complement Γ ,

TP−(M) = V ⊕ Γ .

Now, we can endow P−(M) with an almost complex structure as follows. On V we
take the natural complex structures of the fibres which are complex projective lines.
On the horizontal part Γ at the point [φ] ∈ P−(M)m we take the complex structure
of TmM constructed above.

It can be shown that the almost complex structure on P−(M) constructed in this
way is integrable iff M is self-dual, see Theorem 4.1 in [37]. Moreover, one can
show that conformally equivalent metrics yield the same complex structure. For our
purposes, the most important example is M = S4 which is clearly self-dual, cf.
Example 2.8.10.

Obviously, P+(M) may be discussed in a similar manner. �

In applications, Clifford module bundles are usually endowed with additional struc-
tures. These will be explained next.

27The assumption thatM be spin can be dropped, see [37].

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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Definition 5.5.9 Let E → M be a real (or complex) Clifford module bundle
endowed with a Riemannian (or Hermitean) fibre metric h. If the Clifford mapping
c : TM → End(E ) maps every X ∈ TM to a self-adjoint endomorphism,28

h(Φ, c(X)Ψ ) = h(c(X)Φ,Ψ ) (5.5.17)

for any Φ,Ψ ∈ Em and any X ∈ TmM, then E will be referred to as a Riemannian
(or Hermitean) Clifford module bundle. It will be denoted by (E , h).

In the sequel, it will be often convenient to write 〈·, ·〉 instead of h.
Consider the case E = S (M). If we take the Hermitean fibre metric induced

from the canonical (positive-definite) Hermitean form29

h(φ,ψ) := φ†ψ , φ,ψ ∈ Δn , (5.5.18)

then, by (5.3.49), we have h(x ·φ,ψ) = h(φ, x ·ψ) and, thus, the condition (5.5.17)
is fulfilled.

Finally,we considerRiemannian (orHermitean)Cliffordmodule bundles endowed
with a connection compatible with the fibre metric and with the module structure
in a sense to be explained. From now on, if there will be no danger of confusion,
Clifford mappings will be often denoted by the dot operation,

c(X)Φ = X ·Φ .

Moreover, we will always assume that the Riemannian manifold under consideration
be oriented without further mentioning it.

Thus, let (M, g) be an n-dimensional Riemannian manifold. Note that the Levi-
Civita connection of g induces a connection in the Clifford bundle

Cl(M) = O+(M)×ρn Cln ,

as well as in its complexification. We denote this connection by ∇g. The Lie algebra
homomorphism induced by (5.5.1) is ρ ′

n : so(n)→ Der(Cln) ,where Der(Cln) is the
Lie algebra of derivations of Cln. Consequently, by (1.4.2), ∇g acts as a derivation
in the algebra of sections of Cl(M),

∇g(ζ · χ) = (∇gζ ) · χ + ζ · (∇gχ) , (5.5.19)

for any ζ, χ ∈ Γ∞(Cl(M)). Thereby, Γ∞(Cl0(M)) and Γ∞(Cl1(M)) are left
invariant. Moreover, under the canonical identification Cl(M) ∼= ∧

TM, ∇g leaves

28In textbooks using the convention j(v)2 = −q(v)1 instead of (5.1.2), c(X) is assumed to be
skew-adjoint. Both (5.5.17) and its skew-adjoint counterpart are equivalent to the requirement that
the Hermitean form be invariant under the Clifford action by unit vectors, that is, 〈c(e)Φ, c(e)Ψ 〉 =
〈Φ,Ψ 〉 for any e ∈ TmM fulfilling g(e, e) = 1.
29See (5.3.48).

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Γ∞(∧kTM
)
invariant and coincides there with the covariant derivatives defined by

the representations
∧k
ρn.

Definition 5.5.10 (Dirac bundle) Let (E , h) be a Riemannian (or Hermitean)
Clifford module bundle over a Riemannian manifold (M, g) endowed with an
h-compatible connection ∇. Then, ∇ is called a Clifford connection if it is a module
derivation, that is,

∇(ζ ·Φ) = ∇g(ζ ) ·Φ + ζ · ∇Φ , (5.5.20)

for any ζ ∈ Γ∞(Cl(M)) and Φ ∈ Γ∞(E ). A Clifford module bundle (E , h) over
(M, g) endowed with a Clifford connection ∇ will be referred to as a Dirac bundle
over (M, g). It will be denoted by (E , h,∇).
Since C∞(M) ⊂ Γ∞(Cl(M)), formula (5.5.20) implies

∇X(f ·Φ) = X(f ) ·Φ + f · ∇XΦ , (5.5.21)

for any X ∈ X(M), f ∈ C∞(M) and Φ ∈ Γ∞(E ). Since TM ⊂ Cl(M), it implies

∇X(Y ·Φ) = ∇g
X(Y) ·Φ + Y · ∇XΦ , (5.5.22)

for any X,Y ∈ X(M) and Φ ∈ Γ∞(E ). Clearly, by (5.5.19), ∇g itself is Clifford.

Example 5.5.11 Let (M, g) be aRiemannianmanifold endowedwith a spin structure
(S(M),Λ) and letS (M) = S(M)×γ Δn be the canonically associated spinor bundle,
endowed with the fibre metric induced from the scalar product on Δn. Then, the
unique spin connection in S(M) induces a canonical connection in S (M) which is
Clifford. Indeed, the representations γ : Spin(n) → Aut(Δn) and Ad : Spin(n) →
Aut(Cln) preserve the module multiplication, that is,

γ (g)(a · ψ) = (Ad(g)a) · (γ (g)ψ) ,

for any g ∈ Spin(n), a ∈ Cln andψ ∈ Δn. Differentiating this equation at the identity
of Spin(n) yields the assertion. �

Now we are prepared to introduce the following basic notion.30

Definition 5.5.12 (Dirac operator) Let (E , h,∇) be a Dirac bundle over a
Riemannianmanifold (M, g). Then, thefirst order differential operatorD : Γ∞(E )→
Γ∞(E ) defined by

D := i c ◦ g−1 ◦ ∇ : Γ∞(E ) ∇−→ Γ∞(T∗M ⊗ E )
g−1−→ Γ∞(TM ⊗ E )

c−→ Γ∞(E )

30The imaginary unit is added tomake theDirac operator self-adjoint. This is the standard convention
in physics. Inmost mathematical textbooks, the Cliffordmultiplication is chosen to be skew-adjoint,
cf. formula (5.5.17) and the associated comment. Then, there is no place for adding an i.
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will be referred to as the Dirac operator of (E , h,∇). The operator D2 will be called
the Dirac Laplacian.

Remark 5.5.13

1. From (5.5.21) we obtain
[D, f ] = i c(df ) . (5.5.23)

2. Let {ej}, j = 1, . . . , n , be a local oriented orthonormal frame onM and let {ϑ j} be
its dual coframe. In the sequel, we will often write cj := c(ej) . Then, by (2.1.30),
locally we have ∇Φ = ∑n

j=1 ϑ
j ⊗ ∇ejΦ and, thus,

D(Φ) = i
n∑

j=1

ej · ∇ejΦ ≡ i
n∑

j=1

cj∇ejΦ , (5.5.24)

for any Φ ∈ Γ∞(E ).
3. The notions of Dirac bundle and Dirac operator naturally extend to the pseudo-

Riemannian case. �

Using the natural volume form vg onM and the fibre metric h = 〈·, ·〉, we endow the
space Γ∞(E ) with a natural L2-inner product,

〈Φ1, Φ2〉L2 :=
∫

M
〈Φ1, Φ2〉vg , Φ1, Φ2 ∈ Γ∞(E ) . (5.5.25)

In the sequel, we will limit our attention to sections having a finite L2-norm. This
requirement is always fulfilled forM compact or for sections with compact support.

Proposition 5.5.14 With respect to the natural L2-inner product on Γ∞(E ), the
Dirac operator is formally self-adjoint,

〈DΦ1, Φ2〉L2 = 〈Φ1,DΦ2〉L2 .

Proof To calculate 〈DΦ1, Φ2〉 at any point m ∈ M, we can use the local formula
(5.5.24). Then, using (5.5.17) and (5.5.22), together with the compatibility condition
for ∇ in the form given by (2.6.2), we calculate

〈DΦ1, Φ2〉 = −i
∑

j

〈ej · ∇ejΦ1, Φ2〉

= −i
∑

j

〈∇ejΦ1, ej ·Φ2〉

= −i
∑

j

{
ej
(〈Φ1, ej ·Φ2〉

) − 〈Φ1,
(
∇g
ej ej

)
·Φ2〉

}
+ i

∑

j

〈Φ1, ej · ∇ejΦ2〉 .

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
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Let {ϑ j} be the coframe dual to {ej}. Defining α := ∑
j〈Φ1, ej · Φ2〉ϑ j and using

(2.1.50), together with Remark 2.7.5, we obtain

〈DΦ1, Φ2〉 = i d∗α + 〈Φ1,DΦ2〉 .

This implies the assertion. �

Remark 5.5.15 Under the assumption that the Riemannian manifold (M, g) be com-
plete, one can show that the Dirac operator is an (unbounded) essentially selfadjoint
operator on L2(E ), see Sect. 1I.5 in [407] or Sect. 4.1 in [219]. Moreover, we will
see that the Dirac operator has a pure point spectrum, see Proposition 5.7.11. �

Let us discuss two basic examples.

Example 5.5.16 (The Clifford bundle) Consider the Clifford bundle Cl(M) over
(M, g) endowed with its canonical Riemannian connection induced from the Levi-
Civita connection of g. Recall that Cl(M) is a bundle of left modules over itself by
left Clifford multiplication. By Proposition 5.1.10, the symbol mapping provides a
vector bundle isomorphism σ : Cl(M) → ∧

T∗M. The latter allows us to transport
the Clifford module bundle structure from Cl(M) to

∧
T∗M. Then,

c : TM → End(
∧
T∗M) , c(X)α = g(X) ∧ α + X�α ,

cf. formula (5.1.8). Thus, the Dirac operator of Cl(M) takes the form

Dα = i
∑

j

cj∇ejα = i
∑

j

(
g(ej) ∧ ∇ejα + ej�∇ejα

)
.

Using (2.2.47) and (2.7.23), we obtain

Dα = i(d − d∗)α . (5.5.26)

�

Example 5.5.17 (The canonical spinor bundle) Consider the canonical spinor bundle
S (M) = S(M)×γ Δn of (M, g) relative to a fixed spin structure. As we have seen,
S (M) is a Clifford module bundle with the Clifford mapping given by the spinor
representation γ . For historical reasons, the Dirac operator ofS (M)will be denoted
by D/ . We have

D/Φ = i
n∑

j=1

cj∇ejΦ , Φ ∈ Γ∞(S (M)) , (5.5.27)

where ∇ is the spin connection of g, that is, using (5.2.29), we obtain

∇Φ = dΦ +
∑

i<j

ωijcicjΦ .

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
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Here, ωij are the coefficients of the spin connection form. In particular, for the
Minkowski space, the Clifford bundle is trivial. Thus, the Clifford action is given by
the spinor representation

γ : M → End
(
C

4
)
, γ (eμ) :=

[
0 σμ
σ̃μ 0

]
≡ γμ ,

cf. (5.1.26). This yields the Dirac operator of relativistic quantum mechanics in a
convenient representation. �

Given a Dirac bundle, one may construct a whole family of associated Dirac bundles
as follows.

Remark 5.5.18 Let (E , h,∇) be a Dirac bundle over a Riemannian manifold (M, g)
and let (E, hE,∇E)be anyRiemannian (orHermitean) vector bundle overM endowed
with a compatible connection ∇E . Then, we can endow the tensor product bundle31

E ⊗Ewith the tensor productmetric andwith the structure of a bundle of leftmodules
over Cl(M) by setting

ζ · (Φ ⊗ s) := ζ ·Φ ⊗ s ,

where ζ ∈ Cl(TmM), Φ ∈ Em and s ∈ Em. Clearly, this formula defines a Clifford
mapping for E ⊗ E. Moreover, we equip E ⊗ E with the canonical tensor product
connection ∇ ⊗ ∇E , defined by

(∇ ⊗ ∇E
)
(Φ ⊗ s) := (∇Φ)⊗ s +Φ ⊗ (∇Es

)
, (5.5.28)

cf. Remark 1.5.9/3. It is easy to prove (Exercise 5.5.2) that ∇ ⊗ ∇E is formally self-
adjoint and fulfils (5.5.20). Correspondingly, we have a naturally associated Dirac
operator DE . The tensor product bundle E ⊗ E endowed with the product metric
and with the canonical connection is usually referred to as a twisted Clifford module
bundle and DE is called the twisted Dirac operator.

In particular, assume that E is associated with a principal bundle P and ∇E cor-
responds to a connection form ω. Consider the following special cases:
(a) Let E = Cl(M). This bundle is associated with O+(M) and carries a natural
connection induced from the Levi-Civita connection ω0 of g.
(b) Assume that M is spin and consider S (M). The latter is associated with S(M)
and carries the spin connection ωs of g.

By Remark 1.5.9/3, in both cases the tensor product connection ∇ ⊗ ∇E corre-
sponds to the natural connection on the fibre product O+(M)×M P or S(M)×M P,
respectively, given by (1.3.16). �

31If E is Riemannian, then this is a tensor product over R.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Exercises

5.5.1 Prove that (5.5.9) defines a vector bundle isomorphism.

5.5.2 Prove that the tensor product connection ∇ ⊗∇E defined in Remark 5.5.18 is
compatible with the fibre metric, that is, it is formally self-adjoint, and satisfies the
derivation property (5.5.20).

5.6 Weitzenboeck Formulae

Here, we take up the discussion of second order differential operators from Sect. 2.7.
We derive the counterpart of theWeitzenboeck Theorem 2.7.11 for any Dirac bundle
(E , h,∇) over a Riemannian manifold (M, g). This will be of fundamental impor-
tance in the sequel. Here, the Weitzenboeck curvature operator RE : Γ∞(E ) →
Γ∞(E ) is defined by

RE (Φ) := −1

2

∑

j,k

cjckR
E (ej, ek)Φ , (5.6.1)

where RE ∈ Ω2(M,End(E )) is the curvature endomorphism form of ∇ and {ei} is
an oriented local orthonormal frame. We also recall the Bochner-Laplace operator
∇∗∇ : Γ∞(E ) → Γ∞(E ), cf. Definition 2.7.8. The latter is formally self-adjoint
and, by (2.7.31),

∇∗∇Φ = −
∑

i

(∇ei∇eiΦ − ∇∇ei ei
Φ
)
. (5.6.2)

By expanding ∇ei ei, this formula may be rewritten as

∇∗∇Φ = −
∑

i

∇ei∇eiΦ +
∑

i,j

g(ej,∇ei ei)∇ejΦ . (5.6.3)

Theorem 5.6.1 (Weitzenboeck Formula for the Dirac operator) Let (E , h,∇) be a
Dirac bundle over a Riemannian manifold (M, g) and let D be its Dirac operator.
Then, for any Φ ∈ Γ∞(E ),

D2Φ = ∇∗∇Φ + RE (Φ) . (5.6.4)

Proof Let {ej} be a local orthonormal frame. Using (5.5.22), we calculate

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
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D2Φ = −
∑

i,j

ci∇ei

(
cj∇ejΦ

)

= −
∑

i,j

ci
(∇ei ej · ∇ejΦ

) −
∑

i,j

cicj∇ei∇ejΦ

= −
∑

i,j,k

g(∇ei ej, ek) cick∇ejΦ −
∑

i,j

cicj∇ei∇ejΦ

= −
∑

i,j

g(∇ei ej, ei)∇ejΦ −
∑

i

∇ei∇eiΦ

−
∑

j,i �=k

g(∇ei ej, ek) cick∇ejΦ −
∑

i �=j

cicj∇ei∇ejΦ .

By (5.6.3), the sum of the first two terms coincides with ∇∗∇Φ. Using (2.1.46),
together with the fact that ∇ is torsionless, we find

−
∑

j,i �=k

g(∇ei ej, ek) cick∇ejΦ = 1

2

∑

i,j

cicj∇[ei,ej]Φ .

Thus, by (2.1.32) and (5.6.1), the sum of the third and the fourth term in the above
calculation is equal to

−1

2

∑

i,j

cicj
(∇ei∇ej − ∇ej∇ei − ∇[ei,ej]

)
Φ = RE (Φ) .

�

Next, we will find a refinement of the Weitzenboeck Formula which corresponds to
the natural algebra bundle isomorphism (5.5.10),

End(E ) ∼= Clc(M)⊗ EndCl(M)(E ) .

As before, let RE be the curvature endomorphism form of ∇, let ∇g be the Levi-
Civita connection of g and let R be the Riemann curvature of g. Moreover, let R∇g ∈
Ω2(M,End(E )) be the curvature endomorphism form of ∇g viewed as a connection
in the Clifford bundle Cl(M). By (5.2.29), for every X,Y ∈ X(M),

R∇g
(X,Y) = 1

4

∑

l,k

g(R(X,Y)ek, el) clck , (5.6.5)

where {ej} is a g-orthonormal frame.

Lemma 5.6.2 Let (E , h,∇) be a Dirac bundle over the Riemannian manifold
(M, g). Then, for any X,Y ,Z ∈ X(M), we have

[RE (X,Y), c(Z)] = c(R(X,Y)Z) , (5.6.6)

[R∇g
(X,Y), c(Z)] = c(R(X,Y)Z) . (5.6.7)

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
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Moreover, the curvature endomorphism form of ∇ uniquely decomposes as

RE = R∇g + FE , (5.6.8)

where FE ∈ Ω2(M,EndCl(M)(E )).

Proof To show (5.6.6), we work in a local holonomic frame {el = ∂l}. For X = ei,
Y = ej and Z = ek , the compatibility condition (5.5.22) reads

∇j(ckφ) = (∇g
j ek) · φ + ck∇jφ ,

for any local section φ in E . Thus,

∇i∇j(ckφ) = (∇g
i ∇g

j ek) · φ + (∇g
j ek) · ∇iφ + (∇g

i ek) · ∇jφ + ck∇i∇jφ .

Writing down this equation with i and j exchanged and subtracting it from the first
equation, we obtain the assertion. To prove (5.6.7), we chose an orthonormal local
frame {el}. Then, for X = ei, Y = ej and Z = ea, we calculate

[R∇g
(ei, ej), ca] = 1

4

∑

l,k

Rijkl[clck, ca] =
∑

l

Rijalcl = R(ei, ej)ca .

Here, we have used (2.3.15) and [elek, ea] = 0 if k = l or if k, l and a are all distinct.
By (5.6.6) and (5.6.7), [RE (X,Y)− R∇g

(X,Y), c(Z)] = 0. This yields (5.6.8). �

Definition 5.6.3 The element FE ∈ Ω2(M,EndCl(M)(E )) will be referred to as the
twisting curvature of the Dirac bundle E .

Theorem 5.6.4 (Lichnerowicz) Let E be a Dirac bundle over the Riemannian man-
ifold (M, g) and let D be its Dirac operator. Then,

D2 = ∇∗∇ + 1

4
Sc + FE , (5.6.9)

where Sc denotes the scalar curvature of (M, g) and

FE = −1

2

∑

j,k

cjckF
E (ej, ek) (5.6.10)

is the Weitzenboeck curvature operator of FE written in an orthonormal frame {ei}.
Proof Let

Rg = −1

2

∑

j,k

cjckR
∇g
(ej, ek)

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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be the Weitzenboeck curvature operator of R∇g
. Then, by (5.6.8), RE = Rg + FE

and the Weitzenboeck Formula (5.6.4) yields

D2 = ∇∗∇ + Rg + FE .

Thus, it remains to show that Rg = 1
4Sc. Using (5.6.5), together with (2.3.15) and

(2.3.16), for any local g-orthonormal frame {ek} on M we calculate

Rg = 1

8

∑

i,j,k,l

g(R(ei, ej)ek, el)cicjckcl

= 1

24

∑

l,i �=j �=k �=i

{
g
(
R(ei, ej)ek + R(ek, ei)ej + R(ej, ek)ei, el

)}
cicjckcl

+ 1

8

∑

i,j,l

{
g(R(ei, ej)ei, el)cicjci + g(R(ei, ej)ej, el)cicjcj

}
cl

= −1

4

∑

i,j,l

g(R(ei, ej)ei, el)ejel

= 1

4

∑

j,l

Ric(ej, el)cjcl ,

and thus, by (2.7.40), Rg = 1
4Sc. �

Let us analyze Theorem 5.6.1 for the Dirac operators of Examples 5.5.16 and 5.5.17.
For the canonical spinor bundle, we immediately obtain the following.

Corollary 5.6.5 (Lichnerowicz) For the Dirac operator D/ of the canonical spinor
bundle S (M), the Lichnerowicz Formula reads

D/ 2 = ∇∗∇ + 1

4
Sc . (5.6.11)

�

Next, let (M, g) be an oriented Riemannian manifold carrying a Spinc-structure
Sc(M) and let P be the corresponding principal U(1)-bundle. Let ω be the Levi-
Civita connection on O+(M) and let τ be a connection on P. Then, via the two-fold
covering Sc(M) → O+(E)×M P, these connections define a unique connection ωτ

on Sc(M). LetS c(M) be the corresponding canonical spinor bundle32 endowed with
the Dirac operator Dτ defined by ωτ ,

DτΦ = i
∑

j

ej · ∇ejΦ , ∇Φ = dΦ + 1

2

∑

i<j

ωijcicjΦ + 1

2
τ ·Φ . (5.6.12)

32We leave it to the reader to check in detail that S c(M) is a Dirac bundle.

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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The decomposition (5.5.10) reads

End(S c(M)) ∼= Clc(M)⊗ End(L) ,

where L is the associated fundamental line bundle defined by (5.4.11). Using this,
togetherwith (5.2.18), we see that in this case the twisting curvature endomorphism is
given by the curvature endomorphism form Fτ ∈ End(L) of the curvatureΩτ = dτ .
The latter is given by 1

2Ωτ . Thus, by (5.6.1), its Weitzenboeck curvature operator is
given by

Fτ = −1

4

∑

j,k

cjck Ωτ(ej, ek) = −1

2
c(Ωτ ) . (5.6.13)

Thus, Theorem 5.6.4 implies the following.

Corollary 5.6.6 For the Dirac operator Dτ of the spinor bundle S c(M), the
Lichnerowicz Formula reads

D2
τΦ = ∇∗∇Φ + 1

4
ScΦ − 1

2
c(Ωτ )Φ . (5.6.14)

�

Next, let us turn to the exterior bundle.

Example 5.6.7 (Twisted exterior bundle) Consider the left Cl(M)-module bundle

E = ∧
T∗M

with its Dirac operator D = i(d − d∗), see (5.5.26). Then,

D2α = −(d − d∗)(d − d∗)α = (dd∗ + d∗d)α

and, thus, by (2.7.14), D2 coincides with the Hodge-Laplace operator,

D2 = � . (5.6.15)

Thus, in the case under consideration, the Weitzenboeck Formula (5.6.4) reproduces
Theorem 2.7.11:

� = ∇ω0∗∇ω0
α + RΛ(α) ,

where ∇ω0
is the covariant derivative of the Levi-Civita connection and

RΛ = Rijklε
iιjεkιl ,

cf. formulae (2.7.39) and (2.7.38). Now, let us consider the twisted Dirac bundle

E = ∧
T∗M ⊗ E ,

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
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where (E, hE,∇E) is some Riemannian (or Hermitean) vector bundle over M
endowed with a compatible connection ∇E and where E is endowed with the canon-
ical tensor product connection ∇ = ∇ω0 ⊗ ∇E , cf. Remark 5.5.18. Let DE be the
Dirac operator of E . Clearly,

RE = RΛ + RE ,

where RΛ and RE are the curvature endomorphism forms of
∧
T∗M and E, respec-

tively. Now, Theorem 5.6.1 implies the following Weitzenboeck Formula for this
case:

D2
E = ∇∗∇ + RΛ + RE , (5.6.16)

where RΛ and RE are the Weitzenboeck curvature endomorphisms of
∧
T∗M and

E, respectively. As a direct consequence of Lemma 2.7.19, we obtain

DE = i(dω − d∗
ω) ,

where ω is the connection form of ∇E . Thus, by (2.7.52),

D2
E = dω ◦ d∗

ω + d∗
ω ◦ dω = �ω . (5.6.17)

This yields an alternative proof of the Generalized Weitzenboeck Formula 2.7.20. �

Recall from Sect. 2.7 that the Weitzenboeck Formula may be used to get insight into
the relation between curvature and topology, cf. Proposition 2.7.14 and Corollary
2.7.15. Here, in particular, we obtain information about harmonic spinors, that is,
sections of S (M) fulfilling D/Φ = 0.

Corollary 5.6.8 Let (M, g) be a compact spin manifold. Then,

1. if the scalar curvature of g is positive, then (M, g) admits no harmonic spinors,33

2. if the scalar curvature of g vanishes identically, then every harmonic spinor on
(M, g) is globally parallel.

Proof Assume D/Φ = 0 for some Φ ∈ Γ∞(S (M)). Then, integrating the identity
(5.6.11) applied to Φ with respect to the canonical volume form vg yields

1

4

∫

M
Sc ‖ Φ ‖2 vg = −〈∇∗∇Φ,Φ〉L2 = −〈∇Φ,∇Φ〉L2 .

This implies both statements. �

Exercises

5.6.1 Prove formula (5.6.1).

5.6.2 Prove formula (5.6.17).

33This statement also holds under the weaker assumption that the scalar curvature be non-negative
and strictly positive at some point.

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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5.7 Elliptic Complexes. The Hodge Theorem

In this section, we assume that (M, g) is an oriented compact n-dimensional Rie-
mannian manifold.

Let E and F be vector bundles over M. Recall that a differential operator

P : Γ∞(E)→ Γ∞(F)

of order k is a local linear mapping. While the notion of linearity is obvious, the
notion of locality needs some explanation. In abstract terms, it means that P factors
through the k-jet bundle Jk(E).34 However, here, we prefer a more direct working
definition. In local coordinates on U ⊂ M, the operator P can be represented as

P =
∑

|α|≤k

Pα(x)
∂ |α|

∂xα
, (5.7.1)

where, for any multi-index α = (α1, . . . , αn), Pα is a vector bundle morphism from
E to F over U symmetric in the indices of α.

Given vector bundles E and F and a differential operator P : Γ∞(E)→ Γ∞(F),
one defines the formal adjoint P∗ : Γ∞(F∗) → Γ∞(E∗) acting between the spaces
of sections of the dual bundles F∗ and E∗ by setting

∫

M
χ(Pφ) vg =

∫

M
(P∗χ)φ vg , (5.7.2)

for any φ ∈ Γ∞(E) and χ ∈ Γ∞(F∗). It is easy to show that the formal adjoint
exists and that it is unique.

It is easy to check that the k-th order coefficients of P given by (5.7.1) transform
as a tensor field M → Sk(TM) ⊗ Hom(E,F) over U. Here, Sk(TM) denotes the
k-fold symmetric tensor product of TM. This suggests the following definition.

Definition 5.7.1 (Principal symbol) Let P : Γ∞(E) → Γ∞(F) be a differential
operator of order k and let π : TM → M be the canonical bundle projection. The
principal symbol of P is a mapping which assigns to each point ξ ∈ T∗M a mapping
σξ (P) : Eπ(ξ) → Fπ(ξ) defined by

σξ (P) := ik
∑

|α|=k

Pα(π(ξ))ξ
α , (5.7.3)

where ξ = ∑
j ξjdx

j and ξα = ξα11 · · · ξαnn .

34That is, there is a vector bundle morphism ϕP : Jk(E) → F such that P = ϕP ◦ jk , where
jk : Γ∞(E) → Γ∞(Jk(E)) is the k-th jet prolongation. This means that P(s)(m) is determined
by the germ of the section s at the point m. Conversely, by a theorem of Peetre, any linear local
operator is differential.
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Formula (5.7.3) defines local sections over T∗U of the bundle

Hom(π∗(E), π∗(F))→ T∗M

which glue together to a global section. By definition, this section is homogeneously
polynomial of degree k along the fibres of T∗M. Thus, the principal symbol is a
bundle morphism

σ(P) : π∗(E)→ π∗(F) .

Remark 5.7.2 By multilinearization, we may identify the space of those sections of
Hom(π∗(E), π∗(F)) which are homogeneously polynomial of degree k along the
fibres of T∗M with the space of sections of the bundle Sk(TM)⊗Hom(E,F)→ M.
That is, the symbol may be also viewed as a section

σ(P) : M → Sk(TM)⊗ Hom(E,F) .

�

If P : Γ∞(E)→ Γ∞(F) and Q : Γ∞(F)→ Γ∞(L) are differential operators over
M, then their principal symbols fulfil the following (Exercise 5.7.1):

σξ (Q + P) = σξ (Q)+ σξ (P) , (5.7.4)

σξ (Q ◦ P) = σξ (Q) ◦ σξ (P) . (5.7.5)

If E and F are Riemannian or Hermitean, then

σξ (P
∗) = (σξ (P))† , (5.7.6)

where P∗ is the formal adjoint with respect to the L2-inner products.

Definition 5.7.3 (Elliptic differential operator) A differential operator P is called
elliptic if its principal symbol σξ (P) is a vector space isomorphism for all ξ �= 0.

By (5.7.6), P is elliptic iff P∗ is elliptic.

Proposition 5.7.4 Let D be the Dirac operator of a Dirac bundle (E , h,∇) over a
Riemannian manifold (M, g). Then, for any ξ ∈ T∗M,

σξ (D) = −g−1(ξ) , σξ (D
2) =‖ ξ ‖2 , (5.7.7)

where the symbols on the right denoteCliffordmultiplicationwith the vector−g−1(ξ)

and with the scalar ‖ ξ ‖2= g−1(ξ, ξ), respectively. In particular, both D and D2

are elliptic.

Using the identification T∗M ∼= TM, it is common to write σξ (D) = −ξ .
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Proof For anym ∈ M, choose a local chart with coordinates {xj} in a neighbourhood
of m such that m corresponds to 0 and ej = ∂j = g−1

(
dxj

)
. Then, using (5.5.24),

up to zero-order terms we obtain D = i
∑

j cj∂j and, thus,

σξ (D)Φ = i2
∑

j

ξ jcjΦ = −c(g−1(ξ))Φ , Φ ∈ Γ∞(E ) .

For D2, using (5.5.6), we obtain

σξ (D
2)Φ =

∑

j,k

ξ jξ kcjckΦ = g−1(ξ, ξ) idEm Φ , Φ ∈ Γ∞(E ) .

�

Now, recall Remark 5.5.15. For a Dirac bundle E over a complete Riemannian
manifold (M, g), theDirac operator viewed as an operator onL2(E ) is unbounded and
self-adjoint. Thus, we have the full theory of self-adjoint operators on Hilbert spaces
at our disposal. However, for many purposes, in particular, for purposes of index
theory one needs a functional analytic setting in which the operators are bounded
and which in a sense accounts for the degree of differentiability. This setting is
provided by the theory of Sobolev spaces. This is an established part of modern
analysis and there is a number of textbook presentations, see e.g. [501]. So, here we
only make some elementary remarks for further reference.35

Given a vector bundle E over (M, g) endowed with a fibre metric 〈·, ·〉 and a
compatible connection ∇, using the Riemannian metric g, one defines the inner
product

〈φ,ψ〉Wk :=
∫

M

{〈φ,ψ〉 + 〈∇φ,∇ψ〉 + . . .+ 〈∇kφ,∇kψ〉} vg . (5.7.8)

Then, by definition, the Sobolev space Wk(E) is the completion

Wk(E) := {φ ∈ C∞(E) : ‖ φ ‖Wk < ∞} . (5.7.9)

Note that Wk(E) is a Hilbert space for any k.36 In particular, W0(E) = L2(E) and
we obviously have ‖ φ ‖Wk ≤ ‖ φ ‖Wk′ for k′ < k. The Sobolev norm induced from
(5.7.8) depends on g, 〈·, ·〉 and ∇. However, it is easy to see that different choices
of these data lead to equivalent norms, that is, as a topological vector space, Wk(E)
depends only on the underlying vector bundle. Moreover, one can check that, for
compact M, the Sobolev norm ‖ φ ‖Wk is equivalent to the norm defined by the
scalar product

35Actually, for purposes of this chapter, the short presentations of Sobolev theory in [246, 407] or
[535] are sufficient.
36There is a Banach space version based on Lp-norms which, however, we do not need here.
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〈φ,ψ〉Wk :=
∑

i

∑

|α|≤k

∫

Ui

〈
∂ |α|

∂xα
φ,
∂ |α|

∂xα
ψ

〉
dnx , (5.7.10)

where {Ui} is some finite covering of M by local coordinates {xj} (Exercise 5.7.2).
We can extend the above definition to negative k by duality, that is,W−k is the dual

ofWk with respect to the L2-pairing.37 As a consequence, one obtains the following
sequence of embeddings

S ⊂ W∞ ⊂ . . . ⊂ W1 ⊂ W0 = L2 ⊂ W−1 ⊂ . . .W−∞ ⊂ S ′ .

Here, W∞ = ⋂
k W

k , W−∞ = ⋃
k W

k and S ′ denotes the space of tempered dis-
tributions. The statements of the following proposition are immediate consequences
of the definition of Wk (Exercise 5.7.4).

Proposition 5.7.5

1. For any k′ > k, there is a bounded inclusion Wk′ → Wk.
2. Every covariant derivative is a bounded mapping ∇ : Wk(E)→ Wk−1(E).
3. Any vector bundle morphism ϕ : E → F covering a diffeomorphism extends to a

bounded mapping Wk(E)→ Wk(F) for every k.
4. Any differential operator P : C∞(E)→ C∞(F) of order p extends to a bounded

mapping Wk(E)→ Wk−p(E) for all k.
5. If V ⊂ Wk(E) is a finite-dimensional subspace, then we have the L2-orthogonal

direct sum decomposition
Wk(E) = V ⊕ V⊥ .

The following two lemmas are of basic importance.

Lemma 5.7.6 (Rellich) The inclusion Wk′ → Wk is compact for k′ > k ≥ 0.

Lemma 5.7.7 (Sobolev) If k > 1
2 dimM + p, then Wk ⊂ Cp(E) and the embedding

is continuous.

Finally, the formal adjoint of a differential operator P defined by (5.7.2) extends to
a bounded operator between Sobolev spaces. In detail, if P : Wk(E)→ Wl(F), then
P∗ : W−l(F)→ W−k(E) is given by

(Pφ, χ) = (φ,P∗χ) . (5.7.11)

Now, let us study the Dirac operator D of a Dirac bundle E (or of a twisted version
E ⊗E) in the context of Sobolev spaces. Our presentation is along the lines of [219]
and [212]. By Proposition 5.7.5, we obtain bounded Sobolev extensions

37In fact, W−k can be endowed with a Hilbert space structure via the Fourier transform of (5.7.8).
This way,Wk can be defined for any real number k. This is of importance in the theory of pseudo-
differential operators.
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D : Wk → Wk−1 , D2 : Wk → Wk−2 . (5.7.12)

In particular, if we view the Dirac operator as a mapping D : W1(E ) → L2(E ), we
can calculate

‖ Dψ ‖2L2 =
∑

i,j

∫

M
〈ci∇eiψ, cj∇ejψ〉vg

=
∑

i,j

∫

M
〈∇eiψ,

1

2
(cicj + cjci)∇ejψ〉vg

=
∑

i

∫

M
‖ ∇eiψ ‖2 vg

= n ‖ ∇ψ ‖2L2 ,

where n = dimM. Thus,

‖ Dψ ‖2L2= n ‖ ∇ψ ‖2L2≤ n ‖ ψ ‖2W1 . (5.7.13)

In the sequel, one of our main objectives will be to prove that D is Fredholm. This
notion is at the heart of index theory.

Definition 5.7.8 (Fredholm operator) Let H1 and H2 be Hilbert spaces and let
T : H1 → H2 be a bounded linear operator. Then, T is called Fredholm if its kernel
and cokernel are both finite-dimensional. The integer

ind(T) := dim(ker T)− dim(coker T)

is referred to as the index of T .

Often, ind(T) is also called the analytic index of T .
Using the Closed Graph Theorem, one can show that every Fredholm operator

has a closed range, see Lemma 2.1 in [29]. This implies (Exercise 5.7.3)

H2 = im T ⊕ ker T∗ , (5.7.14)

and, hence,
coker T = H2/T(H1) ∼= ker T∗ . (5.7.15)

We conclude
ind(T) = dim(ker T)− dim(ker T∗) . (5.7.16)

A key role in the analysis below is played by the Weitzenboeck Formula 5.6.1. By
point 3 of Proposition 5.7.5, the Weitzenboeck curvature operator is bounded, that
is, there exists c > 0 such that



5.7 Elliptic Complexes. The Hodge Theorem 421

− c ‖ ψ ‖2L2 ≤ 〈ψ,R∇ψ〉 ≤ c ‖ ψ ‖2L2 . (5.7.17)

Lemma 5.7.9 Let E be aDirac bundle over a compact Riemannian manifold (M, g)
and let D be its Dirac operator. Then, for all ψ ∈ W1(E ),

‖ ψ ‖2W1 −(c + 1) ‖ ψ ‖2L2 ≤ ‖ Dψ ‖2L2 ≤ ‖ ψ ‖2W1 +(c − 1) ‖ ψ ‖2L2 . (5.7.18)

Moreover, the mapping

ψ →‖ ψ ‖2∗ := ‖ ψ ‖2L2 + ‖ Dψ ‖2L2 (5.7.19)

defines a norm ‖ · ‖∗ which is equivalent to the W1-norm.

Proof It suffices to prove the assertions for ψ ∈ Γ∞(E ). Rewrite (5.6.4) as

ψ + ∇∗∇ψ = D2ψ + (1 − R∇)ψ , (5.7.20)

take the L2-scalar product of this equation withψ and use (5.7.17). This immediately
yields (5.7.18). Next, using (5.7.13) and (5.7.18), we derive

1

n

(‖ ψ ‖2L2 + ‖ Dψ ‖2L2

) ≤ ‖ ψ ‖2W1 ≤ ‖ Dψ ‖2L2 +(c + 1) ‖ ψ ‖2L2 . (5.7.21)

This inequality yields the proof of the second assertion. �

Remark 5.7.10 (Gårding Inequality) By (5.7.18), we have

‖ ψ ‖2W1≤ C(‖ ψ ‖2L2 + ‖ Dψ ‖2L2) , (5.7.22)

which is usually referred to as the Gårding Inequality. By a simple local argument,
we have ‖ ψ ‖Wk+1≤ C1

∑
i ‖ ∂iψ ‖Wk . Using this, together with the fact that both ∂i

and [D, ∂i] are first order operators, by induction, one easily shows (Exercise 5.7.5)

‖ ψ ‖2Wk+1≤ Ck(‖ ψ ‖2Wk + ‖ Dψ ‖2Wk ) , (5.7.23)

which is usually referred to as the basic elliptic estimate. �

Let us denote the spectrum of the self-adjoint operator D on L2(E ) by σ(D).

Proposition 5.7.11 Let E be aDirac bundle over the compact Riemannianmanifold
(M, g) with Dirac operator D. Then, the following hold.

1. The closure D = D∗ of D is defined on W1(E ) ⊂ L2(E ).
2. If λ /∈ σ(D), then (D − λ)−1 : L2(E )→ L2(E ) is a compact operator.
3. There is a complete orthonormal basis ψ1, ψ2, . . . of L2(E ) consisting of eigen-

vectors of D, Dψn = λnψn. Moreover, the eigenspaces are all finite-dimensional
and limn→∞ |λn| = ∞.
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Proof 1. Let ψ ∈ D(D) belong to the domain of definition of D. Then, there exists
a sequence {ψn} of elements ofΓ∞(E ) such thatψn → ψ in L2 andD(ψn) converges
in L2. Thus, by (5.7.18), {ψn} is a Cauchy sequence inW1(E ) and, thus,ψn converges
to some element ψ̃ ∈ W1(E ). Since the embeddingW1(E )→ L2(E ) is continuous,
ψ and ψ̃ must coincide, that is, ψ ∈ W1(E ). Conversely, if ψ ∈ W1(E ), then it
clearly belongs to D(D).

2. We rewrite the inequality (5.7.18) as

‖ (D − λ)−1(D − λ)ψ ‖2W1 ≤ 2 ‖ (D − λ)ψ ‖2L2 +(1 + 2λ2 + c) ‖ ψ ‖2L2 .

Denoting φ = (D − λ)ψ , we obtain

‖ (D − λ)−1φ ‖2W1 ≤ 2 ‖ φ ‖2L2 +(1 + 2λ2 + c) ‖ (D − λ)−1φ ‖2L2 .

Since (D − λ)−1 is bounded in L2(E ), there exists a number C > 0 such that

‖ (D − λ)−1φ ‖2W1 ≤ C ‖ φ ‖2L2 .

Thus, the image of (D− λ)−1 is contained inW1(E ) and the assertion follows from
the compactness of the embedding W1(E )→ L2(E ).

3. The third assertion follows from the standard spectral theory of compact self-
adjoint operators. If we choose λ /∈ σ(D) real, then (D − λ)−1 is of this type. Thus,
there exists a complete orthonormal basis {ψn} in L2(E ), such that

(D − λ)−1ψn = μnψn , μn �= 0 , lim
n→∞μn = 0 .

This implies Dψn = λnψn with eigenvalues given by λn = (μ−1
n + λ) and fulfilling

limn→∞ |λn| = ∞. Moreover, every eigenspace is finite-dimensional. �

Corollary 5.7.12 There exists a real number C > 0 such that

|〈Dφ, φ〉L2 | ≥ C ‖ φ ‖2L2

for all φ ∈ W1(E ) which are orthogonal to ker(D).

Proof By point 2 of Proposition 5.7.11, we can decompose φ = ∑′
n cnψn, where

the sum is taken over all eigenvectors corresponding to non-vanishing eigenvalues.
Then, using the orthonormality of the set {ψn}, we obtain

|〈Dφ, φ〉L2 | =
∑

n

′|cn|2|λn| ≥ |λ1|
∑

n

′|cn|2 = |λ1| ‖ φ ‖2L2 ,

where λ1 is the lowest non-vanishing eigenvalue which exists according to
limn→∞ |λn| = ∞. �
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Remark 5.7.13 (Elliptic regularity) It turns out that the eigenfunctions of a Dirac
operator are smooth. This is a basic principle in the theory of elliptic operators which,
in the context of Dirac operators, may be proved by elementary means. We outline
the idea of this proof and refer to [212] for details. First, by point 1 of Proposition
5.7.11, every eigenfunction of a Dirac operator D belongs to W1(E ). Next, starting
from the Gårding inequality, by simple iteration type arguments, one proves that

‖ ψ ‖Wk+2 ≤ C(‖ D2ψ ‖Wk + ‖ ψ ‖Wk ) , (5.7.24)

for any ψ ∈ Wk+2(E ), k ≥ 0. Using some analytic tools,38 from this estimate one
may conclude the following: ifψ ∈ Wk(E ) and D2ψ ∈ Wk(E ), thenψ ∈ Wk+2(E ).
Iterating this argument one concludes that the eigenfunctions ψn belong to Wk(E )
for all k and, thus, by the Sobolev Lemma, they are smooth. �

Remark 5.7.14 (The spectrumof theDiracoperator) Let us summarizewhatwehave
learnt about the spectrum of D. We have an orthogonal direct sum decomposition

L2(E ) =
⊕

λ

Hλ (5.7.25)

into a sum of countably many finite-dimensional subspaces Hλ. Each Hλ is an
eigenspace of D with eigenvalue λ consisting of smooth sections. The eigenvalues λ
form a discrete subset of R and fulfil limn→∞ |λn| = ∞. �

Theorem 5.7.15 Let E be a Dirac bundle over a compact Riemannian manifold
(M, g). Then, its Dirac operator D : Wk+1(E )→ Wk(E ) with k ≥ 0 is a Fredholm
operator with index zero. Moreover,

Wk(E ) = ker D ⊕ im(D) . (5.7.26)

Proof We prove that ker D and L2(E )/ im(D) are finite-dimensional vector spaces
of the same dimension.

(a) The basic elliptic estimate (5.7.23) implies

‖ ψ ‖2Wk+1≤ Ck ‖ ψ ‖2Wk , (5.7.27)

for any ψ ∈ ker(D). Now, choose a sequence {ψn} fulfilling ‖ ψ ‖2Wk+1≤ 1 and
Dψn = 0. Then, by the Rellich Lemma, there exists a subsequence which is Wk-
convergent and, by (5.7.27), this subsequence is Cauchy in theWk+1-norm. Thus, by
completeness ofWk+1(E ), there exists aWk+1-convergent subsequence. This proves
compactness of the unit ball and, thus, ker(D) is finite-dimensional.

(b) We prove that im(D) is closed inWk(E ). For that purpose, we decompose39

38Either difference quotients or Friedrich mollifiers.
39Cf. point 5 of Proposition 5.7.5.
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Wk+1(E ) = ker(D)⊕ (ker(D))⊥

and restrict D to (ker(D))⊥. Then, it is injective. Let ψ = limn→∞ Dψn belong to
the closure of im(D). Then, {ψn} isWk+1-bounded: assume that this is not the case.
Then, there exists a subsequence {ψm} such that ‖ ψm ‖Wk+1→ ∞ and the sequence

ϕm := ψm

‖ ψm ‖Wk+1

consists of elements whose Wk+1-norm is equal to 1. Moreover, limm→∞ Dϕm = 0
in the Wk-norm. By the Rellich Lemma, there exists a Wk-convergent subsequence
{ϕl} and, by the Gårding inequality, {ϕl} converges to some ϕ̂ in the Wk+1-norm.
By continuity, Dϕ̂ = 0. But, on the other hand, ‖ ϕ̂ ‖Wk= 1. By the injectivity
of D, this is a contradiction. This shows that {ψn} is Wk+1-bounded, indeed. Thus,
again applying the Rellich Lemma and the Gårding inequality, we obtain a Wk+1-
convergent subsequence whose limit ψ̂ satisfies Dψ̂ = ψ . Thus, the image is closed.

(c) We decompose

Wk(E ) = ker(D)⊕ (ker(D))⊥

and prove im(D) = (ker(D))⊥. By point (b), it is enough to show that im(D) is dense
in (ker(D))⊥: let η ∈ W−k(E ) such that

η(Dψ) = 0

for all ψ ∈ Wk+1(E ). By the Hahn–Banach Theorem, it is enough to show that the
restriction of η to (ker(D))⊥ vanishes. By assumption, D∗η = 0, where

D∗ : W−k(E )→ W−(k+1)(E )

is the Sobolev extension of the formal adjoint defined by (5.7.11). By elliptic regu-
larity, η is smooth and, therefore, D∗ coincides with the formal adjoint of D when
applied to η. Thus, by the self-adjointness of D,

D∗η = Dη .

Thus, η ∈ ker(D), that is, the restriction of η to (ker(D))⊥ vanishes, indeed. �

Remark 5.7.16 Theorem 5.7.15 and elliptic regularity imply the following.

1. The quotient space coker(D) may be represented by a subspace consisting of
smooth sections. Thus, the index of D does not depend on the Sobolev extension
used.
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2. Since ker(D) ⊂ Γ∞(E ), formula (5.7.26) implies

Γ∞(E ) = ker(D)⊕ im(D) . (5.7.28)

�

Using the elliptic estimate (5.7.24) for D2, by the same arguments as in the above
proof, we obtain the following.

Theorem 5.7.17 Let E be a Dirac bundle over a compact Riemannian manifold
(M, g) with Dirac operator D : Wk+2(E ) → Wk+1(E ), where k ≥ 0. Then, its
square D2 : Wk+2(E )→ Wk(E ) is a Fredholm operator with index zero. Moreover,

Wk(E ) = ker(D2)⊕ im(D2) . (5.7.29)

�

Let us apply Theorem 5.7.17 to the important special case of the twisted Dirac bundle
E = ∧

T∗M ⊗ E with its Dirac operator DE . By Example 5.6.7,

D2
E = dω ◦ d∗

ω + d∗
ω ◦ dω = �ω . (5.7.30)

We extend dω and d∗
ω to operators

dω : Wk+1(
∧pT∗M ⊗ E)→ Wk(

∧p+1T∗M ⊗ E) ,

d∗
ω : Wk(

∧p+1T∗M ⊗ E)→ Wk−1(
∧pT∗M ⊗ E) .

Then,
�ω : Wk+1(

∧
T∗M ⊗ E)→ Wk−1(

∧
T∗M ⊗ E) . (5.7.31)

Thus, Theorem 5.7.17 implies the following.

Theorem 5.7.18 (Hodge Decomposition Theorem) The following L2-orthogonal
direct sum decomposition holds:

Wk−1(
∧
T∗M ⊗ E) = ker(�ω)⊕ im(�ω) . (5.7.32)

�

Again, by elliptic regularity, we have ker(�ω) ⊂ Γ∞(
∧
T∗M ⊗E). Thus, we obtain

the Hodge Decomposition Theorem 2.7.2 as a special case.
As a consequence of Theorem 5.7.18, the bounded linear mapping

�ω : ker(�ω)⊥ → im(�ω) (5.7.33)

is bijective, where im(�ω) is a closed subspace and thus a Hilbert space itself. Hence,
by the Open Mapping Theorem, (5.7.33) is an isomorphism. Taking the inverse and

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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extending it by 0 to ker(�ω), we obtain a bounded linear operator

Gω : Wk−1(
∧
T∗M ⊗ E)→ Wk+1(

∧
T∗M ⊗ E) , (5.7.34)

called the Green’s operator of �ω.

Remark 5.7.19

1. Clearly, if ξ ∈ ker(�ω), then Gω�ωξ = 0. Moreover, by definition of Gω, if
ξ ∈ ker(�ω)⊥, then Gω�ωξ = ξ . Thus, the bounded linear operator Gω�ω on
Wk+1(

∧
T∗M ⊗ E) is the L2-orthogonal projector onto the subspace ker(�ω)⊥.

2. By definition of Gω, if χ ∈ im(�ω), then�ωGωχ = χ and if χ ∈ im(�ω)⊥, then
�ωGωχ = 0. Thus, the bounded linear operator �ωGω onWk−1(

∧
T∗M ⊗ E) is

the L2-orthogonal projector onto the subspace im(�ω). �

The above results are special cases of general results holding true in the theory
of elliptic operators. This general theory heavily rests on the calculus of pseudo-
differential operators. In more detail, for an elliptic operator P : Γ∞(E)→ Γ∞(F)
of order p over a compact manifold M, the following hold true, see [407]:

(a) For any open subset U ⊂ M and any φ ∈ Wk(E), the smoothness of (Pφ)�U
implies the smoothness of φ�U .

(b) For every k, P extends to a Fredholm operator P : Wk(E) → Wk−p(F) with
dim(ker P), dim(coker P) and ind(P) being independent of k.

(c) For every k, the norms ‖ · ‖Wk and ‖ · ‖Wk−p + ‖ P · ‖Wk−p are equivalent.

As a direct consequence of these facts, for every elliptic self-adjoint differential
operator P : Γ∞(E)→ Γ∞(E), one obtains

(d) The operator P shares the spectral properties listed in Remark 5.7.14.
(e) There is an L2-orthogonal direct sum decomposition

Γ∞(E) = ker P ⊕ im P . (5.7.35)

In the remainder of this section, we will consider the following natural generalization
of an elliptic operator.

Definition 5.7.20 (Elliptic complex) Let E = (E0, . . . ,En) be a finite collection
of Riemannian (or Hermitean) vector bundles over a manifold M and let P =
(P0, . . . ,Pn−1) be a collection of differential operators Pk : Γ∞(Ek) → Γ∞(Ek+1)

of order p. The pair (E,P) is called a complex if Pk+1 ◦Pk = 0. It is called elliptic if

ker(σξ (Pk)) = im(σξ (Pk−1)) , (5.7.36)

for every 0 �= ξ ∈ T∗M.
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We will be mainly interested in the case p = 1.40 Let us define

Ee :=
⊕

k

E2k , Eo :=
⊕

k

E2k+1 , (5.7.37)

and associated mappings P e : Γ∞(Ee) → Γ∞(Eo) and Po : Γ∞(Eo) → Γ∞(Ee)

by
P e :=

∑

k

(P2k + P∗
2k−1) , Po :=

∑

k

(P2k+1 + P∗
2k) . (5.7.38)

Note that (P e)∗ = Po. Moreover, let us consider the associated Laplace operators,

�k := Pk−1P
∗
k−1 + P∗

kPk : Γ∞(Ek)→ Γ∞(Ek) . (5.7.39)

Then, the Laplace operator of (E,P) is defined by

� :=
∑

k

�k = PoP e + P eP o = �e + �o , (5.7.40)

where �e and �o are the restrictions of � to Ee and Eo, respectively. It is easy to
show the following (Exercise 5.7.6).

Proposition 5.7.21 The following statements are equivalent:

1. (E,P) is an elliptic complex.
2. �k is elliptic for all k.
3. P e is elliptic. �

Now, let us limit our attention to compact Riemannian manifolds (M, g) again. Then,
by the above discussion, every element Pk of an elliptic complex (E,P) extends to
a Fredholm operator and, thus, we can define the cohomology groups of (E,P) by

Hk(E,P) := ker(Pk)/ im(Pk−1) (5.7.41)

and its index by
ind(E,P) :=

∑

k

(−1)k dim(Hk(E,P)) . (5.7.42)

Associated with the above family of Laplace operators, one has a generalized Hodge
Theorem.41 The latter implies

Hk(E,P) = ker(�k) . (5.7.43)

40One can also consider the more general case when the Pi are of different order [32].
41See e.g. Theorem 1.5.2 in [246].
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Then,

ind(E,P) =
∑

k

(−1)k dim(ker�k)

= dim(ker�e)− dim(ker�o)

= dim(ker(P e∗P e))− dim(ker(P eP e∗))
= dim(ker P e)− dim(ker P e∗) .

Thus,
ind(E,P) = ind(P e) . (5.7.44)

This reduces the computation of the index to the computation of the index of a two-
term complex, that is, of a single elliptic operator. In this context, one often says that
one can use the operators P e or Po to roll up the elliptic complex.

We close this section by considering the classical examples of elliptic complexes.
They will be taken up again in Sect. 5.9.

Example 5.7.22 (De Rham complex) Consider Ek := ∧kT∗M and take for Pk the
exterior differential

dk : Γ∞(
∧kT∗M)→ Γ∞(

∧k+1T∗M) .

As before, we denote the operations of exterior multiplication and contraction by
ε and ι, respectively. Since d2 = 0, we must only check the ellipticity condition
(5.7.36). Let ξ �= 0. Clearly,

σξ (dk)(α) = iξ ∧ α , (5.7.45)

for any α ∈ ∧kT∗M. Thus, im(σξ (dk−1)) ⊂ ker(σξ (dk)). To prove the converse
inclusion, let α ∈ ker(σξ (dk)), that is, ξ ∧ α = 0. Choose a local coordinate system
{xj} such that ξ = dx1. Then, α = dx1 ∧ β with β ∈ ∧k−1T∗M. This shows
α ∈ im(σξ (dk−1)). Thus, the de Rham complex is elliptic with the principal symbol
given by σ(dk) = iε. We denote it by EdR(M).

Next, consider the formal adjoint d∗
k : Γ∞(

∧k+1T∗M) → Γ∞(
∧kT∗M). Then,

(2.7.23) immediately implies

σξ (d
∗
k )(α) = −ig−1(ξ)�α ,

that is, σ(d∗
k ) = −iι ◦ g−1. Next, since � = dd∗ + d∗d, (5.7.5) and (2.7.33) imply

σξ (�) = ε(ξ)ι(g−1(ξ))+ ι(g−1(ξ))ε(ξ) =‖ ξ ‖2 ·1 .

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
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This shows that � is elliptic.42 Finally, by (5.7.41) and (5.7.42), the cohomology
groups of the de Rham complex coincide with the de Rham cohomology groups of
M and, thus, its index coincides with the Euler characteristic χ(M). �
Example 5.7.23 (Signature complex) Let (M, g) be an even-dimensional oriented
compact Riemannian manifold. Denote dimM = 2n. Consider the Clifford bundle
Cl(M) of (M, g). By Example 5.5.16, Cl(M) is isomorphic to

∧
T∗M as a Clifford

module bundle. Under this identification, the Clifford mapping of Cl(M) is given by

c : TM → End(
∧
T∗M) , c(X)α = g(X) ∧ α + X�α ,

and the Dirac operator reads Dα = i(d−d∗)α. Now, recall that the chirality element
Γ2n := i nc(v) implies a natural decomposition Clcn = Cl+n ⊕Cl−n of the complexified
Clifford algebra, cf. (5.3.7) and (5.3.13). Clearly, Γ2n induces an involutive automor-
phism of Cl(M)⊗ C yielding a splitting of that bundle. It is easy to check (Exercise
5.7.7) that, under the identification with

∧
T∗M ⊗ C, this involutive automorphism

is given by

τ : ∧kT∗M ⊗ C → ∧2n−kT∗M ⊗ C , τ (α) := i n+k(k+1) ∗ α . (5.7.46)

Since τ 2 = id, we can decompose

∧
T∗M ⊗ C = ∧+T∗M ⊕ ∧−T∗M (5.7.47)

into subbundles of elements corresponding to eigenvalues ±1 of τ . Next, it is easy
to show (Exercise 5.7.9) that

c(X) ◦ τ + τ ◦ c(X) = 0 , X ∈ X(M) , (5.7.48)

and, correspondingly,
D ◦ τ + τ ◦ D = 0 . (5.7.49)

This is in accordance with point 2 of Lemma 5.3.4. By (5.7.49), the restrictions of
D to the subbundles

∧+T∗M and
∧−T∗M yield mappings

d± : Γ∞(
∧±T∗M)→ Γ∞(

∧∓T∗M) , (5.7.50)

and, thus, a complex

0 −→ Γ∞(
∧+T∗M)

d+−→ Γ∞(
∧−T∗M) −→ 0 ,

which will be referred to as the signature complex of M and will be denoted by
Esgn(M). It may be viewed as obtained by rolling up the de Rham complex using

42Clearly, this also follows from Example 5.6.7.
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the Z2-grading defined by (5.7.47). Clearly, d− is the adjoint of d+. By Proposition
5.7.4, D is elliptic and, thus, d+ and d− are elliptic, too. We define

σ(M) := ind(d+) (5.7.51)

and call it the signature of M. By (5.7.16), we have σ(M) = dim(ker(d+)) −
dim(ker(d−)) and, using ker(d∗+) ⊂ im(d+)⊥, we obtain

σ(M) = dim(ker(�+))− dim(ker(�−)) , (5.7.52)

where �+ = d−d+ and �− = d+d−. Clearly, if we change the orientation of M,
then d+ and d− are interchanged and, thus, the signature changes its sign. Moreover,
we have

σ(M) = 0 , for dimM = 2 (mod 4) . (5.7.53)

Indeed, in this case, one can check that complex conjugation yields an isomorphism∧+T∗M ∼= ∧−T∗M which clearly implies the assertion (Exercise 5.7.8). This shows
that only the case dimM = 4k is interesting. Here, we have

σ(M) = dim(ker(�+
2k))− dim(ker(�−

2k)) , for dimM = 4k , (5.7.54)

where�±
2k denote the restrictions of�± to the subspaces of form degree 2k. To prove

this statement, observe that the mappings

ϕ± : ∧pT∗M → (
∧pT∗M ⊕ ∧4k−pT∗M)± , ϕ±(α) := 1

2
(α ± τα) , (5.7.55)

are isomorphisms of vector bundles intertwining�+
k with�−

k (Exercise 5.7.10). This
implies

(
∧pT∗M ⊕ ∧4k−pT∗M)+ ∼= ∧pT∗M ∼= (∧pT∗M ⊕ ∧4k−pT∗M)− ,

for every p �= 4k − p. Thus, all contributions in (5.7.52) cancel except for those
corresponding to form degree p = 2k.

Finally, the Hodge Theorem implies via ker(�2k) ∼= H2k
dR(M) a purely topological

formula for the signature as follows. For a closed, connected, oriented manifold of
dimension 2n, one defines a pairing

sM : Hn
dR(M)× Hn

dR(M)→ R , sM([α], [β]) :=
∫

M
α ∧ β . (5.7.56)

If Hn
dR(M) = 0, we put sM = 0. This is a symmetric, non-degenerate bilinear form

on Hn
dR(M) called the intersection form of M. Let (b+, b−) be the signature of the

quadratic form corresponding to sM . Now, for dimM = 4k we have τ = ∗ and, thus,
for a (real) 2k-form α representing an element of (H2k

dR(M))± we have
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∫

M
α ∧ α = ± ‖ α ‖2L2 .

Thus,
σ(M) = b+ − b− , (5.7.57)

that is, the signature of M coincides with the index of the intersection form. �

Example 5.7.24 (Spin complex) As before, let (M, g) be a 2n-dimensional oriented
compact Riemannian manifold. Consider the canonical spinor bundle

S (M) = S(M)×γ Δn

relative to a chosen spin structure on M, cf. formula (5.5.8). Since dimM = 2n, it
splits into a direct sum of subbundles,

S (M) = S +(M)⊕ S −(M) , S ±(M) = S(M)×γ Δ±
n .

By Example 5.5.17, the Dirac operator of S (M) is given by

D/Φ = i
n∑

j=1

cj∇ejΦ , Φ ∈ Γ∞(S (M)) ,

where∇ is the spin connection. By Remark 5.5.5, for dimM = 2n, the Clifford map-
ping c implies a bundle isomorphism c(X) : S ±(M) → S ∓(M) for any nowhere
vanishing vector field X on M. This induces a splitting of the Dirac operator,

D/ ± : Γ∞(
S ±(M)

) → Γ∞(
S ∓(M)

)
. (5.7.58)

By Proposition 5.7.4, D/ is elliptic. Thus, D/ ± are elliptic, too, and we obtain an elliptic
complex

0 −→ Γ∞(S +(M))
D/ +

−→ Γ∞(S −(M)) −→ 0 ,

which will be referred to as the spin complex of (M, g) with respect to the chosen
spin structure. Clearly, D/ − is the adjoint of D/ +. The index of this complex, that is,
the index of D/ will be shown to coincide with the Â-genus43 Â(M) of the manifold
M, see Corollary 5.9.1.

Let E be a Riemannian (or Hermitean) vector bundle over M endowed with a
compatible connection. Consider the tensor productS (M)⊗E. By Remark 5.5.18,
there is a natural associated twisted Dirac operator D/ E with the Clifford action given
by γ ⊗ id. Thus, D/ E is elliptic and the same construction as above yields the twisted
spin complex

43See Sect. 4.7.

http://dx.doi.org/10.1007/978-94-024-0959-8_4
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0 −→ Γ∞(S +(M)⊗ E)
D/ +
E−→ Γ∞(S −(M)⊗ E) −→ 0 . (5.7.59)

�

Example 5.7.25 (Dolbeault complex) Let M be a compact complex manifold of
complex dimension n. Recall from Example 2.2.10 that its canonically associated
almost complex structure J induces a splitting

∧kT∗
CM =

⊕

p+q=k

∧p,qM ,
∧p,qM = ∧p T∗1,0M ⊗ ∧q T∗0,1M . (5.7.60)

The canonical projections Πp,q : ∧kT∗
CM → ∧p,qM induce mappings

∂ : Ωp,q(M)→ Ωp+1,q(M) , ∂ : Ωp,qM → Ωp,q+1(M)

defined by
∂ := Πp+1,q ◦ d , ∂ := Πp,q+1 ◦ d . (5.7.61)

Since, by assumption, J is integrable, Corollary 2.2.15 implies

∂2 = 0 , ∂
2 = 0 , ∂ ◦ ∂ + ∂ ◦ ∂ = 0 . (5.7.62)

Thus, for any p,

. . . −→ Ωp,q−1(M)
∂−→ Ωp,q(M)

∂−→ Ωp,q+1(M) −→ . . . , (5.7.63)

is a complex of differential operators, called the Dolbeault complex. Usually, one
restricts attention to p = 0. By (5.7.45), the symbol of ∂ is given by

σξ (∂)(α) = iξ 0,1 ∧ α , (5.7.64)

where ξ = ξ 1,0 + ξ 0,1 is the decomposition implied from (5.7.60). We conclude that
the Dolbeault complex is elliptic. The index of the Dolbeault complex is referred to
as the arithmetic genus of the manifold M. It is denoted by Ag(M).

Now, let M be additionally endowed with a Riemannian metric g compatible
with J, that is, g(X,Y) = g(JX, JY) for any X,Y ∈ X(M). Then, the Dolbeault
complex fits into the general framework of this section. Indeed, by (2.2.10), for any
local g-orthonormal frame {ek} on M, the (1, 0)- and (0, 1)-components of TM are
locally spanned by {ek − iJek} and {ek + iJek}, respectively. By the compatibility of
g and J, both components are g-isotropic. Thus, the corresponding decomposition
of the exterior bundle is, pointwise, a special case of the construction of the Clifford
modules SW and SW in Sect. 5.3 with the Clifford action induced from (5.3.27).

Finally, Proposition 2.6.6 ensures that the Dolbeault complex may be twisted with
a vector bundle E endowed with a fibre metric and a compatible connection. �

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
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Exercises

5.7.1 Prove formulae (5.7.4)–(5.7.6).

5.7.2 Prove that the scalar products (5.7.8) and (5.7.10) onΓ∞(E) define equivalent
norms. Use this to show that the topology so defined does not depend on the choice
of g, 〈·, ·〉, ∇ or a covering of M by local charts.

5.7.3 Prove the isomorphism (5.7.14).

5.7.4 Prove the statements of Proposition 5.7.5.

5.7.5 Prove the elliptic estimate (5.7.23).

5.7.6 Prove Proposition 5.7.21.

5.7.7 Prove that, under the isomorphism Cl(M)⊗ C ∼= ∧
T∗M ⊗ C, the involution

induced from the chirality element coincideswith the involution τ definedby (5.7.46).

5.7.8 Consider Example 5.7.23. Show that in case n = 2k+1 complex conjugation
yields an isomorphism

∧+T∗M ∼= ∧−T∗M.

5.7.9 Prove the formulae (5.7.48) and (5.7.49).

5.7.10 Prove that the formula (5.7.55) defines isomorphisms of vector bundles.

5.7.11 Prove that sign(CP2k) = 1.

5.8 The Atiyah–Singer Index Theorem

In this section, some of the analytic details will be omitted. This applies, in particular,
to standard Sobolev-type arguments. For a full treatment of the subject we refer to
the classical papers by Atiyah, Bott, Getzler, Gilkey, McKean, Patody, Segal and
Singer [32, 34, 39, 40, 242, 243, 245, 435], as well as to the monographs [72, 246,
407, 533].

The discussion in the previous section suggests to consider the following general
setting.

Definition 5.8.1 (Graded Dirac bundle) A graded Dirac bundle is a Dirac bundle E
endowed with an involutive self-adjoint vertical bundle automorphism τ : E → E
anticommuting with the Clifford action and with the Dirac operator D of E .

The operator τ will be called the grading operator. Note that anticommuting with D
is equivalent to commuting with the underlying Clifford connection. Also note that
the Examples 5.7.23, 5.7.24 and 5.7.25 are of that type.
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Let there be given a graded Dirac bundle E over a compact Riemannian manifold
(M, g). By involutivity, τ has (fibrewise) the eigenvalues ±1 and, thus, we may
decompose

E = E + ⊕ E − . (5.8.1)

This way, E becomes a Z2-graded Clifford module bundle. In the sequel, we will
be concerned with even-dimensional oriented manifolds M.44 In that case, there is
always a canonical grading induced from the chirality element Γ , cf. (5.3.7) and
Lemma 5.3.4.

In the present context, it is quite common and convenient to use the terminology
of superspaces, see e.g. [72, 535]. In this language, E is a superbundle, its fibres
are superspaces and the algebra bundle End(E ) is a superalgebra bundle, that is, τ
acting by conjugation induces a decomposition End(E ) = End(E )0 ⊕End(E )1 into
an even and an odd part fulfilling

End(Em)i · End(Em)j ⊂ End(Em)(i+j mod 2) ,

for every m ∈ M. For any A0 ∈ End(Em)0 and A1 ∈ End(Em)1, we have

τ(A0 + A1)τ = A0 − A1 .

Associated with the above decomposition, we have a natural notion of parity. We
say that an even element A0 ∈ End(E )0 has parity |A0| = 0 and an odd element
A1 ∈ End(E )1 has parity |A1| = 1. Using this, one can endow End(E ) with the
structure of a Lie superalgebra bundle by defining the super-commutator fibrewise
as the bilinear extension of

[A,B]τ := A · B − (−1)|A||B|B · A .

Moreover, the following notion of supertrace relative to the grading τ is useful. For
an even element A, we define

strE (A) := Tr(τA) . (5.8.2)

Then,
strE (A) = Tr(A++)− Tr(A−−) , (5.8.3)

where A++ and A−− are the diagonal blocks of A with respect to the decomposition
(5.8.1). In particular, for an odd element A, we have StrE (A) = 0. One easily shows
the following (Exercise 5.8.1):

strE ([A,B]τ ) = 0 . (5.8.4)

44We will see soon that the index vanishes if M is odd-dimensional.
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Below, we also need the superalgebra A of bounded operators on L2(E ) and their
supertrace. Clearly, the decomposition (5.8.1) induces the decomposition

L2(E ) = L2(E +)⊕ L2(E −) . (5.8.5)

Next, viewing τ as an operator acting on L2(E ), we obtain a corresponding decom-
position A = A0 ⊕ A1 into an even and an odd part fulfilling

Ai · Aj ⊂ Ai+j mod 2 .

Note that L2(E ±) are the eigenspaces of τ corresponding to the eigenvalues ±1. For
any a0 ∈ A0 and a1 ∈ A1, we have τ(a0 + a1)τ = a0 − a1. As above, associated
with the decomposition of A, we have a natural notion of parity. We say that an even
element a0 ∈ A0 has parity |a0| = 0 and an odd element a1 ∈ A1 has parity |a1| = 1.
Using this, one can endow A with the structure of a Lie superalgebra by defining the
super-commutator as

[a, b]τ := a · b − (−1)|a||b|b · a .

For any trace-class operator a ∈ A, the supertrace is defined by

StrE (a) := Tr(τa) . (5.8.6)

As above, we have
StrE (a) = Tr(a++)− Tr(a−−) , (5.8.7)

where a++ and a−− are the diagonal blocks of a with respect to the decomposition
(5.8.5). Moreover, for any odd element a, we have StrE (a) = 0. Finally,

StrE ([a, b]τ ) = 0 , (5.8.8)

provided either a or b are of trace class (Exercise 5.8.1).
Now, recall from Remark 5.3.3 that any complex Cl(V , q)-module E is of the

form E ∼= Δn ⊗ W , where W = HomCl(V ,q)c(Δn,E), and

End(E) ∼= Cl(V , q)c ⊗ EndCl(V ,q)(E) . (5.8.9)

Here, EndCl(V ,q)(E) may be identified with End(W). Correspondingly, by Remark
5.5.4, locally we have E�U ∼= S (U)⊗ W with W = HomCl(U)(S (U),E ) and

End(E�U) ∼= Clc(U)⊗ EndCl(U)(E�U) . (5.8.10)

Thus, the supertrace strE boils down to the product of supertraces over the factors
on the right hand side of this equation. We write down the relevant notions on the
algebraic level of equation (5.8.9) and then extend them to E fibrewise. To start with,
recall that the chirality element Γn of Clcn, given by formula (5.3.8), endowsΔn with
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a Z2-grading which is called the canonical grading of the spinor module. Let {ei} be
an orthonormal basis of V and, for each subset I ⊂ In = {1, . . . , n}, let eI = 0 if
I = ∅ and eI = ei1 . . . eik if I = {i1, . . . , ik} and i1 < . . . < ik . Then, with respect to
the canonical grading, we have

strΔn(eI) =
{
(−2i)

n
2 if I = In

0 otherwise
(5.8.11)

see Exercise 5.8.3. Then, for any a ∈ Clcn,

strΔn(a) = (−2i)
n
2 σ(a)�[n] ,

where σ is the symbol mapping given by (5.1.10) and [n] means taking the n-form
part.45 Then, for any L = a ⊗ F ∈ End(E), we have

strE(L) = (−2i)
n
2 σ(a)�[n] strW (F) . (5.8.12)

This formula extends fibrewise to E . Now, recall that on the bundle level a decompo-
sition E = S (M)⊗W holds in general only locally. To avoid such a decomposition
one introduces the following notion of relative supertrace. Since strΔn(Γn) = 2

n
2 , for

L = Γn ⊗ F ∈ Cl(V , q)c ⊗ End(W), we obtain

strW (F) = 2− n
2 strE(L) .

Motivated by this formula, we define the relative supertrace of F ∈ EndCl(V ,q)(E) by

strE|Δn(F) := 2− n
2 strE(ΓnF) . (5.8.13)

IfW is ungraded, then

strE|Δn(F) = trW (F) = 2− n
2 trE(F) .

By analogy with (5.8.13), we define the relative supertrace on E fibrewise by

strE |S (Am) := 2− n
2 strE (Γn(m)Am) , (5.8.14)

where Am ∈ End(Em) and Γn(m) is the chirality element corresponding to vgm .
Now, let us consider the Dirac operator D of E . Since it anticommutes with τ , we

get a Fredholm complex

0 −→ Γ∞(E +) D+−→ Γ∞(E −) −→ 0 . (5.8.15)

45We identify
∧nV∗ ∼= R via the canonical volume form of q.
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In this setting, D is referred to as a graded Dirac operator. As in the examples of the
previous section, the adjoint of D+ is D− : Γ∞(E −) → Γ∞(E +). Thus, according
to (5.7.44) and (5.7.16), the index of this complex is given by

ind(D) := dim(ker D+)− dim(ker D−) . (5.8.16)

We are going to study ind(D) within the setting described above. For that purpose,
heat kernels are of basic importance.

Remark 5.8.2 (Heat kernels) Note that ψ(t) = e−tD2
ψ0 is a solution to the heat

equation
∂ψ

∂t
+ D2ψ = 0 (5.8.17)

for any ψ0 ∈ L2(E ). Therefore, e−tD2
will be called the heat operator. By stan-

dard arguments, for t > 0, ψ(t) is the unique smooth solution to (5.8.17) fulfilling
limt→0 ψ(t) = ψ0. Moreover,

lim
t→∞ψ(t) = Pker D(ψ0) , ‖ ψ(t) ‖≤‖ ψ0 ‖,

where Pker D is the orthogonal projection onto ker D ⊂ L2(E ), see Proposition 4.2.2
in [212]. It is easy to show that these statements also hold true for any ψ0 ∈ Wk(E )
with k > 0. This implies that e−tD2 : L2(E )→ Wk(E ) is bounded for any t > 0 and
k ≥ 0. Thus, the Sobolev Lemma implies that

e−tD2 : L2(E )→ Γ∞(E ) , t > 0 ,

is bounded. Such an operator is referred to as a smoothing operator. Moreover,
using the natural L2-pairing (5.7.11), one extends the heat operator to a bounded
mapping e−tD2 : W−k(E ) → L2(E ), for any t > 0 and k ≥ 0, and one shows that
e−tD2 : W−k(E )→ Γ∞(E ) is smoothing, too, for any t > 0. Now, by the Schwartz
Kernel Theorem, e−tD2

admits a smooth kernel k, called the heat kernel of D2,

(
e−tD2

φ
)
(p) =

∫

M
kt(p, q)φ(q)vg(q) , φ ∈ Γ∞(E ) . (5.8.18)

More precisely, denote by pi : M × M → M the projections onto the first and the
second factor, respectively. Then,

E � E ∗ := p∗
1E ⊗ p∗

2E
∗

is a vector bundle over M × M and kt is a smooth family of sections in E � E ∗.
For an orthonormal basis {ψn} of L2(E ) consisting of eigensections of D2 with (non-
negative) eigenvalues λk , we have
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kt(p, q) =
∞∑

k=1

e−tλkψk(p)⊗ ψk(q) . (5.8.19)

One shows that

(a) the heat kernel satisfies the heat equation with respect to both variables,
(b) for each smooth section φ,

∫

M
kt(p, q)φ(q)vg(q)→ φ(p) (5.8.20)

uniformly in p as t → 0.

Moreover, the heat kernel is the unique time-dependent section of E � E ∗ which is
of class C2 in p and q and of class C1 in t and which has the properties (a) and (b),
see [72, 533].

Finally, since D2 is smoothing and has a smooth kernel, e−tD2
is trace class for all

t > 0, see Theorem 8.12 in [533]. �

In the first step, we prove the following important formula [435].

Proposition 5.8.3 (McKean–Singer Formula) Let E be a graded Dirac bundle with
grading τ and let D be its Dirac operator. Then, for any t > 0,

ind(D) = StrE
(
e−tD2)

. (5.8.21)

Proof The assertion follows from the spectral theorem for the positive self-adjoint
operator D2. Clearly, the decomposition of D2 with respect to (5.8.1) is given by

D2 =
[
D−D+ 0

0 D+D−

]
.

Let n±
λ be the dimensions of the λ-eigenspaces H±

λ of the restrictions D−D+ and
D+D− of D2 to L2(E ±), respectively. Then,

StrE
(
e−tD2) =

∑

λ≥0

(n+
λ − n−

λ ) e
−tλ .

Letψ ∈ H+
λ . Then, D

+D−D+ψ = λD+ψ , that is, D+ψ ∈ H−
λ is an eigenspinor field

for D+D− with eigenvalue λ. Thus, for every λ �= 0, D+ maps H+
λ isomorphically

onto H−
λ . This implies n+

λ = n−
λ for any λ > 0. Consequently, only n+

0 − n−
0 =

dim(ker D+)− dim(ker D−) remains in the above sum. �

By the McKean–Singer Formula and (5.8.18) (Exercise 5.8.2),

ind(D) = StrE
(
e−tD2) =

∫

M
strEq

(
kt(q, q)

)
vg(q) . (5.8.22)
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Here, the integrand is the fibrewise supertrace of the endomorphism kt(q, q) ∈
End(Eq).

Example 5.8.4 (Heat kernel of the Laplacian on R
n) Consider the Laplace operator

Δ on R
n. Its heat kernel is easily calculated (Exercise 5.8.4):

kt(x, y) = (4π t)− n
2 e− ‖x−y‖2

4t . (5.8.23)

�

Example 5.8.5 (Heat kernel of the harmonic oscillator) Consider theHamilton oper-
ator of the harmonic oscillator on R,

H = − d2

dt2
+ ω2x2 .

Since this self-adjoint operator is quadratic both in differentiation and in multiplica-
tion, it is plausible to make the following ansatz:

kt(x, y) = ea(t)
x2

2 +a(t) y
2

2 +b(t)xy+c(t) .

Then, denoting the derivative with respect to t by a dot, we calculate

k̇t(x, y)+ H kt(x, y)

=
(

ȧ(t)
x2

2
+ ȧ(t)

y2

2
+ ḃ(t)xy + ċ(t)− (a(t)x + b(t)y)2 − a(t)+ ω2x2

)

kt(x, y) ,

for any (t, x, y) ∈ R+ × R × R. Thus, the heat equation implies

ċ = a , ȧ = 2b2 = 2(a2 − ω2) . (5.8.24)

Solving this system (Exercise 5.8.5) yields

a(t) = − coth(2(t − t0)),

b(t) = − 1

sinh(2(t − t0))
,

c(t) = −1

2
log(sinh(2(t − t0)))+ c0 .

Finally, using the initial condition (5.8.20), we obtain t0 = 0 and c0 = − 1
2 log(2π)

and, thus,
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kt(x, y) = 1

(4π t)
1
2

(
2t

sinh(2t)

) 1
2

exp

(
− x2 + y2

2 tanh(2t)
+ xy

sinh(2t)

)
, (5.8.25)

which is referred to as Mehler’s Formula. �

The next important observation is that the index is homotopy invariant. To show
this, let us consider a continuous family Ds, s ∈ [0, 1], of graded Dirac operators on
a complex vector bundle E which means that all data (the Riemannian metric g, the
Clifford action c, the fibremetric onE and the connection∇) entering the definition of
D vary continuously with s preserving, of course, all compatibility conditions. Then,
s → Ds is a continuous mapping from [0, 1] to the space of bounded mappings
B(Wk+1(E ),Wk(E )) for any k, cf. (5.7.12).

Proposition 5.8.6 Let s �→ Ds be a continuous family of graded Dirac operators.
Then, ind(D0) = ind(D1).

Proof Since the heat kernel is smooth, formula (5.8.21) implies that ind(Ds) is a
smooth function of s. Thus, using Duhamel’s Formula,46 we calculate

d

ds
(ind(Ds)) = d

ds

(
StrE

(
e−t(Ds)

2)) = −t StrE

([
d

ds
Ds,Dse

−t(Ds)
2

]

τ

)
.

This quantity vanishes by (5.8.8). �

To summarize our discussion up until now, Proposition 5.8.6 shows that the index of
a graded Dirac operator D is a topological invariant and theMcKean–Singer Formula
suggests that this invariant can possibly be calculated via the heat kernel of D2. It
turns out that this idea is fruitful indeed. It leads to one of the proofs of the index
theorem.47 Note that the left hand side of (5.8.22) does not depend on t whereas the
right hand side makes sense for all t > 0. This suggest that the limit of the right hand
side as t → 0 may be meaningful and that it might be possible to use this limit for
calculating the index. Theorem 5.8.10 below substantiates this idea. To prove it, we
use the following approximation concept for heat kernels.

Definition 5.8.7 Let E be a Dirac bundle with Dirac operator D and let kt(p, q) be
the heat kernel of D2. Let k be a positive integer. Then, an approximate heat kernel
of order k is a smooth t-dependent section k̃t(p, q) of E � E ∗ fulfilling the initial
condition (5.8.20) and

(
∂

∂t
+ D2

p

)
k̃t(p, q) = tkφt(p, q) ,

where φt is a Ck-section of E �E ∗ depending continuously on t for t ≥ 0 and where
Dp denotes the Dirac operator applied in the p-variable.

46See e.g. Sect. 2.7 in [72] for a proof.
47For a comparison of the different proofs available, see [87].
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By standard Sobolev-type arguments, see [533, Chap.7], one shows the following.

Lemma 5.8.8 Let E be a Dirac bundle with Dirac operator D and let kt(p, q) be
the heat kernel of D2. Then, for every k there exists a k′ ≥ k such that for any
approximate heat kernel k̃t(p, q) of order k′, we have

kt(p, q)− k̃t(p, q) = tkφt(p, q) ,

where φt is a Ck-section of E � E ∗ depending continuously on t for t ≥ 0. �

In the sequel, Taylor expansions of geometric objects in a geodesic chart will be
used.

Remark 5.8.9 (Taylor expansions)We take upRemarks 1.7.19 and2.1.30.Let (M, g)
be a Riemannian manifold and let x1, . . . , xn be normal coordinates of a geodesic
chart (U, κ) centered at m ∈ M such that the local holonomic frame {∂i} is ortho-
normal at m. Construct a local synchronous frame e = (e1, . . . , en) on U for the
Levi-Civita connection on TM by parallel transporting the tangent space basis {∂j}
at m along the geodesics through m, cf. Remark 1.7.19. By construction, e is ortho-
normal and coincides with {∂i} at m. Thus, (1.7.17) implies

Γ k
il (x) ∼ −1

2
Rk
ijl(0)x

j + 0(‖x‖2) , (5.8.26)

where Γ k
il are the Christoffel symbols of the Levi-Civita connection and Rk

ijl are
the components of the Riemann curvature in normal coordinates, respectively. In
particular, we have Γ k

il (0) = 0. A similar Taylor-type expansion holds for the metric:

gij(x) = δij − 1

3

∑

k,l

Riklj(0)x
kxl + 0(‖x‖3) . (5.8.27)

The proof of this formula is in complete analogy to the proof of (1.7.17). Let {θ j} be
the coframe dual to e, let ωi

j be the components of the Levi-Civita connection in this
frame and let Xr = ∑

i x
i∂i be the radial vector field. Then,

Xr�θ i = xi , Xr�ωi
j = 0 , gij dx

i ⊗ dxj = δijθ i ⊗ θ j . (5.8.28)

Clearly, the tautological form θ on M may be expressed with respect to both the
holonomic frame {∂j} and the synchronous frame {ej},

θ =
∑

j

dxj∂j = θ jej ,

and we may decompose θ j = θ jkdxk . Then, gij = δklθ k iθ l j. Thus, it is enough to find
the Taylor expansion for the coefficient functions θ i j. Using the relations (5.8.28),
by analogous arguments as in Remark 1.7.19, one obtains (Exercise 5.8.6)

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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(Xr ◦ Xr + Xr)θ i j = −
∑

k,l

Ri
klj(0)x

kxl . (5.8.29)

This implies (5.8.27). For a detailed presentation of the arguments, we also refer to
[34]. �

The basic idea is now to take the following counterpart of (5.8.23) on the Riemannian
manifold (M, g) as the first approximation to the true heat kernel:

ht(p, q) := (4π t)− n
2 exp

(
−d(p, q)

4t

)
, (5.8.30)

where d(p, q) denotes the geodesic distance between p and q.

Theorem 5.8.10 (Heat kernel asymptotics) Let E be aDirac bundle over a compact
Riemannianmanifold (M, g) and letD be its Dirac operator. Let kt be the heat kernel
of D2. Then,

1. as t → 0, there is an asymptotic expansion48

kt(p, q) ∼ ht(p, q)
∞∑

j=0

tj aj(p, q) , (5.8.31)

where the aj are smooth sections of E �E ∗. This expansion is valid in the Banach
space Cr(E � E ∗) for any integer r ≥ 0.

2. The values aj(p, p) along the diagonal are given in terms of algebraic expres-
sions involving the metric and the connection coefficients, together with their
derivatives. In particular, a0(p, p) is the identity endomorphism of E .

Our proof is along the lines of Theorem 7.15 in [533].

Proof By Lemma 5.8.8, it is enough to show that there exist smooth sections aj of
E � E ∗ such that for each k the partial sum

St(p, q) = ht(p, q)
J∑

j=0

tjaj(p, q)

is an approximate heat kernel of order k for all sufficiently large J . Since ht is of
order t∞ outside any neighbourhood of the diagonal in M × M, it clearly suffices
to determine the sections aj(p, q) for p near q. Thus, we may use a local geodesic
coordinate system x1, . . . , xn centered at q.We denote the determinant of themetric g
by g, the geodesic distance from q to p by r, that is, r2 = gijxixj. Then, one calculates,
see Exercise 5.8.7,

48Recall that f (t) ∼ ∑∞
k=0 ak(t) is called an asymptotic expansion for a function f on R+ if, for

any n, almost all the partial sums of the series approximate f to within an error of order tn. Clearly,
the series need not converge.
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h−1
t

(
∂

∂t
+ D2

p

)
(htφ) = ∂φ

∂t
+ D2

pφ + r

4gt

∂g

∂r
φ + 1

t
∇r ∂

∂r
φ , (5.8.32)

for any local section φ of E � E ∗. Now, seeking a solution to the heat equation in
the form htφ, we expand φ ∼ φ0 + tφ1 + t2φ2 + . . ., with the φj not depending on
t, insert this expansion into (5.8.32) and put the coefficient functions of each power
of t equal to zero. This yields the following system of equations:

∇r ∂
∂r
φj +

(
j + r

4g

∂g

∂r

)
φj = −D2

pφj−1 , (5.8.33)

where j = 0, 1, 2, . . . andφ−1 = 0. This is a system of ordinary differential equations
along each ray starting from q which may be solved recursively. Note that the first
of these equations (j = 0) simply reads

∇ ∂
∂r

(
g

1
4φ0

)
= 0 , (5.8.34)

showing that φ0 is uniquely determined by its initial value φ0(0). We put φ0(0) = 1,
the identity endomorphism of Sq. This suggests to rewrite the remaining equations
by incorporating the factor g

1
4 as well. This yields (Exercise 5.8.8):

∇ ∂
∂r

(
rjg

1
4φj

)
= −rj−1g

1
4 D2

pφj−1 , (5.8.35)

for any j ≥ 1. Thus, every φj is determined by φj−1 up to an additive term of order
r−j near r = 0. If we require smoothness at r = 0, this term must vanish and, thus,
all φj are uniquely determined by the initial condition φ0(0) = 1.

To summarize, we have constructed local representatives φj(x) of the heat kernel
coefficients aj(p, q) for p near q. By standard Sobolev-type arguments, one shows
that, for J > 1

2 dimM + k,

kJt (p, q) = ht(p, q)
J∑

j=0

tjaj(p, q)

is an approximate heat kernel of order k.
To prove the second assertion, note that aj(p, p) is given locally by φj(0). Thus, it

is enough to expand both sides of (5.8.33), or (5.8.35), in a Taylor series about the
origin. Then, the coefficients φj(0)may be iteratively calculated in terms of algebraic
expressions involving the metric and the connection coefficients, together with their
derivatives, indeed. �

Example 5.8.11 To illustrate the second assertion in Theorem 5.8.10, let us find
the first two coefficients of the heat kernel expansion. First, from (5.8.34) and the
initial condition, we read off φ0 = g− 1

4 . Substituting this into (5.8.35) and using the
Weitzenboeck Formula 5.6.1 we obtain



444 5 Clifford Algebras, Spin Structures and Dirac Operators

φ1(0) = −(D2φ0)(0) =
∑

i

(
∂

∂xi

)2

(g− 1
4 )(0)− RE (0) . (5.8.36)

From (5.8.27), we conclude

g− 1
4 (x) = 1 + 1

12

∑

i,j,l

xjxlRijli(0)+ 0(‖x‖3) . (5.8.37)

This entails
∑

i

(
∂

∂xi

)2

(g− 1
4 ) = 1

6

∑

j,l

Rjllj = 1

6
Sc

at the origin and, therefore,

a0(q, q) = 1 , a1(q, q) = 1

6
Sc(q)− RE (q) . (5.8.38)

Thus, the first non-trivial heat kernel coefficient is given by the scalar curvature of
(M, g) and by the Weitzenboeck curvature operator of the Dirac bundle E . �

Combining Theorem 5.8.10 with the McKean–Singer Formula in the form of
(5.8.22), we obtain the following.

Corollary 5.8.12 Let E be a graded Dirac bundle over a compact Riemannian
manifold (M, g) and let D be its Dirac operator. Then, the index of D is zero if the
dimension of M is odd. If n is even, then

ind D = 1

(4π)
n
2

∫

M
strEq

(
a n

2
(q, q)

)
vg(q) . (5.8.39)

Proof By (5.8.31) and (5.8.22), we have

ind D ∼ 1

(4π)
n
2

∞∑

j=0

(∫

M
strEq

(
aj(q, q)

)
vg(q)

)
tj−

n
2 .

Since the left hand side is constant, both assertions follow. �

This corollary reduces the calculation of the index of D to the calculation of the
integral over the heat kernel coefficient of D2 of order n

2 .
For the further analysis of formula (5.8.39), let us fix a point q ∈ M and let

expq : TqM → M be the exponential mapping of (M, g). Then, for p = expq(X) in
a neighbourhood of q, we denote

kt(X) := kt(expq(X), q) ∈ Hom
(
Eq,Eexpq(X)

)
.
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We trivialize the bundle E over an open neighbourhood U centered at q by choosing
a synchronous framing combined with a local geodesic chart, cf. Remarks 1.7.19
and 5.8.9. In more detail, we choose a local geodesic chart (U, κ) centered at q and
identify the fibres Eq and Eexpq(X) via the parallel transport operator along the radial
geodesic from q to expq(X). Clearly, the geodesic chart provides a local trivialization
of TM and, thus, of Cl(M) over U as well. Now, recall (5.8.10),

End(E�U) ∼= Clc(U)⊗ EndCl(U)(E�U) . (5.8.40)

In the above local trivializations, the Clifford action boils down to the action of
Cl(TqM) on the fibre Eq and, thus, EndCl(M)(E ) is locally trivial as well, with fibre
EndCl(TqM)(Eq) = End(W). Thus, for a chosen point q ∈ M, we may view the heat
kernel as

kt(X) ∈ End(Eq) ∼= Clc(TqM)⊗ End(W) . (5.8.41)

Let x1, . . . , xn be the normal coordinates of the chosen geodesic chart and let {∂j}
and {ej} be the holonomic and the (orthonormal) synchronous frames, respectively.
Recall that the latter coincide at the point q. In these normal coordinates, we will
write kt(x) for kt(X). Let {ei} be the orthonormal basis of TqM given by ei = ei(q).
Moreover, as before, for each subset I ⊂ In = {1, . . . , n}, let eI = 0 if I = ∅ and
eI = ei1 . . . eik if I = {i1, . . . , ik} and i1 < · · · < ik . In this basis, (5.8.31) takes the
form

kt(x) ∼ ht(x)
∞∑

j=0

∑

I

tj eI ⊗ aj,I(x) , (5.8.42)

where the coefficients aj,I(x) are End(W)-valued. Now, by (5.8.30) and (5.8.12),

strEq

(
kt(0)

) ∼ (−2i)
n
2

(4π t)
n
2

∞∑

j=0

tj strEq|Δn(aj,In(0)) . (5.8.43)

To summarize, (5.8.39) takes the form

ind D = (2π i)− n
2

∫

M
strEq|Δn

(
a n

2 ,In
(q, q)

)
vg(q) . (5.8.44)

Next, let us analyze the local representative A ∈ Ω1(U,End(Eq)) of the Clifford
connection ∇ in the chosen synchronous framing {ei}. We denote ci = c(ei).

Lemma 5.8.13 In the local trivialization defined by a synchronous framing,

Ai(x) = 1

8

∑

j,k,l

Rijkl(0)x
jckcl +

∑

k,l

αikl(x)ckcl + βi(x) , (5.8.45)

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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where Rijkl(0) are the Riemann curvature coefficients at the origin with respect to
the holonomic frame {∂j}, αikl ∈ C∞(U) are functions of order 0(‖x‖2) and βi ∈
C∞(U,End(W)) are functions of order 0(‖x‖).
Proof By (1.7.17), we have A(0) = 0 and

Ai(x) ∼ −1

2
RE
ij (0)x

j + 0(‖x‖2) , (5.8.46)

where RE is the curvature endomorphism of ∇. By (5.6.8), RE = R∇g + FE , where

R∇g
(X,Y) = 1

4

∑

l,k

g(R(X,Y)(ek), el) clck (5.8.47)

is the curvature endomorphism of ∇g viewed as a connection in the Clifford bundle
Cl(M)�U and FE ∈ Ω2(U,End(W)) is the twisting curvature of the Dirac bundle
E . Since, at the origin, ei and ∂i coincide, the contribution of R∇g

coincides with the
first term in (5.8.45) up to a term of order 0(‖x‖2). Since the Clifford action onW is
trivial, the contribution of FE is simply a function of order 0(‖x‖). �

Now, we are prepared to prove the Atiyah–Singer Index Theorem. The proof
we give is based on a method developed by Getzler [242, 243], which is often
referred to as Getzler rescaling.49 By (5.5.5), Cl(M) and

∧
T∗M may be identified as

Clifford module bundles. In our trivialization, this boils down to the Clifford module
isomorphism ∧

T∗
qM ∼= Cl(T∗

qM) , (5.8.48)

with the left Clifford action on
∧
T∗
qM given by c(α) = ε(α) + ι(α), cf. Example

5.3.2. Now, given a function φ on R+ × U with values in
∧
T∗
qM ⊗ End(W), we

define the Getzler rescaling operator by

(δλφ)(t, x) :=
n∑

j=0

λ−jφ
(
λ2t, λx

)
[j] , (5.8.49)

for 0 < λ ≤ 1. Here, the index [j]means restriction to the form degree j. This implies
the rescaling δ̂λA := δλAδ−1

λ for any operator A acting on functions of the above type.
In particular, we obtain

δ̂λ∂t = λ−2∂t , δ̂λ∂j = λ−1∂j , δ̂λε(α) = λ−1ε(α) , δ̂λι(α) = λι(α) , (5.8.50)

for α ∈ T∗
qM. We will write εi = ε(dxi) and ιi = gij ι(∂j).

49We use the Getzler calculus in a purely operational manner. For a deeper discussion we refer to
[72, 533].

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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As a last ingredient, we need the relative Chern character form of the bundle E .
It is defined as follows. The twisting curvature endomorphism FE of ∇ is a 2-form
with values in the real vector bundle

uClc(M)(E ) := u(E ) ∩ EndClc(M)(E ) ,

where u(E ) ⊂ End(E ) is the subbundle of skew-adjoint endomorphisms, see
Sect. 4.6. For Am ∈ uClc(M)(E ), one has eiAm/4π ∈ EndClc(M)(Em), so that one can
define a section qE in the bundle FPS

(
uClc(M)(E )

)
of formal power series, see

Sect. 4.6, by
qEm (Am) := strE |S (exp(−Am/4π i)) , m ∈ M . (5.8.51)

By definition, the relative Chern character form of E is

ch(E |S ) := hFE (qE ) ,

with hFE given by (4.6.33). One easily shows that this form is closed and that its de
Rham cohomology class, which we denote by the same symbol, does not depend on
the choice of the connection, see Sect. 3 in [526]. According to Remark 4.6.10, we
write

ch(E |S ) = strE |S
(
exp(−FE /2π i)

)
. (5.8.52)

Theorem 5.8.14 (Atiyah–Singer) Let E be a graded Dirac bundle over an even-
dimensional oriented compact Riemannian manifold (M, g) and let D be its Dirac
operator. Then,

ind D =
∫

M
Â(M) ∧ ch(E |S ) , (5.8.53)

where Â(M) is the Â-genus form ofM. In the integrand, the component of form degree
dimM is taken.

Proof Let dimM = n. We define the rescaled heat kernel by

kλt (x) := λn(δλk)t(x) . (5.8.54)

Since the heat kernel satisfies the heat equation, we have

(∂t + λ2δλD2δ−1
λ )k

λ
t = 0 .

Thus, kλt is the heat kernel of the rescaled operator Pλ := λ2δ̂λD2. In the first step,
we prove that the limit P0 = limλ→0 Pλ exists by explicitly calculating it. For that
purpose, we work in the local trivialization of E over a neighbourhood U centered
at q obtained by the above described synchronous framing. By the Weitzenboeck
Formula (5.6.9),

http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
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D2 = ∇∗∇ + 1

4
Sc + FE , (5.8.55)

and by (2.7.31), for any local frame {ej} we have

∇∗∇ = −gij
(∇ei∇ej − ∇∇ei ej

)
.

In the synchronous frame, ∇∂i = ∂i + Ai with Ai given by (5.8.45). In order to
be able to apply the rescaling mappings, we must consistently use the isomorphism
(5.8.48). Then, using the fact that the Clifford action onW is trivial, we obtain

Pλ(x) = −
∑

i,j

gij(λx)(∂i + λ(δ̂λAi)(x))(∂j + λ(δ̂λAj)(x))

− λ
∑

i,j,k

(gijΓ k
ij )(λx)(∂k + λ(δ̂λAk)(x)

)

+ λ2

4
Sc(λx)+ λ2(δ̂λFE

)
(x) . (5.8.56)

Here, Γ k
ij are the Christoffel symbols of the Levi-Civita connection in normal coor-

dinates. By Lemma 5.8.13, we have

λ(δ̂λAi)(x) =1

8

∑

j,k,l

Rijkl(0)x
j(εk + λ2ιk)(εl + λ2ιl)

+ λ−1
∑

k,l

αikl(λx)(εk + λ2ιk)(εl + λ2ιl)+ λβi(λx) .

Since the functions αikl and βi are of order 0(‖x‖2) and 0(‖x‖), respectively, we
obtain

lim
λ→0

λ(δ̂λAi)(x) = 1

4

∑

j

Ωijx
j ,

where

Ωij = 1

2

∑

k,l

Rijkl(0)ε
kεl

acts on
∧
T∗
qM by exterior multiplication. Thus, Ωij may be viewed as an anti-

symmetric (n × n)-matrix with values in the even part A of the exterior algebra of
T∗
qM which is a finite-dimensional commutative algebra (over C) with unit. By the

above arguments, the limit λ → 0 of the covariant derivative exists and is equal to
∂i + 1

4

∑
jΩijxj .Next, using the Taylor expansions for gij and Γ k

ij derived in Remark
5.8.9, we see that the second and the third term in (5.8.56) vanish in the limit λ→ 0.
Finally, by (5.6.10), the limit of the last term is simply FE (0). Using the Taylor
expansion of gij once again, we obtain

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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P0 = lim
λ→0

Pλ = −
∑

i

(
∂i + 1

4

∑

j

Ωijx
j
)2 + FE (0) . (5.8.57)

Under the identification (5.8.48), FE (0) becomes an element of A⊗End(W) acting
on

∧
T∗
qM by exterior multiplication. This finishes the first step of the proof.

In the second step, we calculate the heat kernel k0t of P0. We denote F = FE (0)
and

H = −
∑

i

(
∂i + 1

4

∑

j

Ωijx
j
)2
.

This is the Hamiltonian of a generalized harmonic oscillator. Then, by the above
discussion, P0 = H + F is a differential operator acting on A ⊗ End(W)-valued
functions on U. Since A is commutative, the operators H and F commute. Thus,
e−tP0 = e−tHe−tF. Since Ω is an antisymmetric (n × n)-matrix with values in the
2-forms we can choose the orthonormal basis in TqM so that Ω is represented by a
block-diagonal matrix,

Ω =
n
2⊕

p=1

Ωp , Ωp =
[
0 −ωp

ωp 0

]
.

Then, H decouples into a sum of operators of the form

h = −(
∂x + 1

4
ωy

)2 − (
∂y − 1

4
ωx

)2 = −(
∂2x + ∂2y

) − ω2

16

(
x2 + y2)+ 1

2

(
x∂y − y∂x

)

and it remains to calculate the heat kernel of this operator. By the uniqueness of the
heat kernel, we can seek a rotationally invariant solution. Then, the last term in h
will not contribute and, apart from the fact that we must replace ω by iω, we have a
sum of two harmonic oscillator Hamiltonians. Using Mehler’s Formula (5.8.25), we
obtain (Exercise 5.8.9)

k0t (x) = (4π t)− n
2 det

1
2

(
tΩ/2

sinh(tΩ/2)

)
e− 1

4t 〈 tΩ
2 coth( tΩ2 )x,x〉e−tF , (5.8.58)

and, thus,

k0t (0) = (4π t)− n
2 det

1
2

(
tΩ/2

sinh(tΩ/2)

)
e−tF . (5.8.59)

This finishes the second step of the proof.
In the third step, we show that the index of Dmay be expressed in terms of the heat

kernel coefficients of k0t (0). For that purpose, consider the asymptotic expansion of
the rescaled heat kernel kλt . Applying the rescalingmapping to kt as given by (5.8.42)
and using the isomorphism (5.8.48), we obtain
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kλt (x) ∼ λn hλ2t(λx)
∞∑

j=0

∑

I

tj λ2j−|I|aj,I(λx) dxI , (5.8.60)

where as usual dxI := dxi1 ∧ . . . ∧ dxik if I = {i1, . . . , ik} and i1 < . . . < ik . Thus,

kλt (0) ∼ (4π)− n
2

∞∑

j=0

∑

I

tj−
n
2 λ2j−|I|aj,I(0) dxI . (5.8.61)

Without giving a proof here, we use the fact that the coefficients of the asymptotic
expansion (5.8.60) depend continuously on λ, see Theorem 2.48 in [72]. This implies
that the asymptotic expansion of k0t can be obtained as the limit λ → 0 of the
asymptotic expansion (5.8.60). Thus, let

k0t (0) = (4π t)− n
2

∞∑

j=0

Pj
(
Ω/2,−F

)
tj (5.8.62)

be the Taylor series of (5.8.59). SinceΩ and F are nilpotent elements of the exterior
algebra, this series converges for all values of t. Then, comparing coefficients, we
read off

Pj
(
Ω/2,−F

) = lim
λ→0

∑

I

λ2j−|I|aj,I(0) dxI ,

that is, aj,I(0) = 0 for j > |I|
2 and

Pj
(
Ω/2,−F

) =
∑

|I|=2j

aj,I(0) dx
I . (5.8.63)

But, |I| ≤ n and, thus, Pj �= 0 for j = 0, 1, . . . , n2 only. This implies

k0t (0) = (4π t)− n
2

n
2∑

j=0

Pj
(
Ω/2,−F

)
tj . (5.8.64)

Taking the supertrace of this equation and using (5.8.11), together with (5.8.63), we
obtain

strEq

(
k0t (0)

) = (4π t)− n
2 strEq

(
Pn

2

(
Ω/2,−F

))
t
n
2 = (−2i)

n
2

(4π t)
n
2
strEq|Δn(a n

2 ,In
(0))t

n
2 .

Comparing with (5.8.44), we conclude

ind D = (4π)− n
2

∫

M
strEq

(
Pn

2

(
Ω/2,−F

))
vg(q) , (5.8.65)
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that is, the index of D is given by the coefficients of the heat kernel expansion of P0,
indeed. This finishes the third step of the proof.

Finally, it remains to calculate the integrand of (5.8.65). Comparing (5.8.64) with
(5.8.59), we see that

Pn
2

(
Ω/2,−F

) = det
1
2

(
Ω/2

sinh(Ω/2)

)
exp(−F)�[n] ,

where [n] means taking the n-form part of the right hand side. Since the summands
in the Taylor expansion of the first factor on the right hand side are just differential
forms on U, by (5.8.11), we have

strEq

(
Pn

2

(
Ω/2,−F

))
vg = (−2i)

n
2 det

1
2

(
Ω/2

sinh(Ω/2)

)
strEq|Δn (exp(−F))�[n] .

Since Pj is a homogeneous polynomial of degree j,

Pn
2

(
Ω/2,−F

) = (2π i) n2Pn
2

(
Ω/4π i,−F/2π i

)
,

and, using (4.7.18), we have

strEq

(
Pn

2

(
Ω/2,−F

))
vg = (−2i)

n
2 (2π i)

n
2 Â(M) ch(E |S )�[n] .

Inserting this into (5.8.65) yields the assertion. �

Often, the right hand side of (5.8.53) is referred to as the topological index of the
Dirac bundle. In this language, the Atiyah–Singer Index Theorem states that the
analytical index of a Dirac operator is equal to the topological index of its Dirac
bundle.

Remark 5.8.15 (Local Index Theorem) Note that in the proof of Theorem 5.8.14 we
have actually obtained a much stronger result which is usually referred to as the
Local Index Theorem: for every q ∈ M, the limit limt→0 strEqkt(q, q)vg(q) exists
and is given by

lim
t→0

strEqkt(q, q)vg(q) =
(
Â(M) ∧ ch(E |S )

)

�[n]
(q) . (5.8.66)

�

Remark 5.8.16 (Family Index Theorem) Both the Index Theorem 5.8.14 and the
Local Index Theorem generalize to the case of families of Dirac operators [40, Part
IV]. It turns out that the heat kernel methods developed above may be extended to
this situation in a quite straightforward way. This has been shown by Bismut [78],

http://dx.doi.org/10.1007/978-94-024-0959-8_4
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see also Chap.10 in [72] for a detailed presentation. Here, we only explain the setting
and formulate the result.50

Consider a smooth fibre bundle π : M → Y , where M and Y are compact
connected manifolds of dimensions n +m and m, respectively, with n even. That is,
π is a smooth mapping and for every open subset U ⊂ Y the inverse image π−1(U)
is diffeomorphic toU×X, where X is an n-dimensional compact manifold.51 Denote
the bundle of vertical vectors onM with respect to the fibre structure by VM. Assume
that the fibration π : M → Y is endowed with the following additional structures:

(a) a fibre metric gV,
(b) a projection P : TM → VM,
(c) a Spin(n)-structure S(VM)→ M on the vertical bundle VM.

By points (a) and (b), we have a canonical connection ∇V on VM defined as follows.
First note that the kernel of P defines a horizontal distribution on M and, thus, a
splitting TM = VM ⊕ ker P, that is, P defines a connection in π : M → Y . Now,
take any metric gY on Y , lift it to ker P and combine this lift with gV to a Riemannian
metric gM on M. Take its Levi-Civita connection ∇M and project it to VM,

∇V := P∇M P .

It is easy to show that this is a connection onVM which does not depend on the choice
of gY . Moreover, the restrictions of this connection to the fibres of π coincide with
the Levi-Civita connections on the fibres. To summarize, VM carries the structure of
a Hermitean vector bundle with a connection which is compatible with the metric.
Next, by point (c), VM admits a spin structure S(VM) and, thus, the connection
∇V naturally lifts to a connection on S(VM). By construction, for every y ∈ Y ,
the restriction of this connection to S(VM)�My coincides with the spin connection
corresponding to the Levi-Civita connection of the fibre metric gV.

Now, assume we are given a Clifford module bundle E over the Clifford bundle
Cl(VM). Since VM carries a spin structure, E has the form

E = SV ⊗ E , (5.8.67)

whereSV is a spinor bundle associated with S(VM) and E is a vector bundle given
by E = HomCl(VM)(SV,E ). The spinor bundle may be viewed as a tensor product
SV = S⊗Vρ ,whereS is the canonical spinor bundle,ρ is a complex representation
of Spin(n) and Vρ is the corresponding vector bundle associated with S(VM). Since
n is even, the natural splitting of S induces a splitting of SV into the chirality
componentsS ±

V . The natural spin connection on S(VM) induces connections on the
bundles S ±

V . As usual, we assume that E carries a Hermitean fibre metric gE and a

50For the very formulation of the result, a shorthand version of the detailed description belowwould
be sufficient. However, we present the full structure which then may be taken as the starting point
for reading the proof of Bismut.
51Then, π : M → Y may be viewed as associated with a principal Diff(X)-bundle over Y .
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compatible connection∇E . By (5.8.67), the twisting curvature of E simply coincides
with the curvature of ∇E .

Given the above described structures, we obtain a family of Dirac bundles

E ±
y = (

S ±
V ⊗ E

)
�My

with an associated family of Dirac operators Dy : C∞ (
E +
y

) → C∞ (
E −
y

)
.Using the

bundle metric in E ±
y and the natural volume form onMy, we obtain L2-completions

H±
y of the above C∞-spaces. The latter fit together to continuous52 Hilbert bundles

H± → Y . Correspondingly, the Dirac operators combine to a bundle mapping D :
H+ → H−. In this context, one can prove a Local Index Theorem for the Dirac
family D and, as a corollary one obtains the Atiyah–Singer Index Theorem for D:

ch(Ind(D)) =
∫

M/Y
Â(VM) ch(E) . (5.8.68)

Here, ch(Ind(D)) is the Chern character of the index bundle, see Appendix E, Â(VM)
is the Â-genus of the bundle VM for the connection ∇V and ch(E) is the Chern
character form of the bundle E. The symbol

∫
M/Y means integration over the fibres

of π : M → Y . �

In the literature, there can be found many generalized index theorems, e.g. alge-
braic index theorems for formal deformation quantizations, see [190, 483, 511] and
references therein. It is interesting to note, see [484], that an application of the alge-
braic index theorem to the case of the cotangent bundle endowed with the canonical
symplectic form and the deformation quantization given by the asymptotic pseudo-
differential calculus reproduces the Atiyah–Singer Index Theorem.

Exercises

5.8.1 Prove formula (5.8.1).

5.8.2 Let k(t, p, q)+ be the heat kernel of D−D+. Show that

strEq

(
k(t, q, q)+

) =
∑

k

e−tλk |ψ+
k (q)|2 ,

where {ψ+
k } is an orthonormal basis of eigensections with D−D+ψ+

k = λkψ
+
k .

Conclude that

Tr e−tD−D+ =
∫

M
strEq

(
k(t, q, q)+

)
vg(q) .

5.8.3 Prove formula (5.8.11). Hint. Show that, for any I �= In, there exists an index
i such that eI = − 1

2 [ei, eieI ]τ . Then, by (5.8.4), trΔ eI vanishes.

52These bundles are not smooth, because the composition L2 × C∞ → L2 is not smooth.
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5.8.4 Confirm formula (5.8.23).

5.8.5 Confirm the solutions to (5.8.24) given in Example 5.8.5.

5.8.6 Prove formula (5.8.28).

5.8.7 Prove formula (5.8.32). Hint. First, show that

∇h = − h

2t
r
∂

∂r
,
∂h

∂t
+Δh = rh

4gt

∂g

∂r
.

5.8.8 Confirm formula (5.8.35).

5.8.9 Confirm formula (5.8.58).

5.9 Applications

In this section, we discuss some consequences of the Atiyah–Singer Index Theorem.
The reader can find a lot of further applications in Chap. IV of [407].

To start with, the following is an immediate consequence of Theorem 5.8.14.

Corollary 5.9.1 (Atiyah–Singer) If M is a spin manifold and E is the canonical
spinor bundle, then the index of the Dirac operator D/ coincides with the Â-genus
of M.

This implies:

(a) the index of the Dirac operator does not depend on the spin structure.
(b) the Â-genus of a spin manifold is an integer.

Point (b) may be sharpened as follows.

Proposition 5.9.2 Let M be a compact spin manifold such that dimM = 4 mod 8.
Then, Â(M) is an even integer.

Proof By Theorem 5.3.19, for n = 4 mod 8 the spinor representations Δn are of
quaternionic type. By Remark 5.3.20, the corresponding structure mappings C :
Δn → Δn commute with the Clifford multiplication and are Spin(n)-equivariant.
The same is true for the structure mappings C± : Δ±

n → Δ±
n of the corresponding

irreducible components of Δn. Now, the Spin(n)-equivariance

C ◦ γ (g) = γ (g) ◦ C , (5.9.1)

for any g ∈ Spin(n), implies that C may be extended to a fibre-preserving mapping
of the spinor bundle which we denote by the same letter. Differentiating (5.9.1), we
obtain that C commutes with the covariant derivative of the spin connection,

∇X ◦ C = C ◦ ∇X ,
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for any X ∈ X(M). This property, together with the fact that C commutes with the
Clifford multiplication, implies that the Dirac operator commutes with C. Corre-
spondingly, we have D/ + ◦ C+ = C− ◦ D/ +. Thus, the kernel and the cokernel of D/ +
are quaternionic vector spaces and, consequently, their complex dimension is even.

�

Combining Corollary 5.9.1 with Bochner-type arguments, we obtain the following.

Proposition 5.9.3 (Lichnerowicz) Let M be a compact spin manifold admitting a
metric of strictly positive scalar curvature. Then, the Â-genus of M must vanish.

Proof By point 1 of Corollary 5.6.8, ker D/ = ker D/ 2 = 0. Since

ker D/ = ker D/ + ⊕ ker D/ −,

this implies ind D/ = Â(M) = 0, �

Next, we turn to the analysis of the Atiyah–Singer Index Theorem for the Dirac
bundle

E = Clc(M) ∼= ∧
T∗M ⊗ C .

This is a left Cl(M)-module bundle with the Clifford mapping of Cl(M) given by

c : TM → End(
∧
T∗M) , c(X)α = g(X) ∧ α + X�α ,

cf. formula (5.1.8). Its Dirac operator is induced from the de Rham complex EdR(M)
and is given by

Dα = i(d − d∗)α ,

see Examples 5.5.16 and 5.7.22. Recall that the index of the de Rham complex
coincides with the Euler characteristic χ(M).

Now, let us analyze the right-hand side of (5.8.53) for that case. Since

∧
V∗ ⊗ C ∼= Clc(V) = End(Δn) ∼= Δ∗

n ⊗Δn ,

for any even-dimensional vector space V , the typical fibre of E is E = Δn ⊗ Δ∗
n,

that is, the twisting vector space is W = Δ∗
n. Note that, in this situation, besides the

canonical grading τ0 = Γn ⊗ id we have a grading τ = ωn ⊗ωn given by the volume
form ωn = eIn of Cln. Clearly, this is the natural grading induced from that on

∧
V∗.

So, we are going to consider this grading here.
Recall that the Euler form of an oriented Riemannian manifold M is defined by

e(M) := e(TM).

Lemma 5.9.4 The following holds.

Â(M) ∧ ch(E |S ) = e(M) .
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Proof Let R and R! denote the curvature endomorphism forms of the Levi-Civita
connections on TM and

∧
T∗M⊗C, respectively, and let o(TM) ⊂ End(TM) denote

the subbundle of skew-symmetric endomorphisms. By (4.7.17), Â(M) = hR(rM),
where rM is the section in FPS

(
o(TM)

)
given by

rMm (Am) := det
1
2

(
iAm
8π

sinh
( iAm
8π

)

)

.

By Remark 4.6.21, e(M) = hR(εM), where εM is the section in Pol
(
o(TM)

)
defined

by

εMm (Am) := pf

(
Am

4π

)
.

By formula (5.8.52), ch(E |S ) = hFE (q!), where FE is the twisting curvature
endomorphism form of the Levi-Civita connection on

∧
T∗M ⊗ C and q! is the

section in FPS
(
uClc(M)(E )

)
defined by (5.8.51). To prove the assertion, it suffices to

show
hR(r

M) ∧ hFE (q!) = hR(ε
M) . (5.9.2)

For that purpose, we rewrite hFE in terms of hR. First, to calculate FE , we choose a
local orthonormal frame {ei} in TM. According to (2.7.36), in this frame the curvature
endomorphism form of the Levi-Civita connection on

∧
T∗M ⊗ C is given by

R!(ei, ej) = −g(R(ei, ej)ek, el)ε
kιl . (5.9.3)

Let ci and bi denote the local sections in End(Clc(M)) defined fibrewise by Clifford
multiplication by ei from the left and the right, respectively. Clearly, the bi take values
in EndClc(M)(E ). Under the isomorphism with

∧
T∗M ⊗ C,

ci = ε(ei)+ ι(ei) , bi = ε(ei)− ι(ei) . (5.9.4)

Using
cicj + cjci = 2δij , bibj + bjbi = −2δij (5.9.5)

(Exercise 5.9.1) and the symmetry properties of the curvature, we obtain

R!(ei, ej) = −1

4
g
(
R(ei, ej)ek, el

)
(ckcl − bkbl) .

Since the first summand coincides with (5.8.47), the Weitzenboeck Formula yields

FE = 1

4
g(R ek, el)b

kbl . (5.9.6)

According to (5.2.29), then
FE = ρ ◦ ϕ ◦ R ,

http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_2
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where ϕ : o(TM) → Cl2(M) is the vertical vector bundle isomorphism which
is fibrewise defined by (5.2.28) and ρ : Cl2(M) → uClc(M)(Clc(M)) is the vertical
vector bundlemorphismassigning to ξ ∈ Cl2(TmM) the endomorphismofClc(TmM)
defined by right multiplication by ξ . By Lemma 4.6.18/2, then

hFE (q!) = hR(q
! ◦ ρ ◦ ϕ) .

Plugging this into (5.9.2) and using that hR is an algebra homomorphism, we find
that it suffices to show

rM · (q! ◦ ρ ◦ ϕ) = εM .

Fibrewise, this boils down to the assertion that the identity53

det
1
2

(
iA/2

sinh(iA/2)

)
strrel

(
eiρ◦ϕ(A)

) = pf(A) , A ∈ o(V) , (5.9.7)

holds for every oriented Euclidean vector spaceV of dimension 2l. Here, strrel denotes
the relative supertrace on EndClc(V)

(
Clc(V)

)
associated with the involution defined

by simultaneous left and right multiplication by the natural volume form on V . In
what follows, calculations are left to the reader (Exercise 5.9.2). In an appropriate
oriented orthonormal basis, A has block diagonal form

A = diag(A1, . . . ,Al) , Ak = xk

[
0 1

−1 0

]
, xk ∈ R ,

and we have

det
1
2

(
iA/2

sinh(iA/2)

)
=

l∏

k=1

det
1
2

(
iAk/2

sinh(iAk/2)

)
, (5.9.8)

strrel
(
eiρ◦ϕ(A)

) =
l∏

k=1

strrel
(
eiρ◦ϕ(Ak)

)
, (5.9.9)

pf(A) =
l∏

k=1

pf(Ak) . (5.9.10)

Thus, it suffices to prove (5.9.7) in two dimensions. Using an appropriate ordered
orthonormal basis {e1, e2} in V , we compute

sinh(iA/2) = i sinh(x/2)

[
0 1

−1 0

]

and thus

53We rescale A/4π �→ A.

http://dx.doi.org/10.1007/978-94-024-0959-8_4
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det
1
2

(
iA/2

sinh(iA/2)

)
= x/2

sinh(x/2)
. (5.9.11)

Using (5.2.29), we furthermore find

eiρ◦ϕ(A) = cosh(x/2)− i sinh(x/2)b1b2 .

Hence, by (5.8.13),

strrel
(
eiρ◦ϕ(A)

) = 1

2
strClc(M)

(
ΓV (cosh(x/2)− i sinh(x/2)b1b2)

)
.

As a left Clc(M)-module, Clc(M) is isomorphic toΔV ⊗Δ∗
V . Via this isomorphism,

left multiplication by ΓV corresponds to γ (ΓV ) ⊗ idΔ∗
V
, the endomorphism b1b2

corresponds to idΔV ⊗γ T(e1e2) and the involution corresponds to

γ (e1e2)⊗ γ T(e1e2) = −γ (ΓV )⊗ γ T(ΓV ) .

Writing strΔV and strΔ∗
V
for the supertrace on ΔV and Δ∗

V defined by the canonical
involutions γ (ΓV ) and γ T(ΓV ), respectively, we thus obtain

strrel
(
eiρ◦ϕ(A)

) = 1

2

{
cosh(x/2)strΔV

(
γ (ΓV )

)
strΔ∗

V

(
idΔ∗

V

)

− i sinh(x/2)strΔV

(
γ (ΓV )

)
strΔ∗

V

(
γ T(e1e2)

)}
.

By (5.8.11), this yields
strrel

(
eiρ◦ϕ(A)

) = 2 sinh(x/2) .

It follows that the left hand side of (5.9.7) equals x. This coincides with pf(A). �

This Lemma implies the following classical theorem.

Theorem 5.9.5 (Gauß–Bonnet) The Euler characteristic of an even-dimensional
oriented manifold M is given by

χ(M) =
∫

M
e(M) . (5.9.12)

�

More generally, let us consider the de Rham complex twisted with a complex vector
bundle E overM, denoted by EdR(M,E). By the Atiyah–Singer Index Theorem and
by Lemma 5.9.4, we have

ind
(
EdR(M,E)

) =
∫

M
ch(E) ∧ e(M) .
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Since e(M) is of top degree, we conclude

ind
(
EdR(M,E)

) = rank(E) χ(M) . (5.9.13)

By analogy with Theorem 5.9.5, one can derive the following classical theorems
corresponding to the elliptic complexes discussed in Examples 5.7.23 and 5.7.25.
For the signature complex one obtains the following.

Theorem 5.9.6 (Hirzebruch) Let M be an oriented Riemannian manifold of dimen-
sion divisible by 4. Then, the signature of M is given by

σ(M) =
∫

M
L(M) , (5.9.14)

where L is the L-genus of the manifold.54 �

As an application, consider the case dimM = 4. In view of (4.7.11), the Hirzebruch
Signature Theorem implies

σ(M) = 1

3
p1(M) .

Moreover, by (4.7.15),

Â(M) = − 1

24
p1(M) .

Thus,
σ(M) = −8Â(M) . (5.9.15)

Since, on a spin manifold, the Â-genus is an integer, this implies that on a compact
4-dimensional spin manifold, the signature is divisible by 8. Combining this with
Proposition 5.9.2, we obtain the following classical theorem of Rohlin [535].

Theorem 5.9.7 (Rohlin) The signature of a compact 4-dimensional spin manifold
is divisible by 16. �

More generally, let us consider the signature complex twisted with a vector bundle
E, denoted by Esgn(M,E). As for the de Rham complex, it is easy to calculate its
index. One obtains

ind
(
Esgn(M,E)

) =
∑

2j+4k=n

∫

M
2jchj(E) ∧ Lk(M) , (5.9.16)

where n = dimM. Thus, for n = 4, we get55

54See Example 4.7.3.
55The factor 4 = 2

4
2 in front of the second term comes from the supertrace formula (5.8.43).

http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
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ind
(
Esgn(M,E)

) = rank(E) χ(M)+ 4 ch2(E) . (5.9.17)

Finally, we apply the Atiyah–Singer Index Theorem to the Dolbeault complex.

Theorem 5.9.8 (Riemann–Roch) Let M be a compact complex Riemannian mani-
fold. Then, its arithmetic genus Ag(M) is given by

Ag(M) =
∫

M
Td(M) , (5.9.18)

where Td is the Todd genus of the manifold.56 �

Exercises

5.9.1 Confirm the anticommutation relations (5.9.5).

5.9.2 Prove the formulae (5.9.8)–(5.9.11).

56See Example 4.7.3.

http://dx.doi.org/10.1007/978-94-024-0959-8_4


Chapter 6
The Yang–Mills Equation

In this chapter we study pure gauge theories. In Sect. 6.1, we present the geometric
model of gauge theory including the basics concerning the structure of the classi-
cal configuration space. Next, in Sect. 6.2, we formulate the action functional and
show that (anti-)self-dual solutions correspond to absoluteminima of the Yang–Mills
action. Sections6.3, 6.4, 6.5, and 6.6 are devoted to a systematic study of instan-
tons. First, we present the BPST-instanton family in detail, including the topological
description and a detailed discussion of the role of the conformal invariance of the
Yang–Mills equation. Next, we present the famous ADHM-construction providing
solutions on S4 with arbitrary instanton number. We limit our attention to the gauge
group G = Sp(1) and only comment on solutions for the other classical groups.
The proof that the ADHM-construction yields all instanton solutions is highly non-
trivial. Roughly speaking, it goes as follows: first, one reinterprets the ADHM data
in terms of complex geometry on the twistor space CP3 and, using these complex
data, one applies the Horrocks construction yielding algebraic vector bundles over
CP3 of a certain type. Second, by deep results of algebraic geometry, all algebraic
vector bundles of this type arise from the Horrocks construction. Third, one uses the
Atiyah–Ward correspondence to complete the proof. While we discuss points 1 and
3 in detail, point 2 is beyond the scope of this book. Finally, we study the instanton
moduli space and we outline how it is used for the study of the topology of differ-
entiable 4-manifolds. In Sect. 6.7, we present the classical stability analysis of the
Yang–Mills equation as developed by Bourguignon and Lawson and, in Sect. 6.8, we
discuss non-minimal solutions.

6.1 Gauge Fields. The Configuration Space

A classical pure Yang–Mills theory consists of the following structural elements.

(a) The theory is defined on a principal fibre bundle (P,M,G, Ψ, π) called the gauge
principal bundle. Here, the base manifold M represents the spacetime and the

© Springer Science+Business Media Dordrecht 2017
G. Rudolph and M. Schmidt, Differential Geometry and Mathematical Physics,
Theoretical and Mathematical Physics, DOI 10.1007/978-94-024-0959-8_6
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462 6 The Yang–Mills Equation

structure group G plays the role of the gauge group. In the sequel, G will always
be compact.

(b) A gauge potential mediating the fundamental interaction under consideration is
given by a connection formω onP and the field strength is given by the curvature
form Ω of ω. These objects are related by the Structure Equation (1.4.9) and Ω

fulfils the Bianchi identity (1.4.10),

Ω = dω + 1

2
[ω,ω] , DωΩ = 0 .

Any local section s : U → π−1(U) provides a local representation of ω and Ω ,
respectively, in terms of objects onM,

A = s∗ω , F = s∗Ω . (6.1.1)

By Proposition 1.3.11, Corollary 1.3.12 and Remark 1.4.15/1, ω and Ω may be
reconstructed from any system of local representativesA andF corresponding
to a chosen bundle atlas of P.

(c) An active local gauge transformation is given by a vertical automorphism ϑ ∈
AutM(P) with corresponding equivariant mapping u ∈ HomG(P,G),

ϑ∗ω = Ad(u−1) ◦ ω + u∗θ , ϑ∗Ω = Ad(u−1) ◦ Ω , (6.1.2)

cf. Proposition 1.8.7 and Remark 1.8.8/1. Below, for simplicity, we will write

ϑ∗ω = ω(u) .

By Remark 1.8.8/2, for local representativesA andF of ω andΩ , respectively,
one has

A (ρ) = Ad(ρ−1) ◦ A + ρ∗θ , F (ρ) = Ad(ρ−1) ◦ F , (6.1.3)

where ρ = u ◦ s. By (1.3.15) and (1.4.19), the latter formulae may also be
interpreted passively, that is, as transformations corresponding to a change of a
local trivialization of P.

Remark 6.1.1 Usually, in this book, local gauge potentials A are written down in
‘geometrical units’, that is, their components have the unit of inverse length. In
physics, especially in quantum field theory, it is often relevant to make the coupling
constant e of the gauge theory under consideration transparent. Moreover, physicists
often choose a system of units where c = 1 = � and they prefer to work with
Hermitean quantities. Then, the gauge potential A must be replaced by ieA . We
call the latter a physical representation and we will refer to it in some places. Note
that, in this representation, not the physical representative A itself but ieA is the
local representative of a connection form. Sometimes, the choice c = 1 = � is not

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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convenient. Then, in the CGS system, ieA should be replaced by ie
�cA and in the SI

system it should be replaced by ie
�
A , respectively. �

In the remainder of this section,we introduce the configuration space andweconstruct
the action functional for Yang–Mills theory. For these purposes, we apply the notions
and structures discussed in Sect. 2.7 to the case E = Ad(P), that is, we endow the
adjoint bundle with the structure of a Riemannian vector bundle. To do so, from now
on we assume:

1. the spacetimemanifoldM is endowedwith aRiemannianor a pseudo-Riemannian
metric g,

2. the Lie algebra g of G carries an Ad(G)-invariant inner product 〈·, ·〉g.1
Then, 〈·, ·〉g induces via (2.6.4) a fibre metric on Ad(P) and, via formula (2.7.48),
we have an L2-inner product2 on Ωk(M,Ad(P)),

〈α, β〉L2 =
∫

M
α

.∧ ∗ β . (6.1.4)

Next, consider a connection form ω on P and its covariant exterior derivative
dω : Ωp(M,Ad(P)) → Ωp+1(M,Ad(P)), cf. Definition 1.5.1. Given the above
L2-structure, we may define the covariant exterior coderivative

d∗
ωα : Ωp+1(M,Ad(P)) → Ωp(M,Ad(P))

via (2.7.51),
〈dωα, β〉L2 = 〈α, d∗

ωβ〉L2 , (6.1.5)

and the generalized Hodge-Laplacian, cf. (2.7.52),

�ω := dω ◦ d∗
ω + d∗

ω ◦ dω : Ωp(M,Ad(P)) → Ωp(M,Ad(P)) . (6.1.6)

Now, let us discuss the configuration space of a Yang–Mills theory. By Remark
1.3.8, the set of connections C on a principal fibre bundle P carries the structure of
an infinite-dimensional affine space with the corresponding translation vector space
given by

T = Ω1(M,Ad(P)) ∼= Ω1
Ad,hor(P, g) . (6.1.7)

This space will be referred to as the classical configuration space of the gauge field
theory under consideration.Bypoint c) above,C is acted uponby the groupof vertical

1Note that such an inner product always exists if G is compact. In that case, it may be obtained
from any auxiliary inner product by averaging over the group with respect to the Haar measure. In
many applications, the gauge group G is compact and semisimple. Then, for 〈·, ·〉g one can choose
the negative of the Killing form k. Compactness implies that −k is positive-definite, cf. Sect. 5.5 of
Volume I.
2We must restrict ourselves to square integrable forms. In particular, we may consider forms with
compact support.

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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automorphisms AutM(P). This group will be denoted by G and will be referred to as
the group of local gauge transformations. Note that (6.1.2) defines a right action. If
necessary, one can pass to a left action by viewing gauge transformations asmappings
ω 
→ (ϑ−1)∗ω.
Remark 6.1.2 Depending on the context,G will be viewed asHomG(P,G) or, equiv-
alenty, as the space of sections of the associated bundle P ×G G, cf. Sect. 1.8. There
is yet another useful point of view. Note that the adjoint action of G induces a bundle
mapping

Φ : P ×G G → End(Ad(P)) , Φ([(p, g)])([(p,X)]) := [(p,Ad(g)X)] ,

whose kernel coincides with the center of G . Clearly, this definition does not depend
on the choice of the representative of [(p,X)] ∈ Ad(P). This shows that local gauge
transformations may be viewed as sections of the vector bundle End(Ad(P)). Then,
(6.1.2) may be rewritten as follows:

ω(u) = ω + u−1∇ωu . (6.1.8)

�
In the sequel, for many purposes, it will be necessary to pass to a Sobolev completion
ofC andG .3 In thisway,C will become an infinite-dimensionalHilbertmanifold and
G an infinite-dimensional Hilbert-Lie group. To be able to define such a completion,
we assume thatG be a compact connected linearLie group.Moreover, in placeswhere
the Sobolev completion is essential, we will deal with the case ofM being a compact
connected orientable Riemannian manifold. So, we also make this assumption here.
We stress, however, that Sobolev completions for noncompact manifolds exist as
well, see the work of Eichhorn [178] and Eichhorn and Heber [179]. For any vector
bundle E, letWk(E) denote the Hilbert space of cross sections of E of Sobolev class
k, cf. (5.7.8). We denote

Ω
p
k (M,Ad(P)) := Wk

(∧pT∗M ⊗ Ad(P)
)
.

These spaces are endowed with the natural L2-inner product (6.1.4). In this Hilbert
space setting, the translation vector space T is defined as

T = Ω1
k (M,Ad(P)) (6.1.9)

and the configuration space C is defined as the completion with respect to the metric
induced from the Wk-norm on T . In this way, C becomes an affine Hilbert space
with translation Hilbert space T . In particular,

TC = C × T . (6.1.10)

3For basics of the theory of Sobolev spaces, we refer to Sect. 5.7.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Remark 6.1.3 In the sequel, as usual, the tangent space to C at a point ω ∈ C will
be identified with the translation vector space,

TωC = T . (6.1.11)

However, one may also consider the affine tangent space ω + T . �

To turn G into a Hilbert Lie group, we choose an n such that G ⊂ gl(n, C) and take
the associated vector bundle

P ×G gl(n, C) ,

where G acts on gl(n, C) by conjugation. Then, P ×G G is a vertical subbundle of
P ×G gl(n, C) and, hence,

Γ ∞(P ×G G) ⊂ Γ ∞(P ×G gl(n, C)) .

By definition, G is the closure of Γ ∞(P ×G G) in Wk+1(P ×G gl(n, C)).
We will assume k > dim(M)/2+1. Then, the Sobolev Lemma 5.7.7 ensures that

multiplication of a Wk+1-function by a Wl-function, where dim(M)/2 < l ≤ k ,

yields a Wl-function. It follows that G is a group, acting via (6.1.2) on C . Note that
the elements of C and G are of class C1 and C2, respectively. In particular, G may
be viewed as consisting of vertical automorphisms of P of class C2 or of sections of
class C2 of the associated bundles P×G G or End(Ad(P)), respectively, cf. Remark
6.1.2. In fact, one can prove that G is a Hilbert-Lie group with Lie algebra

LG = Wk+1(Ad(P)) (6.1.12)

and exponential mapping

expG (ξ)(p) = expG(ξ(p)) , ξ ∈ LG , p ∈ P , (6.1.13)

and that the G -action on C is smooth [455], [478], [591]. Many properties of finite-
dimensional Lie groups carry over to infinite-dimensional Hilbert Lie groups, see
[92].

Next, we extend the covariant exterior derivative dω to an operator

dω : Ω
p
k+1(M,Ad(P)) → Ω

p+1
k (M,Ad(P)) ,

and its dual to
d∗

ω : Ω
p+1
k (M,Ad(P)) → Ω

p
k−1(M,Ad(P)) .

Composition then yields bounded linear operators

Δω := d∗
ω ◦ dω : Ω

p
k+1(M,Ad(P)) → Ω

p
k−1(M,Ad(P)) , (6.1.14)

http://dx.doi.org/10.1007/978-94-024-0959-8_5
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and

�ω := dω ◦ d∗
ω + d∗

ω ◦ dω : Ω
p
k+1(M,Ad(P)) → Ω

p
k−1(M,Ad(P)) .

Note that the mapping

C → B
(
Ω

p
k+1(M,Ad(P)),Ω

p+1
k (M,Ad(P)

)
, ω 
→ dω ,

is continuous linear and, hence, smooth. The same is true for the mapping ω 
→ d∗
ω.

Hence, the mappings
ω 
→ Δω , ω 
→ �ω ,

are continuous and smooth, because they factorize into continuous linear mappings.
Moreover, we note the following equivariance properties:

Oω(u) = Ad(u−1) ◦ Oω ◦ Ad(u) , ω ∈ C , u ∈ G , (6.1.15)

where O stands for, respectively, d, d∗, Δ and �.
In sharp contrast to Maxwell theory, in a Yang–Mills theory the configuration

spaceC acquires a nontrivial stratified structure under the action of G . This structure
will be investigated in detail in Chap. 8. As we know from Part I, the orbit types
constituting the stratification are labeled by conjugacy classes of stabilizers of the
group action. Thus, let us find the stabilizer

Gω := {u ∈ G : ω(u) = ω}

of ω ∈ C with respect to the action of G . It turns out that Gω is determined by the
holonomy of ω. Thus, recall the definitions4 of the holonomy group Hp0(ω) and of
the holonomy bundle Pp0(ω) of a connection ω based at p0 ∈ P. Note that, in the
Sobolev context, Pp0(ω) is a vertical subbundle of class C2, because ω is C1.

Lemma 6.1.4 Let p0 ∈ P and ω ∈ C . Then, for u ∈ G , one has u ∈ Gω iff the
restriction of u to Pp0(ω) is constant.

Proof Let γ : [0, 1] → P be an ω-horizontal curve starting at p0. Then,

(a) for every u ∈ G , the curve ϑu ◦ γ is ω(u)-horizontal and starts at ϑu(p0),
(b) for every g ∈ G, the curve Ψg ◦ γ is ω-horizontal and starts at Ψg(p0).

First, let u ∈ Gω. Then ω(u) = ω and hence ϑu ◦ γ is ω-horizontal. By uniqueness of
the horizontal lift, it must then coincide with the curve Ψu(p0) ◦ γ , because the latter
is also ω-horizontal, starts at ϑu(p0) = Ψu(p0)(p0) and projects to the same curve in
M. Thus, for all t,

Ψu(γ (t))
(
γ (t)

) = ϑu ◦ γ (t) = Ψu(p0)
(
γ (t)

)

4Cf. Definitions 1.7.6 and 1.7.13.

http://dx.doi.org/10.1007/978-94-024-0959-8_8
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and hence u(γ (t)) = u(p0). This shows that u is constant on Pp0(ω).
Conversely, if u is constant on Pp0(ω), it is constant along all ω-horizontal curves

γ starting at p0. Then, ϑu ◦ γ = Ψu(p0) ◦ γ . It follows that ω(u)-horizontal curves are
also ω-horizontal and vice versa. This implies ω(u) = ω. �

Theorem 6.1.5 (Stabilizer Theorem) Gω is a compact Lie subgroup of G with Lie
algebra given by

LGω = ker(∇ω) = {ξ ∈ LG : ξ�Pp0 (ω) = const} . (6.1.16)

Gω is isomorphic to CG(Hp0(ω)), the centralizer of the holonomy group in G.

Proof By Lemma 6.1.4,

Gω = {u ∈ G : u�Pp0 (ω) = const} . (6.1.17)

Let ξ ∈ LG . Then, ∇ωξ = 0 iff ξ�Pp0 (ω) = const, that is, iff expG (ξ)�Pp0 (ω) = const.
The second equivalence follows from (6.1.13). Thus,

expG (LG ) ∩ Gω = expG (ker(∇ω)) .

Since ker(∇ω) is a closed subspace of the Hilbert space LG , the right hand side is a
submanifold of G . Since the left hand side is a neighbourhood of the unit element
of Gω, it follows that Gω is a Lie subgroup of G with Lie algebra given by (6.1.16).
The argument is analogous to the finite-dimensional case, see [92, Sect. III.1.3].

Next, consider the natural group homomorphism

Φp0 : G → G , u 
→ u(p0) .

Since, by our choice of k, convergence in Wk+1 implies pointwise convergence, Φp0
is a continuous Lie group homomorphism and, hence, smooth. Due to (6.1.17), the
restriction of Φp0 to the subgroup Gω is injective, hence, a Lie group isomorphism
onto its image. The image is

Φp0(Gω) = CG(Hp0(ω)) .

To see this, recall thatHp0(ω) is the structure group of Pp0(ω). Thus, inclusion from
left to right is due to equivariance of the elements of G . For the converse inclusion it
suffices to note that, for any a ∈ CG(Hp0(ω)), the function on Pp0(ω) with constant
value a is equivariant and, hence, can be equivariantly prolonged toP, thus becoming
an element of Gω. �

Remark 6.1.6 As an immediate consequence of the fact that Gω is an (embedded)
Lie subgroup, the projectionG → G /Gω defines a locally trivial principalGω-bundle
[92, Sect. 6.2.4]. �

Finally, we introduce the gauge orbit spaceM . It is obtained from C by factorizing
with respect to the group action (6.1.2):
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M := C /G .

At this stage, this is just a topological quotient. It will be equipped with additional
structure later. Note that M is the space of classes of gauge equivalent potentials,
the ‘true’ configuration space. In [476] it was shown that the mapping

C × G → C × C , (ω, u) 
→ (ω, ω(u)) ,

is closed. Together with the compactness of the stabilizers, this implies the following,
see Corollary I/6.3.3/3 or [93, III, Sect. 4].

Theorem 6.1.7 The action of G on C is proper.

This, in turn, has the following immediate consequences5:

(a) The orbits of the action of G on C are closed.
(b) The orbit space M is Hausdorff.

In the sequel, an orthogonal splitting of the tangent bundle into the vertical distrib-
utionV spanned by the tangent spaces to the orbits and a horizontal complement H
will be of fundamental importance:

TC = V ⊕ H . (6.1.18)

This decomposition formula will be proved below. First, to calculate V, consider a
smooth element ξ ∈ LG , the corresponding curve t 
→ expG (tξ) and the curve

t 
→ γ (t) := expG (−tξ) ω expG (tξ) + expG (−tξ) d expG (−tξ), (6.1.19)

on the gauge orbit through ω ∈ C . The tangent vector to this curve at ω is

dξ + [ω, ξ ] = ∇ωξ ∈ Ω1(M,Ad(P)) .

Thus, the tangent space to the orbit at ω coincides with the image ∇ω(Ω0(Ad(P))).
Clearly, this characterization carries over to the Sobolev completion

∇ω : Wk+1(Ad(P)) → Wk(T∗M ⊗ Ad(P)) .

This provides the following presentation of infinitesimal gauge transformations.

Remark 6.1.8 (Infinitesimal gauge transformations) Let ξ ∈ LG , take t 
→ ρ(t) =
exp(tξ), insert it into (6.1.8) and differentiate with respect to t at t = 0. This yields

ω(ξ) = ω + ∇ωξ . (6.1.20)

5This is proved by the same arguments as in the proof of Proposition I/6.3.4.
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Let η be the Maurer–Cartan form on G . As in the finite-dimensional case, this is
the left-invariant 1-form on G generated by the identity endomorphism of the Lie
algebra, that is,

η1 = idLG .

Then, for a left invariant vector field ξ∗ onG generatedby ξ ∈ LG ,wehaveη(ξ∗) = ξ .
We denote the differential on C by δ and its restriction to the orbits of G by δ̂. Then,
δ̂ω(ξ∗) = ω(ξ) − ω and we obtain

δ̂ω(ξ∗) = ∇ωξ = ∇ωη(ξ∗) ,

and, thus,
δ̂ω = ∇ω ◦ η .

�

To findHω, consider the Laplace operatorΔω given by (6.1.14) acting on zero-forms,

Δω = ∇ω∗ ◦ ∇ω : Wk+1(Ad(P)) → Wk−1(Ad(P)) .

Recall that it is elliptic and that, by elliptic regularity,

ker(Δω) ⊂ Γ ∞(Ad(P)) .

Moreover, applying the Hodge Theorem 5.7.18 to the case of 0-forms, we obtain

Wk−1(Ad(P)) = ker(Δω) ⊕ im(Δω) . (6.1.21)

By Remark 5.7.19, the orthogonal projectors onto im(Δω) and ker(Δω) are given by

ΔωGω , 1 − ΔωGω , (6.1.22)

respectively. Here, Gω is the Green’s operator (5.7.34) of Δω. In addition, since
im(∇ω) ⊥ ker(∇ω∗),

ker(Δω) = ker(∇ω) . (6.1.23)

Moreover, since im(Δω) ⊂ im(∇ω∗) and im(∇ω∗) ⊥ ker(∇ω), the decomposition
(6.1.21) implies

im(Δω) = im(∇ω∗) . (6.1.24)

Finally, (6.1.23) and (6.1.24) imply

∇ωGωΔω = ∇ω , ΔωGω∇ω∗ = ∇ω∗ . (6.1.25)

Theorem 6.1.9 For every ω ∈ C , one has the L2-orthogonal decomposition

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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Wk(T∗M ⊗ Ad(P)) = im(∇ω) ⊕ ker(∇ω∗) .

The orthogonal projectors onto im(∇ω) and ker(∇ω∗) are given by

vω = ∇ωGω∇ω∗ , hω = id−vω , (6.1.26)

respectively.

Proof We show that the bounded linear operator

∇ωGω∇ω∗ : Wk(T∗M ⊗ Ad(P)) → Wk(T∗M ⊗ Ad(P))

is the L2-orthogonal projector onto the subspace im(∇ω) and

ker(∇ωGω∇ω∗) = ker(∇ω∗) .

Using (6.1.25), we obtain

(∇ωGω∇ω∗)2 = ∇ωGωΔωGω∇ω∗ = ∇ωGω∇ω∗ ,

that is, ∇ωGω∇ω∗ is a projector. As a consequence,

im(∇ωGω∇ω∗) = ker(1 − ∇ωGω∇ω∗) ,

hence im(∇ωGω∇ω∗) is closed, and one has

Wk(T∗M ⊗ Ad(P)) = im(∇ωGω∇ω∗) ⊕ ker(∇ωGω∇ω∗) . (6.1.27)

Since Gω = 0 on ker(Δω), the Hodge decomposition and (6.1.24) imply

im(Gω) = im(GωΔω) = im(Gω∇ω∗) .

Since, in addition, im(Gω) = ker(∇ω)⊥, we conclude

im(∇ωGω∇ω∗) = im(∇ωGω) = im(∇ω) .

Since Gω is injective on im(∇ω∗) = im(Δω),

ker(∇ωGω∇ω∗) = ker(∇ω∗) .

Since im(∇ω) and ker(∇ω∗) are L2-orthogonal, the assertion follows. �

Remark 6.1.10 From Theorem 6.1.9, we conclude

Vω = im(∇ω) , Hω = ker(∇ω∗) . (6.1.28)
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Thus, by (6.1.15), the distributionsV and H are equivariant,

Vω(u) = (Vω)(u) , Hω(u) = (Hω)(u) .

Correspondingly, for any u ∈ G ,

Gω(u) = Ad(u−1) ◦ Gω ◦ Ad(u) , (6.1.29)

and, thus,

vω(u) = Ad(u−1) ◦ vω ◦ Ad(u) , hω(u) = Ad(u−1) ◦ hω ◦ Ad(u) . (6.1.30)

�

6.2 The Yang–Mills Equation. Self-dual Connections

Now, we come to the dynamics of the Yang–Mills system. Typically, the dynamical
equations for a model of classical field theory are obtained as the Euler–Lagrange
equations of a variational principle for the physical action built from the fields. In
a gauge theory, the action functional should be gauge invariant. At this point, the
reader may wish to consult Chap.4 of Volume I. In Sect. I/4.6 we have discussed
the Maxwell equations in some detail. There, we have used the L2-scalar product
on the space of (square-integrable) 2-forms on Minkowski space M to construct an
invariant 4-form (the Lagrangian) from the electromagnetic 2-form f ,

L(A) = −1

2
f∧ ∗ f

and to build the physical action S(A) = ∫
M L(A). Here, A is a gauge potential for f ,

that is, f = dA.6 The variational principle for this action yields the second group7 of
the (source-free) Maxwell equations in the vacuum,

d∗f = 0 .

Weextend this to theYang–Mills case.Using theL2-scalar product onΩ2(M,Ad(P))

given by (6.1.4), we define the following gauge invariant functional on the configu-
ration space8:

S : C → R , S(ω) = 1

2

∫

M
Ω

.∧ ∗ Ω . (6.2.1)

6We have used the notation of Volume I here.
7The first group of Maxwell equations is of purely geometric character. It says that the 2-form f is
closed. In terms of connection theory, this equation clearly coincides with the Bianchi identity.
8The factor 1

2 is chosen according to the conventions used in physics.

http://dx.doi.org/10.1007/978-94-024-0959-8_4
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This quantity will be referred to as the Yang–Mills action. Accordingly, the n-form
L(ω) = 1

2Ω
.∧∗ Ω will be called the Lagrange density or, simply, the Lagrangian of

the Yang–Mills theory.

Remark 6.2.1 Depending on the context, alternatively, we will write

S(ω) = 1

2
〈Ω,Ω〉L2 = 1

2
‖Ω‖2 = 1

2

∫

M
|Ω|2vg , (6.2.2)

where |Ω|2 is defined by
Ω

.∧ ∗ Ω = |Ω|2vg .

By formula (4.5.12) of Volume I, the sign of |Ω|2 depends on the signature of g. If
g is Riemannian it is positive, on Minkowski space it is negative. �

Next, we derive the field equations of a pure Yang–Mills theory. First, recall that
any connection fulfils the Bianchi identity DωΩ = 0, cf. Proposition 1.4.11. In the
sequel, if not otherwise stated, we will view the curvature form Ω as an element of
Ω2(M,AdP). Then, the Bianchi identity takes the form

dωΩ = 0 . (6.2.3)

This identity yields the first group of field equations of a Yang–Mills theory. For the
Abelian case, G = U(1), it coincides with the first group of Maxwell’s equations.
We derive the second group of field equations by postulating a variational principle
for the Yang–Mills action (6.2.1),

δS(ω) = 0 . (6.2.4)

Let us derive the Euler–Lagrange equations corresponding to this variational princi-
ple. Since the configuration space C is an affine space with translation vector space
T , we have

TωC = T

and the derivative of S at ω in the direction of α ∈ TωC is given by

δSω(α) = d

dt �0
S(ω + tα) .

By the Structure Equation, the curvature of the connection form ω + tα is given by

Ωt = Ω + tdωα + t2

2
[α, α] . (6.2.5)

Using this and (2.7.51), we calculate

http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_2
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d

dt �0
S(ω + tα) = d

dt �0

(
1

2
〈Ωt,Ωt〉L2

)

= 〈Ω, dωα〉L2

= 〈d∗
ωΩ, α〉L2 .

Since the L2-inner product is non-degenerate, we conclude that δωS = 0 iff

d∗
ωΩ = 0 . (6.2.6)

This is the Euler–Lagrange equation of the above variational principle. It will be
referred to as the (pure) Yang–Mills equation. Keeping in mind the analogy with
Maxwell electrodynamics mentioned above, one may call (6.2.3) the first group and
(6.2.6) the second group of Yang–Mills equations.

Definition 6.2.2 A solution to the Yang–Mills equation will be called a Yang–Mills
connection.

Remark 6.2.3

1. In terms of local representativesAμ andFμν , Eq. (6.2.6) takes the form (Exercise
6.2.1)

∂μF
μν + [Aμ,Fμν] = 0 . (6.2.7)

2. For the Abelian group G = U(1), we have g = iR. In this case, all commutators
vanish and we obtain dω = d. Thus, (6.2.3) and (6.2.6) take the form

dΩ = 0 , d∗Ω = 0 .

Writing f for the local representative of Ω , we obtain the (sourcefree) Maxwell
equations

df = 0 , d∗f = 0

as a special case of the Yang–Mills equation.
3. One easily shows (Exercise 6.2.2) that a connection ω fulfils the Yang–Mills

equation iff �ωΩ = 0.

For the remainder of this section, we assume that M is a 4-dimensional oriented
Riemannian manifold and that G is a compact connected Lie group. These assump-
tions have the following immediate consequences:

(a) Since G is compact, we may choose the Ad(G)-invariant inner product 〈·, ·〉g to
be positive definite. Then, (6.1.4) defines a norm ‖ · ‖ on Ω2(M,Ad(P)).

(b) Since M is 4-dimensional, by (2.8.17), we have the decomposition

∧2T∗M = ∧2
+T

∗M ⊕∧2
−T

∗M , (6.2.8)

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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into the fibrewise eigenspaces of the Hodge star operator and a corresponding
decomposition of the space of 2-forms Ω2(M).

Clearly, the decomposition (6.2.8) extends to Ω2(M,E) for any associated bundle
E and persists for any Sobolev completion (under the assumptions made on G and
M). Now, recall the notion of (anti-)self-duality from Sect. 2.8.

Definition 6.2.4 A connection form ω on a principal bundle P(M,G) is called self-
dual or anti-self-dual, if its curvature form Ω ∈ Ω2(M,Ad(P)) is self-dual or anti-
self-dual, respectively.

Proposition 6.2.5 Every self-dual or anti-self-dual connection is a Yang–Mills con-
nection.

Proof This is an immediate consequence of the Bianchi identity. �

We show that the property of (anti-)self-duality is a conformal invariant.

Lemma 6.2.6 TheHodge star operator on a Riemannian manifold (M, g) restricted
to 2-forms is conformally invariant iff dimM = 4.

Proof Let dimM = k and let ϕ : M → M be a conformal transformation, that is,
there exists a nowhere vanishing f ∈ C∞(M) such that ϕ∗g = f 2g. Then, det(ϕ∗g) =
f 2k det(g) and, thus, the volume forms are related by

vϕ∗g = f k vg .

On the other hand, for α ∈ Ω2(M), we have

(ϕ∗g)−1(α) = 1

f 4
g−1(α) .

This implies
(ϕ∗g)−1(α) � vϕ∗g = f k−4g−1(α) � vg ,

that is, the star operators defined by g and by ϕ∗g coincide iff k = 4. �

Note that this proof may be extended to conformal mappings between Riemannian
manifolds (of dimension 4).

Proposition 6.2.7 Let (N, h) and (M, g) be oriented 4-dimensional Riemannian
manifolds and letϕ : N → M bea conformal orientation preserving diffeomorphism.
Let (P,M,G, π) be a principal fibre bundle. If ω is a self-dual (or anti-self-dual)
connection on P, then the pullback of ω under ϕ is a self-dual (or anti-self-dual)
connection on the pullback bundle ϕ∗P.

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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Proof For clearness of presentation, in this proof, we denote the curvature form
of ω, viewed as an element of Ω2

Ad,hor(P, g) by Ω̃ and, viewed as an element of
Ω2(M,Ad(P)), by Ω . Let us denote the Hodge star operators corresponding to h
and g by ∗h and ∗g, respectively, and let ϑ : ϕ∗P → P be the natural principal
bundle morphism projecting onto ϕ. By assumption, ∗gΩ = ±Ω . We have to show
that ϑ∗Ω̃ is (anti-)self-dual with respect to the metric h. For that purpose, for y ∈ N ,
(y, p) ∈ ϕ∗P ⊂ N × P, Y1,Y2 ∈ TyN and Z1,Z2 ∈ TpP such that π ′(Zi) = ϕ′(Yi),
we calculate

(ϑ∗Ω̃)y(Y1,Y2) = ι(y,p) ◦ (ϑ∗Ω̃)(y,p)((Y1,Z1), (Y2,Z2))

= ι(y,p) ◦ Ω̃p(ϑ
′(Y1,Z1), ϑ ′(Y2,Z2))

= ι(y,p) ◦ ι−1
p ◦ Ωπ(p)(π

′(Z1), π ′(Z2))

= ι(y,p) ◦ ι−1
p ◦ Ωπ(p)(ϕ

′(Y1), ϕ′(Y2))

= ι(y,p) ◦ ι−1
p ◦ (ϕ∗Ω)y(Y1,Y2) ,

that is,
(ϑ∗Ω̃)y = ι(y,p) ◦ ι−1

p ◦ (ϕ∗Ω)y . (6.2.9)

Here, ι−1
p : Ad(P) → g and ι(y,p) : g → Ad(ϕ∗P) and the composition ι(y,p) ◦ ι−1

p
is the fibre mapping of the bundle isomorphism ϕ∗(Ad(P)) ∼= Ad(ϕ∗P). Thus, for

calculating the Hodge star of (ϑ∗Ω̃) with respect to the metric h, it is enough to
apply it to ϕ∗Ω . Using that ϕ is a conformal orientation preserving diffeomorphism,
we obtain

ϕ∗(∗gΩ) = ϕ∗(g−1(Ω)� vg)

= (
ϕ−1

∗ ◦ g−1(Ω)
)
�ϕ∗vg

= (
(ϕ∗ ◦ g ◦ ϕ∗)−1(ϕ∗Ω)

)
� vϕ∗g .

But ϕ∗ ◦g◦ϕ∗ : X(N) → Ω1(N) is the isomorphism defined by the pullback metric
ϕ∗g. Using this and Lemma 6.2.6, we obtain

±ϕ∗Ω = ϕ∗(∗gΩ) = (ϕ∗g)−1(ϕ∗Ω)� vϕ∗g = ∗hϕ
∗Ω .

�

Remark 6.2.8 From Proposition 6.2.7 we conclude that, in particular, (anti-)self-
duality of a connection is a property which is invariant under gauge transformations.

Next, we will prove that (anti-)self-dual connections correspond to absolute min-
ima of the Yang–Mills action. For that purpose, let us assume that G is compact and
simple and, for the Ad-invariant scalar product on g, let us choose the negative of
the Killing form,
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〈A,B〉g = − tr(adA ◦ adB) ,

cf. Sect. 5.4 of Volume I. Then,

‖ Ω ‖2= −
∫

M
tr(adΩ ∧ ∗adΩ) .

Recall from Chap.4 the first Pontryagin class p1(Ad(P)) ∈ H4
dR(M) and the corre-

sponding first Pontryagin index. By Corollary 4.6.17,

p1(Ad(P)) =
∫

M
p1(Ad(P)) .

Proposition 6.2.9 Let G be a compact Lie group and let P be a principal G-bundle
over a 4-dimensional oriented compact Riemannian manifold. Then, the following
lower bound for the Yang–Mills action holds:

S(ω) ≥ 4π2|p1(Ad(P))| .

Proof According to Example 4.6.22,

p1(Ad(P)) = − 1

8π2
tr(adΩ ∧ adΩ) .

Decomposing the curvature form according to (2.8.8) as Ω = Ω+ + Ω−, using
(2.7.3) and the (anti-)self-duality of Ω±, and integrating over M, we obtain

8π2p1(Ad(P)) = 〈Ω, ∗Ω〉L2

= 〈Ω+ + Ω−,Ω+ − Ω−〉L2

=‖ Ω+ ‖2 − ‖ Ω− ‖2 . (6.2.10)

On the other hand, we have

S(ω) = 1
2 ‖ Ω ‖2= 1

2 〈Ω+ + Ω−,Ω+ + Ω−〉L2 = 1
2 (‖ Ω+ ‖2 + ‖ Ω− ‖2) .

(6.2.11)
Taking the sum and the difference of Eqs. (6.2.10) and (6.2.11), we obtain

− 4π2p1(Ad(P))+ ‖ Ω+ ‖2= S(ω) = 4π2p1(Ad(P))+ ‖ Ω− ‖2 . (6.2.12)

This yields the assertion. �

Formula (6.2.12) implies the following corollary, which shows that (anti-)self-dual
connections correspond to absolute minima of the Yang–Mills action.

http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
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Corollary 6.2.10 For p1(Ad(P)) > 0, we have S(ω) ≥ 4π2p1(Ad(P)) and equal-
ity if Ω− = 0, that is, if ω is self-dual. For p1(Ad(P)) < 0, we have S(ω) ≥
−4π2p1(Ad(P)) and equality if Ω+ = 0, that is, if ω is anti-self-dual. �

From (6.2.10) we note that, for a self-dual connection, p1(Ad(P)) > 0. Corre-
spondingly, for an anti-self-dual connection, we have p1(Ad(P)) < 0.

In the sequel, an (anti-)self-dual connection on a 4-dimensional Riemannian man-
ifold will be called an (anti-)instanton. In the next sections, we will systematically
discuss the theory of this important class of solutions.

Exercises

6.2.1 Prove formula (6.2.7).

6.2.2 Prove the statement of Remark 6.2.3/3.

6.3 The BPST Instanton Family

Here, we discuss the so-called BPST-(anti-)instantons, that is, the (anti-)self-dual
solutions to the Yang–Mills equation on S4 with instanton number ±1 for the gauge
group Sp(1). Here, BPST stands for Belavin, Polyakov, Schwartz and Tyupkin, see
[64].We describe these solutions in the bundle language, characterize them topologi-
cally and discuss their local description. Finally, we construct further (anti-)self-dual
solutions by using the conformal symmetry of S4. We use the notation of Examples
1.1.22, 1.1.24 and 1.3.22.

We will use the diffeomorphism S4 ∼= HP1 given by (B.1). To be consistent
with standard formulae in gauge theory, we choose the orientation of HP1 so that
this diffeomorphism is compatible with the standard orientation of S4, cf. Remark
4.5.4. Recall that the stereographic projection mappings (Us, ϕs) and (Un, ϕn) con-
stitute an oriented atlas of S4. Choosing one of them, say ϕs, and extending it to a
diffeomorphism

ϕs : S4 ∼= HP1 → H ∪ {∞} (6.3.1)

by sending the southpole −e0 to {∞}, one obtains a conformal identification.
Now, consider the block-diagonal embedding of the closed subgroup9 Sp(1) ×

Sp(1) ⊂ Sp(2) and its action by right translations on Sp(2). Here, the first and
the second component of Sp(1) × Sp(1) are identified with the upper and lower
diagonal block, respectively. By Example 1.1.4/4, this action defines a principal
(Sp(1) × Sp(1))-bundle P over

Sp(2)/(Sp(1) × Sp(1)) ∼= GH(1, 2) ∼= HP1 .

9Since we use the language of quaternions, we consistently write Sp(1). Recall that Sp(1) ∼= SU(2)
as real Lie groups.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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By Examples 5.2.11 and 5.4.9, Sp(1) × Sp(1) is the spin group in four dimensions
and P coincides with the spin structure S(S4). Using the left actions

σ∓ : (Sp(1) × Sp(1)) × Sp(1) → Sp(1) , σ∓(h)(g) := λ∓(h)g ,

defined in Example 5.5.7, we build the following associated bundles:

P− := P ×Sp(1)×Sp(1),σ− Sp(1) , P+ := P ×Sp(1)×Sp(1),σ+ Sp(1) . (6.3.2)

Clearly, both of these bundles are principal Sp(1)-bundles over HP1 with the right
Sp(1)-action given by right translation on the typical fibre Sp(1). The canonical
projections in P and P∓ are denoted by π and π∓, respectively.

For our purposes, we need an explicit matrix description of these bundles. This is
provided by the following remark.

Remark 6.3.1

1. We use the following parameterization of the Lie groups involved:

Sp(2) =
{[

q1 p1

q2 p2

]
: ‖q1‖2 + ‖q2‖2 = 1 , ‖p1‖2 + ‖p2‖2 = 1 , q1 p1 + q2 p2 = 0

}
,

where q1, p1, q2, p2 ∈ H. Then,

Sp(1) × Sp(1) =
{[

u1 0
0 u2

]
: ‖u1‖ = 1 = ‖u2‖ , u1, u2 ∈ H

}
.

In this parameterization, the diffeomorphism (5.4.8) is given by

Sp(2)/(Sp(1) × Sp(1)) → HP1 ,

[[
q1 p1

q2 p2

]]

→
[[

q1

q2

]]
.

Now, using this formula, together with (B.2), and denoting ϕs(z) = x, we may
write down useful (equivalent) representations of points on S4 \ {−e0}:

x 
→ (1 + ‖x‖2)− 1
2

[[
1
x

]]

→ (1 + ‖x‖2)− 1

2

[[
1 −x
x 1

]]
. (6.3.3)

2. In the above parameterization, points of P∓ are represented as

[(k, u)] , k =
[

q1 p1

q2 p2

]
∈ Sp(2) , u ∈ Sp(1) ,

with the defining equivalence relation given by

(k, u) ∼ (kh, σ∓(h−1)u) , h =
[

u1 0
0 u2

]
∈ Sp(1) × Sp(1) .

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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Since the actions σ∓ are transitive, we may choose the following parameteriza-
tions of [(k, u)]:

([
q1 p1

q2 p2

] [
u 0
0 u2

]
, 1
)

=
([

q1u p1

q2u p2

] [
1 0
0 u2

]
, 1
)

for P− ,

([
q1 p1

q2 p2

] [
u1 0
0 u

]
, 1
)

=
([

q1 p1u
q2 p2u

] [
u1 0
0 1

]
, 1
)

for P+ .

Thus, we may identify

P− → Sp(2)/λ+(Sp(1) × Sp(1)) , [(k, u)] 
→
[[

q1u p1

q2u p2

]]
,

P+ → Sp(2)/λ−(Sp(1) × Sp(1)) , [(k, u)] 
→
[[

q1 p1u
q2 p2u

]]
.

Clearly, these mappings define principal Sp(1)-bundle isomorphisms.
By Remark 1.1.25, P− coincides with the Stiefel bundle SH(1, 2) → GH(1, 2)
and, thus,with the quaternionicHopf bundlePH. Tomake contactwith the original
definition of PH, given in Example 1.1.22, one easily shows (Exercise 6.3.2) that,
in the above parameterization, elements of SH(1, 2) ∼= Sp(2)/Sp(1) may be
represented as follows:

[
q1 − q1q2

‖q1‖
q2 ‖q1‖

]
, ‖q1‖2 + ‖q2‖2 = 1 , (6.3.4)

that is, by elements (q1, q2) ∈ S7 ⊂ H
2. This describes the isomorphism (1.1.12)

for K = H and n = 2 explicitly.
3. In the parameterization given in point 1, we have a natural system {(Us,n, χs,n)}

of local trivializations of P. In the standard notation χs,n = π × κs,n, it is given
by

κs

([
q1 p1

q2 p2

])
:=
[

q1

‖q1‖ 0
0 p2

‖p2‖

]

, κn

([
q1 p1

q2 p2

])
:=
[

q2

‖q2‖ 0
0 p1

‖p1‖

]

. (6.3.5)

The corresponding transitionmapping ρs,n := κs ·κ−1
n : Us∩Un → Sp(1)×Sp(1)

reads

ρs,n

(
π

[
q1 p1

q2 p2

])
=
[

q1 q2

‖q1‖‖q2‖ 0

0 p2 p1

‖p2‖‖p1‖

]

. (6.3.6)

Clearly, {(Us,n, χs,n)} induces systems of local trivializations {(Us,n, χ
∓
s,n)} in P∓.

�

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Next recall that, by Example 1.3.19, P carries a canonical connection ω0 given by
(1.3.17). Since for k ∈ Sp(2) we have k−1 = k, in the above parameterization,
formula (1.3.17) reads10

ω0 =
[

q1 dq1 + q2 dq2 0
0 p1 dp1 + p2 dp2

]
. (6.3.7)

By definition,ω0 is invariant under left Sp(2)-translations. Clearly,ω0 induces Sp(2)-
invariant connection forms on the principal bundles P∓:

ω− = q1 dq1 + q2 dq2 , ω+ = p1 dp1 + p2 dp2 . (6.3.8)

Under the identification P− ∼= PH, ω− coincides with the canonical connection of
the quaternionic Hopf bundle, cf. formula (1.3.21). The above splitting of ω0 has a
deep geometric meaning which will be explained in Remark 6.5.10.

Proposition 6.3.2 The connection formsω+ andω− are self-dual and anti-self-dual,
respectively.

Proof Since ω0 is Sp(2)-invariant and since Sp(2) acts transitively on the bundle
space, it is enough to prove (anti-)self-duality at one point ofP− andP+, respectively.
We choose the point corresponding to the unit element 1 ∈ Sp(2). By the defining
relations of Sp(2), at this point we have dq1 = −dq1 and dp2 = −dp2. Thus, by the
Structure Equation, the curvature form of ω0 at 1 reads

Ω0
1 =

[
dq2 ∧ dq2 0

0 dp1 ∧ dp1

]
. (6.3.9)

To find the local representative of Ω0
1 at π(1), we use the chart (Us, ϕs). Then, by

(B.2) and by the Local Reconstruction Formula (1.4.18),

Ω0
1 = (π∗F 0

s )1 = (
(ϕs ◦ π)∗ ◦ (ϕ−1

s )∗F 0
s

)
1

≡ (
(ϕs ◦ π)∗F0

s

)
1

,

where F 0
s is the local representative of Ω0 on Us and F0

s is its pullback under the
chart mapping ϕs to ϕs(Us) = R

4. By (6.3.3), we obtain

F0
s (0) =

[
dx ∧ dx 0

0 dx ∧ dx

]
.

We claim that the sp(1)-valued 2-formsF+
s (0) = dx ∧ dx andF−

s (0) = dx ∧ dx are
self-dual and anti-self-dual, respectively, with respect to the Euclidean metric on R

4.
In standard coordinates {xi} on R

4, the action of the Hodge star operator on 2-forms
is given by

10Since this expression is given in terms of the associative multiplication in H, in the sequel it will
be worthwhile to work with the associative exterior calculus, cf. Remark 1.4.8 /1.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1


6.3 The BPST Instanton Family 481

∗R4 (dxi ∧ dxj) = 1

2
εijkl dx

k ∧ dxl . (6.3.10)

We calculate

dx ∧ dx = (dx11 − dx2i − dx3j − dx4k) ∧ (dx11 + dx2i + dx3j + dx4k)

= 2(dx1 ∧ dx2 − dx3 ∧ dx4)i + 2(dx1 ∧ dx3 − dx4 ∧ dx2)j

+ 2(dx1 ∧ dx4 − dx2 ∧ dx3)k .

On the other hand, from (6.3.10), we read off

∗R4(dx1 ∧ dx2 − dx3 ∧ dx4) = −(dx1 ∧ dx2 − dx3 ∧ dx4)

and analogous formulae for the second and the third term. Thus,

∗R4(dx ∧ dx) = −dx ∧ dx,

that is, ∗R4F−
s (0) = −F−

s (0). By Lemma B.1, ϕs is an orientation preserving con-
formal diffeomorphism from Us ⊂ S4 to R

4 and, thus, using Proposition 6.2.7 we
obtain:

F−
s = ϕ∗

sF
−
s = −ϕ∗

s

(∗R4F−
s

) = − ∗S4 F
−
s .

In the same way, one shows that F+
s is self-dual. �

Thus, the canonical connection on P yields both a self-dual and an anti-self-dual
Yang–Mills connection. To make contact with the physics literature, let us describe
these solutions in terms of their local representatives. We present the calculation
for ω− using the conformal identification (B.4). For clearness of presentation, in
our notation we skip the stereographic projection mapping, thus, identifying the
local representatives A −

s,n of ω− for the system of local trivializations {(Us,n, χ
−
s,n}

with their counterparts A−
s,n := (ϕ−1

s )∗A −
s,n on H ∼= R

4. By (6.3.5), the mapping
κ−
s : π−1(Us) → Sp(1), associated with χ−

s , is given by

κ−
s (q1, q2) = q1

‖q1‖ .

Then, the local section σs, defined by κ−
s via κ−

s (σs(x)) = 1, reads as follows:

σs(x) = 1
√
1 + ‖x‖2

[
1
x

]
.

Thus,

σ ∗
s ω−(x) = 1

√
1 + ‖x‖2 d

(
1

√
1 + ‖x‖2

)

+ x
√
1 + ‖x‖2 d

(
x

√
1 + ‖x‖2

)

.
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Denoting A−
s (x) := σ ∗

s ω−(x), we obtain

A−
s (x) = 1

2

x dx − dx x
1 + ‖x‖2 ≡ Im

{
x dx

1 + ‖x‖2
}

. (6.3.11)

Next, let us calculate the local representativeF−
s of the curvature. ByRemark 1.4.8/1,

we have
F−

s = dA−
s + A−

s ∧ A−
s .

Since dx̄ x + x̄ dx = d‖x‖2, we may write

A−
s (x) = x dx

1 + ‖x‖2 − 1

2

d‖x‖2
1 + ‖x‖2 .

Using this, one easily calculates

dA−
s (x) = dx ∧ dx

(1 + ‖x‖2)2 − xdx ∧ x dx
(1 + ‖x‖2)2

and

(A−
s ∧ A−

s )(x) = x dx ∧ x dx
(1 + ‖x‖2)2 .

Thus,

F−
s (x) = dx ∧ dx

(1 + ‖x‖2)2 . (6.3.12)

Note that F−
s (0) = dx ∧ dx, indeed. A completely analogous calculation yields the

local representative

A+
s (x) = (ϕ−1

s )∗A +
s (x) = Im

{
x dx

1 + ‖x‖2
}

(6.3.13)

of ω+. Thus,

F+
s (x) = dx ∧ dx

(1 + ‖x‖2)2 . (6.3.14)

Remark 6.3.3

1. By Proposition 6.2.7, the sp(1)-valued 1-forms A+
s and A−

s may be viewed as
the global representatives of a self-dual and an anti-self-dual connection form on
the trivial principal Sp(1)-bundles (ϕ−1

s )∗P+ and (ϕ−1
s )∗P− overR

4, respectively.
The solutions (6.3.11) and (6.3.13) have first been found by Belavin, Polyakov,
Schwartz and Tyupkin, see [64]. Therefore, they are called the BPST instanton
and theBPST anti-instanton onR

4, respectively. Correspondingly, the connection
forms ω+ and ω− are called the BPST instanton and BPST anti-instanton on S4,

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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respectively. In the mathematics literature, they are often referred to as the basic
(anti-)instantons.

2. There is a fundamental theoremofK.Uhlenbeck [636]which states the following:
let ω be a self-dual connection on a bundle P over M \ {m1, . . . ,mk} such that
its Yang–Mills action (6.2.1) is finite. Then, (P, ω) extends smoothly to M, that
is, both the bundle and the connection extend smoothly across each of the points
mi. This result is usually referred to as the Removable Singularity Theorem.
As an application, there is a natural one-to-one correspondence between self-
dual connections over R

4 having a finite action and self-dual connections on
bundles over S4. In the Euclidean context under consideration, it is reasonable to
refer to the finite-action property as to finite energy. In the sequel, we adopt this
terminology. �

Next, let us characterize the BPST (anti-)instanton on S4 topologically. By Theorem
4.8.8, principal Sp(1)-bundles over S4 are classified by their second Chern class.
Thus, topologically, the BPST (anti-)instantons are completely characterized by the
second Chern indices of the bundles P− and P+. By Remark 4.5.4, we have

c2(P−) =
∫

S4
c2(P−) = 1 , c2(P+) =

∫

S4
c2(P+)) = −1 .

The following yields interesting additional insight: as a consequence of Theorem
1.1.11, principal bundles over Sn with connected structure group G are classified by
elements of πn−1(G). After bringing the bundle to a normal form, this equivalence is
provided by the restriction of one of the transitionmappings, say ρs,n : Us∩Un → G,
to the equator Sn−1 of Sn. Thus, principal bundles with structure group G = Sp(1) ∼=
S3 over S4 are classified by elements of π3(Sp(1)), that is, by homotopy classes of
mappings S3 → S3. These, in turn, are labeled by their mapping degree. By (6.3.6)
and (B.1), for the bundles P− and P+ we obtain

(ρ−
s,n)�S3(x) = x , (ρ+

s,n)�S3(x) = x . (6.3.15)

The firstmapping has degree−1 and the second one has degree+1 (Exercise 6.3.3).11

Thus, up to the sign, the first Chern index and the mapping degree distinguishing an
element of π3(Sp(1)) coincide.

Again, let us make contact with the description in terms of local representatives.
We show how the above mapping degree characterizes the corresponding self-dual
connections on R

4 with finite energy. Let A be such a connection. Then, first, the
finite energy requirement ensures that the curvature formF ofA is square integrable.
This implies thatFmust be asymptotically flat, that is,F → 0 for ‖x‖ → ∞. This, in
turn, means thatAmust be asymptotically a pure gauge,A 
→ g−1dg for ‖x‖ → ∞.
Clearly, the mapping g is, in general, only defined outside of a ball with radius R > 0
centered at 0. In general, it cannot be extended continuously to all of R

4, because its
restriction to S3R := {x ∈ R

4 : ‖x‖ = R},

11Choosing, instead, the transitionmappingρn,s results in a change of sign of thesemapping degrees.

http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Fig. 6.1 The closed ball KR
in the proof of Proposition
6.3.4

KR

∞

∂KR
∼= S3

S4

closed ball

= 0F

g�S3R
: S3R → Sp(1) ∼= S3 , (6.3.16)

may have a nontrivial mapping degree.

Proposition 6.3.4 Let ω be a self-dual connection on a principal Sp(1)-bundle P
over S4 and let A be its representative on R

4 given by one of the stereographic
projection mappings. Then, the degree of the mapping (6.3.16) characterizing A
coincides, up to the sign, with the second Chern index of P.

Proof Let Ω be the curvature form of ω and let F be its local representative with
respect to the chosen stereographic projection mapping, say (Us, ϕs).12 We wish to
express the second Chern index

∫

S4
c2(P) = 1

8π2

∫

S4
tr(Ω ∧ Ω)

in terms of themapping degree characterizingA. Clearly,Amaybemodifiedwithout
changing the degree of the mapping (6.3.16) in such a way that F vanishes not only
at infinity, but outside of a closed ball KR of radius R and on its boundary ∂KR

∼= S3,
for sufficiently large R, see Fig. 6.1. As usual, the boundary ∂KR is endowed with the
orientation corresponding to the coorientation pointing outwards. Then,

∫

S4
c2(P) = 1

8π2

∫

KR

tr(F ∧ F) .

As a 4-form on a contractible subset of R
4, tr(F ∧ F) is closed and thus, by the

Poincaré Lemma, exact. The following Lemma yields a potential.

Lemma 6.3.5 The 3-form Q3(A) = tr(A ∧ dA + 2
3 A ∧ A ∧ A) fulfils

dQ3(A) = tr(F ∧ F) .

The form Q3 is called the Chern-Simons 3-form.13

12Then, under the identification S4 = R
4 ∪ {∞}, infinity corresponds to the south pole −e0.

13See [130].
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Proof In the associative calculus, the Structure Equation yields

F ∧ F = dA ∧ dA + dA ∧ A ∧ A + A ∧ A ∧ dA + A ∧ A ∧ A ∧ A .

Using the cyclicity of the trace, we obtain

tr(A ∧ A ∧ A ∧ A) = 0 , tr(A ∧ A ∧ dA) = tr(dA ∧ A ∧ A) .

Thus,
tr(F ∧ F) = tr(dA ∧ dA) + 2 tr(dA ∧ A ∧ A) .

Since
tr(dA ∧ dA) = d(tr(A ∧ dA)) ,

and, again by the cyclicity of the trace,

d(tr(A ∧ A ∧ A)) = 3 tr(dA ∧ A ∧ A) ,

we obtain

tr(F ∧ F) = d(tr(A ∧ dA)) + 2

3
d(tr(A ∧ A ∧ A)) = dQ3 .

This proves the lemma.

We continue with the proof of the proposition. Using Lemma 6.3.5 and Stokes’
Theorem, we obtain

∫

KR

tr(F ∧ F) =
∫

KR

dQ3 =
∫

∂KR

Q3 . (6.3.17)

Since F�∂KR
= 0, we have

∫

∂KR

Q3 =
∫

∂KR

tr
(
A ∧ dA + 2

3
A ∧ A ∧ A

)

=
∫

∂KR

tr
(
A ∧ (F − A ∧ A) + 2

3
A ∧ A ∧ A

)

= −1

3

∫

∂KR

tr(A ∧ A ∧ A) ,

that is, ∫

KR

tr(F ∧ F) = −1

3

∫

∂KR

tr(A ∧ A ∧ A) . (6.3.18)

Denoting h = g�∂KR
we have



486 6 The Yang–Mills Equation

A�∂KR
= h−1dh = h∗(θ) ,

where θ is the Maurer–Cartan form on Sp(1). Thus, using Remark I/4.3.6/4, we
obtain
∫

KR

tr(F ∧ F) = −1

3

∫

∂KR

h∗ (tr(θ ∧ θ ∧ θ)) = −1

3
deg(h)

∫

Sp(1)
tr(θ ∧ θ ∧ θ) ,

where deg(h) denotes the degree of the mapping h : ∂KR
∼= S3 → Sp(1) ∼= S3.

Finally, a simple calculation (Exercise 6.3.1) yields

∫

Sp(1)
tr(θ ∧ θ ∧ θ) = 24π2 . (6.3.19)

Thus, ∫

S4
c2(P) = 1

8π2

∫

KR

tr(F ∧ F) = − deg(h) .

�

Remark 6.3.6

1. In the sequel, themapping degree deg(h) or, equivalently,minus the secondChern
index of P will be called the instanton number. It will be denoted by k(P).

2. For the BPST (anti-)instanton on S4, the statement of Proposition 6.3.4 can be
seen by direct inspection. Consider ω−. As above, let us represent infinity by the
south pole−e0 and let us study the asymptotic behaviour ofA−

s given by (6.3.11)
by taking the limit ‖x‖ → ∞:

A−
s (x)

‖x‖→∞−→
(

x
‖x‖

)−1

d

(
x

‖x‖
)

.

Thus, themapping (6.3.16) coincideswith the restriction of the transitionmapping
ρ−
s to the equator of S4, cf. Eq. (6.3.15). �

In the remainder of this section we show how to construct further instanton solutions
by using the conformal invariance of the equation ∗F = ±F. By Appendix B, under
the conformal identification, S4 = HP1 ∼= H ∪ {∞} the proper (that is, orientation
preserving) conformal group of S4 is given by

C0(S
4, [g0]) = SL(2, H)/{±1} . (6.3.20)

Clearly, its universal covering group is C̃0(S4, [g0]) = SL(2, H) . For concreteness,
consider the canonical (anti-self-dual) solution ω− on P−. View P− as the quater-
nionic Hopf bundle, cf. Remark 6.3.1/2.
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Proposition 6.3.7 The action of the conformal group ofS4 lifts naturally to an action
of SL(2, H) on P− by automorphisms.

Proof It is easy to show (Exercise 6.3.4) that the mapping Ψ̃ : SL(2, H) × S7 → S7

given by

Ψ̃

([
a b
c d

]
,

[
q1

q2

])
:= (‖ aq1 + bq2 ‖2 + ‖ cq1 + dq2 ‖2)− 1

2

[
aq1 + bq2

cq1 + dq2

]

defines a left smooth action on the bundle space S7 ⊂ H
2. This mapping obviously

commutes with the right principal action of Sp(1) and it projects onto the conformal
action on S4, cf. Appendix B. �

Clearly, the conformal group lifts to P+ in the same way. Combining this proposition
with Proposition 6.2.7, we conclude that Ψ̃ ∗

k ω− is again an anti-self-dual connection
form on P−, for any k ∈ SL(2, H). On the other hand, by construction, ω− is Sp(2)-
invariant and Sp(2) ⊂ SL(2, H) is the full symmetry group of ω−. Thus, the orbit of
ω− under the action of the conformal group is SL(2, H)/Sp(2). It turns out that, for
G = Sp(1), all anti-instantons on S4 with instanton number k(P) = −1 are obtained
in this way. This will be shown in Sect. 6.5.

To describe the family of anti-self-dual solutions obtained by conformal transfor-
mations explicitly, we need an explicit parameterization of the above homogeneous
space. Since Sp(2) is the maximal compact subgroup of the semisimple Lie group
SL(2, H), this is easily achieved by using the Iwasawa decomposition of SL(2, H).
For convenience, we write it in the inverse order SL(2, H) = NAK , where

K = Sp(2) , A =
{[√

λ 0
0 1√

λ

]

: λ ∈ R+

}

, N =
{[

1 0
−s 1

]
: s ∈ H

}
.

Then, elements of SL(2, H)/Sp(2) are (globally) parameterized as follows:

R+ × H → M−1
∼= SL(2, H)/Sp(2) , (λ, s) 
→

[ √
λ 0

−√
λs 1√

λ

]

· Sp(2) . (6.3.21)

After putting x0 = λs, from (B.9) we read off the following family of conformal
transformations

x 
→ 1

λ
(x − x0) . (6.3.22)

Applying this transformation to (6.3.11), we obtain a 5-parameter family of anti-
instantons with k(P) = −1:

A(x; λ, x0) = Im

{
(x − x0) dx

λ2 + ‖x − x0‖2
}

. (6.3.23)
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Correspondingly, for the curvature we get

F(x; λ, x0) = Im

{
λ2 dx ∧ dx

(λ2 + ‖x − x0‖2)2
}

. (6.3.24)

Note that the curvature is centered at x0 and it is spread over a region of magnitude
λ. Therefore, λ is called the scale and x0 is called the centre of the instanton.

In the same way, from (6.3.13), we may create a 5-parameter family of instantons
with k(P) = 1.

Remark 6.3.8 Over the years, the relevance of instantons in quantum field theory has
been investigated. We refer to [569] for an introduction to this problem on a sound
mathematical basis. The basic observation is that instantons interpolate between
topologically inequivalent vacua of the quantum theory. This is often referred to as
the tunneling effect. Here, we only explain the classical counterpart of this effect.
Starting from a classical gauge potentialA on Minkowski space, we choose a gauge
such that A0 = 0 and consider only static configurations, that is, configurations
fulfilling Ak = Ak(x), x ∈ R

3. A classical vacuum is characterized by F(x) = 0.
Thus, the corresponding potential must be a pure gauge,

Ak(x) = h−1(x) ∂kh(x) ,

for all x ∈ R
3. We assume that the limit

lim
x→∞ h(x) = h0

exists. Then, h may be extended to S3 = R
3 ∪ {∞} and we obtain a classification

of classical vacua in terms of the degree of the mapping h : S3 → Sp(1) ∼= S3.
Now, let (x, t) 
→ g(x, t) be the mapping obtained from the instanton asymptotics
Aμ(x, t) ∼ g−1(x, t) ∂μg(x, t). By choosing an appropriate gauge, one can fulfil the
following conditions

1. g(x, t) → 1 for x ∈ R
3 and t → −∞,

2. g(x, t) → 1 for t ∈ R and x → ∞,
3. g(x, t) → h(x) for t → ∞.

We see that g interpolates between h ≡ 1 und h = h(x), that is, g interpolates
between the classical vacua Ak(x) = 0 and Ak(x) = h−1(x) ∂kh(x). �

Exercises

6.3.1 Prove formula (6.3.19).

6.3.2 Prove that SH(1, 2) may be parameterized by the matrices given in formula
(6.3.4).

6.3.3 Prove that the mapping f : S3 → S3 , f (x) = x , has degree −1.
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6.3.4 Prove that the mapping Ψ̃ defined in Proposition 6.3.7 is a smooth left action
of SL(2, H) on S7.

6.4 The ADHM Construction

In this section, we construct all (anti-)self-dual Sp(1)-connections on S4 with arbi-
trary instanton number k(P). This construction goes back toAtiyah,Drinfeld,Hitchin
andManin [35] and is, therefore, called the ADHM construction. In our presentation
we follow the strategy outlined at the end of Sect. II/3 of [30]. For that purpose, we
recall from Theorem 3.4.10 that the quaternionic Stiefel bundle14

π c : SH(1, k + 1) ∼= S4k+3 → GH(1, k + 1) ∼= HPk

is k-classifying for the principal Sp(1)-bundles P → S4 ∼= HP1. Now, the ADHM
construction may be summarized as follows: take the canonical Sp(1)-connection15

ωc = q†dq (6.4.1)

on the quaternionic Stiefel bundle SH(1, k + 1) and pull it back via a family of
classifying mappings f : S4 → HPk . If this family is suitable, this yields a family of
(anti-)self-dual Sp(1)-connections on P. Here, q ∈ S4k+3, that is,

q = (q0, . . . , qk) ∈ H
k+1 \ {0} , ‖ q ‖= 1 .

Recall that for a classifying mapping f : S4 → HPk , the pullback bundle is given by

P ≡ f ∗(SH(1, k + 1)) = {
([(x1, x2)], q) ∈ HP1 × S4k+3 : f ([(x1, x2)]) = π c(q)

}
.

The pullback of ωc reads
ω = f∗ωc = f df , (6.4.2)

with the bundle morphism
f = pr2 ◦iP , (6.4.3)

where pr2 is the projection onto the second factor in HP1 × S4k+3 and iP : P →
HP1 × S4k+3 denotes the natural inclusion mapping. To summarize, we have the
commutative diagram

14Cf. Example 1.1.24 and Remark 1.1.25.
15Cf. Example 1.3.19 for further details.

http://dx.doi.org/10.1007/978-94-024-0959-8_3
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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P
f ��

π

��

S4k+3

π c

��
S4

f ��
HPk

Now, the basic idea of the authors of [35] was to consider the following smooth
family of linear mappings

v : H
2 → L(Hk, H

k+1) , v(x1, x2) := Cx1 + Dx2 , (6.4.4)

whereC andD are constant ((k+1)×k)-matrices with quaternionic entries, fulfilling

(a) rankHv(x1, x2) = k for all (x1, x2) ∈ H
2 \ {0},

(b) v†(x1, x2)v(x1, x2) is real for all (x1, x2) ∈ H
2.

By property (a), the image im(v(x1, x2)) of the linear mapping

v(x1, x2) : H
k → H

k+1 (6.4.5)

is a k-dimensional subspace of H
k+1 which clearly depends on [(x1, x2)] ∈ HP1

only. Thus, it defines a vector subbundle

E :=
⋃

[(x1,x2)]∈HP1

im
(
v([(x1, x2)])

)

of rank k of the trivial quaternionic vector bundle

E0 = HP1 × H
k+1 → HP1 .

By construction, E is the direct sum of quaternionic line bundles, defined by the
columns of v. Next, let im

(
v([(x1, x2)])

)⊥ ∼= coker
(
v([(x1, x2)])

)
be the (one-

dimensional) quaternionic orthogonal complement of im
(
v([(x1, x2)])

)
in H

k+1.
Clearly,

L :=
⋃

[(x1,x2)]∈HP1

im
(
v([(x1, x2)])

)⊥
(6.4.6)

is a vector subbundle of E0 of rank 1, that is, L is a quaternionic line bundle over
HP1. By construction, E and L are complementary in E0,

E0 = E ⊕ L .

Let us denote the orthogonal projectors corresponding to this splitting by

Q[(x1, x2)] : H
k+1 → im

(
v([(x1, x2)])

)
, P[(x1, x2)] : H

k+1 → im
(
v([(x1, x2)])

)⊥
.
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Remark 6.4.1 By Example 1.2.9/2, L is associated with the bundle of orthonor-
mal frames O(L) of L. This is a principal Sp(1)-bundle over HP1 whose fibre over
[(x1, x2)] may be identified with the vectors e([(x1, x2)]) ∈ H

k+1 fulfilling

e([(x1, x2)])†v([(x1, x2)]) = 0 , e([(x1, x2)])†e([(x1, x2)]) = 1 . (6.4.7)

�

The mapping v defines a smooth classifying mapping

u : HP1 → GH(1, k + 1) ∼= HPk , u([(x1, x2)]) := im
(
v([(x1, x2)])

)⊥
.

According to the idea spelled out at the beginning, we take the pullback bundle
P = u∗(SH(1, k + 1)) and the corresponding pullback of the canonical connection
via the induced mapping u : P → S4k+3,

ω = u∗ωc = u† du . (6.4.8)

Then, the curvature of ω is given by

Ω = du† ∧ du + u†du ∧ u†du . (6.4.9)

On the other hand, by definition of P, the elements ([(x1, x2)], q) ∈ P are exactly

those fulfilling q ∈ S4k+3 ∩
(
im
(
v([(x1, x2)])

)⊥)
, that is, q is an orthonormal frame

in L. Thus, we have P ∼= O(L) and, consequently, an isomorphism

P ×Sp(1) H 
→ L ,
[(

([(x1, x2)], q), a
)] 
→ ([(x1, x2)], qa

)
. (6.4.10)

By (6.4.3), under the identification P ∼= O(L) the mapping u becomes the identity
onto its image, that is, it sends a point p ∈ P, viewed as an orthonormal frame e on L,
onto itself as an element of S4k+3. Thus, we can write

ωe = e†de , Ωe = de† ∧ de + e†de ∧ e†de . (6.4.11)

Moreover, under this identification, the projectors Q and P lift to orthogonal
projection-valued mappings on O(L),

Q̂(e) = 1 − e e† , P̂(e) = e e† . (6.4.12)

In this picture, the covariant derivative defined by ω is given as follows. Using
(1.2.11), (1.4.2) and the isomorphism (6.4.10), we obtain

(∇Φ)(π(e)) = e(dΦ̃ + e†de Φ̃) = e e†d(eΦ̃) = PdΦ .

Thus,

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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∇ = P ◦ d . (6.4.13)

This formula has a nice geometric interpretation: we take the covariant derivative d
in E0, corresponding to the trivial flat connection, and project it onto L.

Lemma 6.4.2 We have
Ωe = e†(P̂dP̂ ∧ dP̂P̂) e .

Proof Since e†e = 1, we get

(de†) e + e†de = 0 .

Using this, we calculate

P̂dP̂ ∧ dP̂P̂ = e
(
e†d(e e†) ∧ d(e e†)e

)
e†

= e
(
e†de ∧ e†de + de† ∧ de + (de†)e ∧ (de†)e + e†de ∧ (de†)e

)
e†

= e
(
e†de ∧ e†de + de† ∧ de

)
e† .

In view of (6.4.11), this yields the assertion. �

Comparing with (1.5.13), we see that the curvature endomorphism form R∇ acting
on L associated with Ω is given by

R∇ = PdP ∧ dPP . (6.4.14)

The proof of the following proposition can be found in various (similar) versions in
the literature, see [30], [138], [135] and further references therein.

Proposition 6.4.3 The connection ω on P is self-dual and has the instanton number
k(P) = k.

Proof By condition (b) above, the mapping R : HP1 → Aut(Hk) defined by

R([(x1, x2)]) := v†([(x1, x2)])v([(x1, x2)]) (6.4.15)

has real-valued entries, that is, the entries are proportional to 1 ∈ H. Now, by the first
equation in (6.4.7), we have v†e = 0 and, thus, also vR−1v†e = 0. But, by (6.4.15),

vR−1v† = vR−1v†vR−1v† ,

that is, vR−1v† projects onto the subspace orthogonal to e. Thus, it must coincide
withQ and we obtain pointwise

1 − P = Q = vR−1v† . (6.4.16)

Calculating

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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dP = −dQ = −(dv)R−1v† − v(dR−1)v† − vR−1dv† ,

and, using Pv = 0, we get

PdP = −P(dv)R−1v† .

Correspondingly,
dPP = −vR−1(dv†)P .

Inserting these formulae into (6.4.14), we obtain

R∇ = P(dv)R−1 ∧ (dv†)P . (6.4.17)

Now, under the conformal identification HP1 ∼= H∪{∞} given by the stereographic
projection chart ϕs, elements [(x1, x2)] ∈ HP1 \ {∞} are represented by the homo-
geneous coordinate [(1, x2)] ≡ x ∈ H. This yields

v(x) = C + Dx (6.4.18)

and, thus, dv = D dx. Finally, using the fact that R commutes with dv, we see that
R∇ is proportional to dx ∧ dx, that is, ω is self-dual.

The second statement follows immediately from the Whitney Sum Formula,
cf. Theorem 4.3.2. In more detail, to prove that the second Chern class of L is
equal to k, it is enough to show that the second Chern class of E is equal to −k. But,
by construction, E is the direct sum of k quaternionic line bundles corresponding to
the k column vectors of v. Each of them may be identified with the standard line
bundle over HP1 having the second Chern class −1. �

Thus, the above construction yields instantons. We get anti-instantons, if we choose
instead

v(x) = C + D x , (6.4.19)

see also Remark 6.4.6 below.
Our next task is to count the number of independent solutions. For that purpose

we bring v into a normal form. Without loss of generality, we may assume that v is
given by (6.4.18).

Proposition 6.4.4 The following transformations yield isomorphic bundles and,
consequently, isomorphic self-dual connections:

C → QCK , D → QDK , (6.4.20)

where Q ∈ Sp(k+ 1) and K ∈ GL(k, R). Using these transformations, e → Qe and
the mapping v can be brought to the following canonical form:

http://dx.doi.org/10.1007/978-94-024-0959-8_4
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v(x) =
[

λ

B − x1

]
, (6.4.21)

where λ is a quaternionic (1× k)-vector and B is a quaternionic symmetric (k × k)-
matrix. The canonical form (6.4.21) is preserved by the transformations (6.4.20)
fulfilling

Q =
[

a 0
0 R

]
, K = RT , where a ∈ Sp(1) , R ∈ O(k) . (6.4.22)

Proof First, restricting to constantmatrices is necessary to respect the linear structure
of the construction. Next, by the first equation of (6.4.7), v and e can be multiplied
from the left by the same matrix Q only. The second equation in (6.4.7) implies that
Q must belong to Sp(k + 1). Finally, to preserve the reality condition (b), v can be
multiplied only by a matrix K ∈ GL(k, R). To prove that these transformations yield
isomorphic bundles and connections is a simple exercise left to the reader.

Next,we bring v to a normal form. First, the real symmetricmatrixD†D transforms
under (6.4.20) toKT (D†D)K . Thus, we can useK to diagonalizeD†D and afterwards
rescale the diagonal entries to 1. This yields D†D = 1k . Clearly, this condition is
invariant under any transformation D 
→ DK , with K ∈ O(k). Next, one easily
shows (Exercise 6.4.1) that for any D fulfilling D†D = 1k there exists an element
Q ∈ Sp(k + 1) such that

D = Q†

[
0

−1k

]
. (6.4.23)

Moreover, writing

C = Q†

[
λ

B

]
,

where λ is a (1×k)- and B is a (k×k)-block, we haveD†C = −B. But, by condition
(b), D†C is symmetric and, thus, B must be symmetric, too. �

The conditions (a) and (b) now read

(a) rankH

[
λ

B − x1

]
= k for every x ∈ H,

(b) λ†λ + B†B is real.

Let us denote

Vk :=
{[

λ

B

]
∈ H

k×(k+1) : B = BT, rankH

[
λ

B − x1

]
= k, λ†λ + B†B real

}
.

Now, we can calculate the number of free parameters labelling the ADHM solutions
modulo the transformations (6.4.20), that is, the number of free real parameters in
Vk/(Sp(1) × O(k)) with the action given by (6.4.22). Since the stabilizer of this
action is
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{(1,1), (−1,−1)} ∼= Z2 ,

this number is given by dimR(Vk) − dim
(
Sp(1) × O(k)

)
. The vectors λ contain 4k

real parameters and thematricesB, being symmetric, contain 4 k(k+1)
2 real parameters.

Since the matrix λ†λ + B†B is self-adjoint and has positive diagonal entries, the
condition that it be real gives rise to 3 k(k−1)

2 independent equations. Finally, the
property of maximal rank is generic. Thus, altogether, for the number of free real
parameters we obtain

(
4k + 4

k(k + 1)

2
− 3

k(k − 1)

2

)
−
(
3 + k(k − 1)

2

)
= 8k − 3 . (6.4.24)

Thus, we have the following.

Corollary 6.4.5 The spaceMk of Sp(1)-instanton solutions on S4 obtained via the
ADHM construction may be identified with Vk factorized with respect to the free
action of (Sp(1) × O(k))/Z2. It is a smooth (8k − 3)-dimensional manifold.

Remark 6.4.6 It is obvious from the abovepresentation, that theADHM-construction
immediately generalizes to anySp(n),n > 1.As already outlined in the original paper
[35], it can be adapted to the case of the classical groups SU(n) and SO(n) as well,
see also [162], [138], [99] and [442] for details. �

Now, we can solve the first equation in (6.4.7) for e and we can, in principle, find
the explicit k-instanton solution. For that purpose, we parameterize the local section
x → e(x) as follows:

e(x) = 1√
ρ(x)

[ −1
U(x)

]
,

where U is a quaternionic (k × 1)-block and ρ(x) = 1 + ‖U(x)‖2. Then, the first
equation of (6.4.7) implies

U(x) = (
λ(B − x1)−1

)†
. (6.4.25)

Inserting this into the first equation of (6.4.11), we obtain the following k-instanton
solution on H = R

4:

A(x) = Im
(
U†(x)dU(x)

)

1 + ‖U(x)‖2 . (6.4.26)

Clearly, it may be difficult to calculate the inverse matrix (B − x1)−1 for large n
explicitly. Moreover, we note that e and, thus, A may have apparent singularities.
However, these singularities may be removed (shifted to infinity) by appropriate
gauge transformations. Behind, there is a standard procedure in algebraic geometry,
see e.g. [259]. For the case under consideration, see also [191], [244] and the examples
below.

The calculations in the following examples are left to the reader (Exercise 6.4.2).
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Example 6.4.7

1. For k = 1, denoting B = x0 and choosing λ to be a positive scalar, formula
(6.4.26) yields

A(x; λ, x0) = − λ2

(λ2 + ‖x − x0‖2) Im
{
dx
(
x − x0

)−1
}

.

The apparent singularity at x = x0 may be removed by the gauge transformation
x → g(x) = x−x0

‖x−x0‖ . The gauge transformed potential reads (Exercise 6.4.4):

A(x; λ, x0) = Im

{
(x − x0) dx

λ2 + ‖x − x0‖2
}

. (6.4.27)

This is the k = +1-counterpart of (6.3.23). Setting λ = 1 and x0 = 0 we get the
BPST-instanton.

2. If we choose B = diag(x1, . . . , xk), where x0, . . . , xk are distinct points in H,
and λ = (λ11, . . . , λk1), with λi > 0, then we obtain the ’t Hooft multi instanton
solutions [627] in the singular gauge:

A(x; λi, xi) = −
k∑

i=1

λ2
i

‖x − xi‖4ρ(x)
Im {dx(x − xi)} , (6.4.28)

where

ρ(x) = 1 +
k∑

i=1

λ2
i

‖x − xi‖2 .

Clearly, this is a 5k-parameter family of self-dual solutions.
3. From the family of ’t Hooft solutions one may generate further solutions via

conformal transformations. This way, a (5k + 4)-parameter family of solutions
was obtained by Jackiw, Nohl and Rebbi [342]:

A(x; λi, xi) = −
k∑

i=0

λ2
i

‖x − xi‖4ρ(x)
Im {dx(x − xi)} , (6.4.29)

where x0, . . . , xk are distinct points in H, λ0, . . . , λk are positive numbers and

ρ(x) = 1 +
k∑

i=0

λ2
i

‖x − xi‖2 .

�
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Quaternionic ADHM data
ADHM

construction

Lemma 6.4.10

(8k−3)-parameter family
of instantons on S4

=

Complex ADHM data

Barth and
Hulek

All instantons on S4

Algebraic vector bundles
over CP3 of a certain type Serre

correspondence

Horrocks
construction

Holomorphic vector bundles
over CP3 of a certain type

Atiyah-Ward
correspondence

Fig. 6.2 Equivalences used in the proof that the ADHM construction yields all instantons on S4

It turns out that Mk is the full moduli space of k-instantons, that is, by the ADHM-
construction, all instantons on S4 are obtained. The proof of this fact rests on the
following deep results:

1. One reformulates the ADHM-construction in terms of complex geometry on the
twistor spaceCP3. Then, it appears as theHorrocks construction [311], [312] from
algebraic geometry yielding algebraic16 and, thus, holomorphic vector bundles
over CP3 of a special type.

2. By the Atiyah–Ward correspondence, holomorphic vector bundles over CP3 of
this type are in one-to-one correspondence with instantons on S4, see [42], [37]
and [30]. We also refer to [58] for a detailed proof.

3. Using results of Barth and Hulek [55–57], one shows that all algebraic vector
bundles over CP3 of this special type are obtained via the Horrocks construction.

Figure6.2 shows the logic of the proof schematically.
We explain points 1 and 2 in some detail. Point 3 is beyond the scope of this book.
As before, we limit our attention to the gauge group Sp(1) ∼= SU(2). First, we
need some algebraic preliminaries. As explained in Appendix A, we identify C with
span{1, i} ⊂ H and H with C

2 by writing quaternions in the form z1 + jz2, for any
z1 , z2 ∈ C. This implies a complex isomorphism H

k ∼= C
k ⊕ j C

k and, identifying
z1 + j z2 = (z1, z2), we get

H
k ∼= C

k ⊕ j C
k ∼= C

2k . (6.4.30)

16That is, the transition functionsmay be chosen to be rational functions of the complex coordinates.
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Let us denote the standard scalar products on H
k and C

2k by k and h, respectively,
and let us choose the following skew form on C

2k:

J =
[
0 1

−1 0

]
. (6.4.31)

We have
k(q1, q2) = q†

1q2 , h(z, w) = z†w , J(z, w) = zTJw ,

where q1, q2, z and w are viewed as column vectors. These structures are related as
follows:

k(q1, q2) = h(z, w) + jJ(z, w) , (6.4.32)

where q1 = z1 + j z2 , q2 = w1 + j w2 and z = (z1, z2) , w = (w1, w2).
Next, letσ : H

k → H
k be the complex anti-linear isomorphism induced from right

multiplication on H
k by j. Then, σ 2 = − id and, under the isomorphism (6.4.30),

σ(z1 + j z2) = −z2 + j z1 = (−z2, z1) . (6.4.33)

Thus, in the above bases, viewing z ∈ C
2k as a row vector,

σ(z) = zJ . (6.4.34)

Finally, we note that σ relates h and J as follows

h(σ (z), w) = J(z, w) . (6.4.35)

Remark 6.4.8 In the sequel, given a complex vector space V , an anti-linear isomor-
phism σ : V → V fulfilling σ 2 = id or σ 2 = − id will be called, respectively, a real
or a symplectic structure17 of V , cf. also Sect. 5.3. �

Now let us consider the isomorphism (6.4.30) for k = 2, that is, H
2 ∼= C

4 together
with the corresponding right projective spaces HP1 and CP3. Using the above con-
ventions, for z, z′ ∈ C

2, we write z + j z′ = (z, z′) and thus, denoting z = (z1, z2)
and z′ = (z3, z4), elements of C

4 are parameterized as follows:

(z1 + j z3, z2 + j z4) = (z1, z2, z3, z4) .

Clearly, any complex line is contained in a quaternionic line. Thus, we obtain the
following fibre bundle

π : CP3 → HP1 . (6.4.36)

17This is the terminology of complex geometry. Instead, we could call σ a quaternionic structure
in that case.

http://dx.doi.org/10.1007/978-94-024-0959-8_5
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The mapping π is called the (projective) Penrose twistor transformation [508] for S4

and the bundle is called the projective twistor bundle. Consider a quaternionic line
and view it as a copy of C

2. Then, all complex lines in it form a copy of CP1. Thus,
the fibres of π are copies of CP1. In terms of the above coordinates, the projection
π is given by

π([(z1, z2, z3, z4)]) = [(z1 + j z3, z2 + j z4)] . (6.4.37)

The symplectic structure σ on C
4 descends to a mapping of CP3, denoted by the

same symbol,

σ : CP3 → CP3 , σ ([(z1, z2, z3, z4)]) = [(−z3,−z4, z1, z2)] , (6.4.38)

which is anti-linear in homogeneous coordinates and fulfils σ 2 = id. It is common
to call such a mapping a real structure on CP3. By definition, σ acts trivially on HP1

and, thus, it preserves the fibre structure.
Under the above identification H

2 ∼= C
4, the natural action of SL(2, H) on H

2

descends to an action on CP3 preserving the fibration (6.4.36) and projecting onto
the conformal action onHP1, see Appendix B. Thus, the maximal compact subgroup
Sp(2) ⊂ SL(2, H) acts transitively on CP3 preserving the natural metrics on CP3

and HP1. In coordinates, writing

[(z1 + j z3, z2 + j z4)] = [(1, (z2 + j z4)(z1 + j z3)−1] ≡ [(1, x)] ,

and calculating (z2 + j z4)(z1 + j z3) = (z1z2 + z3z4) + j (z1z4 − z3z2) , we find the
following presentation of the fibre π−1([(1, x)]) over [(1, x)]: it consists of elements
[(z1, . . . , z4)] ∈ CP3 fulfilling the conditions

ζ = z1z2 + z3z4
|z1|2 + |z3|2 , ξ = z1z4 − z3z2

|z1|2 + |z3|2 , x = ζ + jξ . (6.4.39)

Thus, for the points in the fibre π−1([(1, 0)]), we read off the stabilizer U(1) ×
Sp(1) ⊂ Sp(2). By a similar calculation, for the fibre π−1([(0, 1)]), we obtain
the stabilizer Sp(1) × U(1). This yields the following presentations of CP3 as a
homogeneous space:

CP3 ∼= Sp(2)/(U(1) × Sp(1)) , CP3 ∼= Sp(2)/(Sp(1) × U(1)) . (6.4.40)

Remark 6.4.9

1. By Example 5.4.9,HP1 ∼= S4 ∼= Sp(2)/(Sp(1)×Sp(1)). Thus, the homogeneous
presentation (6.4.40) of CP3 explicitly shows that the fibres of π are copies of

Sp(1)/U(1) ∼= CP1 .

http://dx.doi.org/10.1007/978-94-024-0959-8_5
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Identifying CP1 ∼= S2 in the standard way18 via (ζ, ξ) 
→ (2ζ ξ, |ζ |2 − |ξ |2) , we
read off that σ acts on the fibres via

σ(ζ, ξ) 
→ (−2ζ ξ, |ξ |2 − |ζ |2) ,

that is, it sends any point to its antipodal point. Recall that a projective line in
CP3 is the image of a 2-dimensional subspace of C

4. By definition, a projective
line is said to be a real line if it is invariant under σ . Thus the fibres of π are
exactly the real lines in CP3 and S4 may be viewed as the parameter space of the
real lines.

2. Comparing with Example 5.5.14, we see that CP3 may be naturally identified
with the negative projective spinor bundle P−(S4).19 Via this identification, it
obtains a natural complex structure such that the orientation induced on S4 is
opposite to the original orientation of S4, cf. Remark 5.5.8.20 In the sequel, we
assume that CP3 is endowed with this complex structure. �

Now, recall that the ADHM-data are given by mappings

v : H
2 → L(Hk, H

k+1) , v(x1, x2) := Cx1 + Dx2 ,

cf. (6.4.4), where C and D are constant (k + 1) × k-matrices with quaternionic
entries, fulfilling conditions (a) and (b). Using (6.4.30) for k = 2, we may view v as
a mapping

v : C
4 → L(Hk, H

k+1) .

Explicitly, writing x1 = z1 + j z3 and x2 = z2 + j z4, we obtain

v(z) = Cz1 + C j z3 + Dz2 + D j z4 ≡ v1z1 + v2z2 + v3z3 + v4z4 ,

with

C = 1

2
(v1 − v3 j) , D = 1

2
(v2 − v4 j) , (6.4.41)

and
v1 + v3j = 0 , v2 + v4j = 0 . (6.4.42)

Decomposing
vα = A′

α + jA′′
α , α = 1, . . . , 4 , (6.4.43)

into matrices with complex entries and building the (2k + 2) × k-matrices

18Cf. Remark 1.1.21.
19Clearly, it may also be identified with the positive projective spinor bundle.
20If we adopt this point of view, Theorem 4.1 of [37] cited in Remark 5.5.8 guarantees the integrabil-
ity of the almost complex structure constructed there. Clearly, given the homogeneous presentation
(6.4.40) one can define the almost complex structure in terms of the corresponding Lie algebra
decomposition. Then, checking the integrability is a purely algebraic task, see [218] for details.

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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Aα :=
[
A′

α

A′′
α

]
,

we obtain a mapping

A : C
4 → L(W, V ) , A(z) = A1z1 + A2z2 + A3z3 + A4z4 , (6.4.44)

whereW = C
k and V = C

2k+2. In this presentation, the conditions (6.4.42) take the
form

JA3 = A1 , JA4 = A2 , (6.4.45)

where J is the skew form on V given by (6.4.31). We endow V with the symplec-
tic structure σ given by (6.4.34) and W with the real structure given by complex
conjugation.

Lemma 6.4.10 The quaternionic ADHM mappings given by (6.4.4) and fulfilling
conditions (a) and (b) are in one-to-one correspondence with mappings (6.4.44)
fulfilling the following conditions:

σ(A(z)w) = A(σ (z))w , w ∈ W , (6.4.46)

dimC (im A(z)) = k , z �= 0 , (6.4.47)

A(z)TJA(z) = 0 . (6.4.48)

Mappings A fulfilling the conditions (6.4.46)–(6.4.48) will be referred to as complex
ADHM data.

Proof To show (6.4.46), using (6.4.34) and (6.4.45), we calculate

σ(A(z)w) = −JA(z)w = (A3z1 + A4z2 − A1z3 − A2z4)w = A(σ (z))w .

Next, (6.4.47) is an immediate consequence of condition (a). Finally, we analyze
condition (b). For that purpose, consider any pair (i, l) of columns of v(x1, x2) and
decompose them according to (6.4.43),

(
v(x1, x2)

)
i = (∑

α

A′
αzα
)
i + j

(∑

α

A′′
αzα
)
i ≡ A′

i(z) + j A′′
i (z) ,

and
(
v(x1, x2)

)
l correspondingly. Then,

Ai(z) =
[

A′
i(z)

A′′
i (z)

]
, Al(z) =

[
A′

l(z)
A′′

l (z)

]

are, respectively, the i-th and the l-th columns of A(z). Now, (6.4.32) implies

k(Ai, Al) = h(Ai, Al) + jJ(Ai, Al) ,
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and the reality condition (b) yields

J(Ai, Al) = 0 ,

for any pair (i, l). This is equivalent to (6.4.48).
Inverting the above reformulation yields the converse statement. �

Remark 6.4.11 Condition (6.4.47) is equivalent to the statement that im A(z) is an
isotropic subspace of V with respect to J,21

im A(z) ⊂ (im A(z))J , z �= 0 . (6.4.49)

Here, (im A(z))J is the J-orthogonal complement. �

Definition 6.4.12 A holomorphic symplectic involution on a holomorphic vector
bundleL overCP3 is a holomorphic isomorphism22 τ : L → σ ∗L with τ 2 = − id,
where τ 2 := σ ∗(τ ) ◦ τ .

Remark 6.4.13 We explain the bundle σ ∗L in some detail. For the canonical cover-
ing {Uα} of CP3 by homogeneous coordinates, defined by Uα := {[z] ∈ CP3 : zα �=
0}, we denote σ(1) = 3, σ(2) = 4, σ(3) = 1 and σ(4) = 2. Then, σ−1(Uα) = Uσ(α).
Now, given a holomorphic cocycle {gαβ} associated with the covering {Uα}, the bun-
dle σ ∗L has the holomorphic cocycle {gσ

αβ} defined by

gσ
αβ := gσ(α)σ (β) ◦ σ .

Correspondingly, there is an anti-linear bundle isomorphismL ∼= σ ∗L . �

The following construction is due to Horrocks [311], [312].

Proposition 6.4.14 (Horrocks construction) Any linear mapping A : W → V , ful-
filling the conditions (6.4.46)–(6.4.48), gives rise to a holomorphic vector bundleL
of rank 2 over CP3 with the following properties.

1. L is holomorphically trivial over each fibre of π .
2. There exists a holomorphic symplectic involution onL .

A holomorphic vector bundle L over CP3 with the properties 1 and 2 is usually
referred to as an instanton bundle.

Proof Let there be given a linear mapping A : W → V , fulfilling the conditions
(6.4.46)–(6.4.48). Recall that V is endowed with the skew form J given by (6.4.31),
with the symplectic structure σ and with the natural Hermitean form h, fulfilling the
compatibility condition (6.4.35). Take the vector spaces

21Cf. Definition I/7.2.2.
22L denotes the bundle conjugate to L . Note that σ ∗L is a holomorphic bundle, because σ is

anti-holomorphic, and σ ∗σ ∗L = L .
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Ez := im A(z) , E 0
z := (im A(z))J (6.4.50)

and the quotient space
Lz := (im A(z))J / im A(z) . (6.4.51)

Since dimC (im A(z)) = k, we have dimC (im A(z))J = k + 2 and, thus, dimC Lz =
2. Clearly, Lz inherits a non-degenerate skew form from J. By construction, the
subspaces Ez, E 0

z and Lz depend on [z] ∈ CP3 only. Thus, the subspaces E[z] and
E 0

[z] combine to vertical subbundles

E :=
⋃

[z]∈CP3

E[z] , E 0 :=
⋃

[z]∈CP3

E 0
[z]

of the trivial holomorphic vector bundle V := CP3×V endowed with the Hermitean
fibre metric h and the skew form J inherited from V . Consequently, the quotient
spaces L[z] combine to the quotient vector bundle

L :=
⋃

[z]∈CP3

L[z] = E 0/E . (6.4.52)

We may identify L with the orthogonal complement of E in E 0 ⊂ V , which we
also denote by L . By general arguments [583], as an algebraic vector bundle, L
carries a holomorphic structure.

Next, by (6.4.35), the orthogonal complement E ⊥
[z] of E[z] ⊂ V coincides with

(σ (E[z]))0 and by (6.4.46), we have

σ(E[z]) = Eσ([z]) . (6.4.53)

Thus,
E 0

[z] = E ⊥
σ([z]) , (6.4.54)

and, by the positive definiteness of the inner product, E 0
[z] ∩ Eσ([z]) = 0. Thus,

V = Eσ([z]) ⊕ E ⊥
σ([z]) = Eσ([z]) ⊕ E 0

[z]

and, viewingL[z] as theorthogonal complement ofE[z] inE 0
[z],weobtain the following

orthogonal direct sum decomposition

V = E[z] ⊕ L[z] ⊕ Eσ([z]) , (6.4.55)

together with the corresponding splitting of the trivial bundle V . Thus,

L[z] = {v ∈ V : h(v, u) = 0 , J(v, u) = 0 , for all u ∈ im(A(z))} , (6.4.56)
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that is,
L[z] = E ⊥

[z] ∩ E ⊥
σ([z]) = E 0

σ([z]) ∩ E 0
[z] .

We show that L[z] depends only on x = π([z]) ∈ HP1, that is, on the fibre through
[z]. According to Remark 6.4.9, the latter coincides with the real line lx through [z]
and σ([z]). Let [w] be any point on lx and let L[w], L[z] and Lσ([z]) be the complex
lines through zero in C

4 corresponding to [w], [z] and σ([z]), respectively. Any
vector w ∈ L[w] is a linear combination of a vector in L[z] and a vector in Lσ([z]),
because L[z] and Lσ([z]) span a two-dimensional plane (containing zero) in C

4 and
L[w] rotates from L[z] to Lσ([z]) when [w] runs from [z] to σ([z]). Thus, since A(w)

depends linearly on w, we obtain

E 0
[w] ∩ E 0

[z] = E 0
[w] ∩ E 0

σ([z]) = E 0
σ([z]) ∩ E 0

[z] .

As a result, the two-dimensional subspace

Rx = E 0
σ([z]) ∩ E 0

[z] ⊂ V

is the complement of E[w] in E 0
[w] for any [w] ∈ lx. Thus, the restriction ofL to lx is

trivial with the fibre given by Rx and the holomorphic structure induced from Rx.
Finally, the anti-linear automorphism σ of C

2k+2 defines an anti-holomorphic
vector bundle automorphism of V covering σ : CP3 → CP3 by

σ : V → V , σ ([z], v) := (
σ([z]), σ (v)

)
. (6.4.57)

Thus, by (6.4.53) and (6.4.55), σ induces an anti-holomorphic vector bundle auto-
morphism of L covering σ , which we denote by the same symbol:

σ : L → L , σ ([z], v) := (σ ([z]), σ (v)) , v ∈ Rπ([z]) .

Now, the desired holomorphic symplectic involution ofL is obtained by combining
this automorphism with the anti-linear bundle isomorphism σ ∗L ∼= L explained
in Remark 6.4.13. �

Remark 6.4.15

1. Since (6.4.55) is an orthogonal direct sum decomposition,Rx inherits a positive
Hermitean inner product from h on V . Identifying the restriction of L to a real
line lx with Rx, we obtain a positive Hermitean inner product on the space of
sections.

2. Property 1 ofL can be interpreted in terms of characteristic classes. By a theorem
of Grothendieck [265], every holomorphic vector bundle of rank n over CP1

is isomorphic to a direct sum of line bundles Lki = L ⊗ . . . ⊗ L (ki times),
where L denotes the (unique up to isomorphisms) holomorphic line bundle over
CP1and the integers (k1, . . . , kn) are unique up to permutation. These integers
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are holomorphic but not topological invariants. Only their sum is a topological
invariant. Thus, since L is of rank 2, restricted to a real line it is isomorphic
to a direct sum Lk1 ⊕ Lk2 of holomorphic line bundles. Now, property 1 implies
k1 = k2 = 0. Thus, in particular, k1 + k2 = 0, that is, the first Chern class of L
vanishes.23 As a consequence, the instanton number k (the second Chern class)
is the only topological invariant of L . For further details, we refer to [30].

3. Given a bundleL obtained fromcomplexADHMdata via theHorrocks construc-
tion, we canwork back through Lemma 6.4.10 to recover the explicit construction
of instantons in terms of the quaternionic data. Indeed, by (6.4.56) and (6.4.32),
Rx coincides with im(v(π(z)))⊥. Thus,

L = π∗(L) , (6.4.58)

and the orthogonal projector in V onto Lz coincides, under the identification
V ∼= H

k+1, with the orthogonal projector P in H
k+1 onto im(v

(
π(z))

)⊥
. This

implies that the canonical connection ω̃ onL obtained from projecting the trivial
connection on V ontoL is the pullback of the canonical connection ω given by
(6.4.8),

ω̃ = π∗ω . (6.4.59)

4. We briefly comment on the algebro-geometric background. For a compact com-
plex manifold M, a monad (in the sense of Horrocks) is a complex

0 −→ A
α−→ B

β−→ C −→ 0

of algebraic vector bundles over M fulfilling β ◦ α = 0. The algebraic vector
bundle ker β/ im α is called the cohomology of the monad. In our case,M = CP3

and we have the monad

0 −→ E
j−→ V

j∗◦J−→ E ∗ −→ 0 ,

where j is the natural inclusion mapping and J is viewed as a homomorphism
V → V ∗. Since ker

(
j∗ ◦ J

) = (im j)J, we find that the instanton bundle L
coincides with the cohomology of this monad. This is the approriate language
for accomplishing the proof of point 3 in the introduction. For details, see Chap.
VII in [30]. �
Next, consider a self-dual connection ω on a principal Sp(1)-bundle P over HP1

given in terms of its quaternionic ADHM data. Let L be the associated quaternionic
line bundle given by the basic representation and let ∇ be the covariant derivative of
ω. Then, L carries a fibre metric induced from the quaternionic scalar product on H

which is compatible with ∇. By field restriction, L becomes a complex Hermitean

23See also [42] for a semicontinuity argument. Alternatively, one may deduce c1(L ) = 0 from
property 1 of L by observing that any fibre of π represents a generator of H2(CP3).
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vector bundle with structure group SU(2) over S4. The following theorem covers the
more general case of a Hermitean vector bundle of arbitrary rank.

Theorem 6.4.16 (Atiyah–Ward) Let (L, h) be a Hermitean vector bundle over S4

endowedwith a self-dualmetric connection∇ and letπ : CP3 → S4 be the projective
twistor bundle. Let CP3 be endowed with the complex structure induced via the
identification with the negative projective spinor bundle of S4 and let σ be the real
structure on CP3 given by (6.4.38). Then, the pullback bundle L := π∗L carries
a natural holomorphic structure and a holomorphic isomorphism τ : σ ∗L → L ∗
fulfilling:

1. L is holomorphically trivial on each fibre of π .
2. The holomorphic isomorphism τ induces a positive definite Hermitean structure

on the space of holomorphic sections of L over each fibre of π .

Conversely, every such bundle over CP3 is the pullback of a bundle L with self-dual
connection over S4.

Proof The Hermitean fibre metric h of L induces a Hermitean fibre metric h̃ on L
and, with respect to this fibre metric, ∇̃ = π∗∇ is a Hermitean connection on L .
If ω and Ω are the connection form and the curvature of ∇, then ω̃ = π∗ω and
Ω̃ = π∗Ω are the connection and the curvature of ∇̃, respectively. By Corollary
2.8.3, any 2-form on R

4 is anti-self-dual iff it is of type (1, 1) for some (and hence
for all) compatible complex structures. Combining this with the fact that the complex
structure chosen on CP3 reverses the orientation of S4, we conclude that Ω̃ is of type
(1, 1). Now, Theorem 2.6.12 implies that L admits a holomorphic structure such
that ∇̃ is the canonical connection, that is, ∇̃ is of type (1, 0).

We show thatL is holomorphically trivial over each fibre of π . Thus, let x ∈ S4.
Every basis {eα}, α = 1, . . . , k, of the fibre Lx induces a frame {ẽα} in L�π−1(x) via
[z] 
→ ẽα([z]) := ([z], eα). It is enough to prove that the sections ẽα are holomorphic.
Since ω̃ is the pullbackofω underπ , the elements of the induced frameare covariantly
constant along π−1(x). Indeed, by Proposition 1.5.3,

∇̃ ẽα = ˜A β
α ẽβ = (

π∗A β
α

)
ẽβ ,

whereA and ˜A are the local representatives of ω and ω̃, respectively. Thus, ∇̃ ẽα is
annihilated by any vector tangent to π−1(x). Now, decomposing ẽα = ∑

β aαβ hβ in
a local holomorphic frame {hα} inL�π−1(x), we have

∇̃ ẽα =
∑

β

(daαβ)hβ +
∑

β

aαβ∇̃hβ = 0 .

Decomposing the above sum into its (1, 0) and (0, 1)-parts and using that ∇̃ is
a (1, 0)-connection, we read off that the (0, 1)-component is

∑
β(∂aαβ)hβ . Now,

vanishing of this quantity implies that the functions aαβ must be holomorphic.

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_1


6.4 The ADHM Construction 507

Next, the anti-linear involution σ on CP3 and the Hermitean fibre metric h̃ onL
yield a bundle isomorphism24

τ : σ ∗L → L ∗ : τ
(∑

α

wα ẽα(σ ([z]))) :=
∑

α

wα ẽ∗
α([z]) . (6.4.60)

Here, {ẽα} is a local orthonormal frame with respect to h̃ ofL obtained via pullback
from a local orthonormal frame {eα} of L and {ẽ∗

α} is the dual coframe. To prove that
this isomorphism is holomorphic, we must show that τ maps (1, 0)-forms on σ ∗L
to (1, 0)-forms on L ∗. By the proof of Theorem 2.6.12, the complex structure on
L ∗ is locally defined by the forms

(dzj, dwα + Bα
βw

β) , B := ˜A 0,1 .

Since the forms dwα + Bα
βwβ are pullbacks under π , they are invariant under σ .

Thus, the complex structure on σ ∗L is given by (dzj, dwα + B
α

β w
β). Using the

Hermiticity condition Bαβ = −Bβα , it reads

(dzj, dwα − Bβ
α wβ).

Now we must apply τ . Using τ(dwα) = dwα and τ(λdzj) = λdzj, we get

(dzj, dwα − Bβ
α wβ)

which coincides with the complex structure ofL ∗, because the induced connection
on the dual bundle is given by the negative transpose.

Finally, sinceL is holomorphically trivial over each fibre, wemay use τ to define
a Hermitean structure on the space of holomorphic sections of L over each fibre:

〈s1, s2〉([z]) := τ
(
s2(σ ([z])))(s1([z])

)
,

where z ∈ π−1(x) and s1 and s2 are holomorphic sections over π−1(x). Then, by
Definition (6.4.60), we have 〈s1, s2〉(z) = h̃

(
s1([z]), s2([z])

)
, showing that 〈·, ·〉 is

positive definite and Hermitean.
For the proof of the converse statement, we refer to the proof of Theorem 5.2 of

[37]. �
Remark 6.4.17 Theorem 6.4.16 is one way of spelling out what usually is referred to
as the Atiyah–Ward correspondence [42]. It generalizes immediately to Hermitean
vector bundles with self-dual connection over any self-dual 4-manifold [37]. Then,
CP3 must be replaced by the projective spinor bundle P−(M), cf. Remark 5.5.8. �
Now, by a theorem of Serre [583], [582], any holomorphic vector bundle over a
complex algebraic variety in a projective space is algebraic and, thus, combining the

24Remember that we may identify σ ∗L with L , cf. Remark 6.4.13.

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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results presented above with point 3 of the programme outlined at the beginning,
we obtain that the ADHM construction yields all instantons on S4. Thus, we get the
following fundamental theorem.

Theorem 6.4.18 (Atiyah-Drinfeld-Hitchin-Manin) For a Yang–Mills theory on S4

with gauge group Sp(1), every k-instanton arises from the parameters (λ,B) sat-
isfying conditions (a) and (b). In an asymptotic gauge, using the conformal iden-
tification S4 ∼= H ∪ {∞}, the solution is given by formula (6.4.26) with U defined
by (6.4.25). Gauge equivalent potentials are described by transformations (6.4.20)
fulfilling (6.4.22).

For the full proof we refer to [35], [162], [163] and to [30] for a detailed presentation.

Remark 6.4.19 This classification result generalizes to any classical compact Lie
group, see [164] for details. There, first the group G = O(n) was treated. Then,
the instantons for the groups U(n) and Sp(n) were viewed as O(2n)- and O(4n)-
instantons, respectively, equipped with an additional structure. �

Exercises

6.4.1 Show that for any quaternionic ((k + 1) × k)-matrix D fulfilling D†D = 1k

there exists a matrix Q ∈ Sp(k + 1) such that (6.4.23) holds. Hint. Decompose D
into blocks of dimension (1× k) and (k× k) and B into blocks of dimension (1×1),
(1× k), (k×1) and (k× k) and convince yourself that (6.4.23) fixes the (1× k)- and
the (k×k)-block ofQ. Show thatD†D = 1k guarantees that this fixing is compatible
with the requirement that Q be an element of Sp(k + 1).

6.4.2 Verify the formulae given in Example 6.4.7.

6.4.3 Prove formula (6.4.46).

6.5 The Instanton Moduli Space

In this section, we study the moduli space of all instanton solutions. For a given
principal bundle P(M,G) with instanton number k > 0, it is defined as

Mk := {[ω] ∈ M (P) : ∗Ωω = Ωω} . (6.5.1)

This definition makes sense, because local gauge transformations map (anti-)self-
dual connections to (anti-)self-dual connections, cf. Remark 6.2.8. Correspondingly,
we write M−k for anti-instantons.

In the first part, we present general results holding for any compact, self-dual
oriented Riemannian manifolds M having an additional property to be specified
later. First, we limit our attention to the case of irreducible connections. We will see
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in Chap.8 that the latter constitute an open set in the space of all connections. Next,
we will concentrate on Sp(1)-connections on S4. For that case, the moduli space will
be described in detail. Finally, we will discuss the role of the reducible connections.

First, we wish to find a good candidate for the tangent space of the moduli space.
For that purpose, let p− : ∧2M ⊗ Ad(P) → ∧2

−M ⊗ Ad(P) be the projection with
respect to the decomposition

∧2M = ∧2
+M ⊕∧2

−M.

Lemma 6.5.1 Let ω be a self-dual connection on P. Then, each 1-parameter family
t 
→ ωt of self-dual connections on P, fulfilling ω0 = ω, defines an element of

ker(p− ◦ d1ω) .

Proof Denoting τt = ωt − ω ∈ T , by the Structure Equation, we have

Ωt = Ω + dωτt + 1

2
[τt, τt] ,

and, by the self-duality requirement,

p−(dωτt + 1

2
[τt, τt]) = 0 . (6.5.2)

Differentiating this equation with respect to t at t = 0 and using τ0 = 0 yields
p−(dωτ̇ ) = 0, that is, τ̇ ∈ ker(p− ◦ d1ω). �
Now, by (6.1.28), we conclude that ker(p− ◦ d1ω)/ im(d0ω) is a good candidate for the
tangent space to the moduli space. Thus, for a Yang–Mills theory on the principal
bundle P(M,G) endowed with an irreducible self-dual connection ω, we are led to
consider the sequence defined by the differential operators

d0 := d0ω , d1 := p− ◦ d1ω .

Lemma 6.5.2 The sequence

0 −→ Ω0(M,Ad(P))
d0−→ Ω1(M,Ad(P))

d1−→ Ω2
−(M,Ad(P)) −→ 0 (6.5.3)

is an elliptic complex of first order differential operators.

We denote the elliptic complex (6.5.3) by EYM and call it the Yang–Mills complex.

Proof Since ω is self-dual, using (1.4.12) and (1.5.13), we obtain

d1 ◦ d0 = p− ◦ d1ω ◦ d0ω = p−
(
R∇) = 0 ,

that is, (6.5.3) defines a complex. To prove that it is elliptic, we have to show that its
(reduced) sequence of symbol mappings25

25Cf. Sect. 5.7. Note that Ad(P) is redundant here.

http://dx.doi.org/10.1007/978-94-024-0959-8_8
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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0 −→ R
σ0(ξ)−→ T∗

mM
σ1(ξ)−→ ∧2

−T
∗
mM −→ 0

is exact for all m ∈ M and all ξ ∈ T∗
mM. Here, σ0(ξ)(t) = tξ and σ1(ξ)(α) =

p−(ξ ∧ α). Clearly, σ0 is injective and im σ0 ⊂ ker σ1. We show that, conversely,
ker σ1 ⊂ im σ0. Let ϑ1, . . . , ϑ4 be a basis of T∗

mM such that ϑ1 = ξ and let

α =
∑

i

αi ϑ
i ∈ ker σ1 .

Then, p−(α2 ϑ1 ∧ ϑ2 + α3 ϑ1 ∧ ϑ3 + α4 ϑ1 ∧ ϑ4) = 0. Passing to the basis {ϕ±
i }

defined in Remark 2.8.1, we have

ϑ1 ∧ ϑ2 = 1√
2
(ϕ+

1 + ϕ−
1 ) , ϑ1 ∧ ϑ3 = 1√

2
(ϕ+

2 + ϕ−
2 ) , ϑ1 ∧ ϑ4 = 1√

2
(ϕ+

3 + ϕ−
3 ) ,

where ϕ±
i denote the basis vectors in

∧2
±M, respectively. This yields

α2 ϕ−
1 + α3 ϕ−

2 + α4 ϕ−
3 = 0 ,

that is, α2 = α3 = α4 = 0 and, thus, α = α1ϑ
1. In particular, we obtain

dim(ker σ1) = 1 .

This implies that σ1 is surjective. �
The cohomology groups of the complex (6.5.3) are

H0
ω = ker(d0) , H1

ω = ker(d1)/ im(d0) , H2
ω = Ω2

−(M)/ im(d1) . (6.5.4)

By ellipticity, they are all finite-dimensional. Clearly, the adjoint of d1 coincides with
the restriction of d∗ to Ω2−(M). By ellipticity, each of the Hodge-Laplace operators

�0 = d∗
1 ◦ d0 , �1 = d∗

1 ◦ d1 + d0 ◦ d∗
1 , �2 = d1 ◦ d∗

1 , (6.5.5)

is elliptic and has a finite-dimensional kernel26

H p
ω = {

α ∈ Ωp(M,Ad(P)) : �pα = 0
}

, p = 0, 1, 2 .

Moreover, the Hodge Decomposition Theorem 2.7.2 holds,

Ωp(M,Ad(P)) = H p
ω ⊕ im(dω) ⊕ im(d∗

ω) .

Thus,

26As a consequence of the regularity of solutions to elliptic equations, these spaces remain
unchanged after completing Ωp(M,Ad(P)) with respect to any Sobolev norm.

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
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Hp
ω

∼= H p
ω , p = 0, 1, 2 .

Denote hpω := dim(Hp
ω). Comparing the second equation in (6.5.4) with Lemma

6.5.1, we see that the first cohomology H1
ω should serve as a model for the tangent

space of the moduli space. The basic idea consists now in showing that h0ω = 0 = h2ω.
Then, the Atiyah–Singer Index Theorem 5.8.14 for the complex EYM will provide us
with a formula for h1ω and thus, eventually, for the (virtual) dimension of the moduli
space.

Lemma 6.5.3 For an irreducible self-dual connection ω on a principal bundle
P(M,G) with G being compact and semi-simple, we have

h0ω = 0 .

Proof By Theorem 6.1.5, H0
ω = ker(d0) coincides with the Lie algebra of the stabi-

lizer of ω and, thus, with the Lie algebra of the centralizer of the holonomy group
of ω in g. By the irreducibility assumption, the centralizer of the holonomy group
coincides with the center of G which, by the assumption of semi-simplicity of G, is
finite. Thus, its Lie algebra is zero-dimensional. �

Lemma 6.5.4 Let P(M,G) be a principal bundle with a compact and semi-simple
structure group G over a 4-dimensional self-dual compact Riemannian manifold
with positive scalar curvature. Then, for any irreducible self-dual connection ω on
P, we have

h2ω = 0 .

Proof Since �2 = d1 ◦ d∗
1, we have H

2
ω

∼= ker(d1 ◦ d∗
1). Thus, we have to calculate

d1 ◦ d∗
1 = p− ◦ dω ◦ d∗

ω ◦ ι− ,

where ι− : Ω2−(M,Ad(P)) → Ω2(M,Ad(P)) is the natural inclusion mapping. Let
α ∈ Ω2−(M,Ad(P)). Then, using ∗α = −α and d∗

ω = − ∗ ◦dω ◦ ∗, we obtain

〈dω ◦ d∗
ωα, α〉 = 〈d∗

ωα, d∗
ωα〉 = 〈dωα, dωα〉 = 〈d∗

ω ◦ dωα, α〉 .

Thus,

d1 ◦ d∗
1 = 1

2
p− ◦ �ω ◦ ι− ,

and we may apply the Weitzenboeck Formula (2.7.63),

�ωα = (∇(ω0+ω)
)∗∇(ω0+ω)α + α ◦ (R + Ric ∧ id) + R∇ω

(α) , (6.5.6)

where ω0 is the Levi-Civita connection of M. The last term in (6.5.6) vanishes,
because the curvature endomorphism of a self-dual connection acts trivially on
Ω2−(M,Ad(P)). Thus, it remains to calculate the second term of this sum. This is

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_2
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most easily done in a local orthonormal frame {ei} onM. Using (2.8.26), we obtain:

(
α◦(R + Ric ∧ id)

)
(ei, ej)

= ηklα(ek,R(ei, ej)el) + α(Ric(ei), ej) − α(Ric(ej), ei)

= Rklijα
kl + ηkl(Rliαlk − Rljαki)

= Sc

3
αij + Wklijα

kl ,

where Sc is the scalar curvature ofM andW is the Weyl tensor. SinceM is self-dual,
W− = 0 and, thus, for α ∈ Ω2−(M,Ad(P)),

�ωα = (∇(ω0+ω)
)∗∇(ω0+ω)α + Sc

3
α .

This implies

2
∫

M
〈d1 ◦ d∗

1α, α〉 vg =
∫

M
|∇(ω0+ω)α|2vg +

∫

M

Sc

3
|α|2vg .

Since Sc is positive, we conclude h2ω = dim(ker(d1 ◦ d∗
1)) = 0. �

Now, since h0ω = 0 = h2ω for the type ofmanifolds under consideration, the dimension
h1ω coincides with (minus) the analytical index of the elliptic complex EYM given
by (6.5.3), with Ad(P) replaced by its complexification. Thus, we may apply the
Atiyah–Singer Index Theorem 5.8.14, to calculate the dimension h1ω.

Lemma 6.5.5 The topological index of the elliptic complex EYM is given by

ind(EYM) = −2p1(Ad(P)) + 1

2
dimG(χ(M) − σ(M)) , (6.5.7)

where p1(Ad(P)) is the Pontryagin index ofAd(P) and χ(M) and σ(M) are, respec-
tively, the Euler number and the signature of M.

Proof Our proof is along the lines of [246]. According to (5.7.42) and (5.7.44), it
suffices to compute the index of the assembled complex

Ω0(M,Ad(P)C) ⊕ Ω2
−(M,Ad(P)C)

d0+d∗
1−−−→ Ω1(M,Ad(P)C) , (6.5.8)

which we denote by E. Let τ denote the grading operator (5.7.46) obtained via the
isomorphism Cl(M) ∼= ∧∗T∗M from the chirality operator. Decompose

∧∗T∗
C
M = ∧+

e T
∗M ⊕∧−

e T
∗M ⊕∧+

o T
∗M ⊕∧−

o T
∗M ,

where ± refer to the eigenvalues of τ and e, o refer to even and odd form degree.
This decomposition induces the following complexes:

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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P+
e : Ω+

e (M,Ad(P)C) → Ω−
o (M,Ad(P)C) ,

P+
o : Ω+

o (M,Ad(P)C) → Ω−
e (M,Ad(P)C) ,

denoted by E+
e and E+

o , respectively, and

P−
o : Ω−

o (M,Ad(P)C) → Ω+
e (M,Ad(P)C) ,

P−
e : Ω−

e (M,Ad(P)C) → Ω+
o (M,Ad(P)C) ,

denoted by E−
o and E−

e . Here, P
±
e,o is obtained from dω + d∗

ω by restriction. Note that
the projections

∧1T∗
C
M → ∧+

o T
∗M and

∧0T∗
C
M ⊕∧2

−T
∗
C
M → ∧−

e T
∗M

are isomorphisms which identify the bundles of E with those of E−
e . One can check

that the principal symbols of d0 + d∗
1 and P−

e coincide (Exercise 6.5.2). Thus,

ind(E) = ind(E−
e ) .

Let EdR(M,Ad(P)C) and Esgn(M,Ad(P)C) denote the de Rham complex and the
signature complex, respectively,27 twisted with Ad(P)C. Using

ind(E−
e ) = − ind(E+

o )

and the additivity of the index, we obtain

ind
(
EdR(M,Ad(P)C)

) = ind(E+
e ) + ind(E−

e ) ,

ind
(
Esgn(M,Ad(P)C)

) = ind(E+
e ) + ind(E+

o ) .

Thus,

ind(E−
e ) = 1

2

(
ind

(
EdR(M,Ad(P)C)

)− ind
(
Esgn(M,Ad(P)C)

))
.

Now, the assertion follows from the formulae (5.9.13) and (5.9.17), because in our
case

ch2(Ad(P)C) = −c2(Ad(P)C) = p1(Ad(P)) .

�
Now, the idea will be to write down a local model Cω for the moduli space in the

neighbourhood of a chosen irreducible self-dual connection ω and to prove that it
yields local coordinates on the global moduli space (endowed with the appropriate
topology)

27Cf. Examples 5.7.22 and 5.7.23.

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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M = C +/G (6.5.9)

in the neighbourhood of [ω], cf. (6.5.1). Here, C + is the space of all irreducible self-
dual connections on P. Finally, an atlas on M is constructed using local charts of
this type. From Lemma 6.5.1 we know that H1

ω = ker(d1)/ im(d0) is a candidate for
T[ω]M. Since im(d0) is generated by local gauge transformations, as a local model
near ω we can take ker(d1) and intersect it with a local slice fixing the gauge. An
appropriate choice is d∗

ωτ = 0. Thus, we consider the following subset of T :

Cω := {
τ ∈ T : d1τ + 1

2p−([τ, τ ]) = 0 , d∗
0τ = 0

}
. (6.5.10)

Now, up to some analytical technicalities,28 we will prove the following fundamental
theorem.

Theorem 6.5.6 (Atiyah–Hitchin–Singer) Let P(M,G) be a principal bundle with
a compact and semi-simple structure group G over a 4-dimensional self-dual com-
pact Riemannian manifold with positive scalar curvature. Then, the moduli space of
irreducible self-dual connections on P is either empty29 or a manifold of dimension

dimM = 2p1(Ad(P)) − 1

2
dimG(χ(M) − σ(M)) . (6.5.11)

Proof Let ω be an irreducible self-dual connection on P. In the first step, we prove
that Cω is an h1ω-dimensional manifold with tangent space H1

ω. For that purpose, let
Gp be theGreen’s operators and letHp be the orthogonal projectors onto the harmonic
subspaces H p

ω of the elliptic complex EYM. Then,

Hp + Gp ◦ �p = id , p = 1, 2, 3 ,

with the Hodge-Laplace operators given by (6.5.5). Recall that the Green’s operators
commute with d0 and d1 as well as with their adjoints. By Lemmas 6.5.3 and 6.5.4,
we have h0ω = 0 = h2ω and, thus, H0 = 0 = H2. Consider the following mapping

Φ : Ω1(M,Ad(P)) → Ω1(M,Ad(P)) , Φ(τ) := τ + 1

2
G1 ◦ d∗

1 (p−([τ, τ ])) .

Denoting α = 1
2p−([τ, τ ]) and using H2(α) = 0, we calculate

d1Φ(τ) = d1τ + d1 ◦ G1 ◦ d∗
1α

= d1τ + G2 ◦ d1 ◦ d∗
1α

= d1τ + G2 ◦ �2α

= d1τ + (id−H2)(α)

28For a detailed presentation of the Sobolev-type arguments involved, we refer to Part IV in [83].
29Of course, from the previous sections, we know already that self-dual connections exist.
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= d1τ + 1

2
p−([τ, τ ]) .

Similarly, using d1 ◦ d0 = 0, we get

d∗
0Φ(τ) = d∗

0τ + d∗
0 ◦ G1 ◦ d∗

1α = d∗
0τ + G1 ◦ d∗

0 ◦ d∗
1α = d∗

0τ .

We conclude that Φ(τ) is harmonic iff τ ∈ Cω, that is, Φ maps Cω ontoH 1
ω

∼= H1
ω.

Clearly, the differential of Φ at τ = 0 is the identity. Thus, after an appropriate
Sobolev completion ofΩ1(M,Ad(P)) as discussed in Sect. 6.1, we may extendΦ to
this completion and we may apply the Inverse Function Theorem for Banach space
mappings to conclude that Φ is invertible on C∞-sections and that Φ−1 yields local
coordinates on Cω.

In the next step, we show that a neighbourhood of the origin in Cω contains, up to
local gauge transformations, all self-dual connections which are sufficiently close to
ω, that is, such a neighbourhood yields a local model of the moduli space.30 More
precisely, we will prove that there exists a neighbourhood U of 0 in Ω1(M,Ad(P))

and a neighbourhood W of 0 in Ω0(M,Ad(P)) such that for any τ ∈ U, there exists
a unique X ∈ W fulfilling

d∗
0

(
(ω + τ)(expX) − ω

) = 0 . (6.5.12)

By (6.1.2), we have

(ω + τ)(expX) − ω = d0X + τ + r(X, τ ) ,

where r(tX, tτ) = t2r(X, τ, t) and r(X, τ, t) is locally defined and smooth. Thus,

d∗
0

(
(ω + τ)(expX) − ω

) = d∗
0 ◦ d0X + d∗

0τ + d∗
0r(X, τ ) .

Applying G0 to this quantity and using H0 = 0, we obtain

G0 ◦ d∗
0

(
(ω + τ)(expX) − ω

) = X + G0 ◦ d∗
0τ + G0 ◦ d∗

0r(X, τ ) .

We conclude that (6.5.12) is fulfilled iff

X + G0 ◦ d∗
0τ + G0 ◦ d∗

0r(X, τ ) = 0 . (6.5.13)

Now, we choose neighbourhoods U1 ⊂ Ω1(M,Ad(P)) and W1 ⊂ Ω0(M,Ad(P))

of the origin and consider the mapping

Ψ : U1 × W1 → Ω0(M,Ad(P)) , Ψ (τ,X) := X + G0 ◦ d∗
0τ + G0 ◦ d∗

0r(X, τ ) .

30Thiswill follow fromH0 = 0, that is, in particular, the assumption thatω be irreducible is essential
here.
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Again, by standardSobolev-type arguments,Ψ maybe extended to a suitable Sobolev
completion and the Implicit Function Theorem for Banach spaces may be applied
yielding that, for sufficiently small U and W , for any τ ∈ U there exists a unique
X(τ ) ∈ W such that (6.5.12) holds. From elliptic regularity, one then concludes that
X(τ ) is C∞ if τ is C∞. In particular, if ω + τ is self-dual and sufficiently close to ω,
then there exists a gauge transformation u = expX such that (ω + τ)(u) belongs to
ω +Cω. Moreover, by the uniquess of X(τ ), no two self-dual connections in ω +Cω

sufficiently close to ω can be equivalent under a small gauge transformation.
Finally, we must endow the global moduli space M = C +/G with a manifold

structure. By standard arguments,M is a topological Hausdorff space.We show that,
in a neighbourhood of any [ω] ∈ M, the local model Cω yields a local chart, that
is, for a sufficiently small neighbourhood U ⊂ ω + Cω of the origin, the natural
projection to M is injective. For that purpose, let ω + τ , with τ ∈ U, be another
self-dual connection and assume that it is gauge equivalent to ω under an (arbitrarily
large) gauge transformation u ∈ G . Viewing the latter as a section of End(Ad(P)),
by (6.1.8),

u−1dωu = τ . (6.5.14)

Now, take the component h0 ⊂ End(g) consisting of the endomorphisms invariant
under the natural action31 of G and decompose End(g) = h0 ⊕ h1, where h1 is
the orthogonal complement with respect to the scalar product induced from the
Ad-invariant scalar product on g. Take the corresponding orthogonal direct sum
decomposition End(Ad(P)) = E0 ⊕ E1. It is easy to show (Exercise 6.5.1) that the
irreducibility of ω implies

ker
{
dω : Γ ∞(E1) → Ω1(M,E1)

} = 0 . (6.5.15)

Thus, the smallest eigenvalue λ of the positive self-adjoint elliptic operator

�ω = d∗
ωdω : Γ ∞(E1) → Γ ∞(E1)

is positive and, for any u1 ∈ Γ ∞(E1), we obtain:

‖ dωu1 ‖2= 〈�ωu1, u1〉 ≥ λ ‖ u1 ‖2 .

Inserting the decomposition u = u0 + u1 with respect to the above orthogonal
splitting of End(Ad(P)) into (6.5.14) and using that u, as a section of End(Ad(P)),
is isometric, we obtain

‖ τ ‖2=‖ dωu ‖2≥‖ dωu1 ‖2≥ λ ‖ u1 ‖2 .

31The adjoint representation induces a natural representation T = Ad ⊗ Ad∗ : G → Aut(End(g))
via T(g)(η) := Ad(g) ◦ η ◦ Ad(g−1).
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Up to some further analytical arguments, this shows that, for small enough τ , the
gauge transformation u = u0+u1 will be (uniformly) arbitrarily close to the subspace
Γ ∞(E0). Hence, by definition ofE0, uwill be close to a constantmappingwith values
in the centre of G, the latter belonging to the centralizer of ω.

It remains to show that the transition mappings are smooth. For this purely tech-
nical exercise we refer to [83]. Finally, the dimension formula (6.5.11) follows from
Lemma 6.5.5. �

Example 6.5.7 For M = S4, we have χ(M) = 2 and σ(M) = 0 (Exercise 6.5.3).
Then, (6.5.11) reduces to

dimM = 2p1(Ad(P)) − dimG .

By (4.3.21), for G = SU(2) ∼= Sp(1), we have

p1(Ad(P)) = −4c2(P) = 4k(P) .

Thus, we obtain
dimM = 8k(P) − 3 , (6.5.16)

cf. formula (6.4.24). This number has been found earlier by Schwarz [568] and
Jackiw and Rebbi [343]. It can be easily seen that, using an orientation-reversing
diffeomorphism of S4, one obtains the same statement for k(P) < 0, with k(P)

replaced by −k(P). For a detailed analysis of all the classical groups in this context,
we refer to [37]. �

Next, we study the moduli space of Sp(1)-instantons on S4 with instanton number
k(P) = ±1 in some detail. As already mentioned in Sect. 6.3, it coincides with the
homogeneous space SL(2, H)/Sp(2). Here, we give the proof of this fact. It is enough
to consider one case, say k(P) = −1, the other one being obtained by an orientation-
reversing diffeomorphism of S4. As a first check, comparing with formula (6.5.16),
we have dim(SL(2, H)/Sp(2)) = 5 = 8|k(P)| − 3, indeed.

Lemma 6.5.8 1. Within the isomorphism class of principal Sp(1)-bundles over S4

defined by the instanton number k(P) = −1, the quaternionic Hopf bundle P− is the
unique element admitting a lift of Sp(2) to automorphisms.

2. The canonical connection ω− is the unique Sp(2)-invariant connection on P−.

Proof 1. Denote K = Sp(2), H = Sp(1) × Sp(1) and G = Sp(1). By Remark
1.9.7/1, since K acts transitively on K/H ∼= S4, principal G-bundles over K/H
admitting a lift of K are labeled by Lie group homomorphisms λ : H → G and have
the structure

Pλ = K ×H G .

http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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We claim that λ is surjective. Assume, on the contrary, that it is not. Then, by Corol-
lary 5.3.7 and Proposition 5.1.7 in Part I, the induced Lie algebra homomorphism
dλ : sp(1) ⊕ sp(1) → sp(1) is not surjective. As a consequence, im(dλ) is either
trivial or a u(1)-subalgebra of sp(1). Since Sp(1) × Sp(1) is connected, im(λ) is
trivial or a U(1)-subgroup of Sp(1). Now, clearly, Pλ admits a reduction Q to the
subgroup im(λ). In case im(λ) trivial,Q provides a global section of P. In case im(λ)

a U(1)-subgroup, Theorem 4.8.1 and H2
Z
(S4) = 0 imply that Q is trivial. In either

case, we conclude that P is trivial, which is a contradiction. Thus, λ must be surjec-
tive. But the only surjective homomorphisms from H to G are given by projection
onto the first or second component ofH, respectively. Now, the condition k(P) = −1
selects the projection onto the first component. By Remark 6.3.1/2, Pλ is isomorphic
to P−.

2. Denote the Lie algebras of K ,H and G by k, h and g, respectively, and consider
the reductive decomposition

k = h ⊕ m .

By point 1, we may identify P− with K ×H G. By Remark 1.9.12/4, the K-invariant
connections on K ×H G are classified by H-equivariant mappings Φ̃ : m → g, that
is,

Φ̃ ◦ Ad(h) = Ad(λ(h)) ◦ Φ̃ , h ∈ H .

As noted in this Remark, Φ̃ may be viewed as an operator intertwining the repre-
sentations Ad(H)�m and Ad(λ(H)). Now, decomposing these representations into
irreducible components and using Schur’s Lemma, one may construct all solutions
Φ̃ explicitly. Here, the only solution is Φ̃ = 0, because Ad(H)�m coincides with the
vector representation of SO(4) and Ad(λ(H)) is the adjoint representation of G. We
conclude that on the above bundle we have a unique K-invariant connection form
ω̃. It is given by formula (1.9.41), with Φ̃ = 0. In the terminology introduced in
Remark 1.9.14/2, ω̃ coincides with the canonical connection on K ×H G. Note that
in the present case one may choose representatives in such a way that this formula
reduces to

ω̃p(Z) = (pr1)
′(Ah) .

Now, it is easy to check that ω̃ coincides with the pullback of ω− under the isomor-
phism P− → Sp(2)/λ+(Sp(1) × Sp(1)) given in Remark 6.3.1/2 (Exercise 6.5.4).

�

Theorem 6.5.9 (Atiyah–Hitchin–Singer) The moduli space M−1 of anti-self-dual
connections on P− with instanton number −1 is diffeomorphic to SL(2, H)/Sp(2).

Proof Consider the action Ψ̃ of the conformal covering group C̃0(S4) = SL(2, H)

on P− given by Proposition 6.3.7. By Proposition 6.2.7, C̃0(S4) acts on the space
of (anti-)self-dual connections and thus, by Remark 6.2.8, it acts on M−1. We must
prove that this action is transitive with stabilizer Sp(2).

Let [ω] ∈ M−1 and let K ⊂ SL(2, H) be its stabilizer. Since dim SL(2, H) = 15
and, by (6.5.16), dimM−1 = 5, we have dimK ≥ 10. Let ω ∈ [ω] be a K-invariant
representative. Since ω is anti-self-dual, by (6.2.10),

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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−p1(Ad(P)) = 1

8π2
‖ Ωω ‖2 vg0 .

Thus, ‖ Ωω ‖ is a non-negative function, which is K-invariant and non-vanishing on
a K-invariant open subset U ⊂ S4. This, in turn, defines a K-invariant Riemannian
metric g on U via

g =‖ Ωω ‖ g0

belonging to the conformal class of the standard metric g0. By construction, K acts
on the Riemannian manifold (U, g) by isometries. Now, by Theorem 2.2.18, the
isometry group of an n-dimensional Riemannian manifold has dimension at most
1
2n(n+ 1) and if the dimension is maximal, then the manifold is a space of constant
curvature. This implies dimK ≤ 10. We conclude that dimK = 10 and that g must
be a metric of constant curvature. Since ‖ Ωω ‖ is finite, Theorem 1 in Note 10
of [383]/Part I implies that g must be a metric of positive constant curvature on S4

isometric to g0. That is, there exists an isometry c ∈ C0(S4) such that

Ψ ∗
c g = g0 .

The transformation Ψc lifts to a transformation Ψ̃c̃ , c̃ ∈ SL(2, H) , of P− and we
have c̃−1Kc̃ = Sp(2), because g0 is Sp(2)-invariant. Thus, Ψ̃ ∗

c̃ ω is Sp(2)-invariant
and, by Lemma 6.5.8, it must coincide with the unique Sp(2)-invariant connection
ω− on P−,

Ψ̃ ∗
c̃ ω = ω− .

This shows that SL(2, H) acts transitively on M−1 with stabilizer Sp(2). �

The second part of the above proof is along the lines of [357]. It differs completely
from the original proof in [37]. There, a vanishing argument based on the Weitzen-
boeck formula for the Dirac operator was used. However, the idea to use the theory
of invariant connections was already mentioned in [37].

Remark 6.5.10

1. By Example 5.2.11,32

SL(2, H)/{±1} ∼= SO+(1, 5) , Sp(2)/{±1} ∼= SO(5) . (6.5.17)

Thus, C0(S4) may be identified with SO+(1, 5) and

M−1
∼= SL(2, H)/Sp(2) = SO+(1, 5)/SO(5) .

Recall from point 5 of Example 2.5.27 that the latter homogeneous space is
symmetric andmay be identified with the 5-dimensional hyperbolic hypersurface
H+(1, 5) in (R6, η).

32Recall that Spinr,s = Spins,r , that is, we could also take SO+(5, 1) below.

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_2
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Here, η is the pseudo-Euclidean metric in 6 dimensions, with the signature con-
vention (−,+ . . . ,+). Now, given the parameterization (6.3.21) and viewing x0

as an element z0 ∈ S4 ⊂ R
5 via the stereographic projection mapping ϕs, the

mapping

(0, 1) × S4 → ◦
D5 \ {0} , (λ, z0) 
→ (1 − λ)z0

yields a diffeomorphism ofM−1 onto the punctured open ball inR
5.33 The BPST

anti-instanton is obtained by taking the limit λ → 1, that is, it sits in the centre.
For each pair (λ, z0), in the limit λ → 0, one approaches z0 ∈ S4, that is, the
original manifold S4 may be viewed as the boundary of the open ball thus yielding
its compactification. Note that in this limit, the curvature becomesmore andmore
concentrated at z0. Also note that we have a collar

[0, λ0) × S4 =
{
(1 − λ)z0 ∈ ◦

D5 : λ < λ0

}
∪ S4 , λ0 < 1 .

Wewill see below that this characterization of the moduli space near its boundary
generalizes to any compact, simply connected and oriented 4-manifold satisfying
a certain topological condition.

2. In a series of papers [277], [262], [156], [432], the Riemannian metric of the
moduli spaces M±1 (inherited from the L2-metric on the space of connections)
has been studied. It was shown that this metric is conformally flat, rotationally
invariant and incomplete. The volume defined by this metric is finite.

3. From the proof of Theorem 6.5.9, it should be clear that there is a deep relation
between (anti-)self-dual Yang–Mills connections on S4 and the (anti-)self-dual
parts of the Levi-Civita connection of the standard metric on S4. Indeed, by
Example 1.1.18, the bundle of oriented orthonormal frames O+(S4) coincides
with SO(5) viewed as a principal SO(4)-bundle over S4 and, by Proposition
2.5.10 andRemark 2.5.28, the Levi-Civita connection of the standardRiemannian
metric on S4 coincides with the SO(5)-invariant connection on this bundle. By
Example 5.4.9, the (unique) spin bundle S(S4) coincides with Sp(2) viewed as
a principal (Sp(1) × Sp(1))-bundle over S4. Thus, the spin connection on S(S4)
coincides with the Sp(2)-invariant connection ω0 on Sp(2) defined by (6.3.7).
Now, consider the decomposition

∧2TS4 = ∧2
+TS

4 ⊕∧2
−TS

4

into self-dual and anti-self-dual elements corresponding to the eigenvalues ±1
of the Hodge star operator of g0, cf. (2.8.8). By the discussion in Sect. 2.8, this
is an SO(4)-invariant splitting corresponding to the Lie algebra decomposition

33Clearly, this is the Poincaré model of the hyperbolic 5-space.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
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so(4) = so(3) ⊕ so(3). It induces principal bundle morphisms34 O+(S4) →
O(
∧2

±TS4) onto the principal SO(3)-bundles of (positive and negative) ortho-
normal frames of

∧2
+TS4 and

∧2
−TS4, respectively. Clearly, the unique lifts of

O(
∧2

±TS4) to the Sp(1)-principal spin bundles S(
∧2

±TS4) coincide with the
bundles P± defined by (6.3.2), cf. also Example 5.4.11. Thus, the induced
(anti-)self-dual connections ω± on P± defined by (6.3.8) coincide with the
S(
∧2

±TS4)-components of the spin connection on S4.
This relation generalizes as follows, see Proposition 2.2 in [37]: for any 4-
dimensional manifold endowed with an Einstein metric,35 the induced connec-
tions on the bundles O(

∧2
±TS4) and S(

∧2
±TS4) are (anti-)self-dual. Conversely,

if the induced connections on O(
∧2

+TS4) and S(
∧2

+TS4) are self-dual, then the
metric is Einstein. �

We close this section by discussing how reducible self-dual connections modify the
above picture, leading to a full understanding of the structure of the moduli spaceM
of self-dual SU(2)-connection of instanton number 1 over four-manifolds fulfilling
conditions to be described below. Some points are beyond the scope of this book, so
that we must refer to the original work of Donaldson [157] and to the textbooks of
Freed and Uhlenbeck [213], Lawson [406] and Donaldson and Kronheimer [159].

By Theorem 6.1.5, the stabilizer of a connection is given by the centralizer of
its holonomy group in the structure group. For reducible connections, the holonomy
group is a proper subgroup of the structure group and, thus, in this case we obtain
nontrivial stabilizers leading to a nontrivial stratified structure of the full gauge orbit
space. In this picture, the reducible connections correspond to the singular strata. The
resulting stratification will be discussed in detail in Chap. 8. Here, we are interested
in reducible SU(2)-connections which are self-dual. In that case, by the Ambrose-
Singer Theorem 1.7.15, discrete subgroups give a vanishing curvature andmay there-
fore be excluded. The only proper subgroups giving a non-vanishing curvature are
copies of U(1). Any U(1)-subgroup is conjugate to the standard embedding

H :=
{[

eiϑ 0
0 e−iϑ

]
∈ G : ϑ ∈ R

}
. (6.5.18)

Next, we make the following assumptions on M.

(a) M is simply connected.
(b) The intersection form36 sM of M is positive definite.

Note that we do not assume that M be self-dual. Thus, in general, H2
ω �= 0, cf. the

proof of Lemma 6.5.4. Now, let ω be a reducible connection on P(M,G) and let Ω

34These morphisms are induced from the group homomorphism SO(4) → SO(4)/Z2 = SO(3) ×
SO(3) combined with the canonical projections onto the first and the second SO(3)-component,
respectively.
35See Definition 2.3.12.
36Cf. Definition 5.7.56.

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_8
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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be its curvature. Then, the restriction of Ω to a holonomy bundle P(ω) is a 2-form
with values in the Lie algebra iR of U(1) and, thus, it is given by a 2-form iF onM.
By Theorem 4.6.11, the corresponding de Rham cohomology class

[−(2π)−1F ] ∈ H2
dR(M)

coincides with the first Chern class c1(P(ω)). Moreover, by the Bianchi identity,
we have dF = 0. Now, let us assume that ω is self-dual with instanton number
k(P) = 1. Then,

d∗F = ∗ ◦ d ◦ ∗F = ∗dF = 0 ,

that is,F is harmonic. Conversely, ifF is harmonic, then using (5.7.56) we have

‖F−‖2 = −sM(F−,F−)

and, therefore, assumption (b) impliesF− = 0 showing thatω is self-dual.Moreover,

sM(F ,F ) =
∫

M
F ∧ F

= −1

2

∫

M
tr

([
iF 0
0 −iF

]
∧
[
iF 0
0 −iF

])

= −4π2c1(P)

= 4π2 .

Thus, c1(P(ω)) = [−(2π)−1F ] fulfils

sM(c1(P(ω)), c1(P(ω))) = 1 . (6.5.19)

It is also easily seen (Exercise 6.5.5) that F is the same for any element of the
gauge-equivalence class defined by ω. Note, however, that F is not invariant under
conjugation with elements of the form

[
0 eiϕ

e−iϕ 0

]
∈ G .

Under such a transformation, elements of H given by (6.5.18), are transformed into
their inverses. On the level of the Lie algebra iR, this means that elements are sent
to their negatives. Thus, in particular, F is sent to −F . To summarize, we have
constructed a mapping between gauge-equivalence classes [ω] of reducible self-dual
connections on P and pairs (u,−u) with u ∈ H2

Z
(M) fulfilling sM(u, u) = 1.

Proposition 6.5.11 The assignment [ω] → ±c1(P(ω)) is bijective.

Proof Since, by assumption (a), we have H1
dR(M) = 0, injectivity is an immediate

consequence of Proposition 4.8.1. For the proof of surjectivity, let u ∈ H2
Z
(M)

http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_4
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fulfilling sM(u, u) = 1. We construct a reducible self-dual connection ω such that
c1(P(ω)) = ±u as follows. Let L be a line bundle with c1(L) = u and let L be its
conjugate bundle. Then, endowing L with a Hermitean fibre metric, E := L ⊕ L
becomes a Hermitean vector bundle. Let O(E) be the associated principal U(2)-
bundle of unitary frames. Clearly, O(E) reduces to a principal SU(2)-bundle Q.
Using sM(u, u) = 1, we find

c2(L ⊕ L) = c1(L) ∪ c1(L) = u ∪ (−u) = −1 ,

and, thus, Q is isomorphic to P according to Theorem 4.8.8. Let Q̂ ⊂ Q be the sub-
bundle of unitary frames of L ⊂ E. Then, for any connection ω̂ on Q̂, the associated
1-form F of its curvature fulfils [−(2π)−1F ] = u. Now, by Hodge theory, there
exists a 1-form α on M such that F + dα is harmonic.37 As already stated above,
by assumption (b), to this harmonic 2-form there corresponds a self-dual reducible
connection on P. �

Let 2ν(M)be the number of elementsu ∈ H2
Z
(M) fulfilling sM(u, u) = 1.Then, under

the assumptions of the above proposition, the moduli spaceM contains exactly ν(M)

reducible connections. The structure of the singularities caused by these points have
been analyzed in detail, see e.g. Sect. 4 of [213]. The starting point is the following.
In the case under consideration, the stabilizer Gω of a reducible self-dual connection
ω is isomorphic to S1 and its Lie algebra is the 1-dimensional kernel of

dω : Ω0(M,Ad(P)) → Ω1(M,Ad(P)) .

The latter represents the 0-th cohomology of the elliptic complex (6.5.3). Clearly,
Gω acts on the cohomology groups of this complex, and the complex is equivariant
under this action. Now, as in the proof of Theorem 6.5.6, one can construct local
slices of the form (6.5.10), the only difference being that one must factorize with
respect to the S1-action. Moreover, as already mentioned, in general we now have
H2

ω �= 0. By ellipticity of the complex, the mapping d1 = p− ◦d1ω restricted to a slice
defined by d∗

ωα = 0, α ∈ Ω1(M,Ad(P)), is Fredholm. This is the basic fact which
makes it possible to calculate the first and the second cohomology of the complex,
together with the action of S1, explicitly. One obtains [213]

H1
ω

∼= C
q , H2

ω
∼= C

p ⊕ p−(H2
dR(M)) , (6.5.20)

for some integers p and q. Here, Cq and C
p are endowed with the standard S1-action.

On p−(H2
dR(M)), S1 acts trivially. Moreover, if

p−(H2
dR(M)) = 0 , (6.5.21)

then p + q = 3, the latter following from the Atiyah–Singer Index Theorem.

37Clearly, we have [F + dα] = u.

http://dx.doi.org/10.1007/978-94-024-0959-8_4


524 6 The Yang–Mills Equation

Remark 6.5.12 Recall that the signature of sM is denoted by (b+, b−). Since

sM(α, α) = ‖α+‖2 − ‖α−‖2 ,

p−(H2
dR(M)) is the maximal subspace where sM is negative definite. Thus, the con-

dition (6.5.21) is equivalent to b− = 0, that is, it is equivalent to the condition that
sM be positive definite. �

We conclude that ifH2
ω = 0, there exists a small neighbourhood of ω homeomorphic

to C
3/U(1). The latter may be identified with a cone on CP2.

For H2
ω �= 0, the situation is much more complicated. In this context, the idea of

perturbing the metric of the base manifoldM plays a crucial role. One can prove the
following [213].

(a) The set of Ck-metrics on M for which the irreducible connections in M form a
smooth manifold is open and dense.

(b) For an open and dense set of Ck-metrics, H2
ω vanishes at each singular point in

M.

Remark 6.5.13 By point (b), we see that the above local description of the singular
points in terms of cones on CP2 holds true in the generic case. Moreover, we obtain
a generalization of the dimension formula (6.5.11) of Atiyah, Hitchin and Singer to
the case of arbitrary compact 4-manifolds (for an open and dense set of metrics), cf.
the proof of Theorem 6.5.6 where, originally, Lemma 6.5.4 and, thus, the self-duality
of M was used. �

Next, one shows that the manifold M̂ ⊂ M of irreducible connections is orientable.
Finally, using deep analytic results of Taubes [613] on the existence of self-dual
connections for the class of manifolds of the above type, one can prove that there
exists a collar (0, 1]×M ⊂ M and thatM∪M is a compact manifold with boundary.
To summarize, one has the following fundamental theorem.

Theorem 6.5.14 (Donaldson) Let P be a principal SU(2)-bundle with instanton
number k(P) = 1 over a compact, simply connected, oriented smooth 4-manifold
with positive definite intersection form. Then, the moduli spaceM has the following
structure.

1. Let 2ν(M) be the number of solutions to the equation sM(u, u) = 1. Then, for
almost all metrics on M, there exist ν points p1, . . . , pν(M) in M such that M \
{p1, . . . , pν(M)} is a smooth 5-dimensional oriented manifold. The points pi are in
one-to-one correspondence with gauge equivalence classes of reducible self-dual
connections.

2. Each point pi admits a neighbourhood of M which is homeomorphic to a cone
on CP2.

3. There exists a collar (0, 1] × M ⊂ M and the space M = M ∪ M is a compact
manifold with boundary.
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Fig. 6.3 The moduli space
M of Theorem 6.5.14 for the
case ν(M) = 2

p1 p2

CP2 CP2

M

(0,1]×M

This leads to a modification of the shape of the moduli space described under point
1 of Remark 6.5.10, see Fig. 6.3.

Remark 6.5.15 The assumptions in Donaldson’s Theoremmay be relaxed, see [213]
and [159]. In particular, the assumption that sM be positive definite may be dropped.
Then, it is reasonable to rewrite (6.5.11) as

dimM = 2p1(Ad(P)) − 1

2
dimG(1 − b1 + b−) , (6.5.22)

where b1 is the first Betti number and b− is the second component of the signature
of the intersection form sM . �

Exercises

6.5.1 Prove (6.5.15).

6.5.2 Complete the proof of Lemma 6.5.5 by showing that the principal symbols of
d∗
0 + d1 and P−

e coincide.

6.5.3 Complete the proofs of the statements of Example 6.5.7.

6.5.4 Prove that the invariant connection ω̃ constructed in the proof of Lemma 6.5.8
coincides (under the identification mentioned in this proof) with ω− constructed in
Sect. 6.3.

6.5.5 Prove that the 1-form F on M, representing the curvature of a reducible
connection ω is the same for any element of the gauge-equivalence class defined
by ω.
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6.6 Instantons and Smooth 4-Manifolds

In this section, we show that the results of the previous section have deep implications
on the theory of differentiable structures on compact simply connected 4-manifolds.
We start with recalling some basic topological results without giving proofs. By a
fundamental theoremofWhitehead [665], twocompact simply connected topological
4-manifolds are homotopy equivalent iff their intersection forms are equivalent. Thus,
let M be a compact simply connected 4-manifold. Then, w1(M) = 0 and hence M
is orientable. Let us fix an orientation. If M is not smooth, then the definition of
the intersection form sM given by (5.7.56) has to be generalized as follows. For
u, v ∈ H2

Z
(M), we define

sM(u, v) := (u ∪ v)[M] , (6.6.1)

where ∪ : H2
Z
(M) ⊗ H2

Z
(M) → H4

Z
(M) is the cup-product and [M] ∈ H4(M) is the

fundamental class of M given by the orientation. Clearly, sM is a symmetric non-
degenerate bilinear form on H2

Z
(M). As before, its signature is denoted by (b+, b−),

the difference σ(M) := b+ − b− is called the signature ofM and the rank of H2
Z
(M)

is denoted by b(M).
By Poincaré duality, the elements u and v of H2

Z
(M) may be represented by

cycles μ and ν belonging to H2(M). Under this identification, one assigns to each
intersection point of μ and ν an integer ±1 and sM is the sum of these multiplicities.
This interpretation explains the name of sM . It also shows that sM is unimodular,38

see [406] for further details.

Example 6.6.1

1. Let M = S4. We have H2(S4) = H2
Z
(S4) = 0 and, thus, sM = 0.

2. Let M = S2 × S2. Then, H2(S2 × S2) is generated by u = S2 × {∗} and v =
{∗} × S2, where ∗ denotes a chosen point of S2. Thus, the matrix of sM in the
basis {u, v} of H2(S2 × S2) is given by

σ1 =
[
0 1
1 0

]
.

3. Let M = CP2. Here, the second homology H2(CP2) has one generator. Thus,
the matrix of sM is given by the 1 × 1-matrix with entry 1, which in the present
context is usually denoted by 〈1〉. �

Definition 6.6.2 A unimodular symmetric bilinear form s over Z is called even
(or of type II) if s(u, u) ∈ 2Z for all u ∈ H2

Z
(M). Otherwise, it is called odd

(or of type I).

Equivalently, viewing s as a matrix, it is even if all its diagonal entries are even and
odd otherwise.

38If sM is expressed as a matrix with integer entries, then det(sM ) = ±1.

http://dx.doi.org/10.1007/978-94-024-0959-8_5
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The following facts may be found in [450]. Indefinite unimodular symmetric
bilinear forms s are classified by their rank and signature.

(a) For type I, they are given by

s = 〈1〉 ⊕ . . . ⊕ 〈1〉 ⊕ 〈−1〉 ⊕ . . . ⊕ 〈−1〉 ,

where 〈1〉 and 〈−1〉 denote the two possible 1-forms of rank 1.
(b) For type II, they are given by

s = σ1 ⊕ . . . ⊕ σ1 ⊕ E8 ⊕ . . . ⊕ E8 ,

where

σ1 =
[
0 1
1 0

]
, E8 =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

.

The classification of definite unimodular symmetric bilinear forms over Z is a much
more involved task. In Table2.5 of the book of Lawson [406], the reader can find a
list showing that the number of such forms drastically increases with their rank, e.g.
for rank 40, there are more than 1051 such forms.

Now, by the result of Whitehead cited above, the following questions naturally
arise:

(a) Which unimodular symmetric bilinear forms can appear as intersection forms
of a compact simply connected 4-manifold?

(b) How many inequivalent manifolds carry the same form?

For topological manifolds, these questions have been answered by Freedman [214]
in 1982. The Freedman Theorem states that every unimodular symmetric bilinear
form over Z is the intersection form of a compact simply connected topological 4-
manifold. Given such a form s, in the type II case, this manifold is unique, whereas
in the type I case there are exactly two distinct manifolds corresponding to s.

Now, let us consider differentiable 4-manifolds. Apart from the classical Rohlin
Theorem 5.9.7 stating that, for a compact simply connected39 4-manifold with inter-
section form of type II the signature σ(M) is divisible by 16, up until 1982 not much
was known. At this point, the work of Donaldson presented in the previous section

39If M is simply connected, vanishing of the second Stiefel–Whitney class is equivalent to the
signature being of type II.

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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led to a breakthrough.Wewill show that Theorem 6.5.14 almost immediately implies
the following.40

Theorem 6.6.3 (Donaldson) Let M be a compact simply connected41 oriented dif-
ferentiable 4-manifold whose intersection form sM is positive definite. Then,

sM = 〈1〉 ⊕ . . . ⊕ 〈1〉 . (6.6.2)

Proof By Theorem 6.5.14 and standard cobordism theory, there exists a compact
oriented 5-manifold M0 ⊂ M with boundary

∂ M0 = M + pCP2 + qCP2 , p + q = ν(M) ,

where CP2 denotes CP2 with the opposite orientation. This manifold is obtained
by removing, say M × ( 12 , 1), from the collar and by removing neighbourhoods
from each of the cone points. Since the signature σ(M) is a cobordism invariant, we
conclude σ(M) = q − p. Since the intersection form is positive definite, we have
σ(M) = b(M). Thus,

b(M) = σ(M) = q − p ≤ q + p = ν(M) . (6.6.3)

On the other hand, for any element u ∈ H2
Z
(M) fulfilling sM(u, u) = 1, we may take

the orthogonal decomposition

H2
Z
(M) = Zu ⊕ H2

Z
(M)⊥ ,

given by writing
w = sM(w, u)u + (w − sM(w, u)u) ,

for any w ∈ H2
Z
(M). Thus, for another element v ∈ H2

Z
(M) fulfilling sM(v, v) = 1

and such that v �= ±u, the Schwartz inequality implies (sm(u, v))2 < 1 and thus

sM(u, v) = 0 ,

because sM(u, v) is an integer. This implies v ∈ H2
Z
(M)⊥. By this procedure, we

may exhaust the rank b(M) of H2
Z
(M) iff sM is diagonalizable over the integers.

Consequently, we have
ν(M) ≤ b(M)

40The only additional inputwe need is elementary knowledge of cobordism theory. For our purposes,
the information contained in Appendix B of [213] is sufficient. For a more detailed presentation,
see e.g. [104], Sect. 16 of Chap. II.
41We present the theorem in its original formulation. The assumption of being simply connected
may be dropped, see also the Remark after Theorem 6.5.14.
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and ν(M) = b(M) iff sM has the form given by (6.6.2). Combining this with (6.6.3)
yields the assertion. �

By this theorem, the answer to the questions (a) and (b) posed above is drastically
simplified. All forms differing from (6.6.2) are ruled out. Combining this with the
above mentioned result of Freedman and Example 6.6.1, we obtain the following.

Corollary 6.6.4 LetM be a smooth compact simply-connected oriented 4-manifold.
If sM is positive definite and even, then M is homeomorphic to S4. If sM is positive
definite and odd, then M is homeomorphic to a connected sum of positively oriented
copies of CP2. �

In the following example we sketch a striking consequence of Donaldson theory:
the existence of exotic smooth structures on R

4. For details we refer to [406] and
[253].

Example 6.6.5 (Exotic differentiable structure on R
4) Let us consider the compact

simply connected topological 4-manifold M with intersection form

sM = E8 ⊕ 〈1〉 .

Its existence is guaranteed by the Freedman Theorem. On the other hand, by the
Donaldson Theorem, it does not admit a smooth structure. The idea of the construc-
tion consists in considering M with a point p ∈ M removed. By a result of Gompf
[253], this manifold is smoothable, that is, there exists a neighbourhood U of p inM
such that U \ {p} is diffeomorphic to V \ ϕ(S2), where V is a neighbourhood of the
image of S2 ∼= CP1 under a homeomorphism ϕ in CP2.42

Now, consider the embedding CP1 → CP2 , [(z1, z2)] 
→ [(z1, z2, 0)] . Then,

CP2 \ CP1 → C
2 , [(z1, z2, z3)] 
→ (z1/z3, z2/z3)

is a homeomorphism. Thus, for any homeomorphism ϕ : CP2 → CP2, we have

CP2 \ ϕ(CP1) ∼= ϕ(CP2 \ CP1) ∼= C
2 ∼= R

4 ,

that is, CP2 \ ϕ(CP1) is homeomorphic to R
4. But, R̃

4 = CP2 \ ϕ(CP1) cannot
be diffeomorphic to the ordinary R

4. This follows from the fact that R̃
4 contains

a compact subset which cannot be enclosed by a smoothly embedded 3-sphere.43

Indeed, choose an open neighbourhood Ũ of ϕ(S2) and assume that the compact
subset K = R̃

4 \ (Ũ \ ϕ(S2)
)
can be enclosed by a smoothly embedded S3 ⊂(

Ũ \ ϕ(S2)
)
. Then, we could cut along S3 and attach a 4-disk. This would give a

42In such a situation, we say that p is resolvable. By a general theorem of Quinn [527], for any
compact topological 4-manifoldM whose Kirby-Siebenmann invariant is zero, the following holds:
M has a smooth structure defined outside a finite set of singular points such that each of these points
is resolvable. The manifold considered in the example fulfils the assumptions of this theorem.
43In the ordinary R

4, any compact set can be enclosed by a smoothly embedded 3-sphere.
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smoothing ofM which, by the Donaldson Theorem, is impossible. For details of this
surgery we refer to [406], [213]. �

For further examples and a lot of further references, we refer to the textbooks [574]
and [28]. Clearly, these exotic structures are only part of a huge field of research
initiated by Donaldson. In particular, Donaldson has constructed a set of new differ-
ential topological invariants, now called Donaldson invariants, of 4-manifolds, see
[159], [574] and [28]. These invariants may be used to distinguish between the dif-
feomorphism types of certain 4-manifolds, e.g. they allowed for showing that there
exist compact 4-manifolds with infinitely many non-equivalent smooth structures.

6.7 Stability

For the discussion of stability of solutions of the Yang–Mills equation we must find
the second variational formula for the Yang–Mills functional (6.2.1) at a critical
point. Thus, let ω be a critical point. As in Sect. 6.2, we consider t 
→ ωt = ω + tα
with α ∈ TωC = T and calculate the second variation by expanding S(ωt) up to
second order. Using

Ωt = Ω + tdωα + t2

2
[α, α] , (6.7.1)

we get

S(ωt) = S(ω) + t〈Ω, dωα〉L2 + t2

2
(〈Ω, [α, α]〉L2 + 〈dωα, dωα〉L2) ,

and thus
d2

dt2 �0
S(ωt) = 〈[α, α],Ω〉L2 + 〈dωα, dωα〉L2 .

By definition of the adjoint, the second term may be rewritten as

〈dωα, dωα〉L2 = 〈α, d∗
ωdωα〉L2 .

To calculate the first term, we decompose α and Ω in a local coframe {ϑ i} in T∗M
and use the Ad-invariance of the scalar product. Then, by (2.7.49),

[α, α] .∧ ∗ Ω = ηikηjl〈[αi, αj],Ωkl〉vg
= ηjl〈αj, η

ik[Ωkl, αi]〉vg
= α

.∧ ∗ R∇ω

(α) ,

where
R∇ω

(α) = ηik[Ωkl, αi]ϑ l (6.7.2)

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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is the Weitzenboeck curvature operator for the case σ = Ad acting on 1-forms, cf.
Definition 2.7.10. Thus, the Hessian at ω of the Yang–Mills functional S is given by

Hω = d∗
ωdω + R∇ω

. (6.7.3)

This is the basic object for the study of stability. Clearly, by gauge invariance of the
Yang–Mills action, the variational problem we are dealing with may be viewed as
a problem on the gauge orbit space M . Thus, in a first step we should get rid of
variations along the gauge orbits. This is done by using the decomposition (6.1.28),
with the first component representing the subspace tangent to the orbit and the sec-
ond being a model of the tangent space to the gauge orbit space at [ω]. Thus, by
gauge invariance of the Yang–Mills functional, we may restrict the above variational
problem to the subspace of variations fulfilling

d∗
ωα = 0 .

If we do so, the Hessian (6.7.3) may be rewritten as

Hω = �ω + R∇ω

. (6.7.4)

This objectmay nowbe investigated using standard geometricmethods. In this analy-
sis, the crucial role is played by the Generalized Weitzenboeck Formula (2.7.61).
Applying point 1 of Corollary 2.7.21 to the case E = Ad(P), we obtain

Hω(α) = (∇(ω0+ω)
)∗∇(ω0+ω)α + α ◦ Ric + 2R∇ω

(α) , (6.7.5)

for any α ∈ Ω1(M,Ad(P)) fulfilling d∗
ωα = 0.

Definition 6.7.1 A Yang–Mills connection ω is said to be stable if

〈α,Hω(α)〉L2 > 0

for all nonzero α ∈ ker d∗
ω ⊂ Ω1(M,Ad(P)). It is said to be weakly stable if

〈α,Hω(α)〉L2 ≥ 0.

Remark 6.7.2 By the results of Chap.5, the operator Hω is elliptic and self-adjoint.
Morever, the Bochner-Laplace operator

(∇(ω0+ω)
)∗∇(ω0+ω) is obviously non-

negative. Thus, the restriction of Hω to ker d∗
ω, has eigenvalues λ1 < λ2 < . . . such

that limn→∞ λn → ∞ and the corresponding eigenspaces Eλi are finite-dimensional.
One defines the index i(ω) and the nullity n(ω) of ω by

i(ω) := dim (⊕λ<0Eλ) , n(ω) := dim E0 .

In this Morse theoretic terminology, a solution ω is stable iff i(ω) = n(ω) = 0.
Correspondingly, a solution is weakly stable iff i(ω) = 0. �

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
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For the study of stability, we follow the classical paper of Bourguignon and Law-
son [95]. To start with, we need the following observations. First, recall the notion of
the gradient grad f = g−1(df ) of a function f ∈ C∞(M). A vector field X ∈ X(M)

is said to be of gradient type if
d(g(X)) = 0 .

Clearly, this condition implies that, locally, there exists a function f such that X =
grad f , that is, g(X) = df . This explains the terminology.

Lemma 6.7.3 Let X ∈ X(M) be of gradient type and let β ∈ Ω2(M,Ad(P)) be
such that d∗

ωβ = 0. Then,
d∗

ω(X�β) = 0 .

Proof Setting β = ∗α in (2.7.9) and using (2.7.3), we obtain X�β = ∗(∗β ∧ g(X)).
Now, using (2.7.13), (2.7.3), (1.5.9) and once again (2.7.9), we calculate

d∗
ω(X�β) = (−1)n ∗ dω(∗β ∧ g(X))

= (−1)n ∗ (dω(∗β) ∧ g(X) + (−1)(n−2)(∗β) ∧ d(g(X))
)

= 0 .

�

Now, let us focus on the caseM = Sn. We consider the following finite-dimensional
subspace of X(Sn):

V := {
grad f ∈ X(Sn) : f = F�Sn for some linear F : R

n+1 → R

}
. (6.7.6)

Note that we have a natural isomorphism

R
n+1 → V , v 
→ V (x) := v − 〈v, x〉x , x ∈ Sn . (6.7.7)

It is easy to see (Exercise 6.7.1) that

V = grad f , where f (x) = 〈v, x〉 . (6.7.8)

Given a submanifoldM ⊂ R
k , the orthogonal projectorP onto TM along the orthog-

onal complement of TM in R
k defines a connection ∇0 on M called the induced

Euclidean connection, cf. formula (6.4.13). It can be shown that ∇0 coincides with
the covariant derivative ∇ω0

of the Levi-Civita connection defined by the natural
induced Riemannian metric onM. We apply this concept to the case of Sn ⊂ R

n+1.

Lemma 6.7.4 Let ∇0 be the induced Euclidean connection on Sn. For any V ∈ V ,

∇0
Y V = −fY , (∇0)∗∇0V = V , (6.7.9)

where Y ∈ X(Sn).

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_2
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Proof To prove the first equation, for Y ∈ TxSn, we calculate

(∇0
Y V
)
(x) = P ◦ ∇Y (v − 〈v, x〉x) = P(−〈v, x〉Y) = −f (x)Y .

To prove the second equation, we choose an orthonormal frame {e1, . . . , en} on a
neighbourhood of x ∈ Sn and use formula (2.7.31). Then,

(∇0)∗∇0V = −
∑

i

(∇0
ei∇0

ei − ∇0
∇0

ei
ei

)
V = −

∑

i

∇0
ei

(
P ◦ ∇ei V

)
.

Thus, using the first equation, we get

(∇0)∗∇0V = −
∑

i

P ◦ ∇ei
(− f ei

) =
∑

i

P
(
ei(f )ei

) =
∑

i

P
(〈v, ei〉ei

) = P(v) = V .

�

For the study of stability, the following family of quadratic forms on V will be
crucial. For any β ∈ Ω2(M,Ad(P)), we put

Qβ(V ) := 〈iVβ,Hω(iVβ)〉L2 . (6.7.10)

Proposition 6.7.5 (Bourguignon–Lawson) Let P be a principal G-bundle over Sn

and let ω be a Yang–Mills connection. Let β ∈ Ω2(M,Ad(P)) be harmonic, that is,

d∗
ωβ = 0 , dωβ = 0 .

Then, the trace of the quadratic form Qβ is given by

tr(Qβ) = 2(4 − n)‖β‖2 .

Proof For simplicity, in this proof we write ∇ for ∇(ω0+ω) and ∇0 for ∇ω0
.

By Lemma 6.7.3, we have d∗
ω(iVβ) = 0 for any V ∈ V . Thus, the Hessian acting

on iVβ is given by formula (6.7.5),

Hω(iVβ) = ∇∗∇(iVβ) + iVβ ◦ Ric + 2R∇ω

(iVβ) . (6.7.11)

First, we calculate Hω(iVβ) at a point x ∈ Sn. For that purpose, we choose an
orthonormal basis {ε0, . . . , εn} of V such that
(a) under the isomorphism (6.7.7), ε0, ε1, . . . , εn correspond to x, e1, . . . , en, where
e1, . . . , en form an orthonormal basis of TxSn. Then,

ε0(x) = 0 , ε1(x) = e1 , . . . , εn(x) = en .

(b) the vector fields ε1, . . . , εn are parallel at x,

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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∇0εj(x) = 0 , j = 1, . . . , n .

Now, using (2.7.31), for any vector field X we calculate at x:

(∇∗∇(iVβ)
)
(X) = −

∑

j

(∇εj∇εj (iVβ) − ∇∇εj εj
(iVβ)

)
(X)

= −
∑

j

(∇εj∇εj (iVβ)
)
(X)

= −
∑

j

∇εj

{
∇εj

(
(iVβ)(X)

)− (iVβ)
(∇0

εj
X
)}

= −
∑

j

∇εj

{(∇εjβ
)
(V,X) + β(∇0

εj
V,X)

}
.

Wemay choose X = ∑
j ajεj with constant coefficients aj. Then,∇0

εj
X = 0 and, thus,

(∇∗∇(iVβ)
)
(X)

= −
∑

j

(∇εj∇εjβ
)
(V,X) − 2

∑

j

(∇εjβ
)(∇0

εj
V,X

)− β
(∑

j

∇0
εj
∇0

εj
V,X

)

= (∇∗∇β
)
(V,X) − 2

∑

j

(∇εjβ
)(∇0

εj
V,X

)+ β
(∇0∗∇0V,X

)
.

By (2.7.25), d∗
ωβ(X) = 0 means

∑
j(∇εjβ)(εj,X) = 0. Thus, using the first equation

of (6.7.9), we have

∑

j

(∇εjβ)(∇0
εj
V,X) = −

∑

j

(∇εjβ)(f εj,X) = 0 .

Together with the second equation of (6.7.9), this implies

(∇∗∇(iVβ)
)
(X) = (∇∗∇β

)
(V,X) + β(V,X) .

Inserting this result into (6.7.11), using Example 2.7.13 and formula (6.7.2), we
obtain at x:

Hω(iVβ) = (∇∗∇β)(V, ·) + nβ(V, ·) + 2
n∑

i=1

[Ω(ei, ·), β(V, ei)] . (6.7.12)

Finally, we apply the Generalized Weitzenboeck Formula (2.7.61) to the 2-form β.
Using (2.7.45) and �ωβ = 0, we obtain

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
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(∇∗∇β)(V, ·) = −2(n − 2)β(V, ·) −
n∑

i=1

{[Ω(ei, V ), β(ei, ·)] − [Ω(ei, ·), β(ei, V )]} ,

and thus, at x we have

Hω(iVβ) = (4 − n)
(
iVβ

)−
n∑

i=1

{[Ω(ei, V ), β(ei, ·)] + [Ω(ei, ·), β(ei, V )]} .

(6.7.13)
Now, we can calculate

tr
(
Qβ

) =
n∑

j=0

〈iεjβ,Hω(iεjβ)〉L2

= 2(4 − n)
n∑

j<k

∫

Sn
〈β(ej, ek), β(ej, ek)〉gvg

= 2(4 − n)‖β‖2 ,

because the second term in (6.7.13) results in taking the contraction of a symmetric
2-form with an anti-symmetric one. �

Note that harmonic elements ofΩ2(M,Ad(P)) certainly exist, e.g. for β we can take
the curvature form of ω. Thus, as an immediate consequence of this proposition, we
obtain the following.44

Corollary 6.7.6 There are noweakly stable Yang–Mills connections onSn for n ≥ 5.
�

Theorem 6.7.7 (Bourguignon–Lawson) Any weakly stable Yang–Mills connection
on S4 with gauge group SU(2), SU(3) or U(2) is either self-dual or anti-self-dual.

Proof Assume that ω is a weakly stable solution. Then, 〈α,Hω(α)〉L2 ≥ 0 for any
nonzero α ∈ ker d∗

ω ⊂ Ω1(M,Ad(P)). Thus,

Qβ(V ) = 〈iVβ,Hω(iVβ)〉L2 ≥ 0 ,

for any V ∈ V and any β ∈ Ω2(M,Ad(P)) fulfilling d∗
ωβ = 0. Now, by Proposition

(6.7.5), for n = 4 we have tr
(
Qβ

) = 0 and thus

Hω(iVβ) = 0 , (6.7.14)

for any V ∈ V and any harmonic β ∈ Ω2(M,Ad(P)). Next, consider the curvature
form Ω of ω. Since ω is a Yang–Mills connection, Ω is harmonic and thus fulfils
(6.7.14). Let us decompose Ω into its self-dual and anti-self-dual components,

44The authors of [95] assign this result to J. Simons.
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Ω = Ω+ + Ω− .

It is almost immediate (Exercise 6.7.2) that, on a compact oriented 4-manifold, a
vector-valued 2-form is harmonic iff its self-dual and anti-self-dual components are
both harmonic. Thus,

Hω(iVΩ±) = 0 .

Consequently, using (6.7.12), we obtain

(∇∗∇Ω+)(V, ·) + 4Ω+(V, ·) + 2
4∑

i=1

[Ω+(ei, ·) + Ω−(ei, ·),Ω+(V, ei)] = 0 .

By linearity in V , we may substitute for V any of the frame elements εi and then
take arbitrary linear combinations of the resulting equations. This yields

(∇∗∇Ω+)(X,Y) + 4Ω+(X,Y) + 2
4∑

i=1

[Ω+(ei,X),Ω+(ei,Y)]

= −2
4∑

j=1

[Ω+(ei,X),Ω−(ei,Y)] , (6.7.15)

for any X,Y ∈ TxS4. Clearly, the left hand side of this equation is anti-symmetric
in X and Y . On the other hand, the right hand side is symmetric. This can be easily
checked by direct inspection using the bases {ϕi±} of ∧2

±T∗M given under point 1
of Remark 2.8.1.45 Thus, both sides of (6.7.15) must vanish. Using this fact, again
by direct inspection using the bases {ϕi±}, one finds (Exercise 6.7.3)

[Ω+(X,Y),Ω−(Z,W )] = 0 , X,Y ,Z,W ∈ TxS
4 . (6.7.16)

We conclude that the Lie subalgebras g±
x of g generated by the curvature transfor-

mations Ω±(X,Y), where X,Y ∈ TxS4, commute,

[g+
x , g−

x ] = 0 .

Now, by direct inspection of the table giving the classification of regular semisimple
Lie subalgebras of a semisimple Lie algebra,46 we see that if g = su(2), su(3) or
u(2), then either g+

x or g−
x must be Abelian. Therefore, one of the 4-tensors T±,

defined by

T±(X,Y ,Z,W ) := [Ω±(X,Y),Ω±(Z,W )] , X,Y ,Z,W ∈ TxS
4 ,

45In more abstract terms, this fact is an immediate consequence of the isomorphism (2.8.11).
46See [170], Sect.II.5, no17.

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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must vanish at x and, thus, also in a neighbourhoodU ⊂ S4 of x. Assume that T+ = 0
on U. Then, by the Aronszajn Theorem [21], since T+ is an algebraic function of a
solution of the elliptic equation �ωΩ+ = 0, it admits a unique continuation to the
whole of S4, that is, T+ = 0 on S4. Then, (6.7.15) implies

∇∗∇Ω+ + 4Ω+ = 0 .

Since ∇∗∇ ≥ 0, we conclude Ω+ = 0. If T− vanishes, an analogous argument
yields Ω− = 0. �

Remark 6.7.8

1. In [95], the reader can find various extensions of Theorem 6.7.7. First, the case of
a real 4-dimensional Riemannian vector bundle E over a Riemannian 4-manifold
M with structure group G = SO(4) is dealt with in detail. In that case, there
are two independent characteristic invariants (the first Pontryagin index and the
Euler number). This makes the analysis more delicate, but a similar result can
be proved, see Theorem 8.11 therein. In more detail, the splittings of

∧2TM and∧2E induced by the Hodge star operator yield a two-fold decomposition of the
Riemannian curvature form and, consequently, the stability conditions are spelled
out in terms of what is called by the authors a two-fold self-duality. This notion
seems to be a reasonable generalization of (anti-)self-duality for the nonsimple
group SO(4). The simplest example of this type is the tangent bundle of S4.
Here, the first Pontryagin index vanishes, the Euler number is equal to 2 and the
(two-fold self-dual, but not self-dual) Levi-Civita connection yields an absolute
minimum. Second, it is quite straightforward to generalize Theorem 6.7.7 to the
case of a 4-dimensional compact orientable homogeneous Riemannian manifold.
Then, for the gauge group SU(2), any weakly stable Yang–Mills connection
is either self-dual, or anti-self-dual, or reduces to an Abelian gauge field, see
Theorem 10.1 in [95]. Similar results hold for U(2), SU(3) and SO(4), see [96].

2. We stress that [95] contains another interesting type of results. Using again
Weitzenboeck type arguments, Bourguignon and Lawson prove the existence of
C0-neighbourhoods of theminimalYang–Mills connectionswhich do not contain
any other solution. �

Exercises

6.7.1 Prove formula (6.7.8).

6.7.2 Prove that, on a compact oriented 4-manifold, a (vector-valued) 2-form β is
harmonic iff its components β+ and β− are both harmonic.

6.7.3 Prove formula (6.7.16).
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6.8 Non-minimal Solutions

In view of the results of the previous section, it is natural to ask whether there exist
critical points of the Yang–Mills functional other than absolute or relative minima.
It is interesting to address this question, in particular, in the case of bundles over
S4 with structure groups SU(2), SU(3) and U(2). This problem is closely related
to the question whether there exist non-(anti-)self-dual solutions on 4-dimensional
Riemannian manifolds. In this section, we make some remarks on these problems. In
the study of non-minimal solutions, two ingredients play a basic role: first, the theory
of invariant connections as developed in Sect. 1.9 and, second, advanced methods
of the calculus of variations as developed by Taubes [613–616, 618]. The latter are
beyond the scope of this book.

We start with the following observation [339].

Proposition 6.8.1 (Itoh) LetM = K/H be a compact oriented Riemannian symmet-
ric space and let P be a principal G-bundle admitting a lift of K to automorphisms
of P. Then, the curvature of the canonical invariant connection47 on P is parallel
and, thus, the canonical invariant connection provides a Yang–Mills connection.

Proof By Remark 1.9.7/1, principal G-bundles over K/H admitting a lift of K are
labeled by Lie group homomorphisms λ : H → G and have the structure

Pλ = K ×H G .

We denote the lift of the K-action on K/H to Pλ by Δ. Let ωc be the canonical
connection on Pλ, cf. Eq. (1.9.43), and let Ωc be its curvature form. We will prove
that

∇(ωo+ωc)Ωc = 0 .

Then, the assertion will follow from (2.7.58).
Let k and h be the Lie algebras of K and H, respectively, and let k = h ⊕ m be

the canonical decomposition defined by the symmetric space structure ofM. For any
A ∈ m, let ϕA

t = exp(tA) and let ΦA
t denote the flow of the Killing vector field A∗ on

Pλ generated by A via the K-action. This means

ΦA
t (p) = Δexp(tA)(p) , (A∗)p = Δ′

p(A) ,

for any p ∈ Pλ. Fix a point p0 ∈ Pλ in the fibre over [1K ] ∈ M. Then, by (1.9.43),
the integral curve ΦA

t (p0) through p0 is horizontal with respect to ωc. Consequently,
the corresponding curve

t 
→ α(t) := [(ΦA
t (p0),B)] , B ∈ g , (6.8.1)

47See Remark 1.9.14/2.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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through [(p0,B)] ∈ Ad(Pλ) is parallel with respect to the induced connection along
the curve t 
→ γ (t) = ϕA

t ([1K ]) through [1K ] ∈ M.
Since M is symmetric, the Levi-Civita connection ω0 of the symmetric space

is also canonical, see Proposition 2.5.10. Thus, the same arguments apply: taking
the canonical lift of the K-action to the frame bundle L(M) and viewing TM as a
bundle associated with L(M), for any frame e0 at [1K ] and any X ∈ T[1K ]M ∼= m,
we consider the curve48

t 
→ X̃(t) := [(ϕ̃A
t (e0), ι

−1
e0 (X))] (6.8.2)

in TM running throughX. Here, t 
→ ϕ̃A
t (e0) is the unique integral curve of theKilling

vector field on L(M), generated by A, through e0 ∈ L(M). Again, by (1.9.43), X̃ is
parallel along γ with respect to ω0.

Now, for X,Y ∈ T[1K ]M, using the parallel extension along γ given by (6.8.2),
we calculate at t = 0:

(∇(ω0+ωc)
γ̇ Ωc

)
(X̃, Ỹ) = ∇(ω0+ωc)

γ̇

(
Ωc(X̃, Ỹ)

)
− Ωc

(∇ω0

γ̇ X̃, Ỹ
)− Ωc

(
X̃,∇ω0

γ̇ Ỹ
)

= ∇(ω0+ωc)
γ̇

(
Ωc(X̃, Ỹ)

)
.

Finally, using the K-invariance of Ωc, we show that ∇(ω0+ωc)
γ̇

(
Ωc(X̃, Ỹ)

)
= 0. For

that purpose, we denote the curvature form viewed as a 2-form on Pλ by Ω̃c and use
the fact that horizontal lifts of tangent vectors from M to Pλ are given by Killing
vectors of the K-action Δ,

Xh
p = Δ′

p(X) , X ∈ m ∼= T[1K ]M .

Now, by the obvious identity

Δ′
ΦA

t (p0)
(X) = (

ΦA
t

)′(
Xh
p0

)

and by K-invariance of Ω̃c, we have

Ωc
γ (t)(X̃(t), Ỹ(t)) = [(

ΦA
t (p0), Ω̃

c
ΦA

t (p0)

(
Δ′

ΦA
t (p0)

(X),Δ′
ΦA

t (p0)
(Y)
))]

= [(
ΦA

t (p0),
((

ΦA
t

)∗
Ω̃c
)
p0

(
Xh,Yh

))]

= [(
ΦA

t (p0), Ω̃
c
p0

(
Xh,Yh

))]
,

showing that the curve t 
→ Ωc
γ (t)(X̃(t), Ỹ(t)) is parallel in Ad(Pλ) along γ . Conse-

quently, its covariant derivative along γ vanishes. �

48For the notation, see Remark 1.2.3.

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Clearly, this proposition yields a large class of solutions and wemay ask whether this
class contains non-minimal solutions. To discuss this issue, recall that by Remark
1.9.14, the curvature of the canonical connection is given by

Ωc(X,Y) = −λ′([X,Y ]) , X,Y ∈ m . (6.8.3)

Now, letΛ ∈ HomH(m, g). By (1.9.41), it defines a 1-form α ∈ Ω1(M,Ad(Pλ)). By
a similar argument as in the proof of Proposition 6.8.1, one shows that α is parallel.
Thus,

d∗
ωα = 0 , dωα = 0 , (6.8.4)

and we may take α as a variation of ωc. Thus, we consider ω t = ωc + tα, which by
construction is K-invariant for every t. Consequently, Ωωt is K-invariant, too.

Proposition 6.8.2 (Itoh) LetM = K/H be a compact oriented Riemannian symmet-
ric space and let Pλ be a principal G-bundle admitting a lift of K to automorphisms
of Pλ. Assume

dim
(
HomH(m, g)

) ≥ 1 .

Then, the canonical K-invariant connection ωc on Pλ is not weakly stable.

Proof We choose an orthonormal basis e1, . . . , en in m and denote the induced dual
coframe onM by ϑ1, . . . , ϑn. Using (6.7.3), (6.7.2), (6.8.3), (6.8.4) and (1.9.40), we
calculate

〈α,Hω(α)〉L2 = 〈α,R∇ωc

(α)〉L2

=
∑

i

〈α(el)ϑ
l, [Ωc(ei, ek), α(ei)]ϑk〉L2

= −
∑

i,k

∫

M
〈Λ(ek), [λ′([ei, ek]),Λ(ei)]〉L2vg

=
∑

i,k

〈Λ(ek),Λ
([ei, [ei, ek]]

)〉L2vol(M)

= − 1
2

∑

i

‖Λ(ei)‖2g vol(M) .

The last step is a straightforward calculation using the commutation relations of a
symmetric space (Exercise 6.8.2).49 The minus sign comes from the fact that the
Cartan-Killing tensor is negative definite for any semisimple Lie algebra. Thus, for
any Λ �= 0, we have a negative definite Hessian on directions generated by Λ. �

In particular, let us consider the canonical connection ωc on Pλ for the case where
G is a compact simple Lie group and

49Note that, for a symmetric space,
∑

i[ei, [ei, ·]] coincides with the second Casimir operator of
ad(h)�m .

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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M = S4 ∼= Sp(2)/(Sp(1) × Sp(1)) ,

where Sp(1) × Sp(1) is embedded block-diagonally50 and λ : Sp(1) × Sp(1) → G.
In the notation above, we have K = Sp(2) and H = Sp(1) × Sp(1). Using formula
(6.8.3), it is easy to analyze (anti-)self-duality of the curvature formΩc and, by direct
inspection of the conditions on Ωc obtained this way, one finds (Exercise 6.8.1):

Lemma 6.8.3 The induced homomorphism λ′ : sp(1) × sp(1) → g is injective iff
the canonical connection ωc is not (anti-)self-dual. �

Since for g = su(2) or g = su(3) the homomorphisms λ′ cannot be injective,
in this case, the canonical connection is (anti-)self-dual. On the contrary, by direct
inspection of the table giving the classification of regular semisimple Lie subalgebras
of a semisimple Lie algebra,51 if g = sp(2) or G2 or such that rank(g) ≥ 3, then
injective homomorphisms λ′ exist, that is, in these cases we have solutions to the
Yang–Mills equation which are not (anti-)self-dual. A simple example of this type
is provided by the Sp(2)-invariant sp(1) × sp(1)-valued connection ω0 defined by
(6.3.7).52 Combining these observations with Proposition 6.8.2, we find a large class
of non-minimal Yang–Mills connections on S4 which are not (anti-)self-dual. In
[339], the reader can also find a similar analysis for M = CP2. In [402] and [384],
this line of research has been continued. In particular, for the special case of principal
H-bundles K → K/H with K/H being a compact symmetric space, in [402] the
index and the nullity of the canonical connection has been listed for every compact
simple K . Moreover, it has been shown there how to analyze the case of an arbitrary
homogeneous space, see also [503].

Special attention has been paid to the case of cohomogeneity one,53 see [638],
[88], [504], [549–551] and [44]. Here, the Yang–Mills equation reduces to a system
of ordinary second order differential equations for the coefficient functions of the
invariant connection on a one-dimensional space. Correspondingly, the self-duality
condition is expressed in terms of a first order system. Clearly, in general, there will
be nongeneric orbit types giving rise to boundary conditions for the solutions. Now, in
each class of invariant connections, one looks for solutions of this systemof equations
corresponding tominima of the reduced action. The principle of symmetric criticality
[501] ensures that these minima correspond to stationary points of the Yang–Mills
action in the space of all connections. Thus, in this way one finds solutions of the
Yang–Mills equation. Subsequently, one may investigate whether they are minimal
or not. Much attention has been paid to the following model class.

Example 6.8.4 (Bor-Montgomery, Sadun–Segert) Let V be the 5-dimensional space
of real, symmetric and traceless 3 × 3 matrices endowed with the inner product
given by

50Cf. Sect. 6.3 for details.
51Cf. the proof of Theorem 6.7.7.
52In sharp contrast, the induced connections ω± given by (6.3.8) are (anti-)self-dual.
53The cohomogeneity of a G-action is the dimension of the orbit space.
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〈Q1,Q2〉 := 1

2
tr(Q1Q2〉 .

Clearly, SO(3) acts orthogonally on V by conjugation.54 Identifiying V with R
5

and restricting this action to S4 ⊂ R
5 yields an action of SO(3) and, thus, also an

action of Sp(1) on S4. It is easy to see (Exercise 6.8.3) that this action has two orbit
types; the principal orbits are 3-dimensional and there are two nongeneric orbits
both isomorphic to the real 2-dimensional projective space. The orbit space may be
identified with a line segment on S4

I =
{
Qθ = cos θQ0 + sin θQ3 : 0 ≤ θ ≤ π

3

}
, (6.8.5)

where Q0 and Q3 are basis elements in the subspace of diagonal matrices. Now, for
any gauge group G, one may classify G-bundles over S4 admitting a lift of the above
SO(3)-action and, subsequently, one may classify the SO(3)-invariant connections
on such bundles. If we first limit our attention to the interior of I , then we are in the
situation described in Remark 1.9.9 and Corollary 1.9.15. Next, we have to extend
the classifying objects obtained this way by implementing appropriate smoothness
conditions on the boundary of I . This has been explained in detail in [638]. For the
case G = Sp(1), bundles admitting lifts are classified by pairs (n+, n−) of integers
fulfilling n± = 1 modulo 4.55 These numbers label the admissible boundary values
of the classifying homomorphisms λθ . It is easy to calculate the second Chern index
of a bundle characterized by (n+, n−). One obtains

c(n+,n−) = n2+ − n2−
8

.

For the case G = Sp(1), Sadun and Segert have shown that minima of the reduced
action exist for all n+ �= 1 and n− �= 1. Moreover, they have proved that self-dual
connections only exist for n− = 1 and anti-self-dual connections only exist for
n+ = 1. Thus, this way one obtains non-self-dual solutions for all Chern numbers
different from ±1. The technical details of the existence proof (standard variational
techniques in one dimension) are given in [551]. Clearly, these techniques are not
constructive. �

Finally, let us mention two papers which are not based on the theory of invariant
connection, but rather on advanced variational techniques as developed by Taubes.
In [587], an inifinite number of SU(2)-solutions invariant with respect to a U(1)-
action on S4 was found. In [648], the existence of an infinite number of non-minimal
SU(2)-solutions on S2 × S2 and S3 × S1 was proved. The latter solutions do not
exhibit any symmetry.

54This is the irreducible representation of spin 2.
55For good reasons, these bundles are called quadrupole bundles, see [44] for an explanation.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Exercises

6.8.1 Prove Lemma 6.8.3.

6.8.2 Perform the final step in the proof of Proposition 6.8.2.

6.8.3 Show that the orbit space of the SO(3)-action on S4 defined in Example 6.8.4
is given by (6.8.5).



Chapter 7
Matter Fields and Model Building

In this chapter, we include matter fields into our discussion. In Sect. 7.1, we present
the general geometric model of matter fields in the fibre bundle language. Then, in
Sects. 7.2–7.5, we study various aspects of Yang–Mills–Higgs models. We discuss
the Higgs mechanism in detail, present a topological classification of static finite-
energy configurations and address the problem of constructing asymptotic as well
as exact solutions to the Yang–Mills–Higgs equations. In particular, we focus on
magnetic monopole solutions including the discussion of the Bogomolnyi–Prasad–
Sommerfield model. Next, in Sect. 7.6, we pass to a U(1)-gauge model coupled
to a matter field of spinorial type, the famous Seiberg–Witten model. The latter
has attracted much attention over the last two decades, because its moduli space
yields deep insight into the differential topology of 4-manifolds. In particular, it
yields new, simpler proofs of results earlier obtained via the theory of instantons.
We discuss the basic properties of this model in detail and outline some of the
topological consequences. Then, in Sect. 7.7, we present the (classical) standard
model of elementary particle physics in the geometric language and, in the remaining
two sections, we discuss the method of dimensional reduction in the context of gauge
theories in some detail. The latter may be viewed as one of the classical unification
schemes–a unification in the spirit of Kaluza and Klein.

7.1 Matter Fields

Usually, the spacetime manifoldM will be endowed with some additional geometric
structures. Depending on the physical context, in the bundle language these structures
will be encoded either in the frame bundle L(M) or in the spin structure S(M).1 To

1For instance, below we will always assume that M is endowed with a Riemannian or a pseudo-
Riemannian metric, which can be viewed as an equivariant mapping from L(M) to the space of
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unify the notation, below, we write Q both for L(M) and for S(M) and call it the
spacetime principal bundle. Its structure group will be denoted by S. By Remark
1.1.9/2, given the spacetime principal bundle Q and the gauge principal bundle P,
we may build the fibre product Q ×M P which is a principal (S × G)-bundle over
M. If we deal with both Q and P, then the right actions of S and G will be denoted
by ΨQ and ΨP, respectively, and the canonical projections of these bundles will be
denoted by πQ and πP, respectively. For the induced right action of S×G onQ×M P
we will write Ψ and the canonical projection of Q ×M P will be denoted by π .

A classical matter field model is described by the following data.

(a) The model is defined on the tensor product

E = Es ⊗ Ei ,

whereEs is the bundle of spacetime degrees of freedom andEi denotes the bundle
of internal degrees of freedom. The bundle Es comes in two fundamentally
different versions:

• Es is a tensor bundle over M, associated with the frame bundle L(M). In that
case, we speak of bosonic matter.

• Es is a spinor bundle associated with the spin structure S(M). Then we speak
of fermionic matter.

Thus,
Es = Q ×S Fs ,

where Fs is a finite-dimensional vector space carrying a representation μ of S.
The bundle Ei is associated with the gauge principal bundle P,

Ei = P ×G Fi ,

where Fi is a finite-dimensional vector space carrying a representation σ of
the gauge group G. Besides σ , the vector space Fi may carry an additional Lie
group representation corresponding to further internal degrees of freedom called
flavour,2 see e.g. Sect. 7.7 for the case of the standard model.
By Remark 1.2.9/2, E is associated with Q ×M P. The typical fibre

F = Fs ⊗ Fi

of E carries the tensor product representation μ⊗σ of the direct product S×G.

(Footnote 1 continued)
symmetric second-rank covariant tensors on R

n. Equivalently, it is encoded as a torsion-free metric
connection (Levi-Civita connection) on L(M).
2These are rigid symmetries not giving rise to local gauge transformations.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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(b) Amatter field of spacetime typeμ and of gauge type σ is a sectionΦ ∈ Γ ∞(E).3

It will be referred to as a matter field of type (μ, σ ). By Proposition 1.2.6, it may
be equivalently represented by an element Φ̃ ∈ HomS×G(Q ×M P,F),

Φ(m) = [(z, Φ̃(z))] , m ∈ M , z ∈ π−1(m) . (7.1.1)

By Remark 1.2.15/3, Φ̃ and Φ have the same local representative ϕ : U → F
in any local trivialization over U ⊂ M.
The coupling with a gauge potential is encoded in the covariant exterior deriva-
tive. This is called the principle of minimal coupling. As we know from Chaps. 2
and 5,Qmay carry various connections referred to as spacetime connections. By
Remark 1.3.17, if ωQ and ωP are spacetime and gauge connections, respectively,
then they induce a connection form ω on Q ×M P, given by (1.3.16). Omitting
the canonical projections to Q and P, we have ω = ωQ + ωP and, thus,

DωΦ̃ = dΦ̃ + (μ′(ωQ) ⊗ idFi + idFs ⊗σ ′(ωP)
) ◦ Φ̃ , (7.1.2)

cf. (1.4.2). Clearly, μ′(ωQ) ⊗ idFi + idFs ⊗σ ′(ωP) must be viewed as a 1-form
on Q ×M P with values in End(F). It is obtained by differentiating the tensor
product representation μ ⊗ σ . The corresponding covariant exterior derivative
of Φ is given by (1.5.3),

(∇ωΦ)m(X) = ιz ◦ (DωΦ̃)z(Y) , (7.1.3)

where X = π ′(Y), m ∈ M and z ∈ π−1(m). By (1.4.14), the covariant exterior
derivative of the local representative ϕ is given by

Dϕ = dϕ + (μ′(AQ) ⊗ idFi + idFs ⊗σ ′(AP)
) ◦ ϕ , (7.1.4)

where AQ and AP are the local representatives of ωQ and ωP, respectively.
(c) Let ϑQ and ϑP be local gauge transformations, that is, vertical automorphisms

of the principal bundles Q and P, respectively. Then, ϑ = ϑQ × ϑP is a local
gauge transformation in Q × P, which induces a local gauge transformation in
Q ×M P denoted by the same letter. In more detail, we have

ϑ : P ×M Q → P ×M Q , ϑ(m, (q, p)) = (m, (ϑQ(q), ϑP(p))
)
. (7.1.5)

Clearly, any vertical automorphism of Q ×M P is of this type. An active local
gauge transformation of the matter field Φ̃ is given by

Φ̃ 
→ ϑ∗Φ̃ . (7.1.6)

3As already noted under (a), Φ may further carry a certain flavour type. If not otherwise stated, we
suppress these rigid degrees of freedom.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Clearly, ϑ∗Φ̃ is of the same type as Φ̃. By Proposition 1.8.3, ϑ is equivalently
described by an element u ∈ HomS×G(Q ×M P, S × G), given by

ϑ(z) = Ψu(z)(z) .

Thus, using the equivariance of Φ̃ and decomposing u = uS × uG with respect
to the product structure of S × G, for any z ∈ Q ×M P, we obtain

(ϑ∗Φ̃)(z) = Φ̃ ◦ Ψu(z)(z) = (μuS(z)−1 ⊗ σuG (z)−1

)
Φ̃(z) . (7.1.7)

Via (7.1.1), formula (7.1.6) induces a gauge transformation for Φ,

Φ 
→ Φ ′ , Φ ′(m) = [(z, (ϑ∗Φ̃)(z))] ,

with π(z) = m. In terms of the corresponding vertical automorphism ϑ̂ of the
associated bundle E provided by Proposition 1.8.4, we obtain

Φ ′(m) = ϑ̂−1(Φ(m)) .

Finally, the gauge transformation of a local representative ϕ of Φ is given by

ϕ′(m) = (μρS(m)−1 ⊗ σρG (m)−1

)
ϕ(m) , (7.1.8)

where ρS and ρG are transition functions of Q and P, respectively.
(d) The infinite-dimensional vector space of smooth sections of E will be denoted

by E and will be referred to as the matter configuration space. It can be endowed
with the structure of an infinite-dimensional manifold. By point (c) it is acted
upon by a (right) representation of the group of local gauge transformations.

As in Sect. 6.1, we assume that

(a) the spacetime manifoldM is endowed with a (pseudo-)Riemannian metric g,
(b) the Lie algebra g of G carries an Ad(G)-invariant inner product 〈·, ·〉g,
(c) the vector space F carries a scalar product 〈·, ·〉F which is invariant with respect

to the representation μ ⊗ σ of S × G.

Then, we can write down physical actions for matter fields.

(a) LetΦ be a bosonic matter field of type (μ, σ ). As explained before, the coupling
with a gauge potential ω is described in terms of the covariant derivative∇ωΦ ∈
Ω1(M,E), cf. formula (7.1.2). The general gauge-invariant Lagrangian is of the
following form:

L (ω,Φ) := 1

2
∇ωΦ

.∧ ∗∇ωΦ − V (Φ) ,

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_6
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where the dot refers to the fibre metric 〈·, ·〉E in the tensor product E = Es ⊗Ei.
Here, V : F → R is a G-invariant function bounded from below which induces
a function on E via V ([(p, f )]) = V (f ). Then,

V (Φ) = V ◦ Φ .

Correspondingly, we have V (Φ̃) = V ◦ Φ̃ = π∗V (Φ). In most of the applica-
tions, the potential is of the form

V (Φ) = V (|Φ|2) ,

where the norm refers to the fibre metric in E. In that case, V may be viewed
as a function on R. The fibre metric in Es is induced from the metric g and the
fibre metric of Ei is given by 〈·, ·〉Fi via (2.6.4).

(b) Let ψ be a fermionic matter field of type (μ, σ ). Here, E is associated with
the fibre product bundle S(M) ×M P. In the notation of Chap. 5, the typical
gauge-invariant Lagrangian is of the following form:

L (ω,ψ) := 〈ψ, /Dψ〉 − V (ψ) . (7.1.9)

Moreover, there may occur a coupling between bosonic and fermionic matter fields.
This will be explained for the case of the standard model in Sect. 7.7.

7.2 Yang–Mills–Higgs Systems

In this section, we introduce one of the fundamental building blocks of the standard
model describing the fundamental interactions of elementary particles.

Let (M, g) be an n-dimensional (pseudo-)Riemannian manifold, let G be a com-
pact Lie group and let P(M,G) be a principal G-bundle overM. Let (F,G, σ ) be a
representation of G and let E = P ×G F be the corresponding associated bundle. In
the terminology introduced in Sect. 7.1, a Higgs field Φ is a bosonic matter field of
type (μ, σ ), where μ is the trivial representation of O(n). That is, Φ is a spacetime
scalar field. Thus, it may be simply viewed as a section of E or, equivalently, as an
element Φ̃ ∈ HomG(P,F). As before, we assume that the Lie algebra g of G carries
an Ad(G)-invariant scalar product which we denote by 〈·, ·〉g or sometimes simply
by k. Moreover, we assume that F is endowed with a scalar product 〈·, ·〉F which is
invariant under the representation σ .

AYang–Mills–Higgs configuration is a pair (ω,Φ), whereω is a gauge connection
form on P. Thus, the configuration space of a Yang–Mills–Higgs system is C × E .

In the notation of Sect. 7.1, the action functional is given by

S(ω,Φ) = 1

2
‖Ω‖2 + 1

2
‖∇ωΦ‖2 −

∫

M
V (Φ)vg ,

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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or, in more detail,

S(ω,Φ) =
∫

M

{
1

2
Ω

.∧ ∗Ω + 1

2
∇ωΦ

.∧ ∗∇ωΦ − V (Φ)vg

}
. (7.2.1)

The second term in this formula describes theminimal coupling of the gauge potential
with the matter field and V will be referred to as the Higgs potential. It describes the
self-interaction of the Higgs field. Its typical form is

V (|Φ|2) = 1

2
μ2|Φ|2 + 1

4
λ|Φ|4 , (7.2.2)

where λ > 0. Depending on whether μ2 is positive or negative, the minimum of V
is either given by Φ = 0 or by

|Φ| =
√

−μ2

λ
. (7.2.3)

While in the first case the minimum is invariant under the full gauge group G, in the
second case, the minima are only invariant under some subgroup H ⊂ G and take
their value in some orbit G/H ⊂ F. Thus, by an appropriate choice of the parameter
μ2 we may produce a symmetry reduction, that is, we may obtain a classical ground
state having a smaller symmetry than the original Lagrangian of the theory. In the
physics literature, this is commonly called spontaneous symmetry breaking.4 It will
be explained in detail in the next section.

Next, let us derive the field equations via the variational principle for S(ω,Φ).
For that purpose, consider a variation of the configuration (ω,Φ) given by

ωt = ω + tα , Φt = Φ + tτ ,

where α ∈ Ω1(M,Ad(P)) and τ ∈ Γ ∞(E). Using (2.7.54) and (7.1.2), we calculate

d

dt �0

(∇ωtΦt
) = ∇ωτ + σ ′(α)Φ .

By Definition 1.5.2, on 0-forms we have dω = ∇ω. Using this, together with

d

dt �0
V (Φ(m) + tτ(m)) = V ′(Φ(m))(τ (m)) = 〈V ′(Φ), τ 〉Em ,

and recalling the calculation for the pure Yang–Mills case from the beginning of
Sect. 6.2, we obtain

4Here, we exclusively discuss the breaking of local gauge symmetry. For a discussion of global
symmetry breaking, we refer to [3] and references therein.

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_6


7.2 Yang–Mills–Higgs Systems 551

d

dt �0
S(ωt, Φt) = 〈Ω, dωα〉L2 + 〈∇ωΦ,∇ωτ + σ ′(α)Φ〉L2 − 〈V ′(Φ), τ 〉L2

= 〈d∗
ωΩ − J, α〉L2 + 〈d∗

ω ◦ dωΦ − V ′(Φ), τ 〉L2 ,

where J is the unique 1-form on M with values in Ad(P) which satisfies

〈J(m), αm〉 = −〈∇ωΦ, σ ′(αm)Φ〉

for all m ∈ M and αm ∈ (T∗M ⊗ Ad(P)
)
m. Here, 〈·, ·〉 on the left hand side denotes

the fibre metric of T∗M ⊗Ad(P), whereas on the right hand side it denotes the fibre
metric of T∗M⊗(P×GF). The 1-form J is called the current of theYang–Mills–Higgs
system. We may write

J = −〈(k−1 ⊗ id
)
(σ ′Φ), dωΦ

〉
F , (7.2.4)

where σ ′ is viewed as an element of g∗ ⊗ End(F), so that σ ′Φ ∈ g∗ ⊗ F and
thus
(
k−1 ⊗ id

)
σ ′ ∈ g ⊗ End(F). Since the L2-inner products involved are non-

degenerate, we conclude that δS = 0 iff

d∗
ωΩ = J , d∗

ω ◦ dωΦ = V ′(Φ) . (7.2.5)

This system of nonlinear partial differential equations will be referred to as the Yang–
Mills–Higgs equations with potential V . For the sake of completeness, let us also
recall Propositions 1.4.11 and 1.4.13. In the case under consideration, they read

dωΩ = 0 , dω ◦ dωΦ = σ ′(Ω)Φ . (7.2.6)

Clearly, the first of these equations is the ordinary Bianchi identity for the curvature
form. By a slight abuse of terminology, the second identity may be called the Bianchi
identity for Φ.

Remark 7.2.1 In applications, (F,G, σ ) often coincides with the adjoint represen-
tation (g,G,Ad). Then, the field equations read

d∗
ωΩ = [∇ωΦ,Φ] , d∗

ω ◦ dωΦ = V ′(Φ) , (7.2.7)

and the Bianchi identities take the form

dωΩ = 0 , dω ◦ dωΦ = [Ω,Φ] . (7.2.8)

�

For the remainder of this section, we assume that M is the 4-dimensional
Minkowski space. Let us study the energy functional E(ω,Φ) of a Yang–Mills–
Higgs system for a chosen space-like hypersurfaceΣ0 ⊂ M. Let (e0, . . . , e3) be the

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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standard basis in M and let x0, . . . , x3 be the corresponding standard coordinates.
We take Σ0 := {x ∈ M : x0 = const.

}
and decompose

M = Re0 × Σ0 . (7.2.9)

Then, for any configuration (ω,Φ), we restrict Ω and ∇ωΦ to Σ0 and decompose
them relative to (7.2.9),

Ω = Ωk0dx
k ∧ dx0 + 1

2
Ωkldx

k ∧ dxl , ∇ωΦ = ∇ω
0 Φdx0 + ∇ω

k Φdxk ,

where k = 1, 2, 3. We define

Ωe := Ωk0dx
k , Ωm := 1

2
Ωklεklmdx

m , (7.2.10)

Π := ∇ω
0 Φ , DΦ := ∇ω

k Φdxk . (7.2.11)

The 1-forms Ωe and Ωm on Σ0 are referred to as the colour electric and the colour
magnetic components of Ω , respectively. Note that (Exercise 7.2.1)

∗ Ωm = i∗Ω , DΦ = i∗∇ωΦ , (7.2.12)

where i : Σ0 → M is the natural inclusion mapping.
Now, the energy functional is given by the integral overΣ0 of the component T00

of the energy-momentum tensor. For the Yang–Mills–Higgs theory, it reads5

E(ω,Φ) = 1

2

∫

Σ0

(
Ωe

.∧ ∗Ωe + Ωm
.∧ ∗Ωm + Π

.∧ ∗Π + DΦ
.∧ ∗DΦ + V (Φ)vR3

)
,

where ∗ denotes the Hodge star operator on R
3. In short, we may write

E(ω,Φ) = 1

2

(
‖Ωe‖2 + ‖Ωm‖2 + ‖Π‖2 + ‖DΦ‖2 +

∫

Σ0

V (Φ)vR3

)
. (7.2.13)

Below, we will consider the static case.

Definition 7.2.2 A configuration (ω,Φ) of a Yang–Mills–Higgs theory on M is
called static if it is invariant under time translations, that is, invariant under the
action of the additive group R onM given by

δ : R × M → M , δ(s, x) := (x0 + s, x1, x2, x3) .

Clearly, the translation invariant mapping Φ is simply given by its values on Σ0.
By Example 1.9.18, the R-invariant connection ω is uniquely characterized by a

5See e.g. [208].

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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connection ω̃ on the trivial principal bundle P̃ = Σ0 × G and by an equivariant
mapping ω0 from P̃ to L(Re0, g). We see that, in the static case, putting ω0 = 0 has a
geometric meaning. In accordance with the physics literature, we call this the tempo-
ral gauge. By making this choice, one restricts the admissible gauge transformations
to vertical automorphisms of P̃. For a (global) representative A of ω, we have

A = A0dx
0 + Akdx

k .

Here, Akdxk and A0dx0 are the representatives of ω̃ and ω0, respectively, and the
temporal gauge reads A0 = 0. Clearly, we must show that the choice of the temporal
gauge is, in the static case, consistent with the field equations: indeed, we then have

Π = 0 , J0 = 0 , Ωe = 0 ,

and, thus, the field equations reduce to the following system of equations on Σ0:

d∗
ω ∗ Ωm = J , D∗ ◦ DΦ = V ′(Φ) , (7.2.14)

where J = −〈(k−1 ⊗ id) ◦ σ ′(Φ),DΦ〉F . Clearly, (7.2.14) are the field equations of
a Yang–Mills–Higgs system on R

3.
We conclude that, for the static theory in the temporal gauge, the energy functional

reduces to

E(ω,Φ) = 1

2

(
‖Ωm‖2 + ‖DΦ‖2 +

∫

Σ0

V (Φ)vR3

)
. (7.2.15)

Thus, for any finite energy configuration (ω,Φ), the differential formsΩm andDΦ

must be square integrable and, for ‖x‖ → ∞,

‖x‖2V (Φ) → 0 . (7.2.16)

To analyze these requirements, let us consider condition (7.2.16) under the following
assumptions on V . Let Fmin ⊂ F be the set of absolute minima of V . By invariance,
Fmin is a union of orbits ofG. We assume that Fmin consists of a single orbitG/H. By
possibly shifting V , we may also assume that V vanishes on Fmin. From (7.2.16), we
conclude that, at large distances, the global representative ϕ of Φ must take values
in G/H. More precisely, we get a mapping

ϕ∞ : S2 → G/H , ϕ∞(x) := lim
r→∞ϕ(rx) , (7.2.17)

that is, the asymptotic values of ϕ define an element [ϕ∞] ∈ π2(G/H). Since the
mapping degree is a homotopy invariant, [ϕ∞] cannot be changed by continuous
deformations, that is, the space of finite-energy configurations decomposes into
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topological sectors labelled byπ2(G/H). Note that this statement is obtainedwithout
any reference to the field equations.

Remark 7.2.3 While it seems to us that the investigation of finite energy configura-
tions is interesting in itself, the study of these topological sectors has attracted special
attention, because in realistic models they characterize magnetic monopole config-
urations, see [140, 249, 251, 314, 315, 566, 610]. In the literature, by an abuse of
language, the topological charges to be constructed below are often called magnetic
charges. In order to justify this terminology one must, of course, accommodate the
electromagnetic field in a gauge invariant way in the model under consideration. In
particular, after symmetry breaking, the residual gauge group H should contain only
one U(1)-factor, because there should be only one electromagnetic field. We will
discuss an example of this type in Sect. 7.4. �

It turns out that, apart from a possible torsion part, π2(G/H)may be characterized
in terms of integral invariants induced from closed invariant 2-forms on G/H. Fol-
lowing Horvathy and Rawnsley [315], let us construct these invariants: let us assume
that H is connected. Let θG be the Maurer–Cartan form on G. Take the standard
direct sum decomposition

g = c ⊕ [h, g] , (7.2.18)

where c is the centralizer of h in g and consider the projection prc : g → c onto
the first summand. Then, prc(dθG) is a closed 2-form on G which is obviously right
H-invariant and left G-invariant (Exercise 7.2.2). Thus, it descends to an invariant 2-
form η onG/H with values in c .Withπ : G → G/H being the canonical projection,
we have

π∗η = prc(dθG) . (7.2.19)

We define

ρ : π2(G/H) → c , ρ([ϕ∞]) := 1

2π

∫

S2
ϕ∗

∞η . (7.2.20)

Since η is closed, this integral depends only on the homotopy class of ϕ∞ and, thus,
ρ is correctly defined.

Now,6 fix a maximal torus inH, denote its Lie algebra by t and take the unit lattice

Γ := {X ∈ h : exp(2πX) = 1} ∩ t .

Let z denote the Lie algebra of the center of H, consider the standard direct sum
decomposition

h = z ⊕ [h, h] (7.2.21)

and let prz : h → z be the canonical projection onto the first summand. Choose a
Z-basis {ζ1, . . . , ζp} of prz(Γ ) and extend it to a basis {ζ1, . . . , ζp, . . . , ζq} of c. Then,

6For the basic Lie algebraic notions used in the sequel, we refer to Appendix C or to [329] for more
details.
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decomposing η with respect to this basis, we get a family {ηk} of closed invariant
2-forms on G/H:

η =
q∑

k=1

ηkζk . (7.2.22)

Note that ηk = f k(η) for the dual basis {f 1, . . . , f q}. It can be shown easily (Exercise
7.2.3) that, for k > p, the 2-forms ηk are exact. Thus, if we insert the decomposition
(7.2.22) into (7.2.20), they do not contribute to the integral in (7.2.20) and we obtain

ρ([ϕ∞]) =
p∑

k=1

mk([ϕ∞])ζk (7.2.23)

with

mk([ϕ∞]) = 1

2π

∫

S2
ϕ∗

∞ηk , k = 1, . . . , p . (7.2.24)

In particular, ρ takes values in z. In Proposition 7.2.5, we will show that m1, . . . ,mp

is a p-tuple of integers. These integers are called the topological charges of the
Yang–Mills–Higgs system.

Remark 7.2.4 For the special case of the adjoint representation, η is given by the
Kirillov symplectic form, cf. Sect. 8.4 of Part I. In more detail, let X0 = ϕ∞(x0) ∈ g
be a point with stabilizer H and let G · X0

∼= G/H be the adjoint orbit through X0.
Then, every Z ∈ z defines a surjective mapping πZ : G · X0 → G · Z . We set

ηZ := π∗
Z ω

Z , (7.2.25)

where ωZ is the Kirillov form on the orbit through Z . Then, for a chosen Z-basis,
formula (7.2.25) yields a family of invariant 2-forms which coincide with the one
defined above. This is a simple consequence of theMaurer–Cartan equation (Exercise
7.2.4). �

Next, due toπ2(G) = 0, the long exact homotopy sequence of the principalH-bundle
π : G → G/H implies that the connecting homomorphism

δ : π2(G/H) → π1(H) (7.2.26)

is injective. In particular, if G is simply connected, then δ is an isomorphism. The
homomorphism δ is defined as follows: choose a covering of S2 given in spherical
coordinates by

U1 =
{

x(ϑ, φ) ∈ S2 : 0 ≤ ϑ <
π

2
+ ε
}
, U2 =

{
x(ϑ, φ) ∈ S2 : π

2
− ε < ϑ ≤ π

}
.

Since U1 and U2 are contractible, there exist smooth mappings gi : Ui → G ,

i = 1, 2 , such that

http://dx.doi.org/10.1007/978-94-024-0959-8_8
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ϕ∞(x) = σ(gi(x))[1] ≡ π ◦ gi(x) , (7.2.27)

where [1] ∈ G/H = Fmin is a chosen point. Then, on the equator S1 given by θ = π
2 ,

γ : S1 → H , γ (x) := g−1
1 (x)g2(x) (7.2.28)

is a loop in H. Let [γ ] be the corresponding homotopy class. Then,

δ([ϕ∞]) = [γ ] . (7.2.29)

Now, consider the decomposition (7.2.21). Let Hss be the connected Lie subgroup
of H whose Lie algebra is [h, h]. It is compact and semisimple and, since [h, h]
is an ideal, it is also normal. Thus, H/Hss is a compact connected Lie group with
Lie algebra z. Since the latter is Abelian, H/Hss must be a torus and, therefore,
π1(H/Hss) ∼= Z

p, where p = dim z. Moreover, sinceHss is compact and semisimple,
T = π1(Hss) is a finite Abelian group. Finally, using the homotopy sequence of the
fibration Hss → H → H/Hss and the fact that π1(H/Hss) is free Abelian, we obtain
the following structure of the fundamental group of the compact connected Lie group
H [315]:

π1(H) = Z
p ⊕ T . (7.2.30)

The Z
p-part yields a p-tuple of integers which are defined as follows: let θH be the

Maurer–Cartan form ofH. Then, by theMaurer–Cartan equation, prz(θH) is a closed
z-valued 1-form on H. We define

λ : π1(H) → z , λ([γ ]) := 1

2π

∫

γ

prz(θH) . (7.2.31)

Since prz(θH) is closed, the integral only depends on the homotopy class of γ , that is,
λ is well defined. As above, decomposing it with respect to a Z-basis yields a p-tuple
(m1([γ ]), . . . ,mp([γ ])) ∈ Z

p. We show that, with respect to the same Z-basis, these
integers coincide with the numbers mk([ϕ∞]) defined by (7.2.24).

Proposition 7.2.5 (Horvathy–Rawnsley) For any [ϕ∞] ∈ π2(G/H), we have

ρ([ϕ∞]) = λ ◦ δ([ϕ∞]) .

Proof In the notation above, let S1 be the equatorial circle of S2. Using Stokes’
Theorem together with (7.2.27), we calculate
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2πρ([ϕ∞]) = lim
ε→0

{∫

U1

g∗
1 ◦ π∗η +

∫

U2

g∗
2 ◦ π∗η

}

= lim
ε→0

{∫

U1

g∗
1 ◦ prc(dθG) +

∫

U2

g∗
2 ◦ prc(dθG)

}

=
∫

S1
prc
{
g∗
2θG − g∗

1θG
}
.

By (7.2.28), on S1 we have

prc ◦(g∗
2θG − g∗

1θG) = prc ◦Ad(γ ) ◦ γ ∗θH .

Then, since prz is Ad(H)-invariant and coincides with prc on h, we obtain

2πρ([ϕ∞]) =
∫

S1
prc(γ

∗θH) =
∫

γ

prz(θH) = 2πλ([γ ]) .

By (7.2.29), the assertion follows. �

Since δ is injective, we conclude that the integers mk([ϕ∞]) defined by (7.2.24)
generate the free part of π2(G/H). Its torsion part coincides with the kernel of ρ.
Clearly, this part cannot be determined by means of invariants built from differential
forms.

Remark 7.2.6 We note that if theT-part in the decomposition (7.2.30) is nontrivial,
then Zn-charges may occur, see e.g. [249, 653] and further references therein. The
simplest example of this type is H = SO(3) with π1(H) = Z2. �

It remains to analyze the condition

Dϕ = 0 (7.2.32)

for ‖x‖ → ∞. By Proposition 1.6.10, it implies that ω asymptotically takes values
in the Lie algebra h of H. This clearly means that asymptoticallyΩm takes values in
h, too. We will show that (7.2.32) implies a presentation of the topological invariant
(7.2.20) in terms of the curvature. To find it, let A and F be global representatives
of ω andΩ , respectively. In what follows, let S2r = {x ∈ R

3 : ‖x‖ = r}. We say that
a relation holds on S2∞ if it holds asymptotically on S2r for r → ∞ and we write

∫
S2∞

for limr→∞
∫
S2r
. For clearness of presentation, we first limit our attention to the case

where ϕ is in the adjoint representation.

Proposition 7.2.7 For any contractible open subset U ⊂ S2∞, the following holds:

ϕ · F = d(ϕ · A) + ϕ0 · (ϕ∗η) , (7.2.33)

where ϕ0 ∈ Fmin has stabilizer H and the dot denotes the Killing form.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Proof By (7.2.32), dϕ = −[A, ϕ]. Using this and the Structure Equation, we find

ϕ · F = ϕ · dA + 1
2ϕ · [A,A]

= d(ϕ · A) − dϕ
.∧ A + 1

2ϕ · [A,A]
= d(ϕ · A) − ϕ · [A,A] + 1

2ϕ · [A,A]
= d(ϕ · A) − 1

2ϕ · [A,A] .

Thus, it remains to analyze ϕ · [A,A] on U. Since U is contractible and ϕ takes
values in a single orbit Fmin, there exists a mapping g : U → G such that

ϕ0 = Ad(g−1)ϕ ,

for a chosen vector ϕ0 ∈ g with stabilizer H, that is, ϕ0 ∈ c . We put

Ã = Ad(g−1)A + g∗θG .

Then, dϕ0 = 0 and, by (7.2.32), [Ã, ϕ0] = 0. Thus, Ã takes values in h. Using
this and the fact that the decomposition (7.2.18) is orthogonal, together with the
Ad-invariance of the Killing form and the Maurer–Cartan equation, we get

ϕ · [A,A] = ϕ0 · [Ã − g∗θG, Ã − g∗θG] = g∗ (ϕ0 · [θG, θG]) = −2g∗ (ϕ0 · dθG) .

Since ϕ0 ∈ c, comparing with (7.2.19), we finally obtain

g∗ (ϕ0 · dθG) = g∗ (ϕ0 · prc(dθG)
) = ϕ0 · (ϕ∗η) .

�

Integrating the identity (7.2.33) over S2∞, we obtain the following formula.

Corollary 7.2.8
1

2π

∫

S2∞
ϕ · F = ϕ0 · ρ([ϕ∞]) . (7.2.34)

�

Remark 7.2.9

1. Using (7.2.22) and (7.2.23), from (7.2.34) we read off

∫

S2∞
ϕ · F = 2π

p∑

k=1

mk([ϕ∞]) ϕ0 · ζk . (7.2.35)

2. Proposition 7.2.7 admits various generalizations. First, one may consider gener-
alized invariants [610]
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In =
∫

S2∞
ϕn · F ,

where powers are taken in the universal enveloping algebra. Even more gener-
ally, analogous invariants may be built with any invariant polynomial on the Lie
algebra [314]. Second, the above proposition immediately generalizes from the
adjoint representation to an arbitrary representation σ . Then, the Killing form
is replaced by a bilinear invariant function f : g × F → R, that is, a function
fulfilling

f (Ad(g)X, σ (g)x) = f (X, x) , X ∈ g , x ∈ F , g ∈ G .

Then, by the same arguments, one obtains [315]

f (F, ϕ) = d(f (A, ϕ)) + ϕ∗〈f0, η〉 ,

where f0 ∈ g∗ is given by f0 = f (ϕ0, ·). �
Finally, it is of course interesting to look for finite energy solutions of the system
(7.2.14). Under the additional assumption V = 0, this question will be addressed in
Sect. 7.5. On the other hand, for the issues to be discussed below, it is illuminating
to find the asymptotic solutions of (7.2.14). In this case, the finite energy condition
implies that the system decouples and, as can be easily seen, the second equation just
yields a fall-off law for the radial dependence of Φ. Thus, within each topological
sector defined by [ϕ] ∈ π2(G/H), we are left with the pure Yang–Mills equation on
R

3 with gauge groupH. To study its asymptotic solution, we choose a representative
A of ω and choose the radial gauge7 x · A(x) = 0. Then, asymptotically, (7.2.14)
reduces to theYang–Mills equation on the 2-sphere S2. This equation has been solved
by Atiyah and Bott in the general context of an arbitrary Riemannian surfaceM, see
Theorem 6.7 in [33]. We also refer to Friedrich and Habermann [220], who worked
out the case of the two-sphere in detail. Following their paper, we present the proof
for this case here.

Assume that H is a compact connected Lie group. We first observe that any
homomorphism τ : U(1) → H defines a Yang–Mills connection over S2 as follows:
we take the complex Hopf bundle S3(S2,U(1)), cf. Example 1.1.20, endowed with
the canonical connection ωc, cf. Example 1.3.20, and build the associated principal
H-bundle

Pτ := S3 ×U(1) H .

Recall the natural injective bundlemorphism ι : S3 → Pτ given by ι(x) := [(x,1H)].
By Proposition 1.3.13, the transport of ωc under ι yields a unique connection ωτ on
Pτ fulfilling ι∗ωτ = dτ ◦ωc. Since the curvature of ωc is given by8 Ω̃c = i

2 ⊗π∗vS2 ,

7For a rigorous existence proof we refer to [637]. This gauge is also used in the physics literature.
8For clearness, here we have denoted the curvature, viewed as a horizontal 2-form on the bun-
dle, by Ω̃c. Sincewe deal with a 2-dimensional base space, by (1.2.14), we have Ω̃c = ∗̃Ωc⊗π∗vS2

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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where vS2 is the canonical volume form of S2, ωc is a Yang–Mills connection. Since
ι∗Ωτ = dτ ◦ Ωc, the induced connection ωτ is Yang–Mills, too. To summarize,
denoting by YM(S2,H) the set of pairs (P, ω), where P is a principalH-bundle over
S2 and ω is a Yang–Mills connection on P, we obtain a mapping

χ : Hom(U(1),H) → YM(S2,H) , χ(τ) := (Pτ , ωτ ) . (7.2.36)

The following is a simple exercise which we leave to the reader (Exercise 7.2.5).

Lemma 7.2.10 Let τ and τ̃ belong to Hom(U(1),H). Then, τ and τ̃ are conjugate
under inner automorphisms of H iff the corresponding pairs (Pτ , ωτ ) and (Pτ̃ , ωτ̃ )

are equivalent, that is, if there exists a vertical isomorphism ϑ : Pτ → Pτ̃ such that
ϑ∗ωτ̃ = ωτ .

Using this lemma, by passing to equivalence classes,we obtain the following injective
mapping:

χ̃ : H̃om(U(1),H) → ỸM(S2,H) , χ̃([τ ]) := [(Pτ , ωτ )] . (7.2.37)

Lemma 7.2.11 Let (P,S2,H) be a principal fibre bundle and let Γ be a Yang–Mills
connection on P. Then, the holonomy group of Γ is either trivial or U(1).

Proof Let Hp0(Γ ) be the holonomy group and let Pp0(Γ ) be the holonomy bundle
of Γ with respect to a chosen point p0 ∈ P. Letω be the connection form of Γ and let
Ω be its curvature form. As a 2-form on S2,Ω necessarily has the formΩ = B vS2 ,
where B = ∗Ω is a section of Ad(P). In terms of B, the Yang–Mills equation reads

dωB = 0 , (7.2.38)

that is, B is covariantly constant. Thus, the corresponding equivariant mapping B̃ :
P → g fulfils B̃(p) = Q for some fixed Q ∈ h and all p ∈ Pp0(Γ ). Now, by
Proposition 1.7.12, Γ is reducible to Pp0(Γ ) and, by the Ambrose–Singer Theorem
1.7.15, the Lie algebra of Hp0(Γ ) is spanned by Q. Therefore, Hp0(Γ ) is discrete
or 1-dimensional. But, by Remark 1.7.11,Hp0(Γ ) is connected and, thus, it is either
trivial or U(1) or R. SupposeHp0(Γ ) = R. Then, Pp0(Γ ) is trivial and, for a chosen
global section s : S2 → Pp0(Γ ), the Yang–Mills equation (7.2.38) for the reduced
(Abelian) connection ω̂ with curvature Ω̂ yields

s∗Ω̂ = d(s∗ω̂) = cvS2 , c ∈ R .

Integrating this equation over S2 and using Stokes’ Theorem, we find c = 0 which
contradicts the irreducibility of ω̂. �

(Footnote 8 continued)
with π : S3 → S2 denoting the canonical projection. Below, usually the curvature will be viewed
as a 2-form with values in Ad(P).

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1


7.2 Yang–Mills–Higgs Systems 561

From the proof, we conclude that the local representative of the curvaturewith respect
to a local section in the holonomy bundle is given by

F = QvS2 . (7.2.39)

Theorem 7.2.12 (Atiyah–Bott) The mapping χ̃ given by (7.2.37) yields a one-to-
one correspondence between conjugacy classes of homomorphisms U(1) → H and
equivalence classes of Yang–Mills connections over S2.

Proof It remains to show that χ̃ is surjective, that is, given any (P, ω) ∈ YM(S2,H)

we must construct a homomorphism τ : U(1) → H such that (Pτ , ωτ ) is equivalent
to (P, ω).

1. Consider the case H = U(1). Then, in the same notation as above, the Yang–
Mills equation implies that on Pp0(Γ ) we have B̃ = ∗̃Ω = ic for some c ∈ R. Since
the first Chern index

c1(P) =
∫

S2
c1(P) = − 1

2π i

∫

S2
tr(Ω) = − ic

2π i
4π = −2c (7.2.40)

is an integer, the mapping

τ : U(1) → U(1) , τ (ei2π t) := ei4π tc

is a homomorphism. We show that the induced pair (Pτ , ωτ ) is equivalent to (P, ω).
Since the adjoint bundle of a principal U(1)-bundle over S2 is trivial, we may view
the curvatures of the connections under consideration as iR-valued 2-forms on S2.
In this sense, we obtain

Ωτ = dτ ◦ Ωc = dτ

(
i

2

)
vS2 = icvS2 = Ω .

Thus, we have c1(P) = c1(Pτ ), that is, by Theorem 4.8.1, there exists a vertical
isomorphism ϑ1 : Pτ → P of principal U(1)-bundles. The curvature of ϑ∗

1ω coin-
cides withΩ and thus with the curvature of ωτ . Since the curvatures of ϑ∗

1ω and ωτ

coincide, there exists a vertical automorphism of Pτ transforming ϑ∗
1ω toωτ . Indeed,

since the adjoint bundle is trivial, there exists an iR-valued 1-form α on S2 such that
ϑ∗
1ω − ωτ = π∗

τ α. By equality of the curvatures, we get dα = 0. Now, vanishing of
the first de Rham cohomology group of S2 implies the existence of a potential λ of
α. This proves the assertion for G = U(1).

2. Now, let H be an arbitrary compact connected Lie group. Then, ω reduces to
a connection form ω̂ on the holonomy bundle Pp0(Γ ), where Γ is the connection
corresponding to ω. By Lemma 7.2.11, the holonomy groupHp0(Γ ) is either trivial
or U(1). Thus, by point 1, we have a homomorphism τ̂ : U(1) → Hp0(Γ ) and, by
Theorem 1.7.9, τ̂ yields a homomorphism

τ : U(1) → H , τ (ei2π t) = exp(4πQt) , (7.2.41)

http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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whereQ is the generator ofHp0(Γ ) given by (7.2.39). Also by point 1, there exists
an isomorphism ϑ̂ : Pτ̂ → Pp0(Γ ) such that ϑ̂∗ω̂ = ωτ̂ which obviously can be
extended to an isomorphism ϑ : Pτ → P yielding the equivalence of (P, ω) and
(Pτ , ωτ ). �

Remark 7.2.13

1. According to Theorem 7.2.12, finite energy asymptotic solutions of the Yang–
Mills–Higgs system are classified by conjugacy classes of elements Q ∈ h
satisfying the following quantization condition

exp(4πQ) = 1H . (7.2.42)

Inserting (7.2.41) into (7.2.31) and using (7.2.29), we obtain

ρ([ϕ∞]) = prz(2Q) , (7.2.43)

that is, Q determines the invariants discussed before completely. As a conse-
quence, 2Q defines a topological charge.

2. By (7.2.39), the curvature F of any solution A fulfils F = QvS2 . In spherical
coordinates (ϑ, φ) on S2, the solution A is given by

Aϑ = 0 , Aφ = ±(1 ∓ cosϑ)Q . (7.2.44)

Note that A, extended to a gauge potential on R
3, has a singularity at the origin

and, thus, an infinite energy. Also note that these solutions are spherically sym-
metric, cf. Example 1.9.17 for the case H = SU(2) or [424] for general H. We
will come back to these solutions in Sect. 7.4.

3. By studying the Hessian in the same spirit as in Sect. 6.7, the stability of the
above Yang–Mills connections can be analyzed,9 see [33] for the general case
of a Riemannian surface M and [100, 220, 313, 316] for M = S2. We also refer
to [691] for a pedagogical presentation. The number of negative modes of the
Hessian turns out to be equal to

n = 2
∑

q

(2|q| − 1)

where the half integers q are the nonzero eigenvalues of Q with respect to a
chosen root system. Thus, stability only holds ifQ has eigenvalues 0,± 1

2 .
4. It can be shown that critical points of the Yang–Mills functional on S2 correspond

to critical points of the energy functional on the loop space ΩH, see [220]. �

9Since, here, we are on S2, methods of complex analysis can be applied.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Exercises

7.2.1 Prove formula (7.2.12).

7.2.2 Let θG be the Maurer–Cartan form on G and let prc : g → c be the projection
defined by (7.2.18). Prove that prc(dθG) is a closed 2-form on G which is right
H-invariant and left G-invariant.

7.2.3 Show that the 2-forms ηk defined by (7.2.22) are exact for all k > p.

7.2.4 Using the Maurer–Cartan equation for θG , prove that formula (7.2.25) is a
special case of (7.2.19).

7.2.5 Prove Lemma 7.2.10.

7.3 The Higgs Mechanism

In this section, we explain the announced spontaneous symmetry breaking induced
by the Higgs potential V . Assume μ2 < 0. Recall that Φ is equivalently described
by an element Φ̃ ∈ HomG(P,F).

Definition 7.3.1 Let Fmin ⊂ F be the set of absolute minima of the potential V . A
Higgs field Φ̃ ∈ HomG(P,F) is called a Higgs vacuum if Φ̃(P) ⊂ Fmin.

In the sequel, Higgs vacua will be denoted by Φ̃v. Clearly, Fmin is a level set of the
smooth function V . In the sequel, we assume that V ′ is nowhere vanishing on Fmin.
Then, by the Level Set Theorem, Fmin is an embedded submanifold of F. Since V is
invariant under the representation σ , the level set Fmin is a union of orbits of σ .

Proposition 7.3.2 Assume that Fmin consists of a single orbit of σ . Let H ⊂ G be
the stabilizer of some point f ∈ Fmin. Then, Higgs vacua are in one-to-one corre-
spondence with reductions of P to the structure group H.

Proof Since, by assumption, Fmin is a transitive G-manifold, the assertion is an
immediate consequence of Proposition 1.6.2. �

The subbundle defined by a Higgs vacuum Φ̃v is given by (1.6.2),

Qf = {p ∈ P : Φ̃v(p) = f } .

Remark 7.3.3

1. Again, let f ∈ Fmin andH = Gf . Then, viewed as a sectionΦv ∈ Γ ∞(E), a Higgs
vacuum takes values in the subbundle P×G G/H ⊂ E defined by the embedding
[(p, gH)] 
→ [(p, σ (g)f )]. Thus, Proposition 7.3.2 also follows from Corollary
1.6.5.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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2. The existence of Higgs vacua or, equivalently, the existence of reductions of P to
suitable subgroups of G depends on the topology of P. If P is trivial, then Higgs
vacua always exist.

3. Let ϑ be a vertical automorphism of P. By gauge invariance of V , if Φ̃v is a
Higgs vacuum, then the gauge transformed fieldϑ∗Φ̃v is also a Higgs vacuum. By
Proposition 1.6.4, Higgs vacua are gauge equivalent iff the corresponding bundle
reductions are equivalent. Thus, gauge equivalence classes of Higgs vacua are
in one-to-one correspondence with equivalence classes of reductions of P to the
subgroup H.

4. A similar characterization of Higgs vacua may be obtained under the following
weaker assumptions:

(a) Fmin consists of orbits belonging to the same orbit type.
(b) The projection Fmin → Fmin/G is trivial, that is, there exists a submanifold

Σ ⊂ Fmin which is intersected by each orbit in Fmin exactly once.

Under these assumptions, one may choose Σ in such a way that all its elements
have the same stabilizer. Then,

Q = {p ∈ P : Φ̃v(p) ∈ Σ}

is a reduction of P to the subgroup H. Conversely, given such a reduction, it
obviously defines a Higgs vacuum. �

Now, let there be given a Higgs vacuum Φ̃v and assume, as before, that Fmin consists
of a single orbit. Let f ∈ Fmin, let H = Gf and let i : Qf → P be the corresponding
bundle reduction to the structure group H. As usual, denote the Lie algebras of G
and H by g and h, respectively. Since G is compact, we can choose a direct sum
decomposition

g = h ⊕ m (7.3.1)

which is orthogonalwith respect to theAd-invariant scalar product. Then, this decom-
position is automatically reductive. In the sequel, we will call (ω, Φ̃) a configuration
of type [H] if ω is irreducible and Φ̃ takes values in the stratum F[H]. Clearly, if
(ω, Φ̃) is of type [H], then every gauge equivalent configuration is of type [H], too.
Proposition 7.3.4 Assume that the representation σ acts transitively on the unit
sphere in F. Let Φ̃v be a Higgs vacuum, let f ∈ Fmin and let H = Gf . Let Qf be the
H-reduction of P defined by Φ̃v. Then, there is a one-to-one correspondence between
gauge equivalence classes of configurations [(ω, Φ̃)] of type [H] and triples([(ω̂, τ )], η), where
1. ω̂ is a connection form on Qf ,
2. τ is is a horizontal 1-form of type Ad(H)m on Qf ,
3. η is a function on Qf with values in the [H]-stratum of the orbit space F/G.

The equivalence class [(ω̂, τ )] is taken with respect to gauge transformations on Qf .

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Proof By the assumption on σ , for any representative (ω, Φ̃) ∈ [(ω, Φ̃)], we can
find a gauge transformation ϑ on P such that

ϑ∗Φ̃
‖ϑ∗Φ̃‖ = f

‖f ‖ . (7.3.2)

That is, for any [(ω, Φ̃)], we may limit our attention to representatives fulfilling this
condition. Let (ω, Φ̃) be one such representative. Consider its restriction (i∗ω, i∗Φ̃)

to Qf , where i : Qf → P is the canonical inclusion mapping. Using (7.3.1), decom-
pose

i∗ω = i∗ωh + i∗ωm , i∗Φ = f + φ̃ . (7.3.3)

Denote ω̂ = i∗ωh and τ = i∗ωm. Then, the following hold.

(a) By Proposition 1.6.8, ω̂ is a connection form on Qf and τ is a horizontal 1-form
of type Ad(H)m on Qf .

(b) By construction, φ̃ : Qf → F is equivariant with respect to the H-action. By
(7.3.2) and (7.3.3), we have φ̃ = ‖φ̃‖ f

‖f ‖ . Thus, φ̃ is completely characterized
by the gauge-invariant matter field

η : Qf → F/G ≡ R+ , η(q) := ‖φ̃‖ ,

taking values in the stratum of type [H] of the orbit space F/G.

Thus, the configuration (ω, Φ̃) fulfilling (7.3.2) is characterized by the triple (ω̂, τ, η)
of geometric objects living on Qf . Next, consider another representative (ω′, Φ̃ ′) of
[(ω, Φ̃)], also fulfilling (7.3.2). Then, since the norm of Φ̃ is gauge invariant, we have
Φ̃ ′ = Φ̃ and ω′ is the image of ω under an H-valued gauge transformation. Conse-
quently, the construction based on the decomposition (7.3.3) yields a configuration
(ω̂′, τ ′) which is equivalent to (ω̂, τ ) under vertical automorphisms of Qf .

Conversely, by standard arguments,10 given a triple
(
(ω̂, τ ), η

)
, the configuration

(ω, Φ̃) may be reconstructed uniquely up to a gauge transformation. �

To our knowledge, the fact that the symmetry breaking mechanism is related to
principal bundle reductions was first observed by Trautman [631], see also [227,
362, 540].

Remark 7.3.5

1. The connection ω̂ is the gauge potential corresponding to the broken symmetry.
According to the terminology in Sect. 7.1, τ is a bosonic matter field. In the
sequel, it will be called an intermediate vector boson of gauge type Ad(H)m.
Finally, η will be referred to as the surviving Higgs field.

10In particular, recall from Proposition 1.6.7 that the associated vector bundles P×G F andQ×H F
are isomorphic.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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2. If Φ̃ takes values in more than one orbit type, then interesting topological effects
may occur. In the next section, wewill discuss the case whenΦ vanishes on some
subset ofM. This may give rise to magnetic monopoles. In a general setting, one
speaks in this context of defects related to a broken symmetry, see [444]. �

Let us calculate the action functional (7.2.1) after the symmetry breaking, that is, in
terms of the classifying objects given by Proposition 7.3.4. Denoting f̂ = f

‖f ‖ and
ηv = ‖f ‖, we calculate

i∗Ω = Ωω̂ + Dω̂τ + 1

2
[τ, τ ] , i∗

(
DωΦ̃
) = (dη + (ηv + η)σ ′(τ )

)
f̂ ,

and

i∗(V (Φ̃)) = 1

2
μ2(ηv + η)2 + 1

4
λ(ηv + η)4 .

Thus, using the orthogonality of the decomposition (7.3.1), we obtain the following
reduced action functional

Ŝ(ω̂, τ, η) =1

2
‖Ωω̂ + 1

2
[τ, τ ]h‖2 + 1

2
‖Dω̂τ + 1

2
[τ, τ ]m‖2 + 1

2
‖dη‖2

+ 1

2
(ηv + η)2‖σ ′(τ )f̂ ‖2 + V (η) , (7.3.4)

where the indicesh andm denote the projection ontoh andm, respectively. The physi-
cal interpretation of the terms occurring in (7.3.4) is as follows: the first term gives the
Yang–Mills functional for the reduced gauge potential ω̂ (modified by an additional
summand), the second and the third term are standard kinetic action functionals for
the matter fields τ and η, the fourth term contains a typical mass contribution for the
intermediate vector boson τ , together with a contribution describing the interaction
of τ and η and the last term is a self-interaction term of the surviving Higgs field
η. In particular, it contains a mass term. To summarize, we see that in the process
of spontaneous symmetry breaking, the intermediate vector bosons acquire a mass.
This is referred to as the Higgs mechanism,11 see [106, 186, 273, 274, 298–300, 364]
for the classical literature.

Remark 7.3.6 Since σ ′(Ad(h)A) = σ(h) ◦ σ ′(A) ◦ σ(h−1), for any h ∈ H and any
A ∈ m, the bilinear form

〈·, ·〉m : m × m → R , 〈A,B〉m := 〈σ ′(A)f̂ , σ ′(B)f̂ 〉

is an H-invariant scalar product on m. Thus,

11In a realistic model, like the standard model of elementary particle physics, a large number of
fermionic fields describing matter occur. All these fields, except for the neutrino field, also acquire
a mass via the Higgs mechanism. This will be explained in Sect. 7.7.
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‖σ ′(τ )f̂ ‖2 =
∫

M
τ

.∧ ∗τ , (7.3.5)

with the dot defined by 〈·, ·〉m. �

Let us illustrate the Higgs mechanism for a toy model with gauge group SU(2).

Example 7.3.7 (Georgi–Glashowmodel)Consider the trivial principal SU(2)-bundle
P = M × SU(2) over Minkowski spaceM and the associated bundle E ≡ Ad(P) =
P×SU(2) su(2). This model is often called the Georgi–Glashowmodel of electroweak
interactions. Using the Lie algebra isomorphism su(2) ∼= so(3) ∼= R

3 and the iden-
tification of the adjoint representation of SO(3) with its defining representation on
R

3, cf. Examples I/5.2.8 and I/5.4.7, we obtain

E ∼= P ×SO(3) R
3 . (7.3.6)

Since the bundles are trivial, we may describe any configuration (ω,Φ) in terms of
its (global) representatives (A, ϕ) onM. In the standard basis {ea} , a = 1, 2, 3 , on
R

3, we write ϕ = ϕaea. Now, consider the action functional (7.2.1), with the Higgs
potential given by (7.2.2). Then, for μ2 < 0, the minimum of V is given by

‖ϕ‖2 ≡ ϕaϕa = −μ2

λ
. (7.3.7)

Thus, Fmin coincides with a 2-sphere S2 ⊂ R
3 of radius ηv =

√
−μ2

λ
. In particular,

it consists of a single orbit. We choose

f = ηve3 ≡
⎡

⎣
0
0
ηv

⎤

⎦ .

The stabilizer of f is

H :=
{[

R 0
0 1

]
∈ SO(3) : R ∈ SO(2)

}
. (7.3.8)

Since P is trivial, it admits a reduction to the subgroup H and, thus, there exists
a Higgs vacuum ϕv. Since M is topologically trivial, any such reduction is again
trivial and thus equivalent to the subbundle Qf = M × SO(2) with the embedding
i : Qf → P defined by (7.3.8). Clearly, the Higgs vacuum corresponding to this
reduction is given by

ϕv(x) = f ,

for all x ∈ M. The orthogonal reductive decomposition (7.3.1) has the form

so(3) = so(2) ⊕ m , (7.3.9)
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where m ∼= R
2 . Note that under this identification, the restriction of H = SO(2) to

m coincides with the defining representation of SO(2).
Now, consider a configurationof type [SO(2)].Denoting the global representatives

of ω̂ and τ by Â and V, respectively, we find

Â = A3 , V =
[
A1

A2

]
.

Here, Â is an so(2)- or u(1)-valued gauge potential, whichmay be viewed as amodel
of the photon field. The intermediate vector bosonV is an R

2-valued covector field
carrying the defining representation of SO(2). Alternatively, we may view it as a
complex-valued covector field V = A1 + iA2 carrying the defining representation
of U(1). Since F/G = R

3/SO(3) ∼= R+ ∪ {0}, for a configuration of type [SO(2)],
the surviving Higgs field η is a function onM with values in R+.

Finally, let us examine in detail the covariant derivative i∗
(
DωΦ̃
)
which is respon-

sible for the mass generation in the reduced action (7.3.4). With ϕ = (ηv + η)e3,
Dϕ = dϕ + [A, ϕ] and, thus, Dϕa = dϕa + εabc A

bϕc, we obtain

(Dϕ)1 = (ηv + η)A2 , (Dϕ)2 = −(ηv + η)A1 , (Dϕ)3 = dη ,

and, thus, in the standard basis {eμ} , μ = 0, . . . , 3 , ofM,

‖Dϕ‖2 =
∫

M

(
∂μη∂

μη + (ηv + η)2
(
Aμ

1Aμ 1 + Aμ
2Aμ 2
))

vM ,

cf. formula (7.3.4).We see that themass of the intermediate vector bosonV is simply
given by ηv. �

Up until now, we have merely assumed that an absolute minimum of the Higgs
potential exists and we have drawn consequences from this fact. In the remainder
of this section, we will briefly discuss the existence problem in a model indepen-
dent way. There is a huge literature on this subject which, on the mathematical
side, is related to modern equivariant bifurcation theory [196, 197, 252] and alge-
braic geometry. The classical papers on this subject are by Michel, Radicati, Abud
and Sartori, see [5, 6, 443–446, 557, 558] and further references therein. For fur-
ther developments, including an extension to the Yang–Mills functional, see also
[229–231]. It should be noted that mechanisms of spontaneous symmetry breaking
play a role in various branches of physics, or, evenmore generally of natural sciences.
Among the classical papers cited above, [444] gives a nice overview. Our focus is
rather on gauge theories only.

As alreadymentioned at the beginning, for a given gauge-invariantHiggs potential
V , the set of absolute minimaFmin is necessarily a union of orbits. Thus, we are rather
dealing with a variational problem on the orbit space F/G. If we want to depart from
a concrete model, we should allow V to be an arbitrary gauge invariant function
on F or, equivalently, a function on F/G. Thus, the appropriate mathematical tools
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for the discussion of our variational problem are the theory of Lie group actions as
developed in Chap.6 of Part I and, in close relation, the classical invariant theory,
see [301, 523, 570, 571].

Thus, let G be a compact, connected Lie group and let (F,G, σ ) be a real rep-
resentation which is orthogonal with respect to a chosen scalar product h. Consider
an orbit type [H] of σ and the corresponding stratum F[H] ⊂ F.12 Let f ∈ F[H], let
Gf = H be its stabilizer and let G · f be the orbit through f . Since G is compact,
there exists a tubular neighbourhood of G · f . Let Nf be the corresponding (linear)
slice through f , see Sect. 6.4 of Part I. Recall that H acts orthogonally and reducibly
on Tf F. The subspaces Tf (G · f ), Tf F[H] and Nf are invariant under this action. By
the results of Sect. 6.6 of Part I, we have the orthogonal direct sum decomposition

Tf F = Tf (G · f ) ⊕ Nf .

Moreover, defining N0
f := Nf ∩ Tf F[H] and N1

f := (Tf F[H]
)⊥ ⊂ Nf , we obtain the

following direct sum decompositions

Tf F = Tf (G · f ) ⊕ N0
f ⊕ N1

f , Tf F[H] = Tf (G · f ) ⊕ N0
f . (7.3.10)

Note that N0
f is the maximal subspace of Nf where H acts trivially. This means, in

particular, that under the canonical projection F → F/G, it is identified with the
tangent space to the [H]-stratum of the orbit space. Also note the following.

(a) For the principal stratum we have N1
f = 0.

(b) If N0
f = 0, the orbit G · f is isolated in its stratum, that is, there exists a G-

invariant neighbourhood U of G · f which contains no other orbit of the same
type.

Next, let us consider the algebra C∞(F)G of G-invariant functions on F. Since the
representation σ is real, we can identify F with a finite dimensional Euclidean space
andGwith a subgroupof the orthogonal group. In this situation, the classical invariant
theory is directly applicable: the ringPG(F) of G-invariant polynomial functions on
F is finitely generated and any set of generators ρ1, . . . , ρp defines a mapping

ρ = (ρ1, . . . , ρp) : F/G → R
p ,

which is a homeomorphism onto its image. By [570], any element of C∞(F)G can
be presented as a smooth function of the generators ρ1, . . . , ρp. This implies that any
set of generators separates orbits, that is, any such set may be used to parameterize
the points of the orbit space F/G. In general, the generators ρi fulfil a number of
equations and inequalities keeping track of their ranges. Thus, the image S of ρ is

12For simplicity, assume that F[H] is connected. Otherwise, we would have to introduce a second
index labeling the connected components, see Chap.6 of Part I.

http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6
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a closed semialgebraic variety of R
p. Moreover, ρ maps the connected components

of the strata of F/G bijectively onto the primary strata13 of the variety S .
The set {ρ1, . . . , ρp} and the mapping ρ are called a Hilbert basis and a Hilbert

mapping for σ , respectively. One says that an orbitO of σ is critical if anyG-invariant
function is stationary on O. The following theorem was shown in [443].

Theorem 7.3.8 (Michel) Under the above assumptions, an orbit is critical for σ iff
it is isolated in its stratum.

Proof Let f0 be a point in the orbit under consideration and let V ∈ C∞(F)G . Since
V and h are G-invariant, the gradient vector field ∇V = h−1(dV ) is invariant, too.
Moreover, it must be orthogonal to G · f0 at every point f ∈ G · f0. On the other
hand, by the discussion in Sect. 6.7 of Part I, the flow of any invariant vector field
leaves the strata invariant and, thus, (∇V )f ∈ Tf F[H] for any f ∈ G · f0. Thus,
(∇V )f ∈ N0

f . Consequently, if N
0
f = 0, then (dV )(f ) = 0 for any V ∈ C∞(F)G and

every f ∈ G · f0.
Conversely, let G · f0 be a critical orbit, that is, (dV )(f ) = 0 for any V ∈ C∞(F)G

and every f ∈ G · f0. It was shown in [557] that the subspace N0
f is spanned by the

gradients of elements of the Hilbert basis. If they all vanish, then clearly N0
f = 0. �

From the above proof, we note the following basic facts:

(a) For every V ∈ C∞(F)G , we have (∇V )f ∈ N0
f .

(b) N0
f is spanned by the gradients of the elements of a Hilbert basis.

These observations can be taken as a starting point for a general model-independent
analysis of the variational problem under consideration. For a given stratum, one has
to determine those generators which are functionally independent on that stratum.
Next, their gradients may be used as a basis of N0

f and, then, the gradient of any
G-invariant function may be expanded in this basis. Now, the equation ∇V = 0 may
be analyzed in terms of the coefficient functions with respect to the chosen basis.
Finally, the Hessian has to be studied as well. For a detailed analysis of this approach
we refer to [6, 558].

Remark 7.3.9 If the potential V depends on a number of parameters, the location
of the stationary points of V will in general depend on these parameters. Varying
their values may result in shifting the absolute minimum to a different stratum, thus
leading to a different residual symmetry. This gives rise to bifurcation phenomena
which, together with the related phase transitions of the physical states, may also be
discussed using the above described framework. For a nice illustration, see Example
1 in Sect. 5.4 of Ref. [558]. �

13See [668, 669] or [571] for this notion. In short, a primary stratification of S is a locally finite
collection Ei of connected semi-analytic submanifolds of R

p, called strata, such thatS = ∪iEi and
such that, for each i, Ei \ Ei is a union of lower-dimensional strata.

http://dx.doi.org/10.1007/978-94-024-0959-8_6
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7.4 Magnetic Monopoles

In this section, we take up the discussion from Sect. 7.2. First, we recall the clas-
sical Dirac monopole and, next, we consider the non-Abelian model of Georgi and
Glashow introduced in Example 7.3.7 in detail. We discuss the following points:

(a) the identification of the electromagnetic field,
(b) the local characterization in terms of the Poincaré–Hopf index and the global

magnetic charge conservation law,
(c) the charge quantization,
(d) the search for exact finite energy solutions exhibiting a magnetic monopole.

First, to recall the classical Dirac monopole, consider a static electromagnetic field
in the absence of a magnetic current. Then, the Maxwell equations14 read

∇ · D = 4πρ , ∇ · B = 0 (7.4.1)

∇ × E = 0 , ∇ × H = 0 . (7.4.2)

In an attempt to reconcile magnetically charged particles with quantum mechanics,
Dirac [153, 154] considered an electron in the field of a magnetic charge. Postulating
the single-valuedness of the wave function, he found that the electric and the mag-
netic chargesmust be related by a certain quantization condition, see below. Thus, if a
magnetic monopole existed, this would explain the quantization of electric charge.15

In the presence of a hypothetical single monopole of strength g, the second equa-
tion in (7.4.1) takes the form

∇ · B = 4πgδ3(x) , (7.4.3)

where gδ3(x) stands for the magnetic monopole charge density. For the boundary
condition B(x) → 0 as ‖x‖ → ∞, the unique solution to this equation reads

B(x) = g
x

‖x‖3 . (7.4.4)

By the Gauß law, the magnetic flux of this field through the surface S2 of a ball
centered at zero is equal to the magnetic charge Qm inside the ball,

∫

S2
B · dS = Qm .

Consider the restriction of the solution (7.4.4) to S2 = {x ∈ R
3 : ‖x‖ = 1}:

14In the CGS-system.
15For a number of interesting historical references considering the possibility of magnetic
monopoles we refer to [112]. The list provided in this paper dates back to the letter of Petrus
Peregrinus from 1269.
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B�S2 (x) = g x . (7.4.5)

Note that it is well defined on all of S2. Thus, it defines a smooth 2-form F =
(B�vR3)�S2 on S2. In spherical coordinates, we have16

B�S2 (x) = g (cosϕ sin θ , sin ϕ sin θ , cos θ) (7.4.6)

and, thus,
F = −g d (cos θ) ∧ dϕ . (7.4.7)

This entails

Qm =
∫

S2
F = 4πg . (7.4.8)

Since in this discussion the physical constants play a crucial role, we switch over to
the physical representation F 
→ ie

�cF, see Remark 6.1.1.
Let us now make the following natural assumption: ie

�cF is the representative of
the curvature of a connection form on a principal U(1)-bundle P over S2. Then,
the first Chern class of P (which, by Theorem 4.8.1, determines P uniquely up to
isomorphisms) is

c1(P) = − 1

2π i

ie

�c
F = − e

2π�c
F

and, thus, the first Chern index reads

c1(P) =
∫

S2
c1(P) = −2eg

�c
. (7.4.9)

Since the first Chern index is integer-valued, we obtain the following quantization
condition:

2eg

�c
= m ∈ Z . (7.4.10)

This is the famous Dirac quantization condition. Dirac obtained it by the require-
ment that the electron wave function be single-valued. We see that, equivalently, it
follows from the above requirement that ie

�cF be the representative of the curvature
of a connection form on a principal U(1)-bundle over S2. This becomes even more
transparent by the following.

Remark 7.4.1 Note that

A+ = g(1 − cosϑ) dϕ and A− = −g(1 + cosϑ) dϕ (7.4.11)

are potentials for F on S2 \ {−e0} and S2 \ {e0}, respectively. Thus,

16Everywhere, except for the north and the south poles e0 and −e0, respectively.

http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_4
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iA+ = iA− + d(2igϕ)

on S2 \ ({e0} ∪ {−e0}
)
, that is, by restriction to the equator S1 ⊂ S2 we obtain a

mapping
ρ : S1 → U(1) ∼= S1 , ρ(ϕ) = e2igϕ ,

or, in the physical representation, using the quantization condition,

ρ(ϕ) = ei
2eg
�c ϕ = eimϕ .

We see that the quantization condition ensures that this function is single-valued and,
thus, it may be viewed as a transition function of a principal U(1)-bundle. It then
defines transition functions in all associated bundles, in particular, in the complex
line bundle whose sections model the electron wave function. Clearly, for m = 1,
this line bundle is associated with the complex Hopf bundle of Example 1.1.20. It
is easy to check that in that case the connection form defined by (7.4.11) coincides
with the canonical connection (1.3.20) (Exercise 7.4.1).

Finally, note that m coincides with the mapping degree of ρ and that there is a
similar relation to the Chern index as in Proposition 6.3.4. �

Now, let us consider the Georgi–Glashowmodel introduced in Example 7.3.7.We
use the same notation and, in particular, we use the identification given by (7.3.6). Let
(ω,Φ) be a configuration of this model, let Φ̃ be the equivariant mapping associated
with Φ and let (A, ϕ) be a (global) representative of this configuration. We define

Γ := {x ∈ M : Φ(x) = 0} , M0 := M \ Γ . (7.4.12)

Recall thatM is the 4-dimensional Minkowski space and that Φ takes values in R
3.

Thus, generically, Γ is a 1-dimensional submanifold of M. Let us assume that Γ
consists of a union of (disjoint) curves each of which intersects every hypersurface
in M defined by x0 = const. exactly once. Such a submanifold Γ will be called
generic. Below, only this case will be considered.

Let us denote the restrictions of the bundles P and E to M0 ⊂ M by P0 and E0,
respectively. Since P and E are trivial, P0 and E0 are trivial, too. The corresponding
restriction of (ω,Φ) will be denoted by the same symbols. Consider the mapping

Φ̂ : P0 → S2 ⊂ R
3 , Φ̂ := Φ̃ · ‖Φ̃‖−1 . (7.4.13)

By definition, Φ̂ is G-equivariant and, thus, defines a section of the subbundle Ê0 =
P0 ×SO(3) S2 of E0. Note that Φ̂ induces a decomposition of ω on P0:

ω = ω‖ + ω⊥ , ω‖ = Φ̂(Φ̂ · ω) , ω⊥ = ω − Φ̂(Φ̂ · ω) , (7.4.14)

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_6
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where · denotes the Euclidean scalar product on R
3.17 Clearly, Φ̂ · ω⊥ = 0.

Let us calculate the projection of the curvature of ω to Φ̂.

Lemma 7.4.2 For any configuration (ω,Φ) on P0, the following identity holds:

Φ̂ · Ω = d(Φ̂ · ω) − 1

2
Φ̂ · [dΦ̂, dΦ̂] + 1

2
Φ̂ · [DΦ̂,DΦ̂] , (7.4.15)

where Ω is the curvature form of ω.

Below, depending on whether ω and Φ̂ are viewed as mappings with values in so(3)
or R

3, respectively, the bracket [·, ·] denotes either the commutator in so(3) or the
cross product in R

3.

Proof Since DΦ̂ = dΦ̂ + [ω, Φ̂], we have

[Φ̂,DΦ̂ − dΦ̂] = [Φ̂, [ω, Φ̂]]
= [Φ̂, [ω − Φ̂(Φ̂ · ω), Φ̂] + [Φ̂(Φ̂ · ω), Φ̂]]
= [Φ̂, [ω⊥, Φ̂]]
= ω⊥(Φ̂ · Φ̂) − Φ̂(Φ̂ · ω⊥) ,

that is,
ω⊥ = [Φ̂,DΦ̂ − dΦ̂] .

On the other hand, using the standard basis {ea} in so(3) ∼= R
3, we calculate

[DΦ̂ − dΦ̂,DΦ̂ − dΦ̂] = [[ω, Φ̂], [ω, Φ̂]]
= eaεabcεbklωkΦ̂ l ∧ εcmnω

mΦ̂n

= ea(δamδbn − δanδbm)ε
b
klΦ̂

lΦ̂nωk ∧ ωm

= emεnklΦ̂ lΦ̂nωk ∧ ωm − enεmklΦ̂ lΦ̂nωk ∧ ωm

= Φ̂(Φ̂ · [ω,ω]) .

Thus,
Φ̂ · [ω,ω] = Φ̂ · [DΦ̂ − dΦ̂,DΦ̂ − dΦ̂] ,

and, therefore, using dΦ̂ · Φ̂ = 0, we obtain

17It coincides, up to a factor 1
2 , with the negative Killing form of so(3).
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Φ̂ · Ω = Φ̂ · dω + 1

2
Φ̂ · [ω,ω]

= d(Φ̂ · ω) − dΦ̂
.∧ ω⊥ + 1

2
Φ̂ · [ω,ω]

= d(Φ̂ · ω) − dΦ̂
.∧ [Φ̂,DΦ̂ − dΦ̂] + 1

2
Φ̂ · [DΦ̂ − dΦ̂,DΦ̂ − dΦ̂] .

But,

dΦ̂
.∧ [Φ̂,DΦ̂ − dΦ̂] = dΦ̂a ∧ εabcΦ̂

b(DΦ̂c − dΦ̂c)

= −Φ̂ · [DΦ̂, dΦ̂] + Φ̂ · [dΦ̂, dΦ̂] ,

and thus,

Φ̂ · Ω = d(Φ̂ · ω) + Φ̂ · [DΦ̂, dΦ̂] − Φ̂ · [dΦ̂, dΦ̂]
+ 1

2
Φ̂ · [DΦ̂,DΦ̂] − Φ̂ · [DΦ̂, dΦ̂] + 1

2
Φ̂ · [dΦ̂, dΦ̂]

= d(Φ̂ · ω) + 1

2
Φ̂ · [DΦ̂,DΦ̂] − 1

2
Φ̂ · [dΦ̂, dΦ̂] .

�

Let us rewrite Eq. (7.4.15) as follows:

d(Φ̂ · ω) − 1

2
Φ̂ · [dΦ̂, dΦ̂] = Φ̂ · Ω − 1

2
Φ̂ · [DΦ̂,DΦ̂] . (7.4.16)

The gauge invariant 2-form

Fem := Φ̂ · Ω − 1

2
Φ̂ · [DΦ̂,DΦ̂] (7.4.17)

is called the ’t Hooft electromagnetic field strength [623]. A priori, this is a 2-form on
the (trivial) bundle P0, but, since both Ω and DΦ̂ may be viewed as 2-forms on M0

with values in the adjoint bundle,Fem may be viewed as an R-valued 2-form onM0.
Note that, separately, the two summands on the left hand side of (7.4.16) are neither
gauge invariant, nor may they be interpreted as 2-forms onM0. But, clearly, their sum
must be a gauge invariant 2-form on M0, too, and thus for any global representative
(A, ϕ̂) of (ω, Φ̂) on M0, we have

Fem = d(ϕ̂ · A) − 1

2
ϕ̂ · [dϕ̂, dϕ̂] . (7.4.18)

To justify the name for Fem, we first show the following.
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Proposition 7.4.3 The 2-form Fem is closed,

dFem = 0 . (7.4.19)

Proof By (7.4.18), we must prove that d
(
ϕ̂ · [dϕ̂, dϕ̂]) = 0. Since ϕ̂2 = 1, we have

ϕ̂ · dϕ̂ = 0. Thus, for any vector X ∈ TxM0, the vector dϕ̂(X) ∈ R
3 lies in the plane

orthogonal to ϕ̂(x). Consequently, the vector [dϕ̂(Y), dϕ̂(Z)] is parallel to ϕ̂(x), for
any pair of tangent vectors Y ,Z ∈ TxM0. This implies dϕ̂(X) · [dϕ̂(Y), dϕ̂(Z)] = 0
for any triple of tangent vectors. Thus dϕ̂

.∧ [dϕ̂, dϕ̂] vanishes identically. This
yields the assertion. �

Now, choose a hypersurface Σ0 := {x ∈ M : x0 = const.}. Assume that the
submanifold Γ given by (7.4.12) is generic. Label the curves constituting Γ by Γi.
By assumption, each Γi intersects Σ0 in an isolated point xi. Take a family of open
balls Ki of radius εi centered at xi and consider a ‘big’ open ball KR of radius R in
Σ0 containing all Ki. Denote the boundary 2-spheres by S2i and S

2
R, respectively, and

choose on each of these spheres the orientation pointing outwards. By the Theorem
of Stokes and by Proposition 7.4.3, the total magnetic charge contained inKR is given
by

Qm =
∫

S2R

Fem =
∫

KR\∪iKi

dFem +
∑

i

∫

S2i

Fem =
∑

i

∫

S2i

Fem =
∑

i

Qi
m , (7.4.20)

that is, it is given by the sum of magnetic charges living on the curves Γi. To make
the construction independent of ϕ and, thus, to include any generic Γ , we take the
limit

Qm = lim
R→∞

∫

S2R

Fem . (7.4.21)

As in Sect. 7.2, we will write
∫
S2∞

for limR→∞
∫
S2R
.

To calculate the flux ofF, we must study the behaviour of the second term on the
right hand side of (7.4.18). Let S2ε be a 2-sphere of radius ε which is not contractible
inM0 and consider the mapping

ψ := ϕ̂�S2ε : S2ε → S2 ⊂ R
3 . (7.4.22)

Lemma 7.4.4 The mapping ψ fulfils

1

2
ψ · [dψ, dψ] = ψ∗(vS2) , (7.4.23)

where vS2 denotes the canonical volume form on S2.

The proof is by a direct calculation, e.g. using spherical coordinates, and is thus left
to the reader (Exercise 7.4.2).
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Proposition 7.4.5 The magnetic charges Qm and Qi
m are given by

Qm = −4π deg(ψ) , Qi
m = −4π deg(ψi) , (7.4.24)

where ψ : S2∞ → S2 and ψi : S2i → S2, respectively.

Proof Using (7.4.18), the Theorem of Stokes and Lemma 7.4.4, we obtain

Qi
m =
∫

S2i

Fem = −
∫

S2i

ψ∗
i (vS2) = −4π deg(ψi) .

The same argument applies to ψ : S2R → S2 for R such that all singularities are
contained in KR. �

Remark 7.4.6

1. Since the mapping degree is a homotopy invariant, the mapping ψ defines an
element of the second homotopy group π2(S2). Viewing S2 ⊂ R

3 as the homoge-
neous space G/H, with G = SO(3) and H = SO(2), we recover the topological
characterization of ϕ in terms of an element [ϕ∞] ∈ π2(G/H) found in Sect. 7.2.
The degree of the mappingψi : S2i → S2 is often called the Poincaré–Hopf index
of the zero xi. For a detailed discussion of the various equivalent topological
characterizations we refer to [20].

2. Since Φ vanishes on Γ , Fem is singular on Γ and thus cannot be continuously
extended to the whole of M. Nonetheless, we may consider the 3-form [20]

jm := dFem (7.4.25)

on M in the sense of distributions. Since on M0 we have dFem = 0, jm has
obviously support on Γ . The distribution-valued 3-form jm is called the magnetic
current form. By (7.4.18),

jm = −1

2
dϕ̂

.∧ [dϕ̂, dϕ̂] . (7.4.26)

In terms of jm, the magnetic charge contained in KR is given by

Qm =
∫

S2R

Fem =
∫

KR

dFem =
∫

KR

jm .

Since, by definition, jm fulfils the continuity equation d jm = 0 , the magnetic
charge is conserved.18 �

Example 7.4.7 Consider the matter field of the form

18We note that although Qm is a purely topological quantity, it does not generate a symmetry, see
[20] for a detailed discussion.
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ϕ : M → R
3 , ϕ(x) =

⎡

⎣
ϕ1(x)
ϕ2(x)
ϕ3(x)

⎤

⎦ .

1. Let
(ϕ1 + iϕ2)(x) = (ax1 + ibx2)

n , ϕ3(x) = cx3 , a, b, c ∈ R .

One can show that ϕ carries a magnetic monopole of strength n (Exercise 7.4.3).
2. Let

ϕ1(x) = 2ax1f (x) , ϕ2(x) = 2ax2f (x) , ϕ3(x) = (‖x‖2 − a2)f (x) ,

where a ∈ R and f is a nowhere vanishing smooth function. One can show that
ϕ carries two monopoles with opposite strengths ±1 separated by a distance 2a
(Exercise 7.4.3). �

The above analysis shows that the information about themagnetic charges is encoded
in the topological behaviour of the Higgs field. Since ϕ̂ is defined everywhere on
M0, one often speaks of a description in a non-singular gauge. Next, let us present
an alternative picture. Choose a point Φ̂0 ∈ S2. Let H ∼= SO(2) be the stabilizer of
Φ̂0 and let Q0 be the reduction of P0 to H induced by Φ̂0. Then,

Q0 = {p ∈ P0 : Φ̂(p) = Φ̂0} .

Let i0 : Q0 → P0 be the natural inclusion mapping. Then, as in the proof of Propo-
sition 7.3.4, pulling back ω to Q0 via i0 and decomposing it with respect to (7.3.9),
we obtain

ω̂0 := i∗0ωh , τ̂0 := i∗0ωm , (7.4.27)

where ω̂0 is an so(2) ∼= R-valued connection form and τ̂0 is a horizontal 1-form
of type Ad(H)m on Q0. Next, let us see what becomes of the electromagnetic field
strengthFem given by (7.4.17). For that purpose, we take the pullback of the identity
(7.4.16) to Q0 under the inclusion mapping i0. Comparing with (7.4.14), we have

i∗0 (ω
‖) = ω̂0 . (7.4.28)

Using this, together with i∗0 (dΦ̂) = dΦ̂0 = 0, from (7.4.16) we read off

Fem = d(Φ̂0 · ω) = dω̂0 = Ω̂0 , (7.4.29)

that is,Fem coincides with the curvature of the reduced connection form onQ0. Now,
Proposition 7.4.5 immediately implies the following.19

19Here, we view Q0 as a principal U(1)-bundle.
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Corollary 7.4.8 The first Chern index of the restriction of Q0 to S2∞ is given by

∫

S2∞
c1(Q0) = 2 deg(ψ) . (7.4.30)

This observation should be compared with an analogous result in the theory of in-
stantons, see Proposition 6.3.4. In this picture, the magnetic charges are encoded in
the nontrivial topology of the reduced bundleQ0. Now, instead of the global formula
(7.4.18), we obtain20

Fem = dA ,

with A being a local representative of ω̂0. Clearly, if Q0 is nontrivial no global
representative exists. In other words, if one insisted in working with a single poten-
tial, it would necessarily have singularities. Therefore, one sometimes calls this the
description in a singular gauge, where the magnetic monopoles are carried by the
singularities of A.

Remark 7.4.9 In the physical representation used in the analysis of the Dirac mono-
pole, we obtain

∫

S2R

c1(Q0) = − 1

2π i

e

�c

∫

S2ε

iFem = 2 deg(ψ) .

Thus, denoting in this representation

g = 1

4π

∫

S2R

Fem ,

we read off a quantization condition similar to (7.4.9),

2eg

�c
= − deg(ψ) .

�
We still stick to the model under consideration and look for an exact static solution
of the field equations exhibiting a magnetic monopole with finite energy. By the
results of Sect. 7.2, finite energy configurations (A, ϕ) are labelled by elements of
π2(G/H), whereH is the residual gauge group after symmetry breaking, and asymp-
totic solutions are characterized by the charge 2Q ∈ h, where h is the Lie algebra of
H, cf. Theorem 7.2.12 and Remark 7.2.13. Explicitly, in spherical coordinates, the
asymptotic solutions read

Aϑ = 0 , Aφ = ±(1 ∓ cosϑ)Q .

20Note that Fem may still be viewed as a 2-form on M0, because the adjoint bundle of a principal
U(1)-bundle is necessarily trivial.

http://dx.doi.org/10.1007/978-94-024-0959-8_6
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They are of course supplemented by an appropriate fall-off law of ϕ for ‖x‖ → ∞.
As noted before, these solutions are spherically symmetric.

Here, we have H = SO(2) and, thus, 2Q is simply an integer 2c ∈ Z, cf. point
1 of the proof of Theorem 7.2.12. Then, (7.4.24), (7.4.30) and (7.2.40) imply the
following expression for the magnetic charge in terms of the topological charge

Qm =
∫

S2∞
Fem = −4π deg(ψ) = −2π

∫

S2∞
c1(Q0) = 4πc . (7.4.31)

For themodel under consideration, the above asymptotic solutionswere first found by
’t Hooft [623] and Polyakov [514]. Therefore, they are called the ’t Hooft-Polyakov
monopole solutions. In [623] also the energy functional was analyzed in detail, and
themass of themagneticmonopolewas calculated. Given these asymptotic solutions,
one may wish to extend them to finite energy solutions on all of R

3. This is a very
complicated task even for the model under consideration. It was Schwarz [566] who
gave a rigorous proof that, for this model, an exact solution fulfilling the imposed
boundary conditions exists. However, it is impossible to express this solution in terms
of elementary functions. Its numerical behaviour is as follows:

ϕa(x) = xa

r2
H(ξ) , Aa

k(x) = −εk
abxb
r2

(1 − K(ξ)) , ξ = η · r .

Here, η is the Higgs vacuum andH und K are functions whose qualitative behaviour
is shown in Fig. 7.1. The review [250] of Goddard and Olive contains a lot of further
comments and references. For a status report concerning the experimental search for
magnetic monopoles we refer to [71].

Exercises

7.4.1 Prove that, for 2g = 1 the gauge potentials given by (7.4.11) are the local
representatives of the canonical connection (1.3.20) on the complex Stiefel bundle.

7.4.2 Prove Lemma 7.4.4.

7.4.3 Work out the details of Example 7.4.7.

7.4.4 Write down the canonical connection given by (1.9.43) for the case considered
by ’t Hooft and Polyakov both in the singular and in the non-singular gauge.

Fig. 7.1 Qualitative
behaviour of the functions H
and K 1

ξ

K

H/ξ

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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7.5 The Bogomolnyi–Prasad–Sommerfield Model

Now, let us try to find the absolute minima of the energy functional E(ω,Φ) of a
Yang–Mills–Higgs system with the matter field being in the adjoint representation.
Recall from the discussion in Sect. 7.2 that, for the static theory in the temporal gauge,
the energy functional reduces to

E(ω,Φ) = 1

2

(
‖Ωm‖2 + ‖DΦ‖2 +

∫

Σ0

V (Φ)vR3

)
. (7.5.1)

Since bothΩm and DΦ take values in the Lie algebra g, the energy functional may
be rewritten as follows21:

E(ω,Φ) = 1

2

(
‖Ωm ∓ DΦ‖2 +

∫

Σ0

V (Φ)vR3

)
±
∫

Σ0

Ωm
.∧ ∗DΦ .

This entails a lower bound:

E(ω,Φ) ≥ |〈Ωm,DΦ〉L2 | . (7.5.2)

Using (7.2.12) and the Bianchi identity forΩ , we calculate on the space-like hyper-
surface Σ0 defined by x0 = 0:

d(Φ ·(∗Ωm)) = dω
(
Φ ·(∗Ωm)

) = DΦ
.∧ (∗Ωm)+Φ ·(dω∗Ωm) = DΦ

.∧ (∗Ωm) .

By Stokes’ Theorem,

〈Ωm,DΦ〉L2 =
∫

Σ0

d
(
Φ · (∗Ωm)

) =
∫

S2∞
Φ · (∗Ωm) ,

and thus,

E(ω,Φ) ≥
∣
∣∣
∫

S2∞
Φ · (∗Ωm)

∣
∣∣ . (7.5.3)

This inequality is called the Bogomolnyi bound [84]. It is the starting point for the
search of stable solutions of the Yang–Mills–Higgs system. Clearly, (ω,Φ) is an
absolute minimum of the energy functional if this bound is saturated, that is, if

V (Φ) = 0 , Ωm = ±DΦ . (7.5.4)

Moreover, to guaranteefiniteness of the bound (7.5.2), for solutionswemust require22

21Recall that V is shifted so that it is non-negative.
22Recall Remark 6.2.1 for the notation.

http://dx.doi.org/10.1007/978-94-024-0959-8_6
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|DΦ| → 0 , |Ωm| → 0 , (7.5.5)

for ‖x‖ → ∞. Additionally, we also require

|Φ| → 1 , (7.5.6)

for ‖x‖ → ∞. This may be viewed as a relic of the Higgs potential. The limit
V → 0 is often referred to as the Prasad–Sommerfield limit [522]. Clearly, for
analytical estimates, these requirements must be made more precise [610]. E.g., the
first condition in (7.5.5) should be formulated as follows: for some δ > 0,

‖x‖1+δ|DΦ| ≤ const. (7.5.7)

Remark 7.5.1 In the Georgi–Glashow model, conditions (7.5.5) and (7.5.6) imply

∣∣∣
∫

S2R

Φ̂ · [DΦ̂,DΦ̂]
∣∣∣ ≤
∫

S2R

|Φ̂| |[DΦ̂,DΦ̂]|R2 dσ → 0 .

Using this, together with (7.4.17), (7.2.12) and (7.4.21), we read off the Bogomolnyi
bound in the Prasad–Sommerfield limit,

E(ω,Φ) ≥
∣
∣∣
∫

S2∞
Fem

∣
∣∣ = |Qm| . (7.5.8)

Thus, in the Prasad–Sommerfield limit, the energy functional of the Georgi–Glashow
model is bounded from below by the total magnetic charge. �

Now, consider the field equations (7.2.14) onΣ0 = R
3. In the adjoint representation

and, under the assumption that V = 0, they read

∗ dωΩ
m = [DΦ,Φ] , D∗ ◦ DΦ = 0 . (7.5.9)

Correspondingly, the Bianchi identities (7.2.6) take the form (Exercise 7.5.1)

dω ∗ Ωm = 0 , D ◦ DΦ = [∗Ωm, Φ] . (7.5.10)

If we now require the second equation in (7.5.4) to hold,

Ωm = ±DΦ , (7.5.11)

we see that the field equations (7.5.9) reduce to the Bianchi identities (7.5.10). Thus,
any exact solution of (7.5.11) entails an exact solution of the Yang–Mills–Higgs
system in the Prasad–Sommerfield limit. Equation (7.5.11) is called the Bogomolnyi
equation.
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Let us study this equation. By the above discussion, any solution of this equation
yields an absolute minimum of the energy functional. Consider the decomposition
of the Euclidean space

R
4 = Re0 × R

3 (7.5.12)

and write pri , i = 1, 2 , for the canonical projections onto the first and the second
component of (7.5.12), respectively. For x̃ ∈ R

4, denote pr1(x̃) = x0 and pr2(x̃) = x.
In this notation, the action of the Abelian group R by translations on the first factor
is given by

δ : R × R
4 → R

4 , δ(s, (x0, x)) = (x0 + s, x) .

Proposition 7.5.2 Solutions to the Bogomolnyi equation are in bijective correspon-
dence with (anti-)self-dual, R-invariant connections on the Euclidean space R

4.

Proof Let (ω,Φ) be a solution of the Bogomolnyi equation, whereω is a connection
form on a principal G-bundle π : P → R

3 and Φ is a section of Ad(P). Since P is
(necessarily) trivial, the pullback bundle P̃ = pr∗2 P over R

4 is also trivial and thus,
as a manifold, diffeomorphic to R × P, with the diffeomorphism given by

χ : R × (R3 × G) → P̃ , χ
(
x0, (x, g)

) := ((x0, x), (x, g)
)
.

Note that pr2(x
0, x) = π(x, g), indeed. Under this identification, P̃ carries a natural

lift Δ of the R-action δ, given by translations on the R-component.
Now,wemayapply the theory of invariant connections fromSect. 1.9.ByExample

1.9.18, principal G-bundles over R
4 admitting a lift of the action δ have the form23

P̃ = R × P and R-invariant connections ω̃ on P̃ are in one-to-one correspondence
with pairs (ω,Φ) where ω is a connection form on P and Φ ∈ Γ ∞(Ad(P)). It
remains to show that (ω,Φ) is a solution of the Bogomolnyi equation iff ω̃ is
(anti-)self-dual. As in Example 1.9.18, we extend Φ ⊗ e0∗ to a 1-form on Re0 with
values in Γ ∞(Ad(P)) via the R-action and use the natural isomorphism

Ω1(R4,Ad(P)) ∼= Ω1
Ad,hor(P̃, g) ,

to obtain a horizontal 1-form τ̃ of type Ad on P̃. Under this identification,

ω̃ = ω + τ̃ . (7.5.13)

Since the bundles P and P̃ are trivial we can use global representatives (A, ϕ) of
(ω,Φ) and Ã of ω̃, respectively. Denote the representatives of the curvature forms
of ω and ω̃ by F and F̃, respectively. Then, by (7.5.13),

Ã = A + ϕdx0

23Note that the roles of P and P̃ are interchanged here.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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and, thus, by the Structure Equation,

F̃ = F + Dϕ ∧ dx0 .

LetB be the (global) representative ofΩm. Then, by (7.2.12),F = ∗R3B and, using
∗R4(α ∧ dx0) = − ∗R3 α, for any 1-form α on R

3 we calculate

∗R4F̃ = ∗R4

(
Dϕ ∧ dx0

)+ ∗R4F

= − ∗R3

(
Dϕ
)+ ∗R4

( ∗R3 B
)

= − ∗R3

(
Dϕ
)− B ∧ dx0 .

Comparing with F̃ = ∗R3B + Dϕ ∧ dx0, we see that F̃ is self-dual iff B = −Dϕ

and anti-self-dual iff B = Dϕ. �

Example 7.5.3 (The BPS monopole) Let G = SU(2). Viewing x ∈ R
3 as a quater-

nion via x = x1i + x2j + x3k, we put

A(x) = 1

2

(
1

‖x‖ − 1

sinh ‖x‖
)
Im

(
dx · x
‖x‖
)

, (7.5.14)

ϕ(x) = ±1

2

(
1

‖x‖ − 1

tanh ‖x‖
)
Im

(
x

‖x‖
)

. (7.5.15)

The reader can check by a straightforward calculation that this a solution of the
Bogomolnyi equation with magnetic charge ±4π , that is, with mapping degree k =
±1 (Exercise 7.5.2). It is called the BPS monopole after Bogomolnyi [84], Prasad
and Sommerfield [522]. �

Remark 7.5.4

1. It was a challenge to find monopole solutions of higher charge. The first exis-
tence proof was presented by Taubes [609, 617]. His method is based on the
idea that a charge k monopole should be obtained by gluing together k charge 1
monopoles. However, to find explicit solutions, other techniques had to be devel-
oped. The correspondence established in Proposition 7.5.2 suggests that methods
from the theory of instantons should be applicable. Indeed, the same sequence of
ansätze from [42] led to the construction of multi monopole solutions with gauge
group SU(2), see [139, 520, 521, 650, 651]. Hitchin [306] proved that all SU(2)
monopoles can be obtained this way. A different approach, also related to in-
stanton theory, is due to Nahm [469–471]. He developed an infinite-dimensional
version of the ADHM construction to obtain multi monopole solutions. Next, it
was again Hitchin [307] who proved that, via the Nahm construction, all SU(2)-
monopoles are obtained. This way, an equivalence between the two approaches
was established. Later, Hurtubise and Murray [334] extended this result to the
case of arbitrary classical groups.
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2. As in the case of instantons, it is interesting to study the moduli space Mk of
charge k monopole solutions. For G = SU(2), this problem has been solved by
Donaldson [158]. He has proved that Mk

∼= Rk/ ∼, where Rk is the complex
manifold of rational functions f of degree k on the Riemann sphere CP1 =
C ∪ {∞} fulfilling f (∞) = 0, and ∼ denotes factorization with respect to the
circle action f 
→ eiϑ f . The proof of this statement is based on the variant of the
ADHM construction of Nahm cited above. Given the above isomorphism, one
gains a nice intuitive picture of how a general solution looks like: an arbitrary
element of Rk is given by

f (z) =
k∑

i=1

ai
z − zi

, ai ∈ C .

In particular, we read off that dim(Mk) = 4k − 1. Thus, for k = 1, we obtain
a 3-dimensional moduli space. In the parameterization of Example 7.5.3, any
solution is obtained from the BPS monopole via a translation x 
→ x − x0.
Following the ideas developed by Donaldson and using the results of [334],
Hurtubise [333] has found themoduli spaces for arbitrary classical groups SU(n),
SO(n) and Sp(n). In all cases, the moduli spaces are equivalent to spaces of
holomorphic mappings from CP1 into flag manifolds. In [36], the dynamics of
monopoles has been studied in terms of geodesic motion on the moduli space.
This goes back to an idea of Manton [425], who suggested that the geodesics of
the metric on the moduli space should correspond to scattering of slowly moving
monopoles. If one takes this idea seriously, one should study the metric of the
moduli space. This has been done for SU(2)-monopoles with special symmetries,
see [317, 318] and further references therein, and in special cases also for other
gauge groups, see [463] and references therein.

3. In [31], Atiyah proposed to study the Bogomolnyi equation on the hyperbolic
3-space. He showed that hyperbolic monopoles may be regarded as S1-invariant
instantons on S4. This variant of the theory is still an active field of research. In
[464, 465], the twistor approach to this theory has been worked out. Moreover,
there is a large number of attempts to construct (or prove the existence of) so-
lutions, see [426, 586, 606] and further references therein. The geometry of the
corresponding moduli space has not been clarified up until now, see [481], [482]
for attempts in this direction.

4. By the above discussion, the critical set of absolute minima of the Yang–Mills–
Higgs action functional consists of the solutions to the Bogomolnyi equation.
It was shown by Taubes that there exist smooth, finite action solutions to the
SU(2) Yang–Mills–Higgs equations in the Prasad–Sommerfield limit which do
not satisfy the Bogomolnyi equation. In [614], Taubes proved that they are all
unstable. It is interesting to ask whether such non-minimal solutions exist if
one requires spherical symmetry. For the case of SU(2), the answer is negative
[419]. If one allows for gauge groups with rank larger than 2, then such solutions
exist [111]. �
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For a systematic study of the theory of monopoles we refer to the monographs [36,
346, 585].

Exercises

7.5.1 Prove formulae (7.5.9) and (7.5.10).

7.5.2 Prove that (7.5.14) and (7.5.15) define a solution of the Bogomolnyi equation
with magnetic charge ±4π .

7.6 The Seiberg–Witten Model

In 1994, Seiberg and Witten published two papers where they studied the vacuum
structure of N = 2 supersymmetric Yang–Mills theory [576, 577]. In this context,
they found anAbelian gaugemodel coupled to a spinor fieldwhich, according to some
heuristic arguments taken from quantum field theory, had to contain the same topo-
logical information as the Yang–Mills theory [675].24 Indeed, within a few months,
many of the results obtained via instanton theory, were re-proved within the new
theory. In this section, we give an introduction to this fascinating model. By now,
there exists a considerable textbook literature on the subject, see [180, 219, 428, 459,
460, 487, 553], to which we refer for an exhaustive presentation.

Consider an oriented compact 4-dimensional Riemannian manifold (M, g) car-
rying a Spinc-structure Sc(M). Let π : P → M be the corresponding fundamental
U(1)-bundle and let L be the associated determinant line bundle given by (5.4.11).
Let ω be the Levi-Civita connection on O+(M) and let τ be a connection on P. Via
the two-fold covering Sc(M) → O+(E) ×M P, these connections define a unique
connectionωτ on Sc(M). LetΩτ = dτ ∈ Ω2(M)⊗ iR be the curvature25 of τ and let

S c(M) = Sc(M) ×Spinc(4) Δ4

be the associated canonical spinor bundle26 endowed with the Dirac operator Dτ

defined by ωτ . By Remark 5.5.6, we have the natural splitting

24Roughly speaking, according toWitten the two theories should be viewed as two different asymp-
totic limits of a single theory which are getting interchanged via S-duality. Under this symmetry,
electrically charged states are exchanged with magnetic monopoles, see Remark 7.6.7 below. Up
to our knowledge, these quantum field theoretic arguments have never been made mathematically
precise up until now, but there exists a research programme for accomplishing this goal, see [428]
for a further discussion.
25Since the adjoint action of U(1) is trivial, Ad(P) is a trivial bundle.
26Cf. formula (5.5.12).

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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S c(M) = S c
+(M) ⊕ S c

−(M) , (7.6.1)

induced from the spinor module splitting Δ4 = Δ+
4 ⊕ Δ−

4 . On the other hand, by
(2.8.8), we have the decomposition

∧2T∗M =∧2
+T

∗M ⊕∧2
−T

∗M , (7.6.2)

induced from the Hodge star operator of g. There is a deep relation between these
splittings given by (2.8.10), ∧2

±T
∗ ∼= S2V± . (7.6.3)

Here, T is the basic SO(4)-module and V± = Δ±
4 are the basic modules of Spin(4) =

SU(2)×SU(2). These isomorphisms are given by the quantizationmapping (5.1.11).
Explicitly, by point 1 of Remark 2.8.1, in terms of the standard basis {ei} the space∧2

±T∗ is spanned by

ϑ1 ∧ ϑ2 ± ϑ3 ∧ ϑ4 , ϑ1 ∧ ϑ3 ± ϑ4 ∧ ϑ2 , ϑ1 ∧ ϑ4 ± ϑ2 ∧ ϑ3 ,

and, thus, S2Δ±
4 is spanned by e1e2 ± e3e4, e1e3 ± e4e2 and e1e4 ± e2e3. Thus, using

the presentation given by (5.1.26), for the generators of S2Δ+
4 we obtain

e1e2 + e3e4 = 2iσ1 , e1e3 + e4e2 = 2iσ2 , e1e4 + e2e3 = 2iσ3 , (7.6.4)

as endomorphisms of Δ+
4

∼= C
2. This gives an explicit identification of the space

of real-valued self-dual forms on R
4 with the space of traceless skew-Hermitean

endomorphisms of Δ+
4 . Complexifying these isomorphisms, in particular, we ob-

tain an identification of imaginary-valued self-dual forms with traceless Hermitean
endomorphisms. Passing to the bundle level, we obtain natural bundle isomorphisms

∧2
±T

∗
C
M ∼= End0(S

c
±(M)) , (7.6.5)

where End0(S c±(M)) denote the bundles of traceless endomorphisms.

Remark 7.6.1 Below we will need a scalar product on the space of endomorphisms
of a Hermitean vector space (V, 〈·, ·〉).27 We define:

〈T1,T2〉 := 1

2
tr(T∗

1 T2) , T1,T2 ∈ End(V ) , (7.6.6)

where T∗ denotes the adjoint endomorphism, 〈T∗w, v〉 = 〈w,Tv〉. Now, let α =∑
i<j αijϑ

i ∧ ϑ j ∈ Ω2(M,C). Using the quantization mapping c, we calculate

27Here, we use the convention that the Hermitean scalar product is anti-linear in the first and linear
in the second entry.

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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|c(α)|2 = |
∑

i<j

αijcicj|2

= 1

2
tr
(∑

i<j

∑

k<l

αijαklcjcickcl
)

= 1

2
tr
(∑

i<j

|αij|214
)

= 2
∑

i<j

|αij|2 .

On the other hand, on
∧2

±T
∗
C
M the natural fibre norm is given by

|α|2 =
∑

i<j

|αij|2 .

Thus, endowing End0(S c±(M)) with the fibre metric defined by (7.6.6), we have

|c(α)|2 = 2|α|2 . (7.6.7)

�

Now, we can formulate the Seiberg–Witten model. Let Φ ∈ Γ ∞(S c+(M)). Fi-
brewise orthogonal projection to Φ defines a Hermitean endomorphism ΦΦ∗ ∈
End(S c+(M)) by

ΦΦ∗(ϕ) := Φ〈Φ,ϕ〉 , ϕ ∈ Γ ∞(S c
+(M)) .

Its traceless part q(Φ) := (ΦΦ∗)0 is given by

q(Φ)(ϕ) = Φ〈Φ,ϕ〉 − 1

2
|Φ|2ϕ . (7.6.8)

The proof of the following Lemma is left to the reader (Exercise 7.6.1).

Lemma 7.6.2 The identities

|q(Φ)|2 = 1

4
|Φ|4 , 〈T , q(Φ)〉 = 1

2
〈TΦ,Φ〉 (7.6.9)

hold for any tranceless Hermitean endomorphism T. �

Next, for any X,Y ∈ TM we define

βΦ(X,Y) := 1

4

(〈Φ,X · Y · Φ〉 − g(X,Y)|Φ|2) . (7.6.10)
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Lemma 7.6.3 We have βΦ ∈ Ω2+(M, iR) and

c(βΦ) = −q(Φ) . (7.6.11)

Proof That βΦ is an imaginary-valued 2-form follows immediately from the Clifford
algebra relationXY+YX = 2g(X,Y) and from the fact that theCliffordmultiplication
is a Hermitean operator. We prove (7.6.11). Then, in particular, the self-duality of βΦ

follows. Let {ei} be a g-orthonormal local frame on M, let {ϑ j} be the dual coframe
and letΦA be the components ofΦ with respect to the induced local frame inS c+(M).
Then,

βΦ = 1

4

∑

i<j

〈Φ, eiejΦ〉ϑ i ∧ ϑ j ,

and, by (7.6.4), the coefficients of βΦ are given by

〈Φ, e1e2Φ〉 = 〈Φ, e3e4Φ〉 = i(Φ1Φ2 + Φ1Φ2) ,

〈Φ, e1e3Φ〉 = 〈Φ, e4e2Φ〉 = Φ1Φ2 − Φ1Φ2 ,

〈Φ, e1e4Φ〉 = 〈Φ, e2e3Φ〉 = i(|Φ1|2 − |Φ2|2) .

Thus, using once again (7.6.4), we obtain

c(βΦ) = −1

2

(
(Φ1Φ2 + Φ1Φ2)σ1 + 1

i
(Φ1Φ2 − Φ1Φ2)σ2

+ (|Φ1|2 − |Φ2|2)σ3
)
.

On the other hand, decomposing q(Φ) defined by (7.6.8) with respect to the basis
(7.6.4) yields the same result with the negative sign. �

Now, the configuration space of the Seiberg–Witten model is defined as

C = A (P) × Γ ∞(S c
+(M)) , (7.6.12)

where A (P) is the affine space of connections on P. Thus, C is an affine space
consisting of pairs (τ,Φ). We stress that the metric g is kept fixed. In a similar way
as explained in Sect. 6.1, C may be treated in a Sobolev space setting, see [487, 553]
for details. Clearly, C is acted upon by the group G of local gauge transformations.
Here, the general transformation laws given by (6.1.2) and (7.1.6) boil down to

(τ,Φ) 
→ (τ + π∗(2ρ−1dρ), ρ−1Φ) , (7.6.13)

where ρ : M → U(1). The action of the Seiberg–Witten model, called the Seiberg–
Witten functional, is defined by

http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6
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SW (τ,Φ) :=
∫

M

(|Ω+
τ |2 + |∇Φ|2 + 1

4
Sc|Φ|2 + 1

8
|Φ|4)vg . (7.6.14)

Here, Ω+
τ is the self-dual part of the curvature Ωτ , Φ ∈ Γ ∞(S c+(M)) and

∇Φ = dΦ + 1

2

∑

i<j

ωijeiejΦ + 1

2
τΦ

is the covariant derivative defined by the Spinc-connection ωτ . In the same way as
explained in detail in Sects. 6.2 and 7.2, one derives the Euler–Lagrange equations
for the Seiberg–Witten functional (Exercise 7.6.2):

∇∗∇Φ = −1

4

(
Sc + |Φ|2)Φ , (7.6.15)

d∗Ω+
τ = −i Im

(〈∇Φ,Φ〉) . (7.6.16)

In our short presentation,we limit our attention to the absoluteminimaof the Seiberg–
Witten functional. They are obtained via the following proposition.

Proposition 7.6.4 The Seiberg–Witten functional may be rewritten as follows:

SW (τ,Φ) =
∫

M

(|Ω+
τ − βΦ |2 + |DτΦ|2)vg .

Proof Using (7.6.7), (7.6.11) and (7.6.9), we calculate

|Ω+
τ − βΦ |2 = 1

2
|c(Ω+

τ

)+ q(Φ)|2

= 1

2
|c(Ω+

τ

)|2 + 1

2
|q(Φ)|2 + Re〈c(Ω+

τ

)
, q(Φ)〉

= |Ω+
τ |2 + 1

8
|Φ|4 + 1

2
〈c(Ω+

τ

)
Φ,Φ〉 .

On the other hand, by Corollary 5.6.6, the Lichnerowicz Formula for Dτ reads

D2
τ = ∇∗∇ + 1

4
Sc − 1

2
c(Ωτ ) .

Thus, since Ω−
τ (Φ) = 0, we obtain

|DτΦ|2 = |∇Φ|2 + 1

4
Sc|Φ|2 − 1

2
〈c(Ω+

τ

)
Φ,Φ〉 ,

and the assertion follows. �

http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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Proposition 7.6.4 implies the following.

Corollary 7.6.5 The absolute minima of the Seiberg–Witten functional are deter-
mined by the equations

DτΦ = 0 , Ω+
τ = βΦ . (7.6.17)

�

The Eq. (7.6.17) will be referred to as the Seiberg–Witten equations. Equivalently,
by (7.6.11), they may be written as

DτΦ = 0 , c(Ω+
τ ) = −q(Φ) . (7.6.18)

Remark 7.6.6 (Gauge transformations)

1. Consider a gauge transformation (7.6.13) of a solution (τ,Φ) to the Seiberg–
Witten equations. From Proposition 6.2.7 we know that (anti-)self-duality of a
connection is a property which is invariant under gauge transformations. Here,
the situation is even simpler, because in the Abelian case the curvature is gauge
invariant. The same is true for q(Φ). Moreover, the Dirac operator clearly trans-
forms in the same way as Φ itself,

DτΦ 
→ ρ−1DτΦ .

We conclude that the gauge transformed configuration (τ +π∗(2ρ−1dρ), ρ−1Φ)

is a solution of the Seiberg–Witten equations as well.
2. Using elliptic regularity, the following can be shown. If (τ,Φ) is a solution to the

Seiberg–Witten equations belonging to an appropriate Sobolev class, then there
exists a gauge transformation such that the gauge transformed configuration is
smooth and thus, by point 1, a smooth solution, see Theorem 7.11 in [553] for
details. �

Remark 7.6.7 (Seiberg–Witten equations and magnetic monopoles) By the discus-
sion in Sects. 7.4 and 7.5, given a solution (τ,Φ) of (7.6.17) corresponding to a
nontrivial first Chern class of P, τ describes a magnetic monopole configuration.
Therefore, the Seiberg–Witten equations are also called monopole equations. To
make the relation to our previous discussion more transparent, let us consider the
Seiberg–Witten equations on Minkowski space, see [215, 467]. In that case, the first
of the equations (7.6.17) is the ordinary Dirac equation known from relativistic quan-
tum mechanics for a spin 1

2 massless particle, coupled to the electromagnetic field,
and the second of the equations (7.6.17) puts some conditions on the electromagnetic
field strength tensor. It is easy to check (Exercise 7.6.3) that one has the following
(static) exact solution of (7.6.17):

A0 = 0 , Ak(x, y, z) = (−iy, ix, 0)

2r(r − z)
, (7.6.19)

http://dx.doi.org/10.1007/978-94-024-0959-8_6


592 7 Matter Fields and Model Building

Φ(x, y, z) = 1√
2r(r − z)

[
x − iy
r − z

]
. (7.6.20)

Here, (x, y, z) are the standard coordinates on R
3, r2 = x2 + y2 + z2 and A is

a potential of Ω+
τ . Clearly, A describes a magnetic monopole of Dirac type. As

expected, calculating the right hand side of the second equation in (7.6.17) for Φ
given by (7.6.20) shows that the field strength tensor is of Coulomb type.

Let us add that the Seiberg–Witten equations can be generalized from U(1) to
SU(n). Then, one also finds monopole solutions, see [149] for details. �

The Lichnerowicz Formula for the Dirac operator implies the following strong a
priori estimate for the matter field part of a solution of the Seiberg–Witten equations.

Proposition 7.6.8 Let (M, g) be an oriented compact Riemannian 4-manifold with
scalar curvature Sc, endowed with a Spinc-structure. If (τ,Φ) is a solution to the
Seiberg–Witten equations, then either Φ vanishes identically or, at every point m ∈
M,

|Φ(m)|2 ≤ −Scmin , (7.6.21)

where Scmin is the minimal value of the scalar curvature on M. In particular, if the
scalar curvature is non-negative, then Φ = 0 identically.

Proof By Corollary 5.6.6, the Lichnerowicz Formula for Dτ reads

D2
τ = ∇∗∇ + 1

4
Sc − 1

2
c(Ωτ ) . (7.6.22)

Thus, for a solution (τ,Φ) of (7.6.18), we have

0 = D2
τΦ = ∇∗∇Φ + 1

4
ScΦ + 1

4
|Φ|2Φ . (7.6.23)

Now, let m ∈ M be a point where |Φ|2 takes on a maximum. Then,

d
(|Φ|2)(m) = 0 , 0 ≤ (�|Φ|2)(m) ,

where � = d∗d is the Hodge-Laplace operator of g acting on 0-forms. Using the
compatibility of ∇ with the Hermitean fibre metric, together with (2.7.24), (2.7.31)
and (7.6.23), we obtain

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
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0 ≤ 1

2
d∗d|Φ|2

= d∗
(
Re(〈Φ,∇Φ〉)

)

= −
∑

j

∇ej

(
Re(〈Φ,∇Φ〉))(ej)

= −
∑

j

∇ej

(
Re(〈Φ,∇ejΦ〉))+

∑

j

Re(〈Φ,∇∇ej ej
Φ〉)

= 〈Φ,∇∗∇Φ〉 − 〈∇Φ,∇Φ〉
≤ 〈Φ,∇∗∇Φ〉
= −1

4

(
Sc |Φ|2 + |Φ|4) ,

where {ej} is a local orthonormal frame on M. Thus, if |Φ|2max > 0, then

0 ≤ −1

2

(
Sc + |Φ|2max

)
.

This implies (7.6.21). Finally, if Sc is non-negative, Φ must vanish identically. �
Now, recall from Chap.6 that the study of the moduli space of instantons yields

deep insight into the differential topology of 4-manifolds.Here,we dealwith a similar
situation which, in fact, is much simpler according to the fact that the gauge group
is Abelian.28 Thus, let us consider the moduli space corresponding to the Seiberg–
Witten equations. In complete analogy to (6.5.1), we define the moduli space as

ML := {(τ,Φ) ∈ C : DτΦ = 0 , Ω+
τ = βΦ

}
/G .

As already mentioned at the beginning, as in the Yang–Mills case, all the mappings
and spaces involved in the study of ML may be understood within the setting of
Sobolev theory. For a presentation including these analytical details, we refer to
[553] or [487].

To start with, in sharp contrast to the Yang–Mills case, the following holds.

Theorem 7.6.9 The Seiberg–Witten moduli space ML is compact.

For a proof see [393, 553]. The key point is the a priori estimate (7.6.21). Then, by
standard bootstrap-type arguments, the assertion follows. We do not work out these
details here.

Now, to study ML, one can proceed as in the instanton case: one constructs a
local model of the moduli space by linearizing the field equations and associates to
that linearization an elliptic complex whose index, calculated by the Index Theorem,
yields minus the (virtual) dimension of the moduli space.

28Of course, the Seiberg–Witten equations are nonlinear as well, but the nonlinearity given by the
quadratic form q(Φ) is much milder than the nonlinearity of the Yang–Mills equation.

http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6
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Lemma 7.6.10 The linearized Seiberg–Witten equations at the point (τ,Φ) ∈ C
have the following form:

(dα)+ = βΦ,φ , Dτ φ + i

2
αΦ = 0 , (7.6.24)

with the indeterminates α ∈ Ω1(M, iR) and φ ∈ Γ ∞(S c+(M)). Here, βΦ,φ ∈
Ω2+(M, iR) is given by

βΦ,φ(X,Y) = i

2
Im {〈Φ,X · Y · φ〉 − g(X,Y)〈Φ,φ〉} . (7.6.25)

Proof Consider the 1-parameter families τt = τ + tα and Φt = Φ + tφ generated
by (α, φ). Then, Ωτt = dτ + tdα and, thus, d

dt �0Ω
+
τt

= (dα)+. We calculate

d

dt �0
βΦt (X,Y) = 1

4

d

dt �0

{〈Φt,X · Y · Φt〉 − g(X,Y)|Φt|2
}

= 1

4

(〈φ,X · Y · Φ〉 + 〈Φ,X · Y · φ〉 − g(X,Y)
(〈Φ,φ〉 + 〈φ,Φ〉))

= i

2
Im {〈Φ,X · Y · φ〉 − g(X,Y)〈Φ,φ〉} .

This yields the first assertion. To show the second assertion, we note that DτtΦt =
DτtΦ + tDτtφ and, thus,

d

dt �0

(
DτtΦt

) = d

dt �0

(
DτtΦ

)+ Dτ φ .

But,

DτtΦ = i
∑

i

ei ·
(∇eiφ + t

2
α(ei)Φ

)
.

This yields the second assertion. �

We obtain an infinitesimal model for the moduli space by factorizing with respect to
the action of G . By (7.6.13), the tangent space to the gauge orbit through (τ,Φ) is

T(τ,Φ)

(
G · (τ,Φ)

) = {(−2dξ, ξΦ) ∈ T(τ,Φ)C : ξ ∈ Ω0(M, iR)
}
. (7.6.26)

To summarize, for every solution (τ,Φ) of the Seiberg–Witten equation, we have
constructed two natural operators:

P0
(τ,Φ) : Ω0(M, iR) → Ω1(M, iR) ⊕ Γ ∞(S c

+(M))

given by
P0
(τ,Φ)(ξ) := (−2dξ, ξΦ) ,
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and
P1
(τ,Φ) : Ω1(M, iR) ⊕ Γ ∞(S c

+(M)) → Ω2
+(M, iR) ⊕ Γ ∞(S c

−(M))

defined by

P1
(τ,Φ)(α, φ) := ((dα)+ − βΦ,φ,Dτ φ + i

2
αΦ
)
.

Lemma 7.6.11 For every solution (τ,Φ), the sequence

0 → Ω0(M, iR)
P0
(τ,Φ)−→ Ω1(M, iR) ⊕ Γ (S c+(M))

P1
(τ,Φ)−→ Ω2+(M, iR) ⊕ Γ (S c−(M)) → 0

is an elliptic complex of first order differential operators.

Proof We must show that P1
(τ,Φ) ◦ P0

(τ,Φ) = 0. Thus, let α = −2dξ and φ = ξΦ.
Then, by (7.6.25), for any X,Y ∈ TM,

(
(dα)+ − βΦ,φ

)
(X,Y) = − i

2
Im
{
ξ
(〈Φ,X · Y · Φ〉 − g(X,Y)|Φ|2)}

= −2ξRe
{
βΦ(X,Y)

}

= 0 ,

because βΦ and ξ are imaginary-valued.Moreover, using an orthonormal local frame
{ei}, we compute

Dτ φ + i

2
αΦ = Dτ (ξΦ) − i(dξ)Φ

= i
∑

j

ej ·
{
ej(ξ)Φ + ξ∇ejΦ

}− i(dξ)Φ

= ξDτΦ .

ButDτΦ vanishes by (7.6.17). Finally, the complex is elliptic and the operatorsP1
(τ,Φ)

and P0
(τ,Φ) are Fredholm, because they are built, up to lower-order terms, from the

elliptic differential operators discussed in Examples 5.7.22 and 5.7.23. �

Let us denote the above elliptic complex by ESW and call it the Seiberg–Witten
complex. In the next step, we have to calculate its index over the reals.

Theorem 7.6.12 The index of the Seiberg–Witten complex is given by

indR(E
SW ) = − 1

4 c1(L)
2 + 1

4 (2χ(M) + 3σ(M)) , (7.6.27)

where c1(L) is the first Chern index of L and χ(M) and σ(M) are the Euler charac-
teristic and the signature of M, respectively.

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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Proof Since lower order terms do not contribute, the index of ESW is equal to the
index of the complex

Ω0(M, iR)
d⊕0−→ Ω1(M, iR) ⊕ Γ ∞(S c

+(M))
d+⊕Dτ−−−→ Ω2

+(M, iR) ⊕ Γ ∞(S c
−(M)) ,

which we denote byESW
0 . By (5.7.44), in turn, the index ofESW

0 coincides with minus
the index of the assembled complex

Ω1(M, iR)⊕Γ ∞(S c
+(M))

(d∗⊕d+⊕Dτ )−−−−−−−→ Ω0(M, iR)⊕Ω2
+(M, iR)⊕Γ ∞(S c

−(M)) .

Next, using the additivity of the index, we obtain

− indR(E
SW
0 ) = 2 indC(Dτ ) + indR(d

+ + d∗) .

By (5.8.53), (4.7.15) and (4.7.25), we have

indC Dτ =
∫

M
e

1
2 c1(L)Â(M) =

∫

M

(
1 + 1

2
c1(L) + 1

8
c1(L)

2
)(
1 − 1

24
p1(M)

)
.

Since, by (4.7.11) and the Hirzebruch Theorem 5.9.6, σ(M) = 1
3p1(M), we obtain

indR Dτ = 1

4
c1(L)

2 − 1

4
σ(M) . (7.6.28)

Next, we calculate the index of T = d∗ + d+. For that purpose, we use the Hodge
Theorem 2.7.2 and the remarks thereafter. Let α ∈ Ω2(M). Then, α ∈ ker(T) iff
d∗α = 0 and d+α = 0. In this case,

(d + d∗)(α + ∗α) = dα + d ∗ α = 2d+α = 0 .

Thus, d∗dα = 2d∗d+α = 0. Taking the L2-scalar product of this equation with
α implies dα = 0. We conclude that the kernel of T coincides with the space of
harmonic 1-forms,

ker(T) = H 1(M) = ker(d) ∩ ker(d∗) .

Next, we need the adjoint

T∗ : Ω0(M) ⊕ Ω2
+(M) → Ω1(M) , 〈T∗(ξ, β), α〉 = 〈ξ, d∗α〉 + 〈β, d+α〉 ,

for any α ∈ Ω1(M). Thus,

T∗(ξ, β) = dξ + d∗β .

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_2
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Now, (ξ, β) ∈ ker(T∗) iff dξ = 0 and d∗β = 0. But, for a self-dual form β ∈ Ω2+(M)

we have d∗β = 0 iff dβ = 0. Thus, we obtain

ker(T∗) = H 0(M) ⊕ H 2
+ (M) ,

whereH 2+ (M) denotes the space of self-dual harmonic 2-forms onM. To summarize,
we have

ind(T) = dim(ker(T)) − dim(ker(T∗)) = −b0 + b1 − b+
2 , (7.6.29)

with the bi denoting the Betti numbers. Now, by definition, σ(M) = b+
2 − b−

2 and,
hence, b+

2 = 1
2 (b2+σ(M)). Moreover, by Poincaré duality, χ(M) = 2(b0−b1)+b2.

This yields

indR(d
∗ + d+) = −1

2
(χ(M) + σ(M)) . (7.6.30)

Adding up (7.6.28) and (7.6.30), we obtain the assertion. �

Now, H1(ESW ) serves as an infinitesimal model for the tangent spaces ofML. Then,
as in the Yang–Mills case, the index of ESW

0 yields the virtual dimension of ML

provided H0(ESW ) and H2(ESW ) vanish. First, note that the action of G is not free
when Φ = 0. Such configurations give rise to singular points in the moduli space.

Definition 7.6.13 A solution (τ,Φ) of the Seiberg–Witten equations is called re-
ducible if Φ = 0. Otherwise it is referred to as irreducible.

By (7.6.13), the stabilizer of a reducible configuration is isomorphic to the subgroup
U(1) ⊂ G consisting of the constant mappings. Clearly, if (τ,Φ) is irreducible, then
H0(ESW ) vanishes. For later purposes, we also note the following.

Remark 7.6.14 IfΦ is a solution to the equation DτΦ = 0 on a connected manifold,
thenΦ either vanishes identically, or it is different from zero everywhere on an open
dense subset. This is called the Unique Continuation Theorem, see e.g. Theorem E.8
in [553] for a proof. Thus, for an irreducible configuration (τ,Φ), the matter fieldΦ
is nowhere vanishing on an open dense subset of M. �

Now, as in the Yang–Mills case, one would like to be able to perturb the system
in order to achieve transversality, that is, to achieve the vanishing of H0(ESW ) and
H2(ESW ). Coming from Yang–Mills theory, it would be desirable to do this by
perturbing the metric g and, thus, to obtain a counterpart of the Freed-Uhlenbeck
Theorem, see the discussion in Sect. 6.5. Here, the dependence on the metric is,
however, more complicated. The system depends on g not only via the Hodge star
operator but also via the Spinc-structure. This leads to a quite complicated variational
problem, which to our knowledge has not yet been completely understood in the
general case. Sources for this approach are [180, 559]. For a summary of various
perturbations used in various special cases and for yet another perturbation approach,
we refer to [228]. The most convenient and, probably therefore, the most prominent

http://dx.doi.org/10.1007/978-94-024-0959-8_6
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perturbation is given in terms of a generic self-dual 2-form η ∈ Ω2+(M, iR). From
now on, let us limit our attention to that case. Instead of (7.6.17), one considers the
perturbed Seiberg–Witten equations

DτΦ = 0 , Ω+
τ + η = βΦ . (7.6.31)

Then, for a reducible solution, we have

Ω+
τ + η = 0 . (7.6.32)

It turns out that if b+
2 (M) > 0, then for a generic choice of η there are no solutions

to this equation. In more detail, let Ω2,+
c ⊂ Ω2+(M, iR) be the subset of elements η

such that there exists a connection τ ∈ A (P) fulfilling (7.6.32).

Lemma 7.6.15 Assume that b+
2 (M) > 0. Then, the set Ω2,+

c is an affine subspace
ofΩ2+(M, iR) of codimension b+

2 (M) whose translation vector space is given by the
image of d+ : Ω1(M, iR) → Ω2+(M, iR).

Proof First, we show that Ω2,+
c is an affine subspace with translation vector space

im(d+). For that purpose, let η0 ∈ Ω2,+
c and let τ0 ∈ A (P) be a connection such

that Ω+
τ0

+ η0 = 0. On the one hand, for any η ∈ Ω2,+
c there exists τ ∈ A (P) such

that Ω+
τ + η = 0. Thus, η − η0 = d+(τ0 − τ). On the other hand, if η = η0 + d+α

for some α, then Ω+
τ0−α + η = 0. This implies

Ω2,+
c = η0 + im(d+) .

It remains to compute the codimension. For that purpose, using Hodge theory, we
prove the following direct sum decomposition:

Ω2
+(M, iR) = H 2

+ (M, iR) ⊕ im(d+) . (7.6.33)

For any η ∈ Ω2+(M, iR), we have η = χ + dα + ∗dβ, where χ is harmonic and
α, β ∈ Ω1(M, iR). Thus,

η = ∗η = ∗χ + dβ + ∗dα .

This implies χ = ∗χ and dα = dβ and, thus, η = χ + 2d+α. Since every self-dual
harmonic 2-form is orthogonal to the image of d+, the sum in (7.6.33) is direct. �

Passing in Eq. (7.6.32) to the de Rham cohomology classes, we obtain

[η] = 2π i c1(L)
+ . (7.6.34)

If this equation holds, then (7.6.32) admits a solution and, in this case, η is said
to be bad (with respect to the chosen Spinc-structure). Otherwise, η is said to be
good. By the above discussion, for b+

2 (M) > 0, the 2-form η is generically good
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and, thus, generically every solution of the Seiberg–Witten equations is irreducible.
Also note that for b+

2 (M) = 0 a reducible solution exists for any metric and for any
perturbation.

Now, consider the mapping

F : A (P) ⊕ Γ (S c
+(M) \ {0}) ⊕ Ω2

+(M, iR) → Ω2
+(M, iR) ⊕ Γ (S c

−(M))

given by
F(τ,Φ, η) := (Ω+

τ − βΦ + η,DτΦ) .

Then, F−1({0}) is the set of solutions of the perturbed Seiberg–Witten equations.
The tangent mapping

P1
(τ,Φ,η) : Ω1(M, iR) ⊕ Γ (S c

+(M)) ⊕ Ω2
+(M, iR) → Ω2

+(M, iR) ⊕ Γ (S c
−(M))

of F is given by

P1
(τ,Φ,η)(α, φ, ζ ) = ((dα)+ − βΦ,φ + ζ,Dτ φ + i

2
αΦ
)
. (7.6.35)

The following lemma shows that, for generic η, the second cohomology group of the
perturbed Seiberg–Witten complex vanishes.

Lemma 7.6.16 For a generic perturbation, P1
(τ,Φ,η) is surjective.

Proof Let (γ, ϕ) be in the orthogonal complement of the image of P1
(τ,Φ,η) in the

sense of the L2-scalar product. Then,

0 = 〈(γ, ϕ),P1
(τ,Φ,η)(0, 0, γ )〉 =‖ γ ‖2 ,

and, thus, γ = 0. In the same way,

0 = 〈(0, ϕ),P1
(τ,Φ,η)(α, 0, 0)〉

implies 〈 i
2αΦ, ϕ〉 = 0. But, by assumption,Φ is not vanishing identically and, thus,

by Remark 7.6.14, Φ is nowhere vanishing on an open dense subset. It follows that
the linear mapping α 
→ αΦ is fibrewise injective. This implies ϕ = 0. �

By point 1 of Remark 7.6.6, the zero set of the mapping F agrees with the zero set
of the corresponding extended mapping between appropriate Sobolev completions.
Thus, we may view F as a mapping between Banach spaces. Then, by the Implicit
Function Theorem, F−1({0}) is a Banach manifold. Moreover, one can show that the
canonical projection

π : F−1({0}) → Ω2
+(M, iR) , (τ,Φ, η) 
→ η ,
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is a smooth Fredholm mapping.29 Then, by the Sard–Smale Theorem30, the set of
regular values of π is dense in the target space. Thus, we can choose a regular value
η of π and we can build

π−1(η) = F−1
η ({0}) .

Then, by the Implicit Function Theorem, F−1
η ({0}) is a manifold. Clearly,

ML,η := F−1
η ({0})/G (7.6.36)

is the moduli space for the perturbed Seiberg–Witten equations with G acting freely
for generic perturbations. Theorem 7.6.12 and Lemmas 7.6.15 and 7.6.16, combined
with the above functional analytic arguments, imply the following.

Theorem 7.6.17 Let b+
2 (M) > 0. Then, for generic values of η, the moduli space

ML,η is a smooth manifold whose dimension is given by

dimML,η = 1

4
c1(L)

2 − 1

4
(2χ(M) + 3σ(M)) . �

Remark 7.6.18

1. The subset of regular values η is a countable intersection of open and dense sets,
see Theorem 7.16 in [553].

2. One can prove that, for generic perturbations,ML,η is oriented. Let us sketch the
idea of the proof. Clearly, a manifold is orientable iff the top exterior power of
its tangent bundle is trivial. Then, choosing an orientation at one point yields an
orientation everywhere. Thus, here, it is enough to prove that the determinant line
bundle

∧top TML,η is trivial. For that purpose, following [159] one embedsML,η

into
(
A (P) ⊕ Γ ∞(S c+(M) \ {0}))/G . Then, triviality follows from the simply-

connectedness of the latter space. Moreover, since the fibres of TML,η are given
by H1(ESW ), the bundle

∧top T(τ,Φ) ML,η coincides with the determinant of the
complex ESW . Analyzing this isomorphism according to Theorem 7.6.12, we
obtain a natural bijection between orientations of ML,η and orientations of the
vector space H 0(M) ⊕ H 1(M) ⊕ H 2+ (M) . �

In the remainder of this section, we outline that the moduli space gives rise to differ-
ential topological invariants, called Seiberg–Witten invariants, which may be used to
distinguish between smooth structures on a given topological 4-manifold. By con-
struction, the moduli space depends both on the metric g, the spin structure s and
the perturbation η. The Seiberg–Witten invariants will be independent of g and η

and only dependent on the isomorphism class [s] of the Spinc-structure.31 Now, let

29See e.g. Sect. 3.4 in [459] for an easily readable proof. A smooth Fredholm mapping is a smooth
mapping whose tangent mapping is Fredholm.
30See e.g. Theorem B.13 in [553].
31Two Spinc-structures s0 and s1 corresponding to metrics g0 and g1 are called equivalent if

(g0(X,X))−
1
2 s0(X) = (g1(X,X))−

1
2 s1(X), cf. (5.5.6).

http://dx.doi.org/10.1007/978-94-024-0959-8_5
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g0 and g1 be metrics with equivalent Spinc-structures s0 and s1, respectively. Let η0
and η1 be regular perturbations corresponding to (s0, g0) and (s1, g1), respectively.
Then, by the same methods as above, one can prove that the corresponding moduli
spaces are cobordant. Let us make this statement precise: let t 
→ gt and t 
→ st be
fixed paths connecting g0 with g1 and s0 with s1, respectively. Consider the space
Z of all smooth paths t 
→ ηt such that, for every t, ηt is gt-self-dual. For {ηt} ∈ Z
define

W := {(t, τ,Φ) : t ∈ [0, 1] , [(τ,Φ)] ∈ M(M, {st}, {gt}, {ηt})} .

Now, in general, it will not be possible to find a path t → ηt such that ηt is good
for every t. However, if we additionally assume b+

2 (M) ≥ 1, then there exists a
regular32 subset of Z of good paths. For a proof of the following proposition, we
refer to Theorem 7.21 of [553].

Proposition 7.6.19 Let b+
2 (M) ≥ 1. Then, for every regular path t 
→ ηt , W is a

smooth oriented manifold of dimension

dimW = 1

4
c1(L)

2 − 1

4
(2χ(M) + 3σ(M)) + 1 (7.6.37)

with boundary
∂W = M(M, s1, g1, η1) − M(M, s0, g0, η0) .

The minus sign accounts for the reversal of the orientation. �
Proposition 7.6.19 constitutes the basis for the discussion of invariants. It tells us that,
for a chosen equivalence class of Spinc-structures, different choices of g and η yield
cobordant moduli spaces provided b+

2 (M) ≥ 1. Now, we are prepared to define the
Seiberg–Witten invariants. In the remainder, we write c1, σ and χ for, respectively,
c1(L), σ(M) and χ(M).

First, assume dimML,η = 0. Then, by (7.6.37),

1

4
(c21 − σ) = 1

2
(χ + σ) . (7.6.38)

Since the left hand side is the real index of the Dirac operator, it is an even number.
By (7.6.29), for connected M, the right hand side is equal to 1 − b1 + b2+ and,
thus, b2+ − b1 is odd. Moreover, as a zero-dimensional compact manifold, ML,η

consists of a finite number of points for every regular value of η. Its orientation is
given as explained under point 2 of Remark 7.6.18. In the case under consideration,∧top T(τ,Φ) ML,η

∼= R, see Sect. 7.4 of [553] for details. Thus, the orientation is
given by an assignment of ±1 to each point of ML,η, that is, we assign the number
ν(τ,Φ) = 1 if the orientation of the determinant line bundle coincides with the
natural orientation of R and −1 otherwise.

32A countable intersection of open and dense sets.
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Definition 7.6.20 Let (M, g) be an oriented compact 4-dimensional Riemannian
manifold fulfilling b+

2 ≥ 1. Let there be chosen a Spinc-structure s of (M, g). If
dimML,η = 0, where η is a chosen regular self-dual 2-form, then one defines

sw(M, s; g, η) :=
∑

ν(τ,Φ) , (7.6.39)

where the sum runs over the finite set of all equivalence classes [(τ,Φ)] ∈ ML,η.

Then, the following holds.

Theorem 7.6.21 (Seiberg–Witten) If b+
2 > 1, then the integer sw(M, s; g, η) is

independent of the choice of g and η. It only depends on the isomorphism class [s].
�

Consequently, the integer sw(M, s; g, η) is called the zero-dimensional Seiberg–
Witten invariant. Clearly, we can write sw(M, s).

Second, assume dimML,η > 0. If this dimension is odd, we set

sw(M, s; g, η) = 0 .

If the dimension is even, dimML,η = 2d, we have

1

4

(
c21 − 2χ − 3σ

) = 2d .

This implies that b2+ − b1 is again odd. Now, one proceeds as follows. For a cho-
sen point m0 ∈ M, consider the group of pointed gauge transformations Gm0 :=
{u ∈ G : u(m0) = 1}. Then, C → C /Gm0 is a principal U(1)-bundle which we de-
note by P . Let c1(P) be its first Chern class. For any generic perturbation, the
moduli space is a compact oriented finite-dimensional submanifold of C /Gm0 . Thus,
we can define

sw(M, s; g, η) :=
∫

M(M,s,g,η)
c1(P)d . (7.6.40)

Clearly, c1(P) may be viewed as the first Chern class of a finite-dimensional U(1)-
bundle obtained by restriction to the submanifold M(M, s, g, η). Then, we have a
counterpart of Theorem 7.6.21.

Theorem 7.6.22 (Seiberg–Witten) If b+
2 > 1, then the integer sw(M, s; g, η) de-

fined by (7.6.40) is independent of the choice of g and η. It only depends on the
isomorphism class [s]. �

Next, we list a few basic properties of the Seiberg–Witten invariants sw(M, s), to-
gether with consequences following from their non-vanishing. For the proofs we
refer to [553].
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(a) If b+
2 > 1, then the Seiberg–Witten invariants are zero for all but finitely many

Spinc-structures s.
(b) If (M, g) has positive scalar curvature and b2+ ≥ 2, then all the Seiberg–Witten

invariants vanish.33 Thus, the non-vanishing of a Seiberg–Witten invariant on
a manifold M of the above type means that M does not admit a Riemannian
metric with positive scalar curvature. Note that this obstruction depends on the
differential (and not merely on the topological) structure of the 4-manifold.

(c) Assume that (M, g) has constant scalar curvature Sc. If b2+ ≥ 2 and sw(M, s) �=
0, then

c21 ≤ vol(M)

32π2
Sc2 .

Equality holds if there exists a pair (τ,Φ) fulfilling

|Ω+
τ |2 = 1

32
Sc2 , Ω−

τ = 0 , ∇Φ = 0 , |Φ|2 = −1

2
Sc .

(d) Let (M, g) be an Einstein space. Assume c21 = 2χ+3σ , b+
2 ≥ 2 and sw(M, s) �=

0, then
−2χ ≤ 3σ ≤ χ .

Moreover, 3σ = χ iff the universal cover of M is either R
4 or the complex

hyperbolic space SU(2, 1)/U(2). This result belongs to LeBrun, see [408].

Far beyond the above points, there is a lot of deep applications of Seiberg–Witten
theory both in geometry and in differential topology.34

(a) First of all, Seiberg–Witten theory yields alternative, much simpler proofs of
results obtained via Donaldson theory, see e.g. the proof of the Donaldson Theo-
rem 6.6.3 in [553] or [487]. Nowadays, the Seiberg–Witten invariants belong to
the standard tool kit of differential topology of 4-manifolds. In particular, there
exists a cut-and-paste technique for the calculation of Seiberg–Witten invariants.

(b) The geometry of embedded algebraic curves in the complex projective 2-space
was studied. In this context, the Thom conjecture was proven by Kronheimer
and Mrowka, Morgan, Szabo and Taubes and Fintushel and Stern.

(c) Applying Seiberg–Witten theory to symplectic geometry turned out to be espe-
cially fruitful. In particular, Taubes identified the Seiberg–Witten invariants of a
compact 4-manifold with Gromov invariants. This led to an existence theorem
of pseudo-holomorphic curves in such manifolds.

33This is an immediate consequence of the a priori estimate (7.6.21) extended to the perturbed
Seiberg–Witten equation.
34Many of the results mentioned here were found immediately after the birth of Seiberg–Witten
theory. References can be found in the literature cited at the beginning of this section.

http://dx.doi.org/10.1007/978-94-024-0959-8_6
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Exercises

7.6.1 Prove the statements of Lemma 7.6.2.

7.6.2 Confirm Eqs. (7.6.15) and (7.6.16).

7.6.3 Check that the Eqs. (7.6.19) and (7.6.20) yield a static solution to the Seiberg–
Witten equations on Minkowski space.

7.7 The Standard Model of Elementary Particle Physics

From the phenomenological point of view, the electromagnetic, the weak and the
strong interactions differ drastically, both in their strength and in their range.Nonethe-
less, it turns out that the principle of local gauge invariance is applicable to all of
them, leading to what nowadays is called the standard model of particle interactions.
All the particles described by the standard model are considered to be fundamental,
that is, they do not show any internal structure and may be considered as pointlike.35

The model whose classical field theoretical structure we are going to describe has
a long history. First, based on earlier work by Glashow [247] and others, Weinberg
[656] and Salam [552] unified the electromagnetic and the weak interactions.36 One
of the basic ingredients was the Higgs mechanism as discussed in Sect. 7.3, see [106,
186, 273, 274, 298–300, 364]. The second piece of the standard model, the the-
ory of strong interactions called Quantum Chromodynamics, was developed at the
beginning of the seventies, see [264, 513, 655]. This work was based upon funda-
mental earlier work by Gell-Mann and collaborators [235, 236]. For an exhaustive
presentation of the history of the standard model we refer to [657].

We start with recalling some basics from Chap.5, see Examples 5.1.21, 5.2.10,
5.3.9 and 5.3.25 where the general structures were illustrated for the case of the
Minkowski space. Comparing with these examples, the reader should note some
changes in the notation which we invented in order to be as close as possible to the
notation in the physics literature.37

Consider the Minkowski space (M, g), where g = diag[1,−1 − 1 − 1] , and its
(complexified) Clifford algebra Clc(M, g). For its generators {γμ} , μ = 0, . . . , 3 ,
we choose the following representation

γ0 =
[
0 1
1 0

]
, γk =

[
0 τk

−τk 0

]
,

35The Large Hadron Collider (LHC) at CERN allows to study the physics of the standard model
down to distances Δx ∼ 10−18cm. The experiments confirm that, down to such distances, the
fundamental particles do not show any internal structure, indeed.
36For this work, Glashow, Weinberg and Salam received the Nobel prize in 1979.
37The conventions used below coincide e.g. with those in [565].

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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where τk , k = 1, 2, 3 , are the Pauli matrices. Then, the chirality operator38 is given
by γ5 = iγ0γ1γ2γ3, that is,

γ5 =
[−1 0
0 1

]
.

Thus,
(
γ5
)2 = 1 , that is, γ 5 has eigenvalues ±1. This yields a direct sum decompo-

sition of the bispinor representation space Δ4
∼= C

4 into eigenspaces of γ5,

Δ4 = Δ+ ⊕ Δ− .

For a bispinor ψ , we denote the elements corresponding to this decomposition by

ψL := 1

2
(1 − γ 5)ψ , ψR := 1

2
(1 + γ 5)ψ , (7.7.1)

and call them the left-handed and the right-handed components ofψ , respectively. In
the sequel, instead of Δ4 we will rather write C

4. For building Lagrangians, we will
use the standard Hermitean form given by (5.3.55) which, here, will be denoted by
〈·, ·〉. Finally, we should stress that in this section we use the physical representation
of gauge potentials, cf. Remark 6.1.1.

Now, we can start building the standard model. It is an
(
SU(3)×SU(2)×U(1)

)
-

gauge theory, containing three fermionic families, see Table7.1, a Higgs field and
gauge fields mediating the electroweak and the strong interactions. The fermionic
families consist of leptons and quarks with equal quantum numbers but different
masses. There is no theoretical explanation of this fact. For clearness of presentation,
we will limit our attention to the first fermionic family, consisting of the leptons
(νe, e), where e denotes the electron and νe the corresponding neutrino, and the
quarks (u, d). The remaining families must be dealt with in essentially the same
way. We will comment on that at the end of this section.

Table 7.1 The fermionic families of the standard model. The data are taken from [71]. The quark
masses cannot be measured directly, but must be determined indirectly through their influence on
hadronic properties

Particles and their masses in MeV Charge

Leptons νe <0.0000006 μu <0.19 ντ <18.2 0

e
0.510998928

±0.000000011
μ

105.6583715

±0.0000035
τ 1776.82 ± 0.16 −1

Quarks u 2.3+ 0.7(−0.5) c 1275 ± 25 t 173070 ± 890 + 2
3

d 4.8+ 0.5(−0.3) s 95 ± 5 b 4650 ± 30 − 1
3

38Note that, in order to apply the general formula (5.3.9) for the chirality element, we must use the
presentation (5.1.28) for the generators of Clc4.

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5


606 7 Matter Fields and Model Building

Webeginwith describing the electroweak interactionof the leptons. In the standard
notation from particle physics, we associate with e and νe a bispinor field onM which
we denote by the same letter. It is an experimental fact that in weak interactions
parity is not conserved and a right-handed neutrino is not observed. There is no
theoretical explanation of this fact within the model. Consequently, we decompose e
and νe into their left-handed and right-handed parts, according to (7.7.1), and build
an SU(2)-doublet from the left-handed parts of e and νe and an SU(2)-singlet from
the right-handed electron part,

Le =
[
νeL
eL

]
, eR , (7.7.2)

that is, we postulate that Le transforms under the basic and eR under the trivial
representation of SU(2). From these objects we build

ψe : M → C
4 ⊗ C

3 , ψe(x) :=
[
Le
eR

]
(x) . (7.7.3)

Here, the bispinor space C
4 carries the representation of the spin group SL(2,C) of

M given by (5.2.15) and C
3 carries the representation of SU(2) just defined,

σL : SU(2) × C
3 → C

3 , σL(a)

⎡

⎣
z1
z2
z3

⎤

⎦ =
⎡

⎣a ·
[
z1
z2

]

z3

⎤

⎦ .

In order to accommodate the electromagnetic interaction in thismodel, we proceed as
follows: we introduce a U(1)-symmetry, called weak hypercharge symmetry, acting
on C

3 via

σY : U(1) × C
3 → C

3 , σY (exp(iα))

⎡

⎣
z1
z2
z3

⎤

⎦ =
⎡

⎣exp(iyLα)
[
z1
z2

]

exp(iyRα)z3

⎤

⎦ ,

with yL, yR ∈ R determined by the following postulate: let τa be the Pauli matrices.
Consider the bases {ta = i

2τa} and {i} of su(2) and u(1), respectively. Denote the
generators of the representations σL and σY by

iTa := σ ′
L(ta) =

[
ta 0
0 0

]
, iY := σ ′

Y (i) = i

[
yL1 0
0 yR

]
(7.7.4)

and require that, in any representation, the electric charge generatorQe be given by39

Qe = T3 + Y . (7.7.5)

39Note that [Y ,T3] = 0.

http://dx.doi.org/10.1007/978-94-024-0959-8_5
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Applying Qe to Le and eR, from Table7.1 we read off the eigenvalues yL = − 1
2 and

yR = −1, respectively.
To summarize, in the terminology of Sect. 7.1, ψe is the global representative of

a section of type (μ, σ ) of the bundle E = Es ⊗ Ei associated with Q ×M P, where

(a) Es is the spinor bundle with typical fibre C
4 carrying the standard spinor rep-

resentation μ of SL(2,C), associated with the (trivial) spin structure bundle
Q(M,SL(2,C)),

(b) Ei is the complex vector bundle with typical fibre C
3 carrying the representation

σ = σL × σY of SU(2) × U(1), associated with the (trivial) principal bundle
P(M,SU(2) × U(1)).

In the next step, we introduce the gauge potential mediating the electroweak interac-
tion. In the geometric terminology, it is described by a connection form on P. Since
P is trivial, we can work with a global representative on M. We denote the su(2)-
component of the gauge potential byW and the u(1)-component byB, respectively.
Since in the analysis below, the coupling constants are relevant, we must use the
physical representation, cf. Remark 6.1.1. We denote the coupling constant with re-
spect to the SU(2)-symmetry and the U(1)-symmetry by g and g′, respectively, and
write gW and g′B, respectively. By the principle of minimal coupling introduced in
Sect. 7.1, the interaction of gauge fields and fermionic matter fields is given via the
covariant derivative. According to (7.1.4), we have40

Dψe = (d + gσ ′
L(W) + g′σ ′

Y (B)
)
ψe . (7.7.6)

Now, we are prepared to write down the gauge-invariant Lagrangian describing the(
SU(2)×U(1)

)
-gauge theory of the leptonic family under consideration. According

to (6.2.1) and (7.1.9), it reads

Le = 1

2
FW

.∧ ∗FW + 1

2
FB ∧ ∗FB + 〈ψe,D/ψe〉 , (7.7.7)

where FW and FB are the field strength tensors of W and B, respectively, and D/ is
the Dirac operator built from (7.7.6), cf. formula (5.5.27). For convenience, in some
places below, instead of writing the Lagrangian as a 4-form we will write it as a
function on M without further commenting on that.

Remark 7.7.1 In standard coordinates {xμ} on M and in the Lie algebra bases {ta}
of su(2) and {i} of u(1) introduced above, we decompose

W = Wa
μ ta ⊗ dxμ , B = iBμ dx

μ . (7.7.8)

By (7.7.4) and (7.7.6), we have

Dμψe = (∂μ + igWa
μTa + ig′BμY

)
ψe (7.7.9)

40Note that the spin connection AQ is trivial here. For simplicity, we omit the factor idFs .

http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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and the Lagrangian reads

Le = −1

8
tr(WμνW

μν) − 1

4
BμνB

μν + iψ̄eγ
μDμψe , (7.7.10)

where
Wμν = ∂μWν − ∂νWμ + g[Wμ,Wν] , Bμν = ∂μBν − ∂νBμ

are the representatives of FW and FB, respectively. �
We stress that, up until now, all fermions are massless. Naive mass terms of the

form m(ψ̄LψR + ψ̄RψL) would violate gauge invariance. We will see below that the
fermions are endowed with their masses via the Higgs mechanism. This will be our
next issue. We add a bosonic scalar field

ϕ : M → C
2 , ϕ(x) :=

[
ϕ1

ϕ2

]
(x) , (7.7.11)

carrying the following representation of SU(2) × U(1):

ρL : SU(2) × C
2 → C

2 , ρL(a)

[
z1
z2

]
= a ·

[
z1
z2

]
,

ρY : U(1) × C
2 → C

2 , ρY (exp(iα))

[
z1
z2

]
= exp(iyHα)

[
z1
z2

]
,

with yH = 1
2 .

41 The generators of these representations are given by

ρ ′
L(ta) = ta , ρ ′

Y (i) = iyH1 . (7.7.12)

In the terminology of Sect. 7.1, ϕ is the global representative of a section of type
(0, ρ) of the bundle E = Es ⊗ Ei associated with Q ×M P, where

(a) Es is the tensor bundle T 0
0 (M) associated with the orthonormal frame bundle

Q = O(M) carrying the trivial representation of the Lorentz group, that is, ϕ is
a scalar field.

(b) Ei is the complex vector bundle with typical fibre C
2 carrying the representation

ρ = ρL × ρY of SU(2) × U(1), associated with the (trivial) principal bundle
P(M,SU(2) × U(1)).

According to (7.7.12), the covariant derivative of ϕ reads

Dμϕ =
(
∂μ + igWa

μ

τa

2
+ i

g′

2
Bμ1

)
ϕ .

41This choice of the eigenvalue yH is implemented by the postulate of hypercharge conservation in
elementary processes, like eL → eR + ϕ2, see [468].
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Next, we choose a typical Higgs Lagrangian, see (7.2.1) and (7.2.2),

LH = 1

2
Dϕ

.∧ ∗Dϕ − λ

(
‖ϕ‖2 − v2

2

)2
vM , (7.7.13)

supplemented by a so called Yukawa coupling term, describing the interaction of the
leptons with the scalar field,

LYuk = −ce
(
(L̄eϕ)eR + ēR(ϕ

†Le)
)
vM . (7.7.14)

Here, ce is a dimensionless coupling constant which can be chosen to be a real
non-negative number.

To summarize, the full Lagrangian describing the electroweak interaction of the
first lepton family is then given by

L = Le + LH + LYuk . (7.7.15)

Let us discuss the Higgs mechanism for this model. For that purpose, we observe
that Fmin coincides with the 2-sphere with radius v√

2
. We choose42

ϕ0 = 1√
2

[
0
v

]
. (7.7.16)

Clearly, the stabilizer H of ϕ0 under the
(
SU(2)×U(1)

)
-action consists of transfor-

mations of the form
x 
→ exp

(
iα(x)

(τ3
2

+ yH1
))

,

that is, H is isomorphic to U(1) and its generator is

t+ := i

2
(τ3 + 1) = i

[
1 0
0 0

]
.

Comparing with (7.7.5), this means that H is generated by Qe in the representation
ρ, that is, H is the electromagnetic subgroup U(1)em of SU(2)×U(1). Now, we can
apply the general theory of Sect. 7.3. By Proposition 7.3.4, the particle content after
symmetry breaking is given by a triple

(
(ω̂, τ ), η

)
, where ω̂ is the connection form

of the residual gauge symmetry H, τ describes the intermediate vector boson and η

is the surviving Higgs field. As usual, we denote the Lie algebra of H by h and take
the orthogonal decomposition

su(2) ⊕ u(1) = h ⊕ m .

42Comparing with the general theory, instead of ηv we simply write v here.
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Clearly, m is spanned by t1, t2 and t− := i
2 (τ3 − 1) = −i

[
0 0
0 1

]
. Correspondingly,

we decompose

igW 3
μ

τ3

2
+ i

g′

2
Bμ1 = 1

2
(gW 3

μ + g′Bμ)t+ + 1

2
(gW 3

μ − g′Bμ)t− . (7.7.17)

Then, in the representation ρ ′, the representative of ω̂ is

A = Aμ t+ ⊗ dxμ , Aμ = 1

2
(gW 3

μ + g′Bμ) , (7.7.18)

and that of τ is

V = Vμdx
μ , Vμ = g

2∑

a=1

Wa
μ ta + 1

2
(gW 3

μ − g′Bμ)t− . (7.7.19)

Remark 7.7.2 The following statements are left to the reader (Exercise 7.7.2). Under
a residual local gauge transformation

x 
→
[
exp(iα(x)) 0

0 1

]
,

the following transformation laws hold:

Aμ 
→ Aμ + ∂μα , W±
μ 
→ exp(±iα)W±

μ ,

where

W±
μ := 1√

2
(W 1

μ ∓ iW 2
μ) . (7.7.20)

The component 1
2 (gW

3
μ − g′Bμ)t− is gauge invariant. Thus, the components W±

μ

constitute a complex (charged) vector field in the fundamental representation of
U(1) and the t−-component is an R-valued (neutral) vector field. �

It is now convenient to introduce theWeinberg angle θW describing the above mixing
via g and g′,

tan θW := g′

g
. (7.7.21)

Then, the t−-component in (7.7.19) can be rewritten as
√

g′2+g2

2 Zμ, where

Zμ := cos(θW )W 3
μ − sin(θW )Bμ . (7.7.22)
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In this notation, the mass term (7.3.5) for the intermediate vector boson reads as
follows:

g2v2

4
W−

μ W+μ + (g2 + g′2)v2

8
ZμZ

μ ,

that is, the masses of the bosons W± and Z are

mW = gv

2
, mZ = v

√
g2 + g′2

2
. (7.7.23)

We also see that, via the Yukawa coupling term in (7.7.13), the electron field receives
a mass, whereas the neutrino remains massless. Indeed, inserting (7.7.16) into this
term, it reduces to

−ce
{
(L̄eϕ)eR + ēR(ϕ

†Le)
} = − cev√

2
(ēReL + ēLeR) ,

that is,
me = cev√

2
.

Finally, for the surviving Higgs field we get the mass

mη = 2λv2 .

Now, it remains to identify the electromagnetic gauge potential Aem. It turns out
thatAem does not merely coincide with the full t+-component A given by (7.7.17).
We will find the correct electromagnetic potential by postulating that after symmetry
breaking the minimal coupling term 1

2 〈ψe, /Dψe〉 in (7.7.7) must produce the correct
coupling term eAem

μ jμem with the electromagnetic current43

jμem = −(ēLγ
μeL + ēRγ

μeR) . (7.7.24)

By (7.7.9) and (7.7.10), we get the following interaction term

L I
e = −ψ̄eγ

μ
(
gWa

μTa + g′BμY
)
ψe

= − g√
2

(
W+

μ ν̄eLγ
μeL + W−

μ ēLγ
μνeL
)−
√
g2 + g′2

2
Zμν̄eLγ

μνeL

+ AμēLγ
μeL + g′BμēRγ

μeR .

We see that the t+-component A does not fulfil our postulate, indeed. Now, the
following decomposition formulae can be easily checked (Exercise 7.7.1):

43We use the sign convention e > 0.
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g′Bμ = − g′2
√
g2 + g′2 Zμ + g′g

√
g2 + g′2A

em
μ , (7.7.25)

Aμ = − g2 − g′2

2
√
g2 + g′2 Zμ + g′g

√
g2 + g′2A

em
μ , (7.7.26)

where
Aem
μ := sin(θW )W 3

μ + cos(θW )Bμ . (7.7.27)

We denote

e := g′g
√
g2 + g′2 , (7.7.28)

define the fermionic currents

j+μ := ēLγμνeL , j−μ := ν̄eLγμeL , j3μ := 1

2
(νeLγ

μνeL − ēLγ
μeL) , (7.7.29)

and insert the decompositions (7.7.25) and (7.7.26) intoL I
e . This yields

L I
e = −eAem

μ jμem − g√
2

(
W+

μ j−μ + W−
μ j+μ

)

−
√
g2 + g′2Zμ(j

3μ − sin2(θW )jμem) . (7.7.30)

From this we see that Aem
μ may be interpreted as the electromagnetic potential and e

as the electromagnetic coupling constant.

Remark 7.7.3

1. Recall that Zμ is invariant under local gauge transformations. Thus, it may be
viewed as the representative of a horizontal 1-form on the reduced principal
H-bundle. Thus, (7.7.26) may be interpreted as a relation between two represen-
tatives of connection forms differing by a horizontal 1-form, that is, Aem

μ is the
representative of a U(1)-connection form on the reduced bundle, indeed.

2. Up until now, the model contains 5 free parameters. They may be chosen as
e, sin(θW ),me,mW and mη. Then,

mZ = mW

cos(θW )
, v = 2mW

sin(θW )

e
.

Clearly, the full LagrangianLe + LH may be rewritten in terms of the physical
fields ψe,W±

μ ,Zμ,Aem
μ , η and the chosen free parameters above. We omit this

lengthy expression here. Themodel obtained so far is called theWeinberg–Salam
model of electroweak interactions. �
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Table 7.2 Masses and and charges of the gauge bosons and the Higgs boson

Particle and mass in MeV Charge

Gauge bosons γ <3 · 10−33 0

W± 80385

±15
±1

Z
91187.6

±2.1
0

Higgs boson η
125500

±600
0

In Table7.2, we list the measured values of the masses and the charges of the gauge
bosons44 and of the Higgs boson.45

The experimental value of the Weinberg angle was found to be, see [16] for details,

sin2(θW ) = 0.23153 ± 0.00016 . (7.7.31)

Finally, we include the quark family (u, d). Again, we decompose u and d into
their left handed and right handed components and build an SU(2)-doublet and two
SU(2)-singlets,

Lq :=
[
uL
dL

]
, uR , dR . (7.7.32)

Now, applying again (7.7.5) and using the fractional electric charges of the quarks
provided by the quarkmodel, see Table7.1, we obtain for Y the eigenvalues y = 1

6 for
Lq, y = 2

3 for uR and y = − 1
3 for dR. Next, we have to take into account that the quark

fields interact also strongly. In the standard model, the corresponding gauge group,
called colour group, is chosen to be SU(3). With respect to this gauge symmetry,
the quarks are assumed to build triplets whereas the leptons and the Higgs field are
assumed to be singlets. Thus, we introduce the quark matter field

ψq : M → C
4 ⊗ C

4 ⊗ C
3 , ψq(x) :=

⎡

⎣
Lq
uR
dR

⎤

⎦ (x) . (7.7.33)

44The values are taken from [16].
45The existence of the Higgs boson was announced on July 4th 2012 by the ATLAS and CMS
Collaborations at CERN and confirmed by later experiments, see [16] for details. The mass value
in the table is the one found by ATLAS. The CMS Collaboration found 125.7 ± 0.4 GeV. This
discovery confirmed the Higgs sector as a fundamental building block of the standard model
experimentally. One year later, the Nobel Prize was awarded jointly to François Englert and
Peter W. Higgs.
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Here, the first C
4-factor represents the bispinor space carrying the action of the spin

group SL(2,C) ofM. The secondC
4-factor carries the action of SU(2)×U(1) given

by

λL : SU(2) × C
4 → C

4 , λL(a)

⎡

⎢⎢
⎣

z1
z2
z3
z4

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

a ·
[
z1
z2

]

z3
z4

⎤

⎥⎥
⎦ ,

λY : U(1) × C
4 → C

4 , λY (exp(iα))

⎡

⎢⎢
⎣

z1
z2
z3
z4

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

exp(iyLα)

[
z1
z2

]

exp(iyuα)z3
exp(iydα)z3

⎤

⎥⎥
⎦ ,

with yL = 1
6 , yu = 2

3 and yd = − 1
3 . The C

3-factor carries the fundamental represen-
tation of SU(3),

λs : SU(3) × C
3 → C

3 , λs(a)

⎡

⎣
z1
z2
z3

⎤

⎦ = a ·
⎡

⎣
z1
z2
z3

⎤

⎦ .

From these formulae, the reader can easily read off the structure of the associated
bundle E of quark matter fields. We postulate that the strong interaction also be
mediated by a gauge field. Accordingly, we pass to the (trivial) principal bundle P
over M with structure group (the full gauge group of the standard model)

SU(3) × SU(2) × U(1)

and we introduce an additional SU(3)-gauge potentialGmediating the strong inter-
action. We denote the field strength tensor of G by FG . Again, by the principle of
minimal coupling introduced in Sect. 7.1, the interaction of gauge fields and quark
fields is given via the covariant derivative,

Dψq = (d + gsλ
′
s(G) + gλ′

L(W) + g′λ′
Y (B)
)
ψq , (7.7.34)

where gs denotes the strong coupling constant. Now, we can write down the full
Lagrangian of the standard model before spontaneous symmetry breaking:

L = Lg + Lf + LH + LYuk , (7.7.35)

where

Lg = 1

2
FG

.∧ ∗FG + 1

2
FW

.∧ ∗FW + 1

2
FB ∧ ∗FB

and
Lf = 〈ψe, /Dψe〉 + 〈ψq, /Dψq〉 .
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Since the matter field ϕ is in the trivial representation of SU(3), the colour symmetry
remains unbroken and the Higgs partLH is the same as in (7.7.15), that is, the Higgs
mechanism described before remains exactly the same. Clearly, the Yukawa coupling
term given by (7.7.14) must be modified by adding the corresponding interaction
terms of ϕ with the quark fields,

LYuk = −ce
(
(L̄eϕ)eR + ēR(ϕ

†Le)
)− cu

(
(L̄eϕ̃)uR + ūR(ϕ̃

†Lq)
)

− cd
(
(L̄eϕ)dR + d̄R(ϕ

†Lq)
)
, (7.7.36)

where ϕ̃ = iτ2ϕ∗.

Remark 7.7.4

1. If one wishes to include the other two fermionic families, then formula (7.7.36)
must be modified essentially. Instead of the constants ce , cu and cd , one must
allow for complex matrices, called Kobayashi–Maskawa matrices, mixing lep-
tons and quarks of the same charge.46 Diagonalizing these matrices and passing
to fields with a well-defined mass leads to a mixing of the original fields. This
change implies that in the charged currents built from the quark fields, mixing
matrices show up. The neutral currents are not affected by this change. For a
discussion of phenomenological consequences of these facts we refer to [468].

2. It turns out that, on quantum level, the standard model is renormalizable, that
is, the renormalized perturbation theory may be applied, see e.g. [656]. The
theoretical predictions obtained from this quantum field theory have been very
well confirmed by various types of experiments, see [16] for details.
We stress that the high energy and the low energy properties of themodel are quite
different. For high energies E � mZ ∼ 100 GeV, the boson mass corrections of
order mz

E may be neglected. In such an approximation, the full SU(3)× SU(2)×
U(1)-symmetry ismanifest. In contrast, for small energiesE � mZ , one only sees
the broken symmetry SU(3) × U(1)em. Schematically, this is often represented
as follows:

SU(3) × SU(2) × U(1)
100GeV−→ SU(3) × U(1)em .

In particular, for high energies, one may neglect the electroweak interactions of
quarks and one may consider a theory based upon the Lagrangian47

L = 1

2
FG

.∧ ∗FG + 〈ψq, ( /D − m)ψq〉 .

This is the Lagrangian of Quantum Chromodynamics (QCD). For large momen-
tum transfers (deep inelastic scattering), the renormalized perturbation theory still

46This is due to the postulate of fermion number conservation. Clearly, the matrices must be such
that the Yukawa coupling term remains gauge invariant. We refer to Sect. 22.4 of [468] for details.
47With m denoting the matrix of quark masses.
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may be applied. However, in the low energy sector, perturbative methods do not
work appropriately. In particular, it cannot be explained this way why quarks and
gluons are not observed. This is the famous quark confinement problem. �

To summarize, the full standard model contains the following set of free parameters:

(a) The coupling constants gs, e, sin(θW ),
(b) the boson masses mW ,mη,
(c) the lepton masses me,mμ,mτ ,
(d) the quark masses mu,md,mc,ms,mt,mb,
(e) the parameters of the Kobayashi–Maskawa matrix ϑ1, ϑ2, ϑ3, δ.

For a fundamental theory, this number of independent parameters seems to be rather
high. Moreover, on the way we have pointed out a number of ad hoc assumptions
(taken from the experiment) which could not be explained theoretically. We should
add that the standardmodel predictsmassless neutrinos, whereas several experiments
require small but non-vanishing neutrinomasses.Moreover, themodel does not really
explain the quantization of electric charge. Thus, the reader may ask himself whether
the standard model may be viewed as a truly unified theory.

Consequently, a lot of effort has been put into building further unification schemes.
One of the most prominent variants, the so-called grand unification (GUT) was
proposed already in 1974 by Georgi and Glashow [240]. The basic idea of grand
unification is that, beyond a very high energy scale, elementary particle physics is
described by a gauge theory with a simple gauge group GU , that is, by a theory with
a single coupling constant. The Lie group GU should be large enough so that GSM =
SU(3)×SU(2)×U(1) can be embedded intoGU . At some energyMU , the symmetry
GU is spontaneously broken to GSM , thus, leading to the standard model. This idea
works, indeed [241]: by a renormalization group analysis within the standard model,
one shows that the values of the SU(2)- and SU(3)-coupling constants decrease at
larger momentum scales, whereas the value of the U(1)-coupling constant increases.
The coupling constants approach each other at the energy scale MU = 1016 GeV.
This is called the grand unification scale. According to the idea of grand unification,
we may now replace the reduction scheme outlined under point 2 of Remark 7.7.4 by

GU
MU−→ GSM

100GeV−−−−→ SU(3) × U(1)em . (7.7.37)

The search for an appropriate simple group GU was guided by a number of natural
requirements: first, as already mentioned, it should be possible to embed GSM into
GU . Thus, GU must be at least of rank 4 and it should contain SU(3) as a subgroup.
Second, it must admit representations allowing for the correct particle spectrum and
it should be anomaly free.48 If one insists to accommodate the fermions in complex
representations, then only the simple Lie groups SU(n), with n ≥ 2 , SO(4n + 2)
and the exceptional group E6 remain as good candidates, see [438]. The requirement
that the theory be anomaly free excludes SO(6) and puts limitations on the allowed

48See Remark 9.3.8.

http://dx.doi.org/10.1007/978-94-024-0959-8_9
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representations for the unitary group. For a quite exhaustive study of the underly-
ing group theory as well as of the admissible representation schemes we refer to
[238, 597]. In the historical paper of Georgi and Glashow [240], the unifying gauge
group SU(5) was proposed. One year later, GU = SO(10) was introduced [222,
239].

In the sector of such a unified theory where GU is unbroken, completely new
phenomena occur. Since in this sector the gauge bosons involve both flavor and color,
the baryon number is not conserved anymore and thus, in most models, proton decay
is possible.49 Another remarkable feature of all realistic grand unifications is the fact
that they admit (superheavy) magnetic monopoles.

For an exhaustive review over the first period of the development of GUT’s we
refer to [400]. For moremodern aspects, including supersymmetric GUT’s, see [474]
and references therein.

In the next section, we are going to present another unification approach which
has attracted much attention over the decades.

Exercises

7.7.1 Check the formulae (7.7.25) and (7.7.26).

7.7.2 Prove the statements of Remark 7.7.2.

7.8 Dimensional Reduction. Basics

The idea of dimensional reduction can be traced back to the classical Kaluza-Klein
theory invented by Kaluza and Klein [355, 377], Einstein, Bergmann [181, 182] and
Weyl [660, 662]. Its application to non-Abelian gauge theories starts with the work
of Kerner [363], Forgacs and Manton [207] and Harnad, Shnider and Tafel [284].
Here, we concentrate on dimensional reduction of pure Yang–Mills theories. This
variant is often referred to as the CSDR scheme.50 Our presentation will be along
the lines of [394, 546], but we also refer to the review [356]. We will give further
references in the text and will comment on other variants of dimensional reduction at
the end. Our emphasis is on the method rather than on applications, as dimensional
reduction is an important tool for the study of differential equations with symmetries
in many branches of physics.

Let us consider a pure Yang–Mills theory on a (pseudo-)Riemannian manifold
(M, g) of signature (−,+, . . . ,+). In the literature, M is given different names.
Often it is called a multidimensional universe, sometimes also a Kaluza-Klein space.
We will rather stick to the first term. In short, the idea of dimensional reduction goes
as follows: assume we are given a symmetry group K acting onM in such a way that

49But the lifetime of the proton is estimated to be beyond 1030 years.
50CSDR standing for Coset Space Dimensional Reduction.
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the quotient M/K (or some piece of it) may be identified with physical spacetime.
Further assume that this symmetry may be lifted to the principal bundle of the gauge
theory under consideration. Then, one postulates K-invariance of the gauge field
configurations and of the action functional and reduces the latter with respect to
this symmetry. This way, interesting unification models may be constructed. In this
section, we use the notation and the results of Sect. 1.9.

In more detail, let G be the gauge group and let (P,G,M, Ψ, π) be the gauge
principal bundle. We consider a simple group action51 δ : K × M → M of K on M
and assume that it can be lifted to an action Δ : K → Aut(P) such that the induced
left action ρ : (K × G)× P → P given by (1.9.1) is also simple. As in Sect. 1.9, we
denote the orbit space P/(K × G) of this action by M̂. We limit our presentation to
the version described by Remark 1.9.9 and Corollary 1.9.15, that is, given a stabilizer
H of δ, we assume that the principal ΓI/Z-bundleMI → M̂ is trivial. Note that then
also the principal ΓH -bundle MH → M̂ is trivial. Here, ΓH = NK(H)/H. Thus, we
may choose a global section s : M̂ → MH . As before, we denote M̃ := s(M̂). Recall
that, in this situation, bundles admitting a lift of the K-action have the following
structure, cf. Eq. (1.9.24):

P ∼= K ×H

(
G ×CG (λ0(H)) P̃

)
. (7.8.1)

Here, λ0 : H → G is the Lie group homomorphism given by Eq. (1.9.4), P̃ ⊂ P is a

principalCG(λ0(H))-bundle over M̃ and the rightH-action onK×
(
G ×CG (λ0(H)) P̃

)

is given by
(h, (k, [(g, p̃)])) 
→ (kh, [(gλ0(h), p̃)]) , h ∈ H .

The diffeomorphism (7.8.1) is given by

[(k, [(g, p̃)])] 
→ Δk ◦ Ψg−1(p̃) .

Now, the setting is given and wemay start with the dimensional reduction procedure.
In the first step, we must classify the K-invariant configurations (ω, g) entering the
action functional. For the gauge field configurationsω, this problem has already been
solved: by Corollary 1.9.15, K-invariant connection forms ω on P are in one-to-one
correspondence with pairs (ω̃, Φ̃), where

(a) ω̃ is a connection form on P̃,
(b) Φ̃ : P̃ → L(m, g)H is a CG(λ0(H))-equivariant mapping.

Here, m ⊂ k is given by
m = n ⊕ p , (7.8.2)

where n = n̂H is the Lie algebra ofΓH .With this notation, k = h⊕m .As usual, let us
denote the Ad-invariant scalar products on k and g by 〈·, ·〉k and 〈·, ·〉g, respectively.

51Recall that an action is called simple if it has only one orbit type.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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By the discussion in Sect. 1.9, without loss of generality we may assume that the
decomposition (1.9.25) is orthogonal with respect to 〈·, ·〉k. Then, the decomposition
(7.8.2) is orthogonal, too. Consequently, from now on we denote

m ≡ h⊥ , p ≡ n⊥ . (7.8.3)

Next, let us classify the K-invariant metrics onM. For any y ∈ M̃, we decompose

TyM = TyM̃ ⊕ Ty (K · y) , (7.8.4)

where K · y is the K-orbit through y. We denote

Ny := δ′
y(n) , N⊥

y := δ′
y(n

⊥) . (7.8.5)

Then, Ty (K · y) = Ny ⊕ N⊥
y and thus

TyM = TyM̃ ⊕ Ny ⊕ N⊥
y . (7.8.6)

Recall the isotropy representation52 δ′
h : H → Aut(TyM) induced from δ. Since

Ty (K · y) = δ′
y(h

⊥) and
δ′
h ◦ δ′

y(A) = δ′
y(Ad(h)A) , (7.8.7)

for anyA ∈ h⊥, the restriction of the isotropy representation to Ty (K ·y) is equivalent
to the restriction of the adjoint representation to h⊥.

In the sequel, in order to exclude pathological situations, we further assume that,
for any y ∈ M̃, none of the components in the decomposition (7.8.6) is tangent to
the light cone {Y ∈ TyM : g(Y ,Y) = 0}.
Lemma 7.8.1 The subspace N⊥

y is g-orthogonal to TyM̃ and to Ny.

Proof Since g is K-invariant, the isotropy representation δ′
h : H → Aut(TyM) is

orthogonal. It clearly acts trivially on TyM̃. By Remark I/6.2.10, Ty (K ·y) is invariant
under the isotropy representation. Thus, the decomposition (7.8.4) is invariant, too.

By reductivity of the decomposition k = h⊕h⊥, the action ofH induces an action
on h⊥. Clearly, the maximal subspace of h⊥ on which Ad(H) acts trivially is n. Thus,
in the decomposition of n and n⊥ into Ad(H)-irreducible components,

n =
m⊕

i=i

ni , n⊥ =
n⊕

j=i

n⊥
j ,

the ni are (mutually orthogonal) one-dimensional subspaces. Inserting these decom-
positions into (7.8.5), we obtain

52Cf. point 1 of Remark I/6.2.10.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Ny =
m⊕

i=1

δ′
y(ni) , N⊥

y =
n⊕

j=1

δ′
y(n

⊥
j ) .

Consider the corresponding components of the metric viewed as mappings

g(i,j) : δ′
y(ni) → (δ′

y(n
⊥
j ))

∗ .

Then,
g−1
(j,j) ◦ g(i,j) : δ′

y(ni) → δ′
y(n

⊥
j )

is an operator intertwining the irreducible representations of δ′
y(ni) and δ

′
y(n

⊥
j ). This

follows from the K-invariance of g. Now, since the representations carried by the ni
are trivial and those carried by the n⊥

j are nontrivial, Schur’s Lemma implies that this
operator must vanish for all pairs (i, j). Consequently,Ny andN⊥

y are orthogonal to

each other. In the same way, one shows that TyM̃ is orthogonal toN⊥
y . �

From Lemma 7.8.1, we immediately get the following.

Corollary 7.8.2 If ΓH is discrete, then the decomposition (7.8.4) is orthogonal with
respect to g. �

The following proposition yields the classification of K-invariant metrics.

Proposition 7.8.3 Let δ and ρ be simple group actions and assume that the bun-
dle MH → M̂ is trivial. Then, the K-invariant metrics g on M are in one-to-one
correspondence with 4-tuples

(g̃, ξ, β, β⊥) , (7.8.8)

where g̃ is ametric on M̃, ξ is a connection formon the principalΓH-bundleMH → M̂
and β and β⊥ are functions on M̃ with values in theAd(H)-invariant non-degenerate
symmetric bilinear forms on n and n⊥, respectively.

Proof By K-invariance, the metric g is completely characterized by its values on M̃.
Let y ∈ M̃ and denote

N1 := TyM̃ , N2 := Ny , N3 := N⊥
y .

Let g(k,l) : Nl → (Nk
)∗
, k, l = 1, 2, 3 , be the corresponding components of g. By

Lemma 7.8.1, we have
g(l,3) = g(3,l) = 0 ,

for l = 1, 2. The component g(1,1) yields g̃. To define the connection form ξ , consider
the right K-action on M defined by δ̃k := δk−1 . Its restriction to ΓH yields the right
principal action on MH and x → Vx := δ̃′

x(n) is the canonical vertical distribution.
As the horizontal distribution x → Hx defining ξ we take the orthogonal complement
of V with respect to g,
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TxMH = Vx ⊕ Hx .

By the K-invariance of g, H is ΓH -invariant and thus a horizontal distribution on the
principal bundle MH → M̂. Finally, the functions β and β⊥ are given by

βy := (δ′
y

)T
�n ◦ g(2,2)y ◦ (δ′

y

)
�n , β⊥

y := (δ′
y

)T
�n⊥ ◦ g(3,3)y ◦ (δ′

y

)
�n⊥ ,

for any y ∈ M̃. We check their Ad(H)-invariance. Since Ad(H) acts trivially on n,
for β the statement is obvious. Using (7.8.7) and the K-invariance of g, for β⊥

y we
obtain

β⊥
y (Ad(h)A) = (δ′

y

)T
�n⊥ ◦ g(3,3)y ◦ δ′

h ◦ δ′
y(A)

= (δ′
y

)T
�n⊥ ◦ (δ′

h−1

)T ◦ g(3,3)y ◦ δ′
y(A)

= Ad∗(h−1) ◦ β⊥
y (A) .

The remaining properties are obvious. Finally, for the reconstruction of the K-
invariant metric g from the 4-tuple (7.8.8), we need to calculate the connection
form ξ . For that purpose, given y ∈ M̃, we decompose any vector Y ∈ TyMH with
respect to (7.8.6),

Y = (X̃, δ̃′
y(A), δ̃

′
y(B)) , X̃ ∈ TyM̃ , A ∈ n , B ∈ n⊥ ,

and, using the orthogonality condition, we read off the following vertical part:

ver (Y) =
(
0, δ̃′

y(A) + (g(2,2)y

)−1 ◦ g(2,1)y (X̃), 0
)
.

Then, by (1.3.6), we obtain

ξy(Y) =
((
δ̃′
y

)
�n

)−1 ◦ (g(2,2)y

)−1 ◦ g(2,1)y (X̃) + A . (7.8.9)

Finally, the values of ξ along the fibre through y are found by transporting ξy with δ̃.
Now, it is clear that, given a tuple (7.8.8), g can be reconstructed uniquely. �

Remark 7.8.4 Proposition 7.8.3 may be taken as a starting point for dimensional
reduction of theories including gravity, see [394] for a list of classical references.
In particular, we refer to [141] for more details. For an alternative approach based
upon reduction theory of the bundle of orthonormal frames, we refer to [538]. In this
paper, also the torsion case is included. �

Now, we can reduce the action functional

S(ω) = 1

2

∫

M
Ω

.∧ ∗Ω .

http://dx.doi.org/10.1007/978-94-024-0959-8_1
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For clearness of presentation, we limit our attention to the following case.We assume
that the metric is of the form

g = g̃ ⊕ ĝ , (7.8.10)

where g̃ is obtained from a metric on M̃ by K-invariant extension and ĝ is defined by

ĝ(A∗,B∗) := gK/H(A,B) , A,B ∈ n .

Here, gK/H is a K-invariant metric on K/H. Then, the decomposition (7.8.4) is
orthogonal, that is, togetherwithN⊥

y , alsoNy is orthogonal toTyM̃ and, consequently,
ξ = 0 in the classifying 4-tuple (7.8.8). Under this assumption, the canonical volume
form on M reads

vg = vg̃ ∧ vĝ .

Using this and (2.7.5), we have53

S(ω) = 1

2

∫

M
g−1(Ω,Ω) vg̃ ∧ vĝ .

Since both the connection and the metric are K-invariant, g−1(Ω,Ω) is K-invariant
and, thus,wemay integrate overK/H. For that purpose, it is convenient to decompose
the scalar product defined by β ⊕ β⊥ on each K-orbit with respect to a K-invariant
scalar product54 〈·, ·〉k,

β(y) = f0(y)〈·, ·〉n , β⊥(y) = f1(y)〈·, ·〉n⊥ .

This yields the volume form on the orbit K · y in terms of the canonical volume form
vK/H modified by a function f on M̃:

vK ·y = f (y) vK/H .

Then, integration over the orbits yields:

S(ω) = 1

2
vol(K/H)

∫

M̃
g−1(Ω,Ω) f vg̃ . (7.8.11)

Next,we decompose the integrandwith respect to the direct product structure (7.8.10)
in terms of the classifying objects (ω̃, Φ̃) given by Corollary 1.9.15. We rewrite
(7.8.4) as

TyM = TyM̃ ⊕ δ′
y(h

⊥) ≡ M1 ⊕ M2 (7.8.12)

53Note that g−1 includes the scalar product in the Lie algebra gof the gauge groupG. If themanifold
M is pseudo-Riemannian with signature (−,+, . . . ,+), then one has to add an overall minus sign.
54E.g., minus the Killing form if K is semisimple.

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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and denote the corresponding components of Ω by Ω(i,j) , i, j = 1, 2.

Lemma 7.8.5 The components of the curvature with respect to the decomposition
(7.8.12) are given by

Ω(1,1) = Ω̃ ,

Ω(1,2) = ∇ ω̃Φ ,

Ω(2,2) = 1

2

([Φ,Φ] − Φ ◦ [·, ·]h⊥ − λ′
0 ◦ [·, ·]h

)
,

where Ω̃ is the curvature form of ω̃ and Φ is the section of the associated bundle
P̃ ×CG (λ0(H)) L(m, g)H corresponding to Φ̃.

Proof By the Structure Equation, we obviously have Ω(1,1) = Ω̃ . It remains to
calculate Ω(1,2) and Ω(2,2). Since ω is K-invariant, it fulfils L A∗ ω = 0, where
(A∗)p = Δ′

p(A) denotes the Killing vector field of the K-action on P. Thus, for any
vector field Y on P we have

0 = (L A∗ ω
)
(Y) = A∗(ω(Y)) + ω([Y ,A∗]) . (7.8.13)

Now, using this and (1.9.48), for any y ∈ M̃ and p̃ ∈ P̃ such that π(p̃) = y, we
calculate55

Ω(1,2)
y (X̃, δ′

y(A)) = ιp̃ ◦ Ω p̃(Ỹ ,A∗)

= ιp̃ ◦ (dω + 1

2
[ω,ω])p̃(Ỹ ,A∗)

= ιp̃ ◦
{
Ỹp̃(ω(A∗)) + [ωp̃(Ỹ), ωp̃(A∗)]

}

= ιp̃ ◦ (dΦ̃(A) + [ω̃, Φ̃(A)])p̃(Ỹ)
= (∇ ω̃Φ

)
y
(A, X̃) ,

where X̃ ∈ TyM̃, A ∈ h⊥ and Ỹ is an arbitrary vector field on P̃ such thatπ ′(Ỹp̃) = X̃.
In the same way, using (7.8.13), we calculate

Ω
(2,2)
y (δ′y(A), δ′y(B)) = ιp̃ ◦ Ω p̃(A∗,B∗)

= ιp̃ ◦ (dω + 1

2
[ω,ω])p̃(A∗,B∗)

= ιp̃ ◦
{
ωp̃([A∗,B∗]) + [ωp̃(A∗), ωp̃(B∗)]

}

= ιp̃ ◦
{
[ωp̃(A∗), ωp̃(B∗)] − ωp̃([A,B]∗)

}

55Here, in order to avoid confusion, the curvature viewed as a horizontal form on P is denoted by
Ω . For the notation in the last step of the calculation, recall Definition 1.5.2.

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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= ιp̃ ◦
{
[Φ̃(p̃)(A), Φ̃(p̃)(B)] − Φ̃(p̃)([A,B]h⊥) − λ′

0([A,B]h)
}

= [Φ(y)(A),Φ(y)(B)] − Φ(y)([A,B]h⊥) − λ′
0([A,B]h) .

�

We denote the fibre metrics in the spaces of differential forms with values in g,
(h⊥)∗ ⊗ g and (

∧2h⊥)∗ ⊗ g by, respectively, 〈·, ·〉(i), i = 1, 2, 3 , and writeΩ(2,2) =
P(Φ), where

P(Φ) = 1

2

([Φ,Φ] − Φ ◦ [·, ·]h⊥ − λ′
0 ◦ [·, ·]h

)
. (7.8.14)

Then, inserting the decomposition given by Lemma 7.8.5 into (7.8.11), we obtain

S(ω) = 1

2
vol(K/H)

∫

M̃

(〈Ω̃, Ω̃〉(1) + 〈∇ ω̃Φ,∇ ω̃Φ〉(2) − V (Φ)
)
f vg̃ , (7.8.15)

where
V (Φ) = −〈P(Φ),P(Φ)〉(3) . (7.8.16)

Remark 7.8.6 For an orthonormal basis {ek} in h⊥, we have

V (Φ) = −
∑

k,l

〈Fkl,Fkl〉g , (7.8.17)

with
Fkl = [Φ(ek),Φ(el)] − Φ

([ek, el]�h⊥
)− λ′

0

([ek, el]�h
)
. (7.8.18)

�

To summarize, as a result of dimensional reduction of a pure Yang–Mills theory,
we obtain a theory of a Yang–Mills field interacting with a bosonic matter field. The
action functional contains a self-interaction term of thematter field which is of fourth
order. Thus, it is interesting to ask whether via this method one may construct Higgs
potentials. This would lead to a unification scheme for the pure Yang–Mills and the
Higgs sector.

This question will be addressed in the next section. For a much deeper discussion
of this issue we refer to [394] and a lot of further references therein.

Exercises

7.8.1 Show that ξ defined by (7.8.9) is the connection form of the horizontal distri-
bution x → Hx.
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7.9 Dimensional Reduction. Model Building

In this section, we show that the dimensional reduction procedure leads to models
which are unified in the sense that one obtains constraints between the physical
parameters (coupling constants and masses) of the reduced theory. This way, one
can obtain predictions for the mass of one or of a number of particles in terms of the
remaining parameters.

From now on, we make the following technical assumptions.

(a) Both g and k are compact simple Lie algebras.
(b) Both h and λ′

0(h) are regular
56 Lie subalgebras of k and g, respectively.

From the point of viewof unification, the first assumption is certainly natural, because
in this case the reduced theory contains the smallest possible number of parameters.
In particular, there are unique, up to a constant, Ad-invariant scalar products 〈·, ·〉k
and 〈·, ·〉g on k and g, respectively. Concerning assumption (b), it is only for regular
subalgebras that we have canonical methods for calculating the centralizer and other
characteristics, see Appendix C.

Now, if we wish to construct models, we must of course explicitly solve the
constraint equation (1.9.47) expressing the H-invariance of Φ̃,

Φ̃(p̃) ◦ Ad(h) = Ad(λ0(h)) ◦ Φ̃(p̃) , h ∈ H . (7.9.1)

From now on, we will use the following simplified notation:

λ′
0 ≡ κ , Φ̃ ≡ φ .

Recall that any φ fulfilling the above relation may be interpreted as an operator
intertwining the representations Ad(H)(h⊥) and Ad(λ0(H))(g). Consequently, to
construct φ, one has to decompose the representations in (7.9.1) into irreducible
components. By Schur’s Lemma, φ can only intertwine equivalent ones. Technically,
it is convenient to pass to the Lie algebraic version of (7.9.1),

φ(p̃) ◦ ad(B) = ad(κ(B)) ◦ φ(p̃) , B ∈ h , (7.9.2)

and to work with the complexifications kC and gC of k and g, respectively. Corre-
spondingly, we extend φ to the complexified Lie algebras:

φC(A1 + iA2) := φ(A1) + iφ(A2) , A1,A2 ∈ h⊥ . (7.9.3)

Then,
φC(A) = φC(A) , A ∈ (h⊥)C ,

with the bar denoting complex conjugation, and we may extend (7.9.2) linearly to

56See Appendix C.

http://dx.doi.org/10.1007/978-94-024-0959-8_1


626 7 Matter Fields and Model Building

φC ◦ ad(hC) = ad(κ(hC)) ◦ φC . (7.9.4)

Given a solution φC of this equation, by restriction to h⊥ ⊂ (h⊥)C one obtains an
operator φ fulfilling (7.9.2). To summarize, wemay first solve (7.9.4) and then obtain
the solution by restriction to h⊥. For the first step, we may use the representation
theory of (semi-)simple Lie algebras, see Appendix C or [170, 329] for a detailed
exposition.

In model building one is often interested in theories with one irreducible multiplet
of scalar fields only. As was shown by Kubyshin and Volobuev [643, 644], for
classical Lie groups this is always the case under the following additional assumption.

Proposition 7.9.1 Let the assumptions (a) and (b) be fulfilled, with K,H and G
being classical Lie groups. If, additionally, K/H is a simply connected irreducible
symmetric space, then the reduced theory contains only one irreducible multiplet of
scalar fields.

Proof The symmetric spaces fulfilling the assumptions are provided by Table2.1.
They read as follows:

GK(m,m + n) , Sp(m)/U(m) , SO(2m)/ U(m) , K = R,C,H .

Now, under the assumptions (a) and (b), ad(h) acts irreducibly on h⊥.57 Using this
fact, bydirect inspectionof these spaces in termsof the corresponding root lattices one
can show the following: if one passes to the complexification, either ad(h) remains
irreducible or it yields two inequivalent complex representations which are conjugate
to each other. Thus,φ either intertwines representations of one type or representations
of two types, conjugate to each other. By construction, the centralizer c of κ(h) in g
acts irreducibly on the intertwiningoperators. Thus, the latter constitute an irreducible
multiplet. �
By Proposition 7.9.1, the above class of symmetric spaces is especially interesting.
Thus, we concentrate on this case and, finally, add some comments on more general
settings. Let us define the following mappings:

f1 :∧2h⊥ → h , f1(A1 ∧ A2) := [A1,A2] ,

f2 :∧2h⊥ → g , f2(A1 ∧ A2) := [φ(A1), φ(A2)] .

By point 1 of Remark 2.5.6, we have

[h⊥, h⊥] = h . (7.9.5)

Thus, the mapping f1 is surjective. If, additionally, K/H has rank one, then f1 is
an isomorphism of vector spaces. Indeed, in that case, f1(A ∧ B) = [A,B] = 0

57Cf. point 2 of Remark 2.5.6.

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_2
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implies that A and B must be proportional, that is, A ∧ B = 0. Moreover, under the
assumptions (a) and (b), the representation ad(h)(h⊥) is irreducible. This fact has
two immediate consequences. First, it implies that the Ad-invariant scalar product
on T[1]K/H ∼= h⊥ is unique, up to a constant,58 and we may write

ĝ[1] = − 1

m2
〈·, ·〉h⊥ , (7.9.6)

where 〈·, ·〉h⊥ denotes the restriction of the canonical scalar product 〈·, ·〉k to h⊥.
Second, since φ is an intertwiner, the transport of the canonical scalar product on g
to h⊥ is an Ad(h)-invariant scalar product on h⊥ and, thus, by the above assumption,
it must be proportional to the canonical scalar product on h⊥. Denoting the factor of
proportionality by |φ|2, for any A1,A2 ∈ h⊥ we obtain

〈φ(A1), φ(A2)〉g = |φ|2〈A1,A2〉h⊥ . (7.9.7)

Remark 7.9.2 For later purposes, let us calculate |φ|2 explicitly. Let {ei} and {Ej} be
orthonormal bases in h⊥ and φ(h⊥) ⊂ g, respectively. Then, the intertwiner φ may
be expanded as follows:

φ = φm
p(ep)∗ ⊗ Em .

Then, for the left hand side of (7.9.7), we obtain

〈φ(A1), φ(A2)〉g = Ai
1A

j
2φ

m
iφ

n
jδmn ,

whereas for the right hand side we have

|φ|2〈A1,A2〉h⊥ = |φ|2Ai
1A

j
2δij .

Thus,

|φ|2 = 1

dim(h⊥)
φm

iφ
i
m ≡ 1

dim(h⊥)
tr(φ2) . (7.9.8)

�
Let us denote by ε the ratio of indices59 of κ(h) in g and h in k. The following was
shown in [547].

Proposition 7.9.3 Let the assumptions (a) and (b) be fulfilled. Let K/H be a sym-
metric space of rank 1, let h be simple and let κ be injective. Then,

V (φ) =
(
1 − 1

ε
|φ|2
)2
εm2 Ŝc ,

58Cf. formula (2.5.7).
59The index of a simple Lie subalgebra hof a Lie algebra g is the factor by which the scalar product
on h induced from the canonical scalar product of g differs from the canonical scalar product of h.

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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where Ŝc is the scalar curvature of gK/H.

Proof Since f1 is an isomorphism, there exists a mapping

f : h → g , f := f2 ◦ f −1
1 .

Moreover, for any C ∈ h, there exists a unique element α ∈∧2h⊥ such that f1(α) =
C. Without loss of generality, we may assume α = A1 ∧A2 with A1,A2 ∈ h⊥. Then,
C = [A1,A2] and we have

f ([A1,A2]) = [φ(A1), φ(A2)] . (7.9.9)

Using this, together with the Jacobi identity in g and the fact that φ is an intertwiner,
we show that f is an operator intertwining the representations ad(h) and ad(κ(h)):
indeed, on the one hand, for any B ∈ h we obtain

(adκ(B) ◦ f ) (C) = [κ(B), f ([A1,A2])]
= [κ(B), [φ(A1), φ(A2)]]
= −[φ(A1), [φ(A2), κ(B)]] − [φ(A2), [κ(B)φ(A1)]]
= [φ(A1), φ([B,A2])] − [φ(A2), φ([B,A1])] .

On the other hand,

(f ◦ ad(B)) (C) = f2 ◦ f −1
1 ([B,C])

= −f2 ◦ f −1
1 ([A1, [A2,B]] − [A2, [B,A1]])

= −f2(A1 ∧ [A2,B]) − f2(A2 ∧ [B,A1]])
= [φ(A1), φ([B,A2])] − [φ(A2), φ([B,A1])] .

Since, by assumption, κ is an isomorphism onto its image and since κ(h) ⊂ g is
regular, there is only one adjoint representation of h in g, namely ad(κ(h)) acting on
κ(h), see [170]. We conclude

f (B) = cκ(B) , B ∈ h , (7.9.10)

where c is some real constant. Then, for any A1,A2 ∈ h⊥ and any B ∈ h,

〈f ([A1,A2]), κ(B)〉g = c〈κ([A1,A2]), κ(B)〉g = cε〈[A1,A2],B〉k .
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On the other hand, using the Ad-invariance of the scalar products,

〈f ([A1,A2]), κ(B)〉g = 〈[φ(A1), φ(A2)], κ(B)〉g
= 〈φ(A2), φ([B,A1])〉g
= |φ|2〈[A1,A2],B〉k .

Thus,

c = 1

ε
|φ|2 ,

and, consequently, by (7.9.9) and (7.9.10),

[φ(A1), φ(A2)] = 1

ε
|φ|2κ([A1,A2]) .

Next, we observe that for a symmetric space the second term in (7.8.14) vanishes.
Thus,

P(φ) = 1

2

(
1

ε
|φ|2 − 1

)
κ ◦ [·, ·]h . (7.9.11)

Finally, by (2.5.21), the scalar curvature is given by

Ŝc = −
∑

k,l

ĝ([[ek, el], el], ek) , (7.9.12)

where {ek} is an orthonormal basis in h⊥ with respect to gK/H . Inserting (7.9.11) into
(7.8.17) and using (7.9.6) and (7.9.12), together with the Ad-invariance of the scalar
product, we obtain the assertion. �

The following example is taken from [547].

Example 7.9.4 (Georgi–Glashow model) We consider the case

K/H = SO(l + 1)/SO(l) , G = SO(l + p) ,

with l = 2n and p = 2k + 1. Then, h and κ(h) may be embedded regularly. Let
us find the decompositions of the Lie algebras k and g in terms of the root lattices
introduced in Appendix C. The left diagram in Fig. 7.2 shows the decomposition of
k. The roots contained in the triangles with the corners α1, αn−1, α(1, n− 1) and β1,
βn−1, β(1, n − 1) correspond to the Lie subalgebra h = Dn ⊂ Bn. To prove this, we
observe that the root βn−1 = αn−1 + 2αn, together with the roots α1, . . . , αn−1, may
be taken as a system of simple roots of h. This follows from the fact that βn−1 − αi

is not a root for i = 1, . . . , n − 1. On the other hand, 〈βn−1, αi〉∗ = 0 for i �= n − 2
and 〈βn−1, αn−2〉∗ = −1. Thus, the roots α1, . . . , αn−1, βn−1 constitute the Dynkin
diagram of Dn, cf. Fig. C.1. The subspace h⊥ is spanned by the root vectors of the
roots α(1, n), . . . , α(n, n) (filled circles) and the root vectors of the corresponding

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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α1 α2 αn−1 αn

βn−1

β2

β1

h⊥

h

h

α1 α2 αn−1 αn+1 αn+k−1 αn+k

βn+k−1

βn+1

βn−1

β2

β1

κ(h)

κ(h)

ϑk

ϑk−1

ϑ1

ϑ0

ϑ̃1

ϑ̃k−1

ϑ̃k

c= Bk

Fig. 7.2 Decomposition of k = Bn (left) and g = Bn+k (right) in terms of the root diagram

negative roots −α(1, n), . . . ,−α(n, n). Since dim h⊥ = 2n, h⊥ carries the vector
representation of Dn.

Next, let us discuss the right diagram in Fig. 7.2 showing the decomposition of g.
In analogy with the left diagram, the roots in the triangles (α1, αn−1, α(1, n−1)) and
(β1, βn−1, β(1, n− 1)) build a Dn-subalgebra of Bn+k . We denote the root vectors in
Bn+k by Eα and choose the homomorphism κ : h → g as follows:

κ(eαi) := Eαi , κ(eβn−1) := Eβn−1 , i = 1, . . . , n − 1 .

Thus, ε = 1, that is,

〈κ(B1), κ(B2)〉g = 〈B1,B2〉k , B1,B2 ∈ h .

Now, the decomposition of the representation ad(g)�κ(h) looks as follows: clearly,
the triangle (αn+1, αn+k, βn+1) carries the trivial representation of Dn. Thus, the
centralizer of κ(h) in g is c = Bk . Consequently, the structure group CG(λ(H)) of
the reduced theory is SO(2k + 1). The fact that, in the case under consideration, c
does not contain any Abelian subalgebra is an immediate consequence of equation
(C.1). Next, the two segments (α(1, n − 1 + i), . . . , α(n, n − 1 + i)) with i =
1, . . . , k + 1 and (β(1, n − 1 + i), . . . , β(n, n − 1 + i)) with i = 1, . . . , k, together
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with the corresponding negative roots 2k+1, formvector representations ofDn.More
precisely, we have one real representation ϑ0, and the 2k complex representations ϑi

spanned by the root vectors (eα(j,n−1+i), . . . , e−β(j,n−1+i)) and ϑ̃i spanned by the root
vectors (e−α(j,n−1+i), . . . , eβ(j,n−1+i)), where j = 1, . . . , n.

For the sake of completeness, let us write down the scalar field φ60:

φ =
∑

k,i

φk(ei)∗ ⊗ Ẽik .

Here, {ei} is the basis of root vectors in h⊥ and {Ẽik} are bases in the representations
ϑ0 and ϑi, invariant under complex conjugation. Clearly, φ carries the vector repre-
sentation of the centralizer c. Finally, using (7.9.6) and (7.9.12), one easily calculates
the scalar curvature (Exercise 7.9.1),

Ŝc = m2l(l − 1) . (7.9.13)

This yields
V (φ) = m4l(l − 1)(1 − |φ|2)2 .

If one writes down the scalar products in (7.8.15) explicitly, then the first two terms
acquire factors which are functions of the constants m, l and p. Thus, if one wants to
bring the reduced action to a canonical form, onemust rescale both the gauge potential
and the matter field appropriately. After that, the potential takes the following form:

V (φ) = g2(l − 1)

4l(p − 2)

(
m2l(p − 2)

g2
− |φ|2

)2
, (7.9.14)

where g is the coupling constant of the reduced theory. For p = 3 we get the bosonic
sector of the Georgi–Glashow model, cf. Example 7.3.7. Using the formulae for the
masses of the Higgs boson, the intermediate vector boson W and the monopole as
given by ’t Hooft [623], we get

mH = m

√
1

2
(l − 1) , mW = √

lm , mmon = 4π

g2
√
l m C

(
2(l − 1)

l

)
,

where C is a slowly varying function. Thus,

mH =
√
2(l − 1)

l
mW ,

that is, within this unified model one gets a prediction of the Higgs mass in terms of
the mass of the W -boson. �

60By Proposition 7.9.3, in the case of a symmetric space, φ need not be calculated explicitly.



632 7 Matter Fields and Model Building

In a similar way, one may attempt to construct the bosonic sector of the Weinberg–
Salam model, see [423, 644]. In the following example, we present the results of
Kubyshin and Volobuev [644]. Since the method is the same as in Example 7.9.4,
we omit the calculations.

Example 7.9.5 (Weinberg–Salam model) The results of [644] are summarized in the
following table. In each case, one obtains the bosonic sector of theWeinberg–Salam

G K/H MW MZ MH sin2 θW
SO(l + 4) GR(2, l + 2) m

√
l m

√
l m

√
2l 1

2
SU(l + 2) CPl m

√
l m

√
2(l + 1) m

√
2(l + 1) l+2

2(l+1)

Sp(l + 1) CPl m
√
2l m

√
2(l + 1) m

√
2(l + 1) 1

l+1

model described in Sect. 7.7. It is interesting to compare themasses and theWeinberg
angle obtained via the dimensional reduction method with the experimental data.
Instead of the four parametersMW , MZ , MH and sin2 θW characterizing the bosonic
sector, cf. Remark 7.7.3, we have only 3 independent parameters here: the non-
Abelian coupling constant g, which is proportional to the coupling constant of the
unreduced pure Yang–Mills theory on the multidimensional universe, the reciprocal
linear scale m of the internal space, cf. Eq. (7.9.6), and the dimension l of that space.
This allows for a prediction of the Higgs mass on tree level. It can be shown that in
all the above cases, the correct value of the electric charge e can be obtained by an
appropriate choice of the coupling constant g. This should be clear from (7.7.28).
Comparingwith (7.7.31), we see that the thirdmodel of the above table yields the best
agreement with the experimental value of the Weinberg angle: for l = 3 we obtain
sin2 θW = 0.25. Unfortunately, in this case, the predicted value of the Higgs mass is
too small. It coincides with the mass of the intermediate vector boson Z . It should be
noted that, on the other hand, the relation of the Z- and the W -mass is in quite good
agreement with the experimental value. Comparing with the corresponding table in
Sect. 7.7, we see that the model in the first row yields a rather nice prediction of the
Higgs mass, but sin2 θW is too large.

Finally, we note that Manton [423] has obtained similar results for models with
gauge groups SU(3), SO(5) and G2 on the six-dimensional universe M × S2 with
rotational symmetry. �

Remark 7.9.6

1. If one departs from the assumption thatK/H be symmetric,while keepingκ injec-
tive, then new phenomena occur. In this case, h⊥ decomposes into h⊥ = n⊕ n⊥,
cf. (7.8.2) and (7.8.3). Now, in addition to intertwining non-trivial representations
in n⊥ with non-trivial representations in g, in general also trivial representations
of n and of c ⊂ g will be intertwined. The latter phenomenon is new, comparing
with the case of a symmetric space. For details, see Proposition 4.2 in [547]. An
example of this type is provided by
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K/H = SU(5)/SU(4) ∼= S9 , G = SO(9) .

If we also drop the assumption that κ be injective, then h decomposes into

h = h1 ⊕ h2 , h1 ∼= im κ , h2 = ker κ ,

and the intertwining condition (7.9.2) reads

φ ◦ ad(B1) = ad(κ(B1)) ◦ φ , φ ◦ ad(B2) = 0 ,

for B1 ∈ h1 and B2 ∈ h2. The second of these equations says that we get a
non-trivial operator φ iff there is a trivial representation in ad(k)�h2(h

⊥). On the
other hand, to get a non-trivial self-interaction for φ subject to the first of these
equations, there must be a non-trivial representation in ad(k)�h1(h

⊥). An example
illustrating this situation is provided by

K/H = SO(9)/(SU(3) × SU(2) × U(1)) , G = SU(n + 3) .

This example is worked out in detail in [547].
2. Finally, we note that a lot of effort has been put into building grand unification

models via dimensional reduction, see e.g. [51, 417, 548] and a lot of further
references therein. Later on, the method has been extended to include supersym-
metric models, see e.g. [337, 422] and further references therein.

3. From the above discussion we see that the dimensional reduction method yields
relations between the parameters of the classical theory. It is interesting to ask
whether these relations survive in some sense on quantum level. This problem
is related to the procedure of reduction of couplings in quantum field theory, cf.
[588] and references therein. �

Exercises

7.9.1 Prove formula (7.9.13).

7.9.2 Work out the details of the examples provided by point 1 of Remark 7.9.6.



Chapter 8
The Gauge Orbit Space

In the first part of this chapter, we discuss the mathematical structure of the gauge
orbit space stratification. In Sect. 8.2, we prove that there is a one-to-one correspon-
dence between orbit types and a certain type of bundle reductions of the principal
bundle under consideration. In Sect. 8.3, we study the structure of the gauge orbit
stratification in some detail. We prove a Tubular Neighbourhood Theorem and use
this to show that the strata are smooth manifolds and that the stratification is regular.
In Sect. 8.4, we study the geometry of the strata. We show that every stratum admits a
natural Riemannian metric, calculate its volume element and find the corresponding
Riemann curvature. We also briefly comment on geodesics.

In the second part of the chapter, we present our results on the enumeration of
gauge orbit types in detail. For clearness of presentation, we limit our attention to the
caseG = SU(n). The result is given in terms of certain characteristic classes fulfilling
a number of algebraic relations. We also show how the natural partial ordering of
strata, which contains information on how the strata are linked, can be read off from
these relations.

8.1 Introduction

Let us start with a brief introduction to the final two chapters which are closely
related. In the present chapter, we study the rich geometric and topological structure
of the classical configuration space of gauge theories. In the next chapter, we will
discuss some aspects of the significance of this structure for quantum gauge theory.

Roughly speaking, the methods used in quantum field theory may be divided into
perturbative and non-perturbative ones. In the case of the standard model, whose
classical field theoretic structure was presented in the previous chapter, perturbation
theoryworkswell for high energyprocesses.On theother hand, the lowenergyhadron
physics turns out to be dominated by non-perturbative effects. For the latter there is no
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636 8 The Gauge Orbit Space

rigorous theoretical explanation yet. To study them, a variety of different concepts and
mathematical methods has been developed. In particular, for some aspects, methods
of differential geometry and algebraic topology seem to be unavoidable. This is
certainly true if one wants to investigate the influence of the structure of the classical
configuration space, the gauge orbit space, on quantum level. Let us discuss some
aspects indicating the physical relevance of this structure.

First, studying the geometry and topology of the generic (principal) stratum, one
gets an intrinsic topological interpretation of the Gribov ambiguity [258, 591]. We
stress that the problem of finding all Gribov copies has been discussed within spe-
cific models, see e.g. [401]. For a detailed analysis in the case of 2-dimensional
cylindrical spacetime (including the Hamiltonian path integral) we refer to [584].
By investigating the topology of the determinant line bundle over the generic stra-
tum, one gets an understanding of gauge anomalies in terms of the Family Index
Theorem [17, 41], see also [114] for the Hamiltonian approach. In particular, one
gets anomalies of purely topological type [674], referred to as global anomalies.
The latter cannot be seen by perturbative quantum field theory. Moreover, there are
partial results and conjectures concerning the relevance of nongeneric strata. First,
generally speaking, nongeneric gauge orbits affect the classical motion on the orbit
space due to boundary conditions and, in this way, they may produce nontrivial
contributions to the path integral. They may lead to localization of certain quantum
states, as it was suggested by finite-dimensional examples [185]. Further, the gauge
field configurations belonging to nongeneric orbits can possess a magnetic charge,
i.e. they can be considered as a kind of magnetic monopole configurations. Accord-
ing to ’t Hooft [624], these could be responsible for quark confinement. The role of
these configurations was investigated within the framework of Schrödinger quantum
mechanics on the gauge orbit space of topological Chern–Simons theory in [25], see
also [24] for an approach to 4-dimensional Yang–Mills theories with θ -term. Within
’t Hooft’s concept, the idea of Abelian projection is of special importance and has
been discussed by many authors. For example, this concept was studied within the
setting of quantum field theory at finite temperature on the 4-torus [205, 206]. There,
a hierarchy of defects, which should be related to the gauge orbit space structure, was
discovered. Finally, let us also mention that the existence of additional anomalies
corresponding to nongeneric strata was suggested, see [290].

Most of the problems mentioned here are still awaiting a systematic investigation.
For that purpose, a deeper insight into the structure of the gauge orbit space is
necessary. In a series of papers [296, 297, 543–545] we have made a step in this
direction. We have given a complete solution to the problem of determining the
strata that are present in the gauge orbit space for gauge theories with the classical
gauge groups SU(n), Sp(n) and SO(n) in compact Euclidean spacetime of dimension
d = 2, 3, 4. Our analysis is based on the results of Kondracki and Rogulski [388],
who have investigated the general structure of the full gauge orbit space for the first
time in detail. In particular, they have shown that the gauge orbit space is a stratified
topological space. Moreover, they have described the relation between orbit types
and bundle reductions we are using.
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Let us mention that there is an approach based upon parameterizing the full gauge
orbit space by a so called fundamental domain. The latter is characterized by the
property that it is intersected by every gauge orbit exactly once, up to possible
identifications on the boundary, see [148, 223, 640, 641, 699] and the review [642]
for further references. This concept was developed in order to solve the Gribov
problem, see Sect. 9.2 for further details. However, for the study of the stratified
structure of the gauge orbit space, this concept seems not to be efficient. Finally, we
note that the stratification structure for gauge theories within the Ashtekar approach
has also been studied, see [203].

Clearly, as already mentioned above, the main challenge consists in clarifying the
possible role of the nongeneric strata on quantum level in a systematic way. For that
purpose, one needs a general concept how to implement these strata in a quantum
gauge theory. For the case of spaces carrying a Kähler structure, one may use the
concept of Hilbert space costratification as proposed by Huebschmann [326]. In
[328], these ideas were substantiated for a toy model of Hamiltonian quantum gauge
theory on a finite lattice as developed in [368, 369, 386]. Here, the classical phase
space may be identified with a product of copies of the complexified structure group,
which carries a natural Kähler structure, and the classical stratification is encoded
in terms of a costratification of the representation space of the observable algebra.
Details will be explained in Sects. 9.6 and 9.7.

8.2 Gauge Orbit Types

We start with recalling some basics from Sect. 6.1. The configuration space C of a
Yang–Mills theory on a principal bundle P(M,G) is the set of connections on P. It
carries a natural affine structure with translation vector space

T = Ω1(M,Ad(P)) ∼= Ω1
Ad,hor(P, g) , (8.2.1)

and is acted upon by the group of vertical automorphisms G = AutM(P). By Remark
6.1.2, elements u ∈ G may be viewed as sections of the vector bundle End(Ad(P)).
Then, local gauge transformations read

ω(u) = ω + u−1∇ωu . (8.2.2)

As explained in Sect. 6.1, if we assume that G be a compact connected linear Lie
group and that M be a compact orientable Riemannian manifold, we can pass to
Sobolev completions of C and G . As before, we denote the Hilbert space of cross
sections of Sobolev class k of a vector bundle E byWk(E). In the sequel, we assume

k >
1

2
dim(M) + 1 . (8.2.3)

http://dx.doi.org/10.1007/978-94-024-0959-8_9
http://dx.doi.org/10.1007/978-94-024-0959-8_9
http://dx.doi.org/10.1007/978-94-024-0959-8_9
http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6
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Then, by the Sobolev Embedding Theorem 5.7.7, connection forms are of class C1

and, therefore, have continuous curvature. This theorem also implies that G is a
Hilbert-Lie group with Lie algebra LG = Wk+1(Ad(P)) and exponential mapping
given by (6.1.13) acting smoothly on C . Moreover, by Theorem 6.1.7, the action of
G is proper. Thus, the orbits of the action of G on C are closed and the gauge orbit
space

M := C /G (8.2.4)

is Hausdorff.

Remark 8.2.1 Clearly,M should not depend essentially on the technical parameter
k. Thus, let k′ > k and let C ′, G ′ andM ′ be the Sobolev completions corresponding
to k′. Then, one has natural embeddings G ′ ↪→ G and C ′ ↪→ C . As a consequence
of the first, the latter projects to a mapping ϕ : M ′ → M . Since the image of C ′ in
C is dense, so is ϕ

(
M ′) inM . To see that ϕ is injective, let ω1, ω2 ∈ C ′ and u ∈ G

such that ω2 = ω
(u)
1 . Then (8.2.2) implies

du = uω2 − ω1 u . (8.2.5)

Due to 2k′ > 2k > dimM, by the multiplication rule for Sobolev functions, the
right hand side of (8.2.5) is of class Wk+1. Then u is of class Wk+2. This can be
iterated until the right hand side is of class Wk′

. Hence, u ∈ G ′, so that ω1 and ω2

are representatives of the same element ofM ′. This shows thatM ′ can be identified
with a dense subset of M . Another question is whether the orbit type stratification
of M to be discussed below depends on k. Fortunately, the answer to this question
is negative, see Theorem 8.2.8. �

As discussed in Chap.6 of Part I, the orbit space of a proper Lie group action in finite
dimensions is a stratified space with the strata being the connected components of
the orbit type subsets. Kondracki and Rogulski [388] have shown that in the case of
the gauge orbit space, the situation is similar. We will discuss this in Sect. 8.3. For
now, let us recall the notion of orbit type and relate orbit types to bundle reductions.
For a connectionω and a point p0, letHp0(ω) and Pp0(ω) denote the holonomy group
and the holonomy bundle of ω based at p0, respectively. Since, under the assumption
(8.2.3), ω is of class C1, Pp0(ω) is a bundle reduction of P of class C2.

The stabilizer of ω ∈ C under the action of G is given by

Gω = {u ∈ G : ω(u) = ω} .

By the Stabilizer Theorem 6.1.5, this is a compact Lie subgroup ofG with Lie algebra

LGω = ker(∇ω) = {ξ ∈ LG : ξ�Pp0 (ω) = const} . (8.2.6)

Since
Gω(u) = u−1Gωu ,

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6
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the stabilizers along an orbit form a conjugacy class in G . This class is referred to as
the type of that orbit. The set of all orbit types of the action of G onC will be denoted
by �. This set carries a natural partial ordering: for τ, τ ′ ∈ �, one has τ ≤ τ ′ iff
there are representatives Gω of τ and Gω′ of τ ′ such that Gω ⊃ Gω′ .1

The discussion of the orbit types of the action of G on C rests on the fact that they
can be expressed in terms of bundle reductions of P. This relation will be analyzed
now. Given a subset A ⊂ G, let CG(A) denote the centralizer in G. For repeated
centralizers, we write C2

G(A) = CG
(
CG(A)

)
etc.

Now, let p0 ∈ P be chosen. To every subgroup S ⊂ G , we assign a subset of P by

Φp0(S) = {p ∈ P : u(p) = u(p0) for all u ∈ S} . (8.2.7)

Given Lie subgroups H ⊂ K ⊂ G and a reduction Q of P to H, for the induced
reduction of P to K we write

Q · K = {p ∈ P : p = Ψk(q) for some k ∈ K and some q ∈ Q} .

Lemma 8.2.2

1. For any ω ∈ C ,

Φp0 (Gω) = Pp0(ω) · C2
G

(
Hp0(ω)

)
, (8.2.8)

Gω = {u ∈ G : u is constant on Φp0(Gω)} . (8.2.9)

2. For any u ∈ G and any subgroup S ⊂ G ,

Φp0

(
uSu−1

) = Ψu(p0)−1 ◦ ϑu
(
Φp0(S)

)
. (8.2.10)

Proof 1. First, we prove (8.2.8). Let ω ∈ C and u ∈ Gω. By Lemma 6.1.4, the
restriction of u toPp0(ω) is constant. By equivariance, it is also constant on the bundle
Pp0(ω) · C2

G

(
Hp0(ω)

)
: indeed, for p ∈ Pp0(ω) and k ∈ C2

G

(
Hp0(ω)

)
, we have

u (Ψk(p)) = k−1u(p)k = k−1u(p0)k = u(p0) ,

because u(p0) ∈ CG
(
Hp0(ω)

)
by the Stabilizer Theorem 6.1.5. Thus,

Pp0(ω) · C2
G

(
Hp0(ω)

) ⊂ Φp0 (Gω) .

Conversely, let p ∈ Φp0(Gω). Then, u(p) = u(p0) for all u ∈ Gω. Clearly, there exists
a ∈ G such that Ψa(p) ∈ Pp0(ω) and, by Lemma 6.1.4,

u(p0) = u (Ψa(p)) = a−1u(p)a = a−1u(p0)a

1This choice of partial ordering corresponds to comparing the size of the orbits. It is consistent with
[103] but not with [388] and several other authors who choose the inverse partial ordering.

http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6
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for all u ∈ Gω. Thus, by the Stabilizer Theorem 6.1.5, a ∈ C2
G

(
Hp0(ω)

)
. Hence,

p = Ψa−1 (Ψa(p)) ∈ Pp0(ω) · C2
G

(
Hp0(ω)

)
.

Now, consider (8.2.9). Inclusion from left to right holds by definition of Φp0(Gω).
Conversely, by (8.2.8), if u is constant on Φp0(Gω), then it is constant on Pp0(ω). By
Lemma 6.1.4, this implies u ∈ Gω.

2. We have p ∈ Φp0

(
uSu−1

)
iff u(p)h(p)u(p)−1 = u(p0)h(p0)u(p0)−1 for all

h ∈ S. This is equivalent to

h(p0) = u(p0)
−1u(p)h(p)u(p)−1u(p0) = h

(
Ψu(p0) (ϑu−1(p))

)

for all h ∈ S, that is, it is equivalent to Ψu(p0) (ϑu−1(p)) ∈ Φp0(S). �

Remark 8.2.3 According to point 1 of Lemma6.1.4, if the subgroup S is the stabilizer
of a connection ω, then Φp0(S) is a bundle reduction of class C

k+1 of P. In [388], the
subbundle Φp0 (Gω) is called the evolution bundle generated by ω. �

Definition 8.2.4 (Howe subgroup) A subgroup H ⊂ G is called a Howe subgroup
if H = CG(A) for some subset A ⊂ G.

Remark 8.2.5

1. Since the centralizer is a closed subgroup, a Howe subgroup is closed and, there-
fore, a Lie subgroup. Moreover, it is easy to see that C3

G(A) = CG(A) for any
subset A ⊂ G. Thus, if H = CG(A), then

C2
G(H) = C3

G(A) = CG(A) = H .

Since H ⊂ C2
G(H), we conclude that H ⊂ G is Howe iff H = C2

G(H).
2. If H ⊂ G is Howe, then H ′ = CG(H) is Howe, too, and one has

H = C2
G(H) = CG(H ′) .

A pair (H,H ′) of subgroups of G fulfilling H = CG(H ′) and H ′ = CG(H) is
referred to as a Howe dual pair in G. To summarize, Howe subgroups are in
one-to-one correspondence with Howe dual pairs via H → (H,CG(H)).

3. Denote Gω(p0) = {u(p0) : u ∈ Gω}. By the Stabilizer Theorem 6.1.5, Gω(p0) =
CG(Hp0(ω)). Thus, by point 2,

(
Gω(p0),C2

G(Hp0(ω))
)
is a Howe dual pair in G.

4. AHowedual pair is called reductive iff itsmembers are reductive.ReductiveHowe
dual pairs play an important role in the representation theory of Lie groups, cf.
[319]. There exist, essentially, two methods for the classification theory of reduc-
tive Howe dual pairs. One of them applies to the isometry groups of Hermitean
spaces and uses the theory of Hermitean forms [456, 524, 561]. The other method
applies to complex semisimple Lie algebras and uses root space techniques [537].

�

http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6
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Definition 8.2.6 Let P(M,G) be a principal bundle.

1. A bundle reduction of P to a Howe subgroup will be called a Howe subbundle.
2. A bundle reduction Q of P of class Cr is said to be holonomy-induced if there

exists a connected bundle reduction Q̃ of P of class Cr to a subgroup H̃ ⊂ G such
that

Q = Q̃ · C2
G

(
H̃
)

. (8.2.11)

The set of isomorphism classes of holonomy-induced reductions of P of classC0,
factorized by the action of the structure group G, will be denoted by Red∗(P).

Remark 8.2.7

1. We equip Red∗(P) with a partial ordering as follows. For η, η′ ∈ Red∗(P) we
write η ≥ η′ if there exist representatives Q of η and Q′ of η′ such that Q ⊂ Q′.

2. The reduction Q is the extension of Q̃ to the Howe subgroup of G generated by
H̃. In particular, every holonomy-induced reduction is a Howe subbundle.

3. Assume that Q and Q̃ are of class C0. By Proposition 3.6.2, Q̃ is vertically C0-
isomorphic to a smooth principal H̃-bundle Q̃∞. Let Q∞ and P∞ denote the
extensions of Q̃∞ to the structure groupsCG(H̃) andG, respectively. Every vertical
C0-isomorphism Q̃ → Q̃∞ extends to a vertical C0-isomorphism Q → Q∞ and
to a vertical C0-isomorphism P → P∞. Since P and P∞ are of class C∞ and
vertically C0-isomorphic, Proposition 3.6.4 implies that they are vertically C∞-
isomorphic.Via such aC∞-isomorphism, Q̃∞ andQ∞ becomebeundle reductions
of P of class C∞. This shows that Red∗(P) coincides with the set of vertical C∞-
isomorphism classes of smooth holonomy-induced bundle reductions. �

Theorem 8.2.8 Let M be a compact connected manifold and assume dimM ≥
2. Then, the assignment Φp0 induces an order-preserving bijection from � onto
Red∗(P).

Proof In the proof, we have to make the Sobolev classes transparent.
Let τ ∈ � and let there be chosen a representative S ⊂ G k+1. There exists

ω ∈ C k such that S = G k+1
ω . According to point 1 of Lemma 8.2.2, Φp0(S) is

given by the extension of the bundle reduction Pp0(ω) ⊂ P to the structure group
C2
G(Hp0(ω)). Since Pp0(ω) is of class C0, so is Φp0(S). Since Pp0(ω) is connected,

Φp0(S) is holonomy-induced of classC0. According to point 2 of Lemma 8.2.2, if S is
conjugate in G k+1 to some S′, Φp0(S) and Φp0(S

′) are conjugate under the actions of
G k+1 and G. Then, since vertical automorphisms from G k+1 are continuous, Φp0(S)
andΦp0(S

′) are C0-isomorphic. Thus,Φp0 projects to a mapping from� to Red∗(P).
To check that this mapping is surjective, let an element of Red∗(P) be given.

By Remark 8.2.7/3, we may choose a representative Q ⊂ P which is smooth and
which is generated via (8.2.11) by a smooth connected bundle reduction Q̃. Using
the principal action Ψ , we may achieve that p0 ∈ Q̃. Since dimM ≥ 2, point 5 of
Remark 1.7.16 yields that Q̃ carries a smooth connection with holonomy group H̃.
This connection extends to a unique smooth connection ω on P obeying Pp0(ω) = Q̃
and Hp0(ω) = H̃ . Then, by point 1 of Lemma 8.2.2 and (8.2.11),

http://dx.doi.org/10.1007/978-94-024-0959-8_3
http://dx.doi.org/10.1007/978-94-024-0959-8_3
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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Φp0(G
k+1
ω ) = Q̃ · C2

G(H̃) = Q .

This proves surjectivity.
To show that the projected mapping is injective, let τ, τ ′ ∈ �. Choose representa-

tives S, S′ and assume thatΦp0(S
′) andΦp0(S) ·a are C0-isomorphic for some a ∈ G.

Since these bundles are of class Ck+1, Proposition 3.6.4 implies2 that there exists a
vertical isomorphism of class Ck+1. Every such isomorphism extends equivariantly
to a vertical Ck+1-automorphism ϑ of P. Let u ∈ G k+1 denote the corresponding
equivariant mapping. By construction,

Φp0(S
′) = ϑ

(
Ψa
(
Φp0(S)

)) = Ψa
(
ϑ
(
Φp0(S)

))
.

By (8.2.10), then
Φp0(S

′) = Ψu(p0)a
(
Φp0(uSu

−1)
)
.

This implies, in particular, that Ψu(p0)a(p0) is in Φp0(S
′) again, so that u(p0)a belongs

to the structure group of Φp0(S
′). Thus, in fact we have

Φp0(S
′) = Φp0(uSu

−1) .

Now, the assertion follows from (8.2.9), because S and S′ are stabilizers. �

Remark 8.2.9

1. As a consequence of Theorem 8.2.8, the set � does not depend on k.
2. For later use, let us introduce the notation C S for the subset of connections with

stabilizer S, C τ for the subset of connections of orbit type τ and M τ for the
subset of orbits of type τ . Correspondingly, we define

C ≤S :=
⋃

S′⊇S

C S′
, C ≤τ :=

⋃

τ ′≤τ

C τ ′
, M ≤τ :=

⋃

τ ′≤τ

M τ ′
,

and, by analogy, C ≥S , C ≥τ , M ≥τ .
3. The notion of holonomy-induced bundle reduction may be viewed as an abstract

version of the notion of evolution subbundle generated by a connection which
was introduced in [388]. Correspondingly, Theorem 8.2.8 is an abstract version
of Theorem 4.2.1 in [388]. The geometric ideas behind are also contained in [289,
Sect. 2]. However, a rigorous proof was not given there.

4. General arguments show that Red∗(P) is countable, see Theorem 8.3.14 below.
Hence, so is �. Countability of � is a necessary condition for this set to define a
stratification. �

Theorem 8.2.8 will be used in the study of the gauge orbit stratification in Sect. 8.3
and in the computation of the gauge orbit types in Sects. 8.5 and 8.6.

2Clearly, the proposition holds with C∞ replaced by any differentiability class.

http://dx.doi.org/10.1007/978-94-024-0959-8_3
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8.3 The Gauge Orbit Stratification

In this section, we discuss the gauge orbit stratification in some detail. Our presenta-
tion is along the lines of the work of Kondracki and Rogulski, see [388] for a much
more detailed exposition.

To start with, recall from Sect. 6.1 the natural operators

dω , d∗
ω , Δω = d∗

ω ◦ dω , �ω = dω ◦ d∗
ω + d∗

ω ◦ dω ,

depending smoothly onω and sharing the equivariance property (6.1.15). Also recall
that for dω acting on sections we write ∇ω. The corresponding operators acting
between appropriate Sobolev complections are denoted by the same symbols. By
Theorem 6.1.9, these operators give rise to a natural L2-orthogonal splitting TC =
V ⊕ H, where Vω = im(∇ω) and Hω = ker(∇ω∗). Thus,

TωC = im(∇ω) ⊕ ker(∇ω∗) . (8.3.1)

Due to (6.1.15), the distributions V and H are equivariant,

Vω(u) = (Vω)(u) , Hω(u) = (Hω)(u) . (8.3.2)

Consequently, ker(∇ω∗)may be viewed as a model of the tangent space ofM at [ω].
This will be made precise in the sequel.

The splitting (8.3.1) will be fundamental for all constructions discussed within
this and the next two sections. In particular, it guarantees that the gauge orbits are
submanifolds, it is basic for the construction of tubes and slices, it provides the fibre
bundle structure on each stratum and it induces natural (weak) Riemannian metrics
on each stratum of the gauge orbit space via a Kaluza–Klein-type construction.

Theorem 8.3.1 (Orbit Theorem) For any ω ∈ C , the orbit of ω under the action of
G is a smooth embedded submanifold of C , naturally diffeomorphic to G /Gω.

Proof The orbit mapping ιω : G → C defined by ιω(u) := ω(u) descends to an
injective mapping ι̃ω : G /Gω → C . The latter is smooth, because G → G /Gω is
a locally trivial principal bundle. It is a homeomorphism onto its image, where the
latter is endowed with the relative topology induced from C : this follows from the
properness of the action by the same argument as in the finite dimensional case,
see Corollary 6.3.5 in Part I. It remains to show that ι̃ω is an immersion, that is, its
tangent mapping at any point is injective and has closed range. Clearly, it suffices to
check this at the point [1] ∈ G /Gω, the class of the unit element of G . Choose a local
section s of G → G /Gω in a neighbourhood of [1]. Then, the image Y of T[1]G /Gω

under the tangent mapping s′[1] is a closed complement of the subspace LGω in LG .
Since

(ι̃ω)′[1] = (ιω)′1 ◦ s′[1] ,

http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6
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it suffices to show that (ιω)′1 has closed range and that its restriction toY is injective.
Using (1.8.7), for ξ ∈ LG , we compute

ι′ωξ = d

dt �0
ιω
(
exp(tξ)

) = d

dt �0
ω(exp(tξ)) = ∇ωξ .

Thus, closedness follows from the decomposition (8.3.1) and injectivity follows from
the Stabilizer Theorem 6.1.5. �

Remark 8.3.2 As a consequence of the Orbit Theorem 8.3.1, the vector bundles
T(G · ω) and TC�G ·ω are smooth subbundles of TC . �

A second important consequence of the decomposition (8.3.1) is a Tubular Neigh-
bourhood Theorem for the action of G . As we will see, the local slices are simply
given by the distribution H intersected with local balls in C . The radius of the latter
must be defined in accordance with the Sobolev norm. For that purpose, we use the
strong Riemannian metric γ k onC defined by assigning to ω ∈ C the corresponding
Sobolev scalar product given by formula (5.7.8), that is,

γ k
ω(α, β) :=

∫

M

{
〈α, β〉 + 〈∇ ω̃α,∇ ω̃β〉 + · · · + 〈(∇ ω̃)kα, (∇ ω̃)kβ〉

}
vg , (8.3.3)

where α, β ∈ TωC = Wk(T∗M ⊗ Ad(P)) and ω̃ = ω0 + ω with ω0 denoting the
Levi-Civita connection of the metric g onM. Due to∇ω(u) = Ad(u−1)◦∇ω ◦Ad(u) ,

the metric γ k is G -invariant,

γ k
ω(u)

(
α(u), β(u)

) = γ k
ω(α, β) ,

where α(u) = Ad(u−1)α according to (8.2.2). Putting k = 0 in (8.3.3), we obtain the
natural weak Riemannian metric γ 0 ≡ γ corresponding to the L2-scalar product.

The following theorem is a generalization of the TubularNeighbourhoodTheorem
6.4.3 of Part I to the infinite-dimensional context under consideration. Except for the
use of an invariant metric, the idea of the proof is the same. The notions of tubular
neighbourhood and slice, introduced in Definition I/6.4.1, carry over in an obvious
way.

Theorem 8.3.3 (Tubular Neighbourhood Theorem) Every gauge orbit admits a
tubular neighbourhood.

Proof Let π : C → M be the canonical projection. By (8.3.1), for any x ∈ M , the
normal bundle of the orbit π−1(x) may be identified with

Nx = H�π−1(x) .

According to (8.3.2), Nx is equivariant. This, together with the local triviality of the
projection G → G /Gω, implies that Nx is a smooth locally trivial vector subbundle
of TC �π−1(x). For ε > 0, consider the smooth subbundle

http://dx.doi.org/10.1007/978-94-024-0959-8_1
http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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Nx,ε :=
{
(ω, α) ∈ Nx :

√
γ k

ω(α, α) ≤ ε

}

of Nx.3 Due to the G -invariance of γ k , Nx,ε is equivariant. As G -manifolds, Nx and
Nx,ε are equivariantly diffeomorphic through the rescaling mapping

ρε : Nx → Nx,ε , (ω, α) �→
(

ω,
ε

√
γ k

ω(α, α) + 1
α

)

(8.3.4)

(Exercise 8.3.2). By restriction, the mapping

exp : TC → C , (ω, α) �→ ω + α ,

which is in fact the exponential mapping with respect to the L2-metric, defines a
smooth G -equivariant mapping Nx,ε → C . The image is

Ux,ε = {ω + α ∈ C : π(ω) = x , (ω, α) ∈ Nx,ε
}

. (8.3.5)

Clearly,Ux,ε is open inC and G -invariant. Moreover, by the same argument as in the
proof of the Tubular Neighbourhood Theorem 6.4.3 of Part I, one can show that there
exists ε > 0 such that the restriction of exp to Nx,ε ⊂ TC is injective. Consequently,
the composition

exp ◦ρε : Nx → C (8.3.6)

is an equivariant diffeomorphismontoUx,ε , that is, it defines a tubular neighbourhood
of the gauge orbit π−1(x). �

In the following, whenever we write Ux,ε or Sω,ε, it is understood that ε is small
enough to make the subset a tubular neighbourhood or a slice, respectively.

Remark 8.3.4 (Slices) As a consequence of the Tubular Neighbourhood Theorem
8.3.3, the action of G onC admits a slice at every point ω ∈ C . According to (8.3.5),
this slice is given by the subset

Sω,ε := {ω + α ∈ C : (ω, α) ∈ Nx,ε
}

(8.3.7)

of Ux,ε. By construction, Sω,ε obeys the defining properties of a slice (Exercise
8.3.1):

1. Ux,ε = G · Sω,ε,
2. Sω,ε is closed in Ux,ε,

3Note that Nx,ε is not just the ε-disk bundle of Nx , because orthogonality and length are taken with
respect to different metrics.
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3. Sω,ε is invariant under the stabilizer Gω,

4. For any u ∈ G , if
(
Sω,ε

)(u) ∩ Sω,ε �= ∅, then u ∈ Gω.

Since Sω,ε is an open subset of the closed affine subspace ω + Hω of C , for every
ω′ ∈ Sω,ε, the tangent space is given by Tω′Sω,ε = Hω. Consequently,

TSω,ε = Sω,ε × Hω . (8.3.8)

For further use, let us draw the following conclusion from this observation. Since
Uω,ε is generated from Sω,ε by the action of G , for every ω′ ∈ Sω,ε we have
Tω′Sω,ε + Tω′(G · ω′) = Tω′Uω,ε = T , where the sum need not be direct, as Gω′

may be strictly smaller than Gω. Thus, for all ω′ ∈ Sω,ε,

Hω + Vω′ = T . (8.3.9)

�

Remark 8.3.5 (Local Slice Theorem) The authors of [388] actually prove more: they
show that for any x ∈ M and any open invariant neighbourhood U of π−1(x) in
C there exists ε > 0 such that Ux,ε ⊂ U and U \ Ux,ε �= ∅. They call this
the Local Slice Theorem. As a consequence, M is a regular topological space,
meaning that whenever one has a closed subset V and a point x /∈ V , then there
exists a neighbourhood of x ,whose closure inM does not intersect V . According to
Urysohn’s metrization theorem, regularity in combination with second countability
(which is due to the separability of C ) then implies thatM is a metrizable space. �

Theorem 8.3.3 has the following immediate consequence.

Corollary 8.3.6 For every stabilizer S and every orbit type τ , the following subsets
are open:

C S in C ≤S , C τ in C ≤τ , M τ inM ≤τ .

Proof This is a consequence of the fact that property 4 of slice implies that

Ux,ε ⊂ C ≥τ , Sω,ε ⊂ C ≥S (8.3.10)

for any x ∈ M τ and any ω ∈ C S . Indeed, let ω ∈ C S . Since Uπ(ω),ε is a neighbour-
hood of ω in C , its intersection with C ≤S is a neighbourhood of ω in C ≤S . Due to
(8.3.10), the intersection is contained in

C ≥S ∩ C ≤S = C S .

The argument applies without change to C τ . For M τ it suffices to note that Ux,ε

projects to a neighbourhood of x inM . �

It is well known that the connections with trivial stabilizer are dense in C , see
[591]. More generally, the question arises, whether C τ is dense in C ≤τ , that is, in
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other words, whether a connection with nontrivial stabilizer can be approximated by
connections with a prescribed, strictly smaller stabilizer. The answer is given by the
following result of Kondracki and Rogulski [388].

Theorem 8.3.7 (Approximation Theorem) Assume dimM ≥ 2. Let ω ∈ C and let
Q be a connected bundle reduction of P to a (not necessarily closed) Lie subgroup.
Assume that Q contains a holonomy bundle of ω. Then, there exists α ∈ T such that
all ω + tα, t ∈ R \ {0}, have holonomy bundle Q. �

Corollary 8.3.8 For every stabilizer S and every orbit type τ , the following subsets
are dense:

C S in C ≤S , C τ in C ≤τ , M τ inM ≤τ . (8.3.11)

Proof Choose a point p0 ∈ P. Let ω ∈ C ≤S . Then, S ⊂ Gω and hence Φp0(Gω) ⊂
Φp0(S). By Lemma 8.2.2, then Φp0(S) contains the holonomy bundle Pp0(ω). Of
course, so does the connected component (Φp0(S))p0 of Φp0(S) containing p0. Thus,
Theorem 8.3.7 yields that ω can be approximated by connections with holonomy
bundle (Φp0(S))p0 . Since Φp0(S) is holonomy-induced, it is induced via (8.2.11) by
(Φp0(S))p0 . Hence, all connections with holonomy bundle (Φp0(S))p0 have stabilizer
S. This shows that C S is dense in C ≤S . Then, denseness of C τ in C ≤τ and denseness
of M τ inM ≤τ follow. �

Remark 8.3.9

1. Corollaries 8.3.6 and 8.3.8 imply that C S , C τ and M τ are generic subsets of,
respectively, C ≤S , C ≤τ and M ≤τ .

2. For every orbit type τ ,

C τ = C ≤τ , M τ = M ≤τ . (8.3.12)

The inclusions from right to left are obvious from Corollary 8.3.8. The converse
inclusions follow from the Tubular Neighbourhood Theorem: let ω ∈ C τ . Con-
sider Uω,ε ∩ C τ . Since this is a neighbourhood of ω in C τ , it contains some
ω′ ∈ C τ . According to (8.3.10), then τ is greater than or equal to the type of ω.
Thus, ω ∈ C ≤τ . The inclusion for M τ then follows by noting that for saturated
sets like C τ , closure and projection commute.

3. Similarly, for stabilizers S one has

C S = C ≤S . (8.3.13)

While the inclusion from right to left is again due to Corollary 8.3.8, the converse
inclusion can be proved without the Tubular Neighbourhood Theorem by the
following simple argument. For any u ∈ G , define a mapping

ϕu : C → T , ϕu(ω) := ω(u) − ω .
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Since these mappings are continuous, the subsets ϕ−1
u (0) are closed in C . Then

C ≤S =⋂u∈S ϕ−1
u (0) is closed. Hence, C S ⊂ C ≤S . �

Next, we study the projections

πτ : C τ → M τ

induced from π : C → M . We will see that they can be equipped with the structure
of smooth locally trivial fibre bundles. As a result, in a sense, π fibres over the set
of orbit types into such bundles.

We start by showing that the configuration space strata are submanifolds. For any
ω ∈ C τ , define

S τ
ω,ε := Sω,ε ∩ C τ , (8.3.14)

Hτ
ω := {α ∈ Hω : Gα ⊃ Gω} , (8.3.15)

Hτ
ω,ε := {α ∈ Hτ

ω :
√

γ k(α, α) < ε} .

Due to (8.3.10), for all ω′ ∈ S τ
ω,ε, we have

Gω′ = Gω . (8.3.16)

Proposition 8.3.10 For every orbit type τ and every stabilizer S, C τ and C S are
smooth submanifolds of C .

Proof To prove thatC τ is a submanifold ofC , it suffices to show that for any x ∈ M τ

the subset
U τ

x,ε := Ux,ε ∩ C τ

is a submanifold of Ux,ε. By (8.3.16),

S τ
ω,ε = {ω + α ∈ Sω,ε : Gω+α = Gω} .

Since Gω+α = Gω iff Gα ⊃ Gω, then

S τ
ω,ε = {ω + α ∈ C : α ∈ Hτ

ω,ε} (8.3.17)

and thus
U τ

x,ε = {ω + α ∈ C : ω ∈ π−1(x) , α ∈ Hτ
ω,ε} .

Therefore, the preimage ofU τ
x,ε under the equivariant diffeomorphism (8.3.6) is the

vector subbundle
Nτ

x =
⋃

ω∈π−1(x)

Hτ
ω
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of Nx. Since Nτ
x is equivariant and since its fibres are closed subspaces of T , it is

a smooth subbundle of TC�π−1(x) and hence of Nx. By the Tubular Neighbourhood
Theorem, it follows that U τ

x,ε is a smooth submanifold of Ux,ε, for any x ∈ M τ . As
a result, C τ is a submanifold of C , as asserted.

To prove that C S is a submanifold of C , we observe that C ≤S is a closed affine
subspace of C with translation vector space given by the closed subspace {α ∈ T :
Gα ⊃ S} of T . Thus, the assertion follows from Corollary 8.3.6. �

Remark 8.3.11

1. The vector subbundle Nτ
x is in fact trivial, with a smooth trivialization given by

G /Gω × Hτ
ω → Nτ

x , ([u], α) �→ (ω(u), α(u)) ,

for some ω ∈ π−1(x). Note that this mapping is well defined precisely because
Gα ⊃ Gω. It follows that U τ

x,ε also has a direct product structure. This can be
made explicit by introducing mappings

χτ
ω,ε : S τ

ω,ε × G /Gω → U τ
π(ω),ε , (ω′, [u]) �→ ω′(u) , (8.3.18)

which are easily seen to be diffeomorphisms. Note that, for obvious reasons, the
roles of fibre and base are interchanged here.

2. Clearly, Hτ
ω is a closed subspace of C for every ω ∈ C τ . Hence, by (8.3.17), the

partial slice S τ
ω,ε is an open subset of the closed affine subspace ω + Hτ

ω of C .
By analogy with the case of the full sliceSω,ε in Remark 8.3.4, this implies

TS τ
ω,ε = S τ

ω,ε × Hτ
ω . (8.3.19)

�

Proposition 8.3.12 For every orbit type τ , the following hold true.

1. M τ is a smooth manifold.
2. C τ has the structure of a locally trivial fibre bundle over M τ with typical fibre

G /Gω, where ω ∈ C τ .

Proof We shall construct an atlas of the stratum M τ using the partial slices S τ
ω,ε,

ω ∈ C τ . For any x ∈ M τ , define

V τ
x,ε := π(U τ

x,ε) .

This is is an open subset ofM τ , because V τ
x,ε = M τ ∩π(Ux,ε) and π(Ux,ε) is open

inM . By restriction in domain and range, for any ω ∈ π−1(x), π defines a mapping

πτ
ω,ε : S τ

ω,ε → V τ
x,ε . (8.3.20)
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By (8.3.16), we have that πτ
ω,ε is bijective. We show that it is open and hence a

homeomorphism onto V τ
x,ε. Let U ⊂ S τ

ω,ε be open. Then, U = S τ
ω,ε ∩ U ′, where

U ′ ⊂ Sω,ε is open. Using a local trivialization of the normal bundle Nx, one can
check that the saturation Ũ ′ = U ′(G ) is open in Ux,ε and hence in C . Therefore,
π(Ũ ′) is open inM . Using (8.3.10) and the fact that Ũ ′ is saturated, we obtain

π(U) = π(S τ
ω,ε ∩ Ũ ′) = π(S τ

ω,ε) ∩ π(Ũ ′) = V τ
x,ε ∩ π(Ũ ′) ,

which shows that π(U) is open in V τ
x,ε. Hence, (8.3.20) is a homeomorphism, indeed.

Combining this with the observation of Remark 8.3.11/2 that the partial slicesS τ
ω,ε

are open subsets of closed affine subspaces of C , we conclude that the family
(V τ

π(ω),ε, (π
τ
ω,ε)

−1), ω ∈ C τ , provides a covering of M τ by local charts (one can
make this more explicit by further mapping S τ

ω,ε → Hτ
ω,ε).

It remains to check that the transition mappings between these charts are smooth.
Due to (8.3.18), for any ω1, ω2 ∈ C τ , we have a diffeomorphism

(
χτ

ω2,ε2

)−1 ◦ χτ
ω1,ε1

: S τ
ω1,ε1

∩ U τ
π(ω2),ε2

× G /Gω1 −→ S τ
ω2,ε2

∩ U τ
π(ω1),ε1

× G /Gω2 .

Now, the transition mapping
(
πτ

ω2,ε2

)−1 ◦ πτ
ω1,ε1

is given by the composition of the
embedding ω′ �→ (ω′, [1]), the above diffeomorphism, and projection to the first
component. Hence, it is smooth. Thus, the atlas we have constructed equips M τ

with the structure of a smooth Hilbert manifold. This proves the first assertion.
To prove the second assertion, we observe that the local diffeomorphisms χτ

ω,ε

define local diffeomorphisms

V τ
π(ω),ε × G /Gω

(πτ
ω,ε)

−1×id−−−−−−→ S τ
π(ω),ε × G /Gω

χτ
ω,ε−−→ U τ

π(ω),ε .

These mappings provide a covering of C τ by local trivializations of the projection
πτ : C τ → M τ . Thus, the latter is a smooth locally trivial fibre bundle with typical
fibre G /Gω. �

Remark 8.3.13 Let us consider, in particular, the principal orbit type τ = τp, which is
the conjugacy class consisting of the subgroup Z̃(G)of constant functionsP → Z(G),
where Z(G) denotes the center of G. Since Z̃(G) is normal in G , the smooth locally
trivial fibre bundle

πp : C p → M p

is in fact principal, with structure group G̃ := G /Z̃(G). This bundle has been studied
intensively [454, 455, 476, 591]. An important aspect is that the nontriviality of this
bundle is an obstruction to the existence of smooth (or even continuous) gauges
[591]. This explains the Gribov ambiguity [258] in geometric terms, see Sect. 9.2 for
a detailed discussion.

For the other orbit types, representatives S are not normal in G . In order to have
a similar picture as in the case of the principal stratum, one would have to take the

http://dx.doi.org/10.1007/978-94-024-0959-8_9
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submanifold C S of connections with stabilizer S. C S is acted upon freely by N/S,
where N denotes the normalizer of S in G . Provided one could show that N is a Lie
subgroup of G (a problem which, to our knowledge, has not been solved yet) the
projection πS : C S → M τ would be a smooth locally trivial principal fibre bundle
and πτ : C τ → M τ would be associated with this bundle via the action of N/S on
G /S. �

In the remainder, we discuss the properties of the decomposition of M into the
orbit type subsetsM τ . Following the terminology ofKondracki andRogulski [388],4

a stratification of a topological space X is a countable disjoint decomposition into
smooth manifolds Xi, called the strata, such that for all i, i′ the frontier condition
holds:

Xi ∩ Xi′ �= ∅ ⇒ Xi ⊂ Xi′ .

As this notion is rather weak, one usually adds additional assumptions about the
linking between the strata, thus arriving at special types of stratification. According
to [388], the typeof stratification appropriate here is definedby the additional property

Xi ∩ Xi′ �= ∅ ⇒ Xi closed in Xi ∪ Xi′ .

Such a stratification is called regular.
The following result belongs to Kondracki and Rogulski [388].

Theorem 8.3.14 (Stratification Theorem) The decomposition of M by orbit types
is a regular stratification.

Proof We first check countability of orbit types. By Theorem 8.2.8, orbit types are in
one-to-one correspondence with certain reductions of P to Howe subgroups, modulo
isomorphy of the reductions and modulo conjugacy of the subgroups. In view of this,
the following facts ensure countability:

(a) Howe subgroups are closed.
(b) There are at most countably many conjugacy classes of closed subgroups in a

compact Lie group [383].5

(c) There are at most countably many isomorphism classes of principal bundles
with a given compact structure group G over a given manifold M: by Theorem
3.4.23, these classes are in one-to-one correspondence with homotopy classes of
mappings fromM to the classifying spaceBG. Since bothM andBG can be given
aCW-complex structure and since that ofM is finite, the Cellular Approximation
Theorem implies that there are at most countably many such classes.

4See the remarks on the notion of stratification in Sect. 6.6 of Part I.
5Let us note that the number of Howe subgroups in a compact Lie group is actually finite. This
follows from the fact that any centralizer in a compact Lie group is generated by finitely many
elements [92, Chap. 9] and that a compact group action on a compact manifold has a finite number
of orbit types [103].

http://dx.doi.org/10.1007/978-94-024-0959-8_3
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It remains to prove the frontier and regularity conditions. Let τ , τ ′ be orbit types such
that M τ ∩ M τ ′ �= ∅. According to the closure formula (8.3.12), M τ is a union of
strata. If M τ ′

intersects this union, then it must in fact coincide with one of these
strata. This implies M τ ′ ⊂ M τ . Thus, the frontier condition is fulfilled.

On the other hand, byCorollary 8.3.6,M τ is open inM ≤τ and hence inM τ . Then
M τ is open in M τ ∪ M τ ′

, because the latter is a subset of M τ due to the frontier
condition. Then M τ ′

, being the complement, is closed. Hence, the decomposition
by orbit types is a regular stratification. �

Remark 8.3.15

1. Define a relation ≥ on the set of strata by

M τ ≥ M τ ′ ⇔ M τ ∩ M τ ′ �= ∅ .

Clearly, this relation is reflexive. By the frontier condition, it is transitive and thus
a quasi-ordering (the natural quasi-ordering of the stratification). By the regularity
condition, it is also anti-symmetric and hence a partial ordering. By construction,
M τ ≥ M τ ′

iff τ ≥ τ ′. That is, the natural partial ordering of strata is compatible
with the natural partial ordering of orbit types.

2. Instead of using Sobolev techniques one can also stick to smooth connection
forms and gauge transformations. Then one obtains essentially analogous results
about the stratification of the corresponding gauge orbit space where, roughly
speaking, one has to replace ‘Hilbert manifold’ and ‘Hilbert Lie group’ by ‘tame
Fréchet manifold’ and ‘tame Fréchet Lie group’, see [1, 2]. �

Exercises

8.3.1 Prove the properties 1–4 of slices listed in Remark 8.3.4.

8.3.2 Prove that the mapping defined by (8.3.4) is a diffeomorphism.

8.4 Geometry of Strata

In this section, we will show that the weak Riemannian metric γ 0 on C induces a
weak Riemannian metric on each stratumM τ . This was discussed for the case of the
principal stratum in [47, 592] and for the general case in [75]. The basic idea consists
in restricting the tangent bundle splitting TC = V ⊕ H given by Theorem 6.1.9 to
the strata. This yields a natural smooth connection on each bundle which allows to
lift tangent vectors, thus projecting γ 0 to a metric on each stratum. By restriction, the
distributionVmade up by the tangent spaces of the orbits induces a distributionVτ

on C τ . Contrary to V, Vτ is smooth and locally trivial, because Vτ = ker((πτ )′)
and πτ is a smooth submersion. LetHτ denote the distribution orthogonal toVτ with
respect to γ 0. By construction,

http://dx.doi.org/10.1007/978-94-024-0959-8_6
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Hτ = H ∩ TC τ ,

and, thus, we have the L2-orthogonal splitting

TC τ = Vτ ⊕ Hτ . (8.4.1)

Moreover, by (8.3.2), Hτ is G -equivariant,

Hτ
ω(u) = (Hτ

ω

)(u)
, u ∈ G .

We draw the attention of the reader to the fact that we had already introduced the
notation Hτ

ω for the subspace of Hω consisting of elements invariant under Gω, see
(8.3.15). This notation suggests that Hτ

ω is in fact the fibre at ω of the distribution
Hτ . To see that this holds indeed, recall that Hω = TωSω,ε. Hence, the fibre of Hτ is

TωSω,ε ∩ TωC
τ = TωS

τ
ω,ε .

According to (8.3.19), the right hand side is given by Hτ
ω.

Proposition 8.4.1 The distribution Hτ is smooth.

Proof Recall from Theorem 6.1.9 that the orthogonal projectors onto Vω and Hω

are given by
vω = ∇ωGω∇ω∗ , hω = id−vω ,

respectively, where Gω is the Green’s operator of Δω. To prove that Hτ is smooth it
is enough to show that the restriction of v to TC τ ⊂ TC is smooth. By restriction,
v induces a mapping (denoted by the same symbol)

v : C τ → B(T ) , ω �→ vω := ∇ωGω∇ω∗ ,

where B(T ) denotes the Banach space of bounded operators on T . Since the diag-
onal embedding C τ → C τ × C τ × C τ is smooth and since ∇ω and ∇ω∗ depend
smoothly on ω, it suffices to prove the smoothness of the mapping

C τ → B(Wk−1(Ad(P)),Wk+1(Ad(P))) , ω �→ Gω . (8.4.2)

Pulling the latter back with a local trivialization χτ
ω0,ε

, ω0 ∈ C τ , see (8.3.18), we
obtain a mapping

S τ
ω0,ε

× G /Gω0 → B(Wk−1(Ad(P)),Wk+1(Ad(P))) , (ω, [u]) �→ Gω(u) , (8.4.3)

which is well defined, because Gω = Gω0 for all ω ∈ S τ
ω0,ε

. Due to (6.1.29), this
mapping is smooth along G /Gω0 . Thus, what we actually have to show is that the
restrictions of the mapping (8.4.2) to the partial slices S τ

ω0,ε
, ω0 ∈ C τ , are smooth.

http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6
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For that purpose, recall from (5.7.34) that Gω is constructed from the (bounded)
inverse of the operator

Δω : ker(Δω)⊥ → im(Δω) . (8.4.4)

Due to Gω = Gω0 , the Stabilizer Theorem 6.1.5, Eq. (6.1.23) and the Hodge Decom-
position Theorem 5.7.18, we have

ker(Δω) = ker(Δω0) , im(Δω) = im(Δω0) . (8.4.5)

Hence, (8.4.4) reads
Δω : ker(Δω0)

⊥ → im(Δω0) ,

for all ω ∈ S τ
ω0,ε

. Thus, the mapping under consideration decomposes into

S τ
ω0,ε

Δ−→ inv
(
ker(Δω0)

⊥, im(Δω0)
) inv−→ inv

(
im(Δω0), ker(Δω0)

⊥) ,

followed by prolongation to a bounded operator Wk−1(Ad(P)) → Wk+1(Ad(P)).
Here inv(·, ·) ⊂ B(·, ·) denotes the open subset of invertible bounded operators and
inv stands for the inversion mapping. Since the first step factorizes into continuous
linear mappings and composition of bounded operators and since the inversion map-
ping of linear operators is smooth, we conclude that the restrictions of the mapping
(8.4.2) to the partial slices S τ

ω0,ε
are smooth, indeed. �

Next, we show that the distribution Hτ on C τ is locally trivial. For that purpose,
recall that, due to (8.3.10), Sω0,ε is transversal to any orbit in C τ it meets. Hence,

Hω0 ∩ Vω = ker(∇ω0∗) ∩ im(∇ω) = {0} (8.4.6)

and thus (8.3.9) implies that we have a direct sum decomposition

T = Hω0 ⊕ Vω = ker(∇ω0∗) ⊕ im(∇ω) (8.4.7)

for all ω ∈ S τ
ω0,ε

. Consider the mapping

Δω0ω : Wk+1(Ad(P)) → Wk−1(Ad(P)) , Δω0ω := ∇ω0∗∇ω . (8.4.8)

It will be referred to as the Faddeev–Popov operator. Let us construct the correspond-
ing Green’s operator. By (8.4.6), we have ker(Δω0ω) = ker(∇ω). Since Gω = Gω0 ,
the Stabilizer Theorem 6.1.5 implies ker(∇ω) = ker(∇ω0) = ker(Δω0). Thus,

ker(Δω0ω) = ker(Δω0) .

On the other hand, by (8.4.7),

im(Δω0ω) = im(∇ω0∗) = im(Δω0) .

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_6
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As a consequence, by restriction, Δω0ω induces an isomorphism (denoted by the
same symbol)

Δω0ω : ker(Δω0)
⊥ → im(Δω0) .

Consequently, we can define a Green’s operator

Gω0ω : Wk−1(Ad(P)) → Wk+1(Ad(P))

similar to Gω0 and Gω. Then,

Gω0ωΔω0ω = Gω0Δω0 = GωΔω ,

because Gω0ωΔω0ω is the identical mapping on ker(Δω0)
⊥ and trivial on ker(Δω0),

and ker(Δω0) = ker(Δω). Similarly,

Δω0ωGω0ω = Δω0Gω0 ,

because Δω0ωGω0ω is the identical mapping on im(Δω0) and trivial on im(Δω0)
⊥.

Lemma 8.4.2 Let ω ∈ S τ
ω0,ε

. Then,

1. the Faddeev-Popov operator Δω0ω is formally self-adjoint,
2. the operator

vω0ω := ∇ωGω0ω∇ω0∗ (8.4.9)

is the projector onto the subspace Vω = im(∇ω) in the decomposition (8.4.7).

Proof Using the Ad-invariance of the L2-scalar product, for any ξ ∈ Wk+1(Ad(P))

and η ∈ Wk−1(Ad(P)), we calculate

〈
η,
(∇ω∗∇ω0 − ∇ω0∗∇ω

)
ξ
〉 = 〈∇ωη,∇ω0ξ

〉− 〈∇ω0η,∇ωξ
〉

= 〈∇ωη − ∇ω0η,∇ω0ξ
〉− 〈∇ω0η,∇ωξ − ∇ω0ξ

〉

= 〈[ω − ω0, η],∇ω0ξ
〉− 〈∇ω0η, [ω − ω0, ξ ]〉

= 〈ω − ω0, [η,∇ω0ξ ] − [ξ,∇ω0η]〉

= 〈∇ω0∗(ω − ω0), [η, ξ ]〉 .

Since ω ∈ S τ
ω0,ε

, the right hand side vanishes. To prove the second assertion, we use
that Gω0ωΔω0ω is the identicalmapping on ker(Δω0)

⊥. Since ker(Δω0)
⊥ = im(Gω0ω),

this implies
v2ω0ω

= ∇ωGω0ωΔω0ωGω0ω∇ω0∗ = vω0ω ,

showing that vω0ω is a projector. Since ker(Δω0) = ker(∇ω), this furthermore implies

vω0ω(∇ωξ) = ∇ωGω0ωΔω0ωξ = ∇ωξ ,
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showing that im(vω0ω) = im(∇ω). Since vω0ω acts trivially on ker(∇ω0∗), it is the
projector onto the subspace im(∇ω) in the decomposition (8.4.7), indeed. �

Remark 8.4.3 Correspondingly, hω0ω := 1−vω0ω is the projector onto the subspace
Hω0 = ker(∇ω0∗) in the decomposition (8.4.7). Associated with vω0ω and hω0ω, we
have their adjoints,

v∗
ω0ω

= ∇ω0Gω0ω∇ω∗ , h∗
ω0ω

= 1 − v∗
ω0ω

= 1 − ∇ω0Gω0ω∇ω∗ ,

which are the projectors onto Vω0 and Hω, respectively. By (6.1.26),

hω0ωhω = hω0hω0ω = hω0ω , hω0ωhω0 = hω0 , hωhω0ω = hω , (8.4.10)

hωh∗
ω0ω

= h∗
ω0ω

hω0 = h∗
ω0ω

, hω0h
∗
ω0ω

= hω0 , h∗
ω0ω

hω = hω (8.4.11)

for all ω ∈ S τ
ω0,ε

. Similar formulae hold for v. �

Now, for ω ∈ S τ
ω0,ε

, consider the induced action of Gω = Gω0 on TωC τ . It leaves
the decomposition

TωC
τ = Vω ⊕ Hτ

ω

invariant. Moroever, it leaves Hτ
ω invariant pointwise. Hence, denoting the subspace

of the Gω-invariant elements of Vω by V̂ω, we have the decomposition

(
TωC

τ
)Gω0 = V̂ω ⊕ Hτ

ω .

In particular, this decomposition holds for ω = ω0. By point 2 of Lemma 8.4.2 and
the equivariance property (6.1.30), vω0ω induces an isomorphism

v̂ω0ω : V̂ω0 → V̂ω . (8.4.12)

Correspondingly, hω0ω induces an isomorphism

ĥω0ω : Hτ
ω → Hτ

ω0
. (8.4.13)

Clearly, the projectors vω0ω and hω0ω define a splitting of the restriction of the tangent
bundle of the stratum to the slice S τ

ω0,ε
. We will now see that these splittings yield

a system of local trivializations of the vector bundle Hτ .

Proposition 8.4.4 The distribution Hτ is a locally trivial subbundle of TC τ .

Proof To construct a local trivialization of Hτ , choose ω0 ∈ C τ and consider the
distribution Dτ

ω0,ε
on S τ

ω0,ε
× G /Gω0 , made up by the subspaces tangent to S τ

ω0,ε
.

Due to (8.3.19), it is trivial. We claim that the mapping

Dτ
ω0,ε

→ T(S τ
ω0,ε

× G /Gω0)
(χτ

ω0 ,ε)
′

−−−→ TU τ
π(ω0),ε

h−→ Hτ
�U τ

ω0 ,ε
(8.4.14)

http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_6
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is a smooth vector bundle isomorphism and, thus, provides a local trivialization of
Hτ . By equivariance of (χτ

ω0,ε
)′ and h, it suffices to show that the mapping

(
Dτ

ω0,ε

)
�S τ

ω0 ,ε

= S τ
ω0,ε

× Hτ
ω0

→ Hτ
�S τ

ω0 ,ε
, (ω, α) �→ (ω,hωα) , (8.4.15)

is a smooth vector bundle isomorphism. By the same argument as in the proof of
Proposition 8.4.1, one can show that the mapping

S τ
ω0,ε

→ B(T ) , ω �→ hω0ω ,

is smooth. Moreover, by (8.4.10), for α ∈ Hτ
ω0
, one finds hω0ωhωα = hω0ωα = α .

Hence, the mapping

Hτ
�S τ

ω0 ,ε
→ S τ

ω0,ε
× Hτ

ω0
, (ω, α) �→ (

ω,hω0ωα
)

,

provides a smooth inverse of (8.4.15). �

Remark 8.4.5 Associated with the distribution H there is an equivariant differential
form Z on C with values in LG given by

Z(ω, α) := Gω∇ω∗α , (ω, α) ∈ C × T = TC . (8.4.16)

By definition, Zω annihilates the elements ofHω. Ifω belongs to the principal stratum
C p, we have

Z(ω,∇ωξ) = ξ (8.4.17)

for all ξ ∈ LG , showing that Z restricts to an ordinary connection form on the
principal bundle C p → M p. For ω in another stratum, however, Zω maps the value
at ω of the Killing field generated by ξ to the projection of ξ onto the L2-orthogonal
complement of LGω in LG . We will comment on that below. �

The natural connection Hτ and the (weak) Riemannian metric γ = γ 0 induce a
Riemannian metric γ τ on M τ as follows. Due to the Open Mapping Theorem, the
restriction of (πτ )′ to a fibre Hτ

ω, ω ∈ C τ , induces a Banach space isomorphism
onto Tπ(ω)M τ . This allows to lift tangent vectors at x ∈ M τ to horizontal tangent
vectors at ω ∈ π−1(x) and to evaluate their scalar product with respect to γ . Due to
equivariance of Hτ and invariance of γ , the result does not depend on the choice of
the representative ω. Due to smoothness of Hτ , the Riemannian metric γ τ on M τ

so constructed is smooth.
Let us determine the local representatives of γ τ in the charts provided by the slices

S τ
ω0,ε

, cf. (8.3.20). Let ω ∈ S τ
ω0,ε

. For (ω, αi) ∈ TωS τ
ω0,ε

= S τ
ω0,ε

× Hτ
ω0
, we have

(
(πτ

ω0,ε
)∗γ τ

)(
(ω, α1), (ω, α2)

) = γ τ
(
(πτ

ω0,ε
)′(ω, α1), (π

τ
ω0,ε

)′(ω, α2)
)

.

The Z-horizontal lifts of (πτ
ω0,ε

)′(ω, αi) to ω are given by (ω,hωαi). Hence,
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(
(πτ

ω0,ε
)∗γ τ

)(
(ω, α1), (ω, α2)

) = 〈α1,hωα2〉L2 . (8.4.18)

By (8.4.10),
〈α1,hωα2〉L2 = 〈α1,hω0hωhω0α2〉L2 .

Since, by restriction, hω defines an isomorphisms

ĥω : Hτ
ω0

→ Hτ
ω , (8.4.19)

in the chart provided by the sliceS τ
ω0,ε

, the metric is given by the smooth mapping

S τ
ω0,ε

→ B(Hτ
ω0

) , ω �→ γ τ
ω := ĥω0 ĥωĥω0 . (8.4.20)

By (8.4.10) and (8.4.11), the inverse of the metric is given by

(
γ τ

ω

)−1 = ĥω0ωĥ
∗
ω0ω

. (8.4.21)

Thus, in particular, γ τ
ω is a Banach space isomorphism.

Remark 8.4.6 (Kaluza–Klein-type structure) For every orbit type τ , the restriction
of the G -invariant L2-metric γ to C τ is uniquely characterized by the triple

(
γ τ ,Z, 〈·, ·〉LG

)
,

where 〈·, ·〉LG denotes the L2-scalar product on LG . This is a structure similar to
that in Kaluza-Klein theory, cf. Proposition 7.8.3, where K-invariant metrics g on a
K-bundle Q with fibre K/H over the manifold M are in one-to-one correspondence
with triples (gM, ξ, 〈·, ·〉) . Here gM is a metric onM , ξ is a connection form on the
principal bundlePwith structure groupN/H associatedwithQ and 〈·, ·〉 is anAd(K)-
invariant scalar product on the Lie algebra of K . Moreover, N denotes the normalizer
ofH inK .According to Remark 8.3.13, in the case under consideration, it is unclear
whether the normalizer of a given stabilizer Gω in G is a Lie subgroup. Thus, we
cannot construct the above associated principal bundle and give an interpretation of
Z as a connection form on this bundle. Such an interpretation is only possible on the
principal stratum. �

Let us write down the formal volume element of the metric γ τ on M τ in the local
charts provided by the slicesS τ

ω0,ε
. This generalizes a result for the generic stratum

due to Babelon and Viallet [46]. Recall thatΔω0 maps the orthogonal complement of
ker(Δω0) inW

k+1(Ad(P)) isomorphically onto im(Δω0), which by (6.1.21) coincides
with the L2-orthogonal complement of ker(Δω0) in Wk−1(Ad(P)). Thus, we may
view Δω0 as an operator on the closed subspace im(Δω0) of W

k−1(Ad(P)) which is
densely defined and which has an inverse, given by the Green’s operator Gω0 . Since
ker(Δω) = ker(Δω0ω) = ker(Δω0), this applies also to Δω and the Faddeev–Popov
operator Δω0ω, as well as the corresponding Green’s operators. By equivariance, all

http://dx.doi.org/10.1007/978-94-024-0959-8_7
http://dx.doi.org/10.1007/978-94-024-0959-8_6
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these operators restrict to operators on the subspace im(Δω0)
Gω0 of Gω0 -invariants.

Let us denote the restricted operators by Δ̂ω0 , Δ̂ω, Δ̂ω0ω, and Ĝω0 , Ĝω, Ĝω0ω. The
following expression is formal in the sense that the determinants involved have to be
regularized. For the regularization of determinants, we refer to Appendix D.

Proposition 8.4.7 In the local chart defined by a slice S τ
ω0,ε

, the formal volume
element at ω ∈ S τ

ω0,ε
of the metric γ τ on M τ is given by

det
(
γ τ

ω

)1/2 = det(Δ̂ω0ω)

det(Δ̂ω0)
1/2 det(Δ̂ω)1/2

. (8.4.22)

Proof Define a mapping χ : T → T by χ := hω0vω. Then, χ∗ = vωhω0 and hence

(1 − χχ∗)�Hτ
ω0

= (1 − hω0vωhω0)�Hτ
ω0

= (hω0hωhω0)�Hτ
ω0

= ĥω0 ĥωĥω0 .

Therefore,
γ τ

ω = (1 − χχ∗)�Hτ
ω0

. (8.4.23)

On the other hand, consider the isomorphism

φ : im(Δω0)
Gω0 → im(Δω0)

Gω0 , φ := ĜωΔ̂∗
ω0ω

Ĝω0Δ̂ω0ω .

Using that the Faddeev–Popov operator is self-adjoint, we obtain

det (φ) = det(Δ̂ω0ω)2

det(Δ̂ω0) det(Δ̂ω)
. (8.4.24)

Next, by (8.4.16),

Zω∇ω = (Gω∇ω∗∇ω
)
�im(Δω0 )

= idim(Δω0 )
,

and
∇ωZω = (∇ωGω∇ω∗)�Vω

= vω�Vω
= idVω

.

Weconclude thatZω : Vω → im(Δω0) is an isomorphism inverse to∇ω. By equivari-
ance, Zω and ∇ω induce mutually inverse isomorphisms

Ẑω : V̂ω → im(Δω0)
Gω0 , ∇̂ω : im(Δω0)

Gω0 → V̂ω .

Thus,
φ̃ := ∇̂ωφẐω : V̂ω → V̂ω

is an isomorphism. We compute
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(1 − χ∗χ)�V̂ω
= (1 − vωhω0vω)�V̂ω

= (vωvω0vω)�V̂ω
= ∇̂ωφẐω .

Thus,
φ̃ = (1 − χ∗χ)�V̂ω

.

This implies

det(φ̃) = det(φ) = det
(
(1 − χ∗χ)�V̂ω

)
. (8.4.25)

Now, assume thatu ∈ V̂ω is an eigenvector ofχ∗χ with a nonzero eigenvalueλ. Then,
χχ∗(χu) = λ(χu) and χu �= 0. Thus, χu is an eigenvector of χχ∗ with the same
eigenvalue λ. Moreover, χu ∈ Hτ

ω0
. Consequently, χ defines isomorphisms between

the eigenspaces of (χ∗χ)�V̂ω
and (χχ∗)�Hτ

ω0
corresponding to nonzero eigenvalues.

Thus, by (8.4.23) and (8.4.25),

det(γ τ
ω ) = det

(
(1 − χχ∗)�Hτ

ω0

)
= det

(
(1 − χ∗χ)�V̂ω

)
= det(φ) .

This yields the assertion. �

Remark 8.4.8

1. In the case of the principal stratum M p, we have ker(Δω0) = 0 and LGω0 = 0.
Thus, by the Hodge Theorem, im(Δω0)

Gω0 = Wk+1(Ad(P)) and (8.4.22) repro-
duces the formula given in [46]:

det
(
γ p

ω

)1/2 = det(Δω0ω)

det(Δω0)
1/2 det(Δω)1/2

. (8.4.26)

2. Since the Faddeev–Popov operator is not elliptic, the standard ζ -function regu-
larization procedure for determinants of elliptic operators on compact manifolds
as summarized in Appendix D does not apply directly. However, it can be shown
[506] that this procedure may be extended to a larger class of operators including
the Faddeev–Popov operator. �

Next, we compute the Riemann curvature tensor of γ τ . This is again a generalization
of a result of Babelon and Viallet for the principal stratum, see [47]. Our proof
will be along the lines of Groisser and Parker [262] who use the O’Neill Formula
for a Riemannian submersion [495]. Indeed, by construction of γ τ , the canonical
projection π : C τ → M τ is a Riemannian submersion, that is, it has maximal rank
and it preserves the length of horizontal vectors. For α ∈ T , define an operator

Cα : Ωp(M,Ad(P)) → Ωp+1(M,Ad(P)) , Cα(β) := [α, β] (8.4.27)

and let C∗
α denote the adjoint with respect to the L2-scalar product. Then,

dω = dω0 + Cα , α = ω − ω0 . (8.4.28)
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Let ∇C and ∇τ denote the Levi-Civita connections of the Riemannian metrics γ

on C and γ τ on M τ , respectively, and let RC and Rτ denote the corresponding
Riemann curvature tensors. According to [495, Lemma 1], for given vector fields
α, β onM τ and their horizontal lifts α, β to C τ , the covariant derivatives ∇C

α β and
∇τ

αβ are π -related.

Proposition 8.4.9 The Riemann curvature of γ τ is given by

〈
Rτ

[ω](α, β)ρ, ζ
〉 = 〈C∗

αζ,GωC
∗
βρ
〉− 〈C∗

βζ,GωC
∗
αρ
〉+ 2

〈
C∗

ζ ρ,GωC
∗
αβ
〉
,

where α, β, ρ and ζ are the horizontal lifts to Hτ
ω of α, β, ρ and ζ ∈ T[ω]M τ .

Proof As already noted, π : C τ → M τ is a Riemannian submersion. Thus, by
formula {4} in Theorem 2 of [495], for α, β ∈ T[ω]M τ we have

〈
Rτ

[ω](α, β)β, α
〉 = 〈RC

ω (α, β)β, α
〉+ 3

4

∥∥vω[α̃, β̃]∥∥2 , (8.4.29)

where the commutator is that of vector fields on C τ and where α̃ and β̃ are arbitrary
extensions of α and β, respectively, to horizontal vector fields on C τ . We choose α̃

and β̃ so that
α̃ω′ = hω′α , β̃ω′ = hω′β

for all ω′ ∈ C τ . Since C τ is open inC ≤τ , the curve t �→ ω′ + tα̃ω′ is contained inC τ

for small t and has tangent vector α̃ω′ at t = 0. Hence, using (6.1.26) and (8.4.28),
we may compute

(∇C
α̃ β̃
)
ω′ = d

dt �0
β̃ω′+tα̃ω′

= − d

dt �0

(
∇ω′+tα̃ω′Gω′+tα̃ω′

(∇ω′+tα̃ω′ )∗β
)

= −Cα̃ω′Gω′∇ω′∗β − ∇ω′
Gω′C∗

α̃ω′ β

+ ∇ω′
Gω′

(
C∗

α̃ω′ ∇ω′ + ∇ω′∗Cα̃ω′

)
Gω′∇ω′∗β . (8.4.30)

Using this, as well as ∇ω∗β = 0 and C∗
αβ = −C∗

βα, by a tedious but straightforward
calculation (Exercise 8.4.1) one finds

([∇C
α̃ ,∇C

β̃

]
β̃
)
ω

= d

dt �0

d

ds �0
β̃ω+tα+sβ̃ω+tα

− d

dt �0

d

ds �0
β̃ω+tβ+sα̃ω+tβ

= 2
(∇ωGωC

∗
β

)2
α . (8.4.31)

Moreover, (8.4.30) yields

[
α̃, β̃

]
ω

=
(
∇C

α̃ β̃ − ∇C
β̃

α̃
)

ω
= 2∇ωGωC

∗
βα . (8.4.32)

http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_8
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On the one hand, plugging in [α̃, β̃] for α̃ and ω for ω′ in (8.4.30), from (8.4.32) we
obtain (

∇C
[α̃,β̃]β̃

)

ω
= 2∇ωGωC

∗
β

[
α̃, β̃

]
ω

= 2
(∇ωGωC

∗
β

)2
α

and thus
RC

ω

(
α̃, β̃

)
β̃ = 0 .

On the other hand, (8.4.32) yields

∥∥vω

[
α̃, β̃

]∥∥2 = 4
∥∥∇ωGωC

∗
αβ
∥∥2 = 4

〈
C∗

αβ,GωC
∗
αβ
〉

and thus 〈
Rτ

[ω](α, β)β, α
〉 = 3

〈
C∗

αβ,GωC
∗
αβ
〉
. (8.4.33)

The assertion now follows by using the symmetry

〈
Rτ

[ω](α, β)ρ, ζ
〉 = 〈Rτ

[ω](ρ, ζ )α, β
〉
, (8.4.34)

and the multilinearization formula given in the proof of Proposition 2.4.2 (Exercise
8.4.2). �

Remark 8.4.10 From Proposition 8.4.9, or directly from (8.4.33), we read off the
sectional curvature K of a 2-plane P ⊂ T[ω]M τ ,

Kω(P) = 3〈C∗
αβ,GωC

∗
αβ〉 ,

where α, β ∈ Hτ
ω are the horizontal lifts of two orthonormal vectors spanning P.

We claim that the sectional curvature is non-negative, as in the case of the principal
stratum [47, 592]. To see this, denote ξ = C∗

αβ. Using that

im(Gω) = ker(Δω)⊥ ⊂ im(Δω)

and that, according to (6.1.22), ΔωGω is the L2-orthogonal projector onto im(Δω),
we find

〈ξ,Gωξ 〉 = 〈ΔωGωξ,Gωξ 〉 = ‖∇ωGωξ‖2 .

For an analysis of the scalar curvature we refer to [591]. �

We conclude this section with a brief discussion of geodesics. In [75], a proof of the
following proposition was outlined.

Proposition 8.4.11 Let ω ∈ C τ and α ∈ Hτ
ω. Let I denote the connected component

of 0 in {t ∈ R : ω + tα ∈ C τ }. Then I is nonempty, open, and

I → M τ , t �→ πτ (ω + tα) ,

http://dx.doi.org/10.1007/978-94-024-0959-8_2
http://dx.doi.org/10.1007/978-94-024-0959-8_6
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is a geodesic inM τ . Conversely, any geodesic inM τ is of this form.

Proof Clearly, the curve is contained in C τ and is a geodesic in C . Hence, it is a
geodesic in C τ . Since it is perpendicular to the G -orbit through ω, Corollary 26.12
in [447] yields that its projection toM τ is a geodesic inM τ .

Conversely, let γ be a geodesic inM τ and let γ be the horizontal lift of γ starting
at some representative ω of γ (0). By Lemma 26.11 in [447], γ is a geodesic in C τ .
Since the segment containingω of the straight line t �→ ω+ tγ̇ (0) inC τ is a geodesic
with the same initial conditions as γ , the latter coincides with that segment. �

Remark 8.4.12 In the proofwe have used that the straight lineω+tα is perpendicular
to the orbit through ω. Since C∗

αα = 0 (Exercise 8.4.3), we have

∇ω+tα ∗α = ∇ω∗α = 0 , (8.4.35)

that is, this straight line is perpendicular to any orbit it meets. This is consistent
with the general situation, where one can prove that if a geodesic in a Riemannian
submersion is perpendicular to one fibre, then it is perpendicular to all fibres it meets,
cf. Corollary 26.12 in [447].

Thus, Proposition 8.4.11 states that the geodesics inM τ are given by projections
of segments of straight lines insideC τ which are perpendicular to orbits. In particular,
the charts defined by the slices S τ

ω0,ε
provide normal coordinates. �

In [75], the above characterization of geodesics is used to prove that the principal
stratum need not be geodesically complete. In fact, the argument given there proves
the following.

Proposition 8.4.13 M τ is geodesically complete iff there is no τ ′ with τ ′ < τ .

Proof Indeed, for ω ∈ C τ and α ∈ Hτ
ω, we have Gω+tα ⊃ Gω ∩Gα = Gω. Therefore,

ω + tα ∈ C ≤τ , (8.4.36)

for all t ∈ R. In particular, if there is no τ ′ with τ ′ < τ , the geodesic associated to ω

and α is defined for all values t ∈ R.
Now assume that τ ′ < τ for some τ ′. Choose x′ ∈ M τ ′

and a tube Ux′,ε about
the orbit π−1(x′). Since Ux′,ε is a neighbourhood of π−1(x′) in C , the denseness
properties (8.3.11) implyUx′,ε ∩C τ �= ∅. Hence, we find ω′ ∈ π−1(x′) and ω ∈ C τ

such that ω ∈ Sω′,ε. Let α ∈ T such that ω′ = ω + α. Then, α ∈ Hω′ and hence
∇ω′∗α = 0. Since C∗

αα = 0, this implies ∇ω∗α = 0 and hence α ∈ Hω. Since ω

and ω′ are invariant under Gω, so is α. Thus, α ∈ Hτ
ω. By Proposition 8.4.11, then a

segment of the straight line t �→ ω + tα projects to a geodesic in M τ . Clearly, this
geodesic cannot be prolonged to t = 1. �

Proposition 8.4.13 implies, in particular, that the principal stratum is geodesically
complete iff there are no secondary strata.
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Proposition 8.4.14 Let ω ∈ C τ and α ∈ Hτ
ω. The set of values t ∈ R for which

ω + tα /∈ C τ is discrete.

Proof Consider the continuous mapping η : R → C defined by η(t) := ω + tα.
According to (8.4.36), the preimage η−1(C τ ) ofC τ is open inR, becauseC τ is open
in C ≤τ . Hence, R \ η−1(C τ ) is closed in R.

Let t0 ∈ R \ η−1(C τ ). By Remark 8.4.12, α ∈ ker(∇∗
η(t0)

), so that the Tubular
Neighbourhood Theorem implies that η(t) = η(t0) + (t − t0)α ∈ Sη(t0),ε for t close
to t0. If t0 were an accumulation point of R\η−1(C τ ), there would exist t1 �= t0 such
that η(t1) ∈ Sη(t0),ε ∩ C τ ′

for some τ ′ < τ . By the slice properties, Gη(t1) ⊂ Gη(t0).
Since η(t1) = η(t0) + (t1 − t0)α, then Gα ⊃ Gη(t1). Writing ω = η(t1) − t1α one
sees that then Gη(t1) ⊂ Gω (contradiction). Hence, R \ η−1(C τ ) consists of isolated
points. Due to closedness, it is then discrete. �

Exercises

8.4.1 Prove formula (8.4.31).

8.4.2 Derive the formula for the Riemann curvature given in Proposition 8.4.9 from
(8.4.33), using (8.4.34) and the multilinearization formula given in the proof of
Proposition 2.4.2.

8.4.3 Show that C∗
αα = 0 for all α ∈ T .

8.5 Classification of Howe Subgroups

According to Theorem 8.2.8, to determine the gauge orbit types of a gauge theory
defined on a principal G-bundle P(M,G), one has to classify the holonomy-induced
bundle reductions up to isomorphy and conjugacy under the principal action. Thus,
one has to work through the following programme.

1. Classify the Howe subgroups of G up to conjugacy.
2. Classify the Howe subbundles of P up to isomorphy.
3. Extract the Howe subbundles which are holonomy-induced.
4. Factorize by the principal action.
5. Determine the natural partial ordering.

In a series of papers, we have accomplished this programme forM having dimension
2, 3 or 4 and G being SU(n) [541, 543, 544] or another classical compact Lie group
[296, 297]. Here, we will discuss the case G = SU(n) in detail. In the present
section, we determine the Howe subgroups, thus accomplishing the first step of the
programme.

Recall that, by Definition 8.2.4, a subgroup H of a Lie group G is called Howe
if there exists a subset A ⊂ G such that H = CG(A). The basic properties of Howe
subgroups have been listed inRemark 8.2.5. In order to determine the set of conjugacy

http://dx.doi.org/10.1007/978-94-024-0959-8_2
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classes of Howe subgroups of SU(n), we consider SU(n) as a subset of Mn(C),
the associative algebra of complex (n × n)-matrices. By Remark 8.2.5, any Howe
subgroup H may be represented by its associated Howe dual pair (H,CG(H)). A
Howe dual pair is called reductive iff its members are reductive. In our case this
condition is automatically satisfied, because SU(n) is compact and Howe subgroups
are always closed.

Let K(n) denote the collection of pairs

J = (k,m) = ((k1, . . . , kr), (m1, . . . ,mr)) , r = 1, 2, 3, . . . , n ,

of sequences of equal length consisting of positive integers which obey

k · m =
r∑

i=1

kimi = n . (8.5.1)

For any permutation σ of r elements, define σJ = (σk, σm). Every J ∈ K(n)
generates a decomposition

C
n = (Ck1 ⊗ C

m1
)⊕ · · · ⊕ (Ckr ⊗ C

mr
)

(8.5.2)

and an associated injective homomorphism

r∏

i=1

Mki(C) → Mn(C) , (D1, . . . ,Dr) �→
r⊕

i=1

(
Di ⊗ 1mi

)
. (8.5.3)

We denote the image of this homomorphism by MJ(C) and define

UJ := MJ(C) ∩ U(n) , SUJ := MJ(C) ∩ SU(n) .

Clearly, UJ is the image of the subset
∏r

i=1 U(ki) ⊂∏r
i=1 Mki(C) under (8.5.3).

Lemma 8.5.1 A subgroup of SU(n) is Howe iff it is conjugate to SUJ for some
J ∈ K(n).

Proof One can check that the Howe subgroups of SU(n) are obtained from the Howe
subgroups ofU(n) by intersectionwith SU(n) and that, for the latter, conjugacy under
U(n) boils down to conjugacy under SU(n) (Exercise 8.5.1). Hence, it suffices to
prove that a subgroup of U(n) is Howe iff it is conjugate to UJ for some J ∈ K(n).

First, letH be a Howe subgroup of U(n). LetH ′ = CU(n)(H) and let K denote the
subgroup generated byH andH ′. The vector spaceC

n decomposes into an orthogonal
direct sum of K-irreducible subspaces,

C
n = V1 ⊕ · · · ⊕ Vr . (8.5.4)
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Each Vi is invariant under H and thus decomposes orthogonally into H-irreducible
subspaces,

Vi = Wi,1 ⊕ · · · ⊕ Wi,mi .

Since Vi is K-irreducible, the subgroup H ′ acts by intertwining all of these repre-
sentations with one another. Thus, by Schur’s Lemma, all Wi,j are isomorphic to
Wi,1. Choosing an orthonormal basis inWi,1 and denoting ki := dim(Wi), we obtain
Vi

∼= C
ki ⊗ C

mi . Since H and H ′ are mutual centralizers, under this isomorphism,

H�Vi = {ai ⊗ 1mi : ai ∈ U(ki)} , H ′
�Vi

= {1ki ⊗ bi : bi ∈ U(mi)} .

As a result, in an appropriate orthonormal basis in C
n, the elements of H can be

written in the form

a1 ⊗ 1m1 ⊕ · · · ⊕ ar ⊗ 1mr , ai ∈ U(ki) .

Thus, H is conjugate under U(n) to the subgroup UJ with J = (k,m).
Conversely, let J ∈ K(n). It suffices to show that UJ is Howe. Consider the

centralizer M ′ := CMn(C)(MJ(C)). Since MJ(C) is a unital ∗-subalgebra, so is M ′.
In particular, M ′ is spanned by the subset M̃ ′ = M ′ ∩ U(n). Moreover, the Double
Commutant Theorem yields CMn(C)(M ′) = MJ(C). Thus, we obtain

CU(n)(M̃
′) = CMn(C)(M̃

′) ∩ U(n) = CMn(C)(M
′) ∩ U(n) = MJ(C) ∩ U(n) = UJ .

This shows that UJ is Howe. �

Lemma 8.5.2 For J, J ′ ∈ K(n), the Howe subgroups SUJ and SUJ ′ of SU(n) are
conjugate iff there exists a permutation σ such that J ′ = σJ.

Proof It suffices to check that the subalgebras MJ(C) and MJ ′(C) of Mn(C) are
conjugate under SU(n) iff J ′ = σJ for some permutation σ . If σ exists, one can
construct a matrix T ∈ SU(n) mapping the factors C

k′
i ⊗ C

l′i of the decomposition
(8.5.2) defined by J ′ identically onto the factors C

kσ(i) ⊗ C
mσ(i) of the decomposition

defined by J . Then, MJ ′(C) = T−1MJ(C)T . Conversely, if MJ ′(C) = T−1MJ(C)T
for some T ∈ SU(n), then MJ(C) and MJ ′(C) are isomorphic. Hence, k′ = σk for
some permutation σ . Since T is an isomorphism of the representations Mk1(C) ×
· · · × Mkr (C)

J−→ Mn(C) and

Mk1(C) × · · · × Mkr (C)
σ−→ Mk′

1
(C) × · · · × Mk′

r
(C)

J ′−→ Mn(C) ,

where J , J ′ indicate the respective embeddings (8.5.3), it does not change the mul-
tiplicities of the irreducible factors. Thus, m′ = σm. It follows J ′ = σJ . �

As a consequence of Lemma 8.5.2, we can introduce an equivalence relation on the
set K(n) by putting J ∼ J ′ iff J ′ = σJ for some permutation σ . Let K̂(n) denote the
set of equivalence classes. Lemmas 8.5.1 and 8.5.2 yield the following.
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Theorem 8.5.3 The assignment J �→ SUJ induces a bijection from K̂(n) onto the
set of conjugacy classes of Howe subgroups of SU(n). �

This concludes the classification of Howe subgroups of SU(n).
In the remainder, we calculate the homotopy groups of SUJ . This will be needed

for the discussion of the Howe subbundles in the next section. For a given positive
integer l, define the homomorphisms

pl : U(1) → U(1) , pl(z) := zl , (8.5.5)

jl : Zl → U(1) , jl(k) := ei2πk/l . (8.5.6)

Moreover, let

jJ : SUJ → UJ , iJ : UJ → U(n) , prUJi : UJ → U(ki)

denote the natural inclusion mappings and the natural projections to the factors.
Finally, for a given element J = (k,m) of K(n), let g denote the greatest common
divisor of the members of m and define m̃ = (m̃1, . . . , m̃r) by gm̃i = mi for all i.
For D ∈ UJ , we compute

detU(n) ◦ iJ(D) =
r∏

i=1

pmi ◦ detU(ki) ◦ prUJi (D) = pg

( r∏

i=1

pm̃i ◦ detU(ki) ◦ prUJi (D)

)
.

Thus, if we define a group homomorphism λJ : UJ → U(1) by

λJ(D) :=
r∏

i=1

pm̃i ◦ detU(ki) ◦ prUJi (D) , (8.5.7)

then
detU(n) ◦ iJ = pg ◦ λJ . (8.5.8)

As a consequence, the restriction of λJ to the subgroup SUJ takes values in ker pg =
jg(Zg). Hence, we obtain an induced homomorphism

λS
J : SUJ → Zg

satisfying
λJ ◦ jJ = jg ◦ λS

J . (8.5.9)

The situation can be summarized in the commutative diagram
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SUJ
jJ ��

λS
J

��

UJ
iJ ��

λJ

��

U(n)

detU(n)

��
Zg

jg �� U(1)
pg �� U(1)

(8.5.10)

Lemma 8.5.4 The homomorphism λS
J projects to an isomorphism from the group of

connected components SUJ/SUJ0 onto Zg.

Proof Since Zg is discrete, λS
J must be constant on connected components. Hence

SUJ0 ⊂ ker λS
J and λS

J projects to a homomorphism SUJ/SUJ0 → Zg. The latter
is surjective, because so is λS

J . To prove injectivity, we show ker λS
J ⊂ SUJ0. Let

D ∈ ker λS
J and denote Di = prUJi ◦jJ(D). Define the homomorphism

ϕ : U(1)r → U(1) , (z1, . . . , zr) �→ zm̃1
1 · · · zm̃r

r .

Then,
λS
J (D) = ϕ

(
detU(k1)D1, . . . , detU(kr)Dr

)
.

By assumption, (detU(k1) D1, . . . , detU(kr) Dr) ∈ ker ϕ. Since the exponents defining
ϕ have greatest common divisor 1, ker ϕ is connected. Thus, there exists a path t �→
(γ1(t), . . . , γr(t)) in ker ϕ running from (detU(k1) D1, . . . , detU(kr) Dr) to (1, . . . , 1).
For each i = 1, . . . , r, define a path t �→ Gi(t) in U(ki) as follows: first, go from Di

to (detU(ki)Di) ⊕ 1ki−1, keeping the determinant constant, thus using connectedness
of SU(ki). Then, use the path t �→ γi(t) ⊕ 1ki−1 to get to 1ki . By construction, the
image of (G1(t), . . . ,Gr(t)) under the embedding (8.5.3) is a path in SUJ connecting
D with 1n. This proves ker λS

J ⊂ SUJ0. �

Theorem 8.5.5 The homotopy groups of SUJ are

πi
(
SUJ

) =

⎧
⎪⎨

⎪⎩

Zg i = 0 ,

Z
⊕(r−1) i = 1 ,

πi
(
U(k1)

)⊕ · · · ⊕ πi
(
U(kr)

)
i > 1 .

In particular, π1(SUJ) and π3(SUJ) are torsion-free.

Proof For i = 0, this follows from Lemma 8.5.4. For i > 1, the assertion follows
from the exact homotopy sequence induced by the principal SUJ-bundleUJ → U(1)
with projection q = detU(n) ◦iJ . For i = 1, consider the following portion of this
sequence:

π2(U(1)) → π1(SUJ) → π1(UJ)
q∗−→ π1(U(1)) → π0(SUJ) → π0(UJ) .

=

0

=

Z
⊕r

=

Z

=

Zg

=

0

One has Z
⊕r/ ker(q∗) ∼= im(q∗) and exactness implies
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ker(q∗) ∼= π1(SUJ) , im(q∗) = gZ ∼= Z .

It follows that π1(SUJ) ∼= Z
⊕(r−1), as asserted. �

Exercises

8.5.1 Show that the Howe subgroups of SU(n) are obtained from the Howe sub-
groups of U(n) by intersection with SU(n).

8.6 Classification of Howe Subbundles

In this section, we are going to derive the Howe subbundles of principal SU(n)-
bundles up to vertical isomorphisms. By the results of the previous section, we can
restrict attention to the structure groups SUJ , J ∈ K(n). Thus, let J ∈ K(n) be fixed.

We shall first derive a description of principal SUJ-bundles in terms of suitable
characteristic classes and then characterize those which are redutions of a given
principal SUJ-bundle P. We start from the general classification result of Chap.3
stating that there exists a bijective correspondence between the set of vertical isomor-
phism classes of SUJ-bundles overM and the set [M,BSUJ] of homotopy classes of
continuous mappings from M to the classifying space BSUJ , given by assigning to
f : M → BSUJ the pullback under f of the universal SUJ-bundle ESUJ . Recall that
BSUJ can be realized as a CW-complex, cf. Remark 3.4.19. In general, [M,BSUJ]
is hard to handle and it cannot be expected to be classified by characteristic classes.
However, Theorem 4.8.7 allows us to successively construct the Postnikov tower of
BSUJ up to the fifth stage, thus obtaining a 5-equivalent approximation (BSUJ)5.
Thus, if we assume that dim(M) ≤ 4, then [M,BSUJ] = [M, (BSUJ)5] and the
explicit form of (BSUJ)5 allows for finding the kind of characteristic classes which
are necessary to classify principal SUJ-bundles. Finally, we shall construct these
classes explicitly. The procedure described is common if one deals with bundle clas-
sification problems, see for example [43] or [677].

Now, let us construct (BSUJ)5. We use the results and the notation of Sect. 4.8.
Recall, in particular, that for a given Abelian group A and a given integer l ≥ 0,
the Eilenberg–MacLane space K(A, l) is defined up to homotopy equivalence by
having the homotopy group A in dimension l and trivial homotopy groups in all
other dimensions, cf. Appendix G. Let r∗ denote the number of indices i for which
ki > 1.

Theorem 8.6.1 The fifth stage of the Postnikov tower of BSUJ is given by

(BSUJ)5 = K(Zg, 1) ×
r−1∏

j=1

K(Z, 2) ×
r∗∏

j=1

K(Z, 4) . (8.6.1)

http://dx.doi.org/10.1007/978-94-024-0959-8_3
http://dx.doi.org/10.1007/978-94-024-0959-8_3
http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
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Proof In the proof, we denote B ≡ BSUJ . First, we check that B is simple, that
is, that the natural action of π1(B) on πi(B) is trivial for all i ≥ 1. According to
Proposition3.2.9, it suffices to check that the natural actionofπ0(SUJ)onπi−1(SUJ),
induced by inner automorphisms, is trivial. This follows by observing that any inner
automorphism of SUJ is generated by an element of (SUJ)0 and hence is homotopic
to the identity automorphism. Thus, having realized B as a CW-complex, we can
apply Theorem 4.8.7 to construct the Postnikov tower. According to Theorem 8.5.5,
the relevant homotopy groups are

π1(B) = Zg , π2(B) = Z
⊕(r−1) , π3(B) = 0 , π4(B) = Z

⊕r∗
. (8.6.2)

Moreover, we shall need that H∗
Z
(K(Z, 2)) is torsion-free and that

H2i+1
Z

(K(Z, 2)) = 0 , H2i+1
Z

(K(Zg, 1)) = 0 , i = 0, 1, 2, . . . , (8.6.3)

see Appendix G.
Stage 1. B1 is contractible and may therefore be replaced by B1 = ∗.
Stage 2. B2 is weakly homotopy equivalent to the total space of the pullback of

the path-loop fibration over K(π1(B), 2) under a mapping θ1 : B1 → K(π1(B), 2).
Since B1 = ∗, the total space coincides with the fibre K(π1(B), 1). Thus, B2 is
weakly homotopy equivalent to K(Zg, 1). Realizing the latter as a CW-complex, we
can conclude that B2 is in fact homotopy equivalent to K(Zg, 1) and, therefore, can
be replaced by the latter:

B2 = K(Zg, 1) . (8.6.4)

Stage 3. B3 is weakly homotopy equivalent to the total space of the path-loop
fibration over K(π2(B), 3) by some mapping θ2 : B2 → K(π2(B), 3). In view of
(8.6.4) and (8.6.2), θ2 is a mapping K(Zg, 1) → K(Z⊕(r−1), 3). Using

K(A1 ⊕ A2, l) = K(A1, l) × K(A2, l)

and (G.1), we find

[
K(Zg, 1),K

(
Z

⊕(r−1), 3
)] =

r−1∏

i=1

[
K(Zg, 1),K(Z, 3)

] =
r−1∏

i=1

H3
Z
(K(Zg, 1)) .

By (8.6.3), the right hand side vanishes.Hence, θ2 is homotopic to a constantmapping.
It follows that B3 is weakly homotopy equivalent to, and thus may be replaced by,

B3 = K(Zg, 1) ×
r−1∏

j=1

K(Z, 2) . (8.6.5)

http://dx.doi.org/10.1007/978-94-024-0959-8_3
http://dx.doi.org/10.1007/978-94-024-0959-8_4
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Stage 4. B4 is weakly homotopy equivalent to the total space of the pullback of
the path-loop fibration overK(π3(B), 4) under a mapping θ3 : B3 → K(π3(B), 4). In
view of (8.6.2), the total space coincides with the base space and we obtain B4 = B3.

Stage 5. B5 isweakly homotopy equivalent to the total space of the pullback of the
path-loop fibration over K(π4(B), 5) under a mapping θ4 : B4 = B3 → K(π4(B), 5).
By analogy with stage 3,

[
B3,K

(
Z

⊕r∗
, 5
)] =

r∗∏

i=1

H5
Z
(B3) . (8.6.6)

According to (8.6.5), since H∗
Z
(K(Z, 2)) is torsion-free, we can apply the Künneth

Theorem for cohomology [598, Thm. 5.5.11] to write H5
Z
(B3) as a sum over tensor

products
Hj

Z
(K(Zg, 1)) ⊗ Hj1

Z
(K(Z, 2)) ⊗ · · · ⊗ Hjr−1

Z
(K(Z, 2)) ,

where j + j1 + · · · + jr−1 = 5. Due to this constraint, each summand contains a
tensor factor of odd degree and hence is trivial by (8.6.3). Thus, θ4 is homotopic to
a constant mapping. It follows that B5 may be replaced by the direct product of B3

with the fibre K(Z⊕r∗
, 4) =∏r∗

i=1 K(Z, 4). This proves the theorem. �

Corollary 8.6.2 Let J ∈ K(n) and let P and P′ be principal SUJ-bundles over M,
dimM ≤ 4. If α(P) = α(P′) for every characteristic class α defined by an element
of H1

Zg
(BSUJ), H2

Z
(BSUJ) or H4

Z
(BSUJ), then P and P′ are isomorphic.

Proof Asbefore,we denoteB = BSUJ . Let pr1, pr21, . . . , pr2r−1, and pr41, . . . , pr4r∗
denote the natural projections of the direct product (8.6.1) onto its factors. Let γ1, γ2
and γ4 be characteristic elements of, respectively, H1

Zg
(K(Zg, 1)), H2

Z
(K(Z, 2)) and

H4
Z
(K(Z, 4)). Let y5 : B → B5 be the 5-equivalence provided by Theorem 4.8.5.

Composition with y5 defines a bijection [M,B] → [M,B5], cf. Corollary VII.11.13
in [104]. Hence, Theorem 8.6.1 and equation (G.1) imply that the mapping

ϕ : [M,B] → H1
Zg

(M) ×
r−1∏

i=1

H2
Z
(M) ×

r∗∏

i=1

H4
Z
(M) ,

defined by

ϕ(f ) :=
(
f ∗(pr1 ◦y5)∗γ1 ,

(
f ∗(pr2i ◦y5)∗γ2

)r−1
i=1 ,

(
f ∗(pr4i ◦y5)∗γ4

)r∗

i=1

)

is a bijection. Here, for all i,

(pr1 ◦y5)∗γ1 ∈ H1
Zg

(B) , (pr2i ◦y5)∗γ2 ∈ H2
Z
(B) , (pr4i ◦y5)∗γ4 ∈ H4

Z
(B) .

As a consequence, given classifying mappings f , f ′ : M → B for P and P′, respec-
tively, the assumption implies ϕ(f ) = ϕ(f ′). Hence, f and f ′ are homotopic. �

http://dx.doi.org/10.1007/978-94-024-0959-8_4
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From the proof of Corollary 8.6.2 we read off that the cohomology elements(
pr1 ◦y5

)∗
γ1,
(
pr2i ◦y5

)∗
γ2, i = 1, . . . , r − 1, and

(
pr4i ◦y5

)∗
γ4, i = 1, . . . , r∗,

of BSUJ define a set of characteristic classes which classifies SUJ-bundles over
manifolds of dimension ≤4. These classes are independent and surjective. However,
they are hard to handle, because we do not know the homomorphism y∗

5 explicitly.
Therefore, we prefer to work with characteristic classes defined by some natural
generators of the cohomology groups in question. The price we have to pay is that
the corresponding classes are subject to a relation and that we have to determine
their image explicitly. Thus, our next aim is to construct generators of H2

Z
(BSUJ),

H4
Z
(BSUJ) and H1

Zg
(BSUJ).

First, let us discuss the integral cohomology groups. Generators for H∗
Z
(BSUJ)

can be obtained as follows. Consider the classifying mappings

BSUJ
BjJ−→ BUJ

BprUJi−−−→ BU(ki) ,

cf. Definition 3.7.1. By Theorem 4.2.1, H∗
Z
(BU(ki)) is the polynomial ring over Z in

the universal Chern classes cU(ki )

j ∈ H2j
Z

(BU(ki)), j = 1, . . . , ki. Define

cUJ,i

j := (BprUJi
)∗

cU(ki )

j ∈ H2j
Z

(BUJ) , (8.6.7)

cSUJ,i

j := (BjJ)
∗ cUJ,i

j ∈ H2j
Z

(BSUJ) (8.6.8)

and write

cUJ,i = 1 + cUJ,i

1 + · · · + cUJ,i

ki
, cSUJ,i = 1 + cSUJ,i

1 + · · · + cSUJ,i

ki
, i = 1, . . . , r ,

as well as cUJ = (cUJ,1, . . . , cUJ,r
)
and cSUJ = (cSUJ,1, . . . , cSUJ,r

)
.

Lemma 8.6.3 H∗
Z
(BUJ) is the polynomial ring over Z in the generators cUJ,i

j , j =
1, . . . , ki, i = 1, . . . , r.

Proof As a consequence of Theorem 4.2.1 and the Künneth Theorem for cohomol-
ogy, H∗

Z
(
∏

i BU(ki)) is the polynomial ring over Z in the generators

1BU(k1) × · · · × 1BU(ki−1) × cU(ki )

j × 1BU(ki+1) × · · · × 1BU(kr) ,

where j = 1, . . . , ki, i = 1, . . . , r and × denotes the cohomology cross product. By
means of the isomorphism

UJ
Δr−→∏r

i=1 UJ
∏r

i=1 pr
UJ
i−−−−−→∏r

i=1 U(ki) ,

where Δr denotes r-fold diagonal embedding, this yields the assertion. �

Lemma 8.6.4 The homomorphism (BjJ)
∗ : H∗

Z
(BUJ) → H∗

Z
(BSUJ) is surjective.

http://dx.doi.org/10.1007/978-94-024-0959-8_3
http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
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Proof According to Proposition 3.7.8/2, the mapping BjJ : BSUJ → BUJ is the
projection in a principal bundle with structure group UJ/SUJ ∼= U(1). Denote this
bundle by Q. Being orientable, Q has a Gysin sequence, cf. Theorem 4.1.10,

· · · → Hl
Z
(BUJ)

(BjJ )∗−−−→ Hl
Z
(BSUJ)

ϕ−→ Hl−1
Z

(BUJ)
∪ c1(Q)−−−−→ Hl+1

Z
(BUJ) → · · ·

If Q were trivial, we would have π1(BSUJ) ∼= π1(BUJ × U(1)) ∼= Z, which would
contradict Theorem 8.5.5. Hence, Q is nontrivial. According to Theorem 4.8.1, then
c1(Q) �= 0. Due to Lemma 8.6.3, H∗

Z
(BUJ) does not have zero divisors. It follows

that multiplication by c1(Q) is an injective operation on H∗
Z
(BUJ). Then, exactness

of the Gysin sequence implies that the connecting homomorphism ϕ is trivial and,
therefore, (BjJ)

∗ is surjective. �

Lemmas 8.6.3 and 8.6.4 yield the following.

Corollary 8.6.5 (Integral cohomology of BSUJ) The ring H∗
Z
(BSUJ) is generated

by cSUJ,i

j , j = 1, . . . , ki, i = 1, . . . , r. �

The generators cSUJ,i

j are subject to a relation. Since this relation turns out to be a
consequence of a more fundamental relation which will be derived below, it does not
play a role in the sequel.

Next, we construct generators forH1
Zg

(BSUJ). For that purpose, we use the homo-

morphism λS
J : SUJ → Zg defined by (8.5.9).

Lemma 8.6.6 The mapping
(
BλS

J

)∗ : H1
Zg

(BZg) → H1
Zg

(BSUJ) is an isomorphism.

Proof By Lemma 8.5.4, the induced homomorphism λS
J ∗ : π0(SUJ) → π0(Zg) is

an isomorphism. Hence, so is
(
BλS

J

)
∗ : π1(BSUJ) → π1(BZg) . Now, the assertion

follows by the Hurewicz Theorem and the Universal Coefficient Theorem. �

We conclude that generators of H1
Zg

(BSUJ) can be obtained as the images of gener-

ators ofH1
Zg

(BZg) under
(
BλS

J

)∗
. Since according to the discussion prior to Theorem

4.8.3, BZg is an Eilenberg–MacLane space of type K(Zg, 1), we have

H1
Z
(BZg) ∼= Hom(Zg, Zg) ∼= Zg .

To choose a generator, we use the homomorphism jg : Zg → U(1) defined by (8.5.6)
and the short exact sequence of coefficient groups

0 −→ Z
μg−→ Z

ρg−→ Zg −→ 0 , (8.6.9)

where μg denotes multiplication by g and ρg reduction modulo g. Recall that
this sequence induces a long exact sequence of coefficient homomorphisms [104,
Sect. IV.5],

· · · −→ Hi
Z
(·) μg−→ Hi

Z
(·) ρg−→ Hi

Zg
(·) βg−→ Hi+1

Z
(·) −→ · · · , (8.6.10)

http://dx.doi.org/10.1007/978-94-024-0959-8_3
http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
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where βg is the Bockstein homomorphism.

Lemma 8.6.7 There exists a unique element δg ∈ H1
Zg

(BZg) such that

βg(δg) = (Bjg
)∗

cU(1)

1 , (8.6.11)

and this element is a generator of H1
Zg

(BZg).

Proof Clearly, both βg(δg) and
(
Bjg
)∗

cU(1)

1 are elements ofH2
Zg

(BZg) so that equation
(8.6.11) makes sense.

Since BZg is an Eilenberg–MacLane space of type K(Zg, 1), we can read off
H∗

Z
(BZg) from (G.4) to obtain the following portion of the exact sequence (8.6.10):

H1
Z
(BZg)

ρg−→ H1
Zg

(BZg)
βg−→ H2

Z
(BZg)

μg−→ H2
Z
(BZg)

=

0

=

Zg
=

Zg

=

Zg

We conclude that ker(βg) = 0 and that μg is trivial. Thus, βg is an isomorphism.
This proves existence and uniqueness of δg.

To check that δg is a generator, consider the pair J◦ = ((1), (g)) ∈ K(g). Observe
that Zg

∼= SUJ◦, U(1) ∼= UJ◦, and that jg corresponds to jJ◦ : SUJ◦ → UJ◦.
Then, Lemma 8.6.4 implies that

(
Bjg
)∗

is surjective. Thus, H2
Z
(BZg) is generated by(

Bjg
)∗

cU(1)

1 and, therefore, H1
Zg

(BZg) is generated by δg. �

We define
δJ := (BλS

J

)∗
δg .

As a consequence of Lemmas 8.6.6 and 8.6.7, we obtain the following.

Corollary 8.6.8 The cohomology group H1
Zg

(BSUJ) is generated by δJ . �

By naturality of the Bockstein homomorphism, the relation (8.6.11) entails

βg(δJ) = (BλS
J

)∗ (
Bjg
)∗

cU(1)

1 . (8.6.12)

This relation leads to a relation between the generators δJ and c
SUJ,i

j as follows. Given a
topological space X and a finite sequence of non-negative integers a = (a1, . . . , as),
define a mapping

Ea :
s∏

i=1

H∗
Z
(X) → H∗

Z
(X) , (α1, . . . , αs) �→ α

a1
1 ∪ . . . ∪ αas

s , (8.6.13)

where powers are taken with respect to the cup product. Let Ea,j denote the composi-
tion with the projection to H2j

Z
(X). One can check (Exercise 8.6.1) that for elements
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of the form αi = 1+ αi,1 + αi,2 + · · · with αi,j ∈ H2j
Z

(X), the components in degree
2 and 4 are given by

Ea,1(α1, . . . , αs) =
s∑

i=1

ai αi,1 , (8.6.14)

Ea,2(α1, . . . , αs) =
s∑

i=1

aiαi,2 +
s∑

i=1

ai(ai − 1)

2
α2
i,1 +

∑

i<j

aiaj αi,1 ∪ αj,1 , (8.6.15)

respectively. For such elements, (8.6.14) implies that for every l ∈ Z,

Ela,1(α1, . . . , αs) = lEa,1(α1, . . . , αs) . (8.6.16)

Recall that m̃ = (m̃1, . . . , m̃r) is defined by gm̃i = mi for all i.

Lemma 8.6.9 We have

(BiJ)
∗ cU(n) = Em

(
cUJ
)

, (8.6.17)

(BλJ)
∗ cU(1)

1 = Em̃,1
(
cUJ
)

. (8.6.18)

Proof To prove (8.6.17), we decompose iJ into

UJ
Δr−→∏

i UJ
∏

i pr
UJ
i−−−−→∏

i U(ki)
∏

i Δmi−−−→∏
i

(
U(ki)

mi× · · · × U(ki)
) j−→ U(n) .

Here j stands for the natural blockwise embedding. By Theorem 4.3.1,

(Bj)∗ cU(n) = (cU(k1)
m1× · · · × cU(k1)) × · · · × (cU(kr )

mr× · · · × cU(kr )) .

Using this, we compute

(B iJ)
∗ cU(n) = Δ∗

r ◦ (∏i BprUJi
)∗ ◦ (∏i Δmi

)∗ ◦ (Bj)∗cU(n)

= Δ∗
r ◦ (∏i BprUJi

)∗(
(cU(k1))m1 × · · · × (cU(kr ))mr

)

= Δ∗
r

((
cUJ,1
)m1 × · · · × (cUJ,r

)mr
)

= (cUJ,1
)m1 ∪ . . . ∪

(
cUJ,r
)mr

.

This yields (8.6.17). To prove (8.6.18), we observe that (8.5.10) implies

(BλJ)
∗ (Bpg

)∗
cU(1)

1 = (B iJ)
∗ (BdetU(n)

)∗
cU(1)

1 (8.6.19)

and compute (Bpg)∗cU(1)

1 = g cU(1)

1 and (BdetU(n))
∗cU(1)

1 = cU(n)

1 . Plugging this into
(8.6.19) and using (8.6.17) and (8.6.16), we obtain

g(BλJ)
∗cU(1)

1 = Em,1(cUJ) = g Em̃,1(cUJ) .

http://dx.doi.org/10.1007/978-94-024-0959-8_4
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Since this holds in H2
Z
(BUJ), which is free Abelian, (8.6.18) follows. �

Theorem 8.6.10 The generators δJ and cSUJ,i

j satisfy the relation

βg(δJ) = Em̃,1(cSUJ) . (8.6.20)

Proof Using (8.6.12), (8.5.9) and (8.6.18), we compute

βg(δJ) = (BλS
J

)∗ (
Bjg
)∗

cU(1)

1 = (BjJ)
∗ (BλJ)

∗ cU(1)

1 = (BjJ)
∗ Em̃,1

(
cUJ
)

.

By definition of cSUJ , this yields the assertion. �

Remark 8.6.11 To summarize, we can replace the 1 + (r − 1) + r∗ independent
generators

(
pr1 ◦y5

)∗
γ1 ,

(
pr2i ◦y5

)∗
γ2 , i = 1, . . . , r − 1 ,

(
pr4j ◦y5

)∗
γ4 , j = 1, . . . , r∗ ,

which arise from the construction of the Postnikov tower and are hardly manageable,
by the 1 + r + r∗ natural generators

δJ , cSUJ,i

j , i = 1, . . . , r, j = 1, . . . , r∗ ,

fulfilling the relation (8.6.20). This relation is, in effect, a consequence of (8.5.9). �

Now, we discuss the characteristic classes for principal SUJ-bundles Q defined
by the cohomology elements cSUJ,i

j and δJ . We denote them by, respectively, cij(Q)

and δJ(Q). Let

ci(Q) = 1 + ci1(Q) + · · · + ci2ki(Q) , c(Q) = (c1(Q), . . . , cr(Q)
)
.

Then,
cij(Q) = f ∗cSUJ,i

j , ci(Q) = f ∗cSUJ,i , c(Q) = f ∗cSUJ , (8.6.21)

for any classifying mapping f : M → BSUJ for Q. Theorem 8.6.10 entails that the
characteristic classes ci and δJ satisfy the relation

βg
(
δJ(Q)

) = Em̃,1
(
c(Q)

)
(8.6.22)

for all principal SUJ-bundles Q. As a consequence of Corollary 4.1.4, they can
furthermore be expressed in terms of the ordinary characteristic classes of associated
principal U(ki)-bundles and Zg-bundles (Exercise 8.6.2):

ci (Q) = c
(
Q[prUJi ◦jJ ]

)
, (8.6.23)

δJ (Q) = δg

(
Q[λS

J ]
)

. (8.6.24)

http://dx.doi.org/10.1007/978-94-024-0959-8_4
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The characteristic classes ci and δJ allow for classifying principal SUJ-bundles.
To state the result, let HJ

Z
(M) denote the subset of

∏r
i=1 H

∗
Z
(M) consisting of the

sequences α = (α1, . . . , αr)whosemembers are of the formαi = 1+αi,1+· · ·+αi,ki

with αi,j ∈ H2j
Z

(M) and define

K(M, J) := {(α, ξ) ∈ HJ
Z
(M) × H1

Zg
(M) : Em̃,1(α) = βg(ξ)

}
.

Theorem 8.6.12 (Classification of principal SUJ-bundles) Let M be a manifold of
dimension ≤ 4 and let J ∈ K(n). Then, the characteristic classes ci and δJ define a
bijection from the set of vertical isomorphism classes of principal SUJ-bundles over
M onto K(M, J).

Proof By Corollary 8.6.2, it remains to prove that for every (α, ξ) ∈ K(M, J), there
exists a principal SUJ-bundle Q over M such that c(Q) = α and δJ(Q) = ξ . Since
dimM ≤ 4, by Theorem 4.8.8, there exist principal U(ki)-bundles overM such that
c(Qi) = αi, i = 1, . . . , r. Consider the fibre product Q̃ = Q1 ×M · · · ×M Qr , which
has structure group

∏r
i=1 U(ki) and may thus be interpreted as a UJ-bundle. Then,

Q̃[ prUJi ] ∼= Qi , i = 1, . . . , r . (8.6.25)

The desired SUJ-bundle Q will arise as a reduction of Q̃. To find it, consider the
associated principal U(1)-bundle Q̃[λJ ].

We claim that Q̃[λJ ] admits a reduction to the subgroup Zg ⊂ U(1). By Theorem
4.8.3, there exists a principal Zg-bundle R overM such that δg(R) = ξ . Consider the
principal U(1)-bundle R[jg] obtained by extension with the homomorphism jg defined
by (8.5.6). On the one hand, using Corollary 4.1.4, Lemma 8.6.7 and naturality of the
Bockstein homomorphismβg, we find c1

(
R[jg]) = βg(ξ) .On the other hand, a similar

calculation using (8.6.18) yields c1
(
Q̃[λJ ]) = Em̃,1(α) .Since (α, ξ) ∈ K(M, J), these

classes coincide. As a consequence, Theorem 4.8.1 implies that Q̃[λJ ] and R[jg] are
vertically isomorphic. Hence, R is a reduction of Q̃[λJ ].

Now, we can define Q to be the preimage of the reduction R of Q̃[λJ ] under the
natural bundle morphism Q̃ → Q̃[λJ ]. By construction, Q is a reduction of Q̃ to the
subgroup λ−1

J (Zg) = SUJ ⊂ UJ .
It remains to compute ci(Q) and δJ(Q). Since Q[jJ ] = Q̃, using (8.6.23) and

(8.6.25), we find

ci(Q) = c
(
Q[prUJi ◦jJ ]

)
= c
((

Q[jJ ]
)

[prUJi ]
)

= c
(
Q̃[prUJi ]

)
= c (Qi) = αi .

Finally, since Q[λS
J ] = R, the relation (8.6.24) implies δJ (Q) = δg (R) = ξ . �

Toclassify theHowe subbundles of a given principal SU(n)-bundleP up to vertical
isomorphy, it remains to characterize the reductions of P to the subgroups SUJ in
terms of the characteristic classes c and δJ . Let iSJ : SUJ → SU(n) denote the natural
inclusion mapping.

http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
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Lemma 8.6.13 For every principal SUJ-bundle Q, we have c
(
Q[iSJ ]) = Em

(
c(Q)

)
.

Proof Denoting the natural inclusion mapping SU(n) → U(n) by j, we find

c
(
Q[iSJ ]) = c

(
Q[j◦iSJ ]) = c

(
Q[iJ◦jJ ]) .

Using Corollary 4.1.4 and equation (8.6.17), one can check that

c
(
Q[iJ◦jJ ]) = Em

(
c
(
Q[prUJ1 ◦jJ ]), . . . , c

(
Q[prUJr ◦jJ ])

)
(8.6.26)

(Exercise 8.6.3). Then, (8.6.23) yields the assertion. �

Define
K(P, J) = {(α, ξ) ∈ K(M, J) : Em(α) = c(P)

}
.

Theorem 8.6.14 (Classification of Howe subbundles) Let P be a principal SU(n)-
bundle over amanifoldM of dimension≤ 4 and let J ∈ K(n). Then, the characteristic
classes ci and δJ define a bijection from the set of vertical isomorphism classes of
reductions of P to the subgroup SUJ onto K(P, J).

Proof Let Q ⊂ P be a principal SUJ-bundle over M. By Theorem 8.6.12, the pair(
c(Q), δJ(Q)

)
belongs to K(M, J). Lemma 8.6.13 implies that it belongs to the

subset K(P, J) iff c
(
Q[iSJ ]) = c(P). Since dimM ≤ 4, by Theorem 4.8.8, the latter is

equivalent to Q[iSJ ] ∼= P, that is, to the condition that Q be a reduction of P. �

Remark 8.6.15 The equation Em(α) = c(P) actually contains the two equations
Em,1(α) = 0 and Em,2(α) = c2(P). However, under the assumption that (α, ξ)

belongs to K(M, J), the first one is redundant, because in this case, due to (8.6.16),
one has Em,1(α) = g Em̃,1(α) = gβg(ξ) = 0. Thus, the relevant equations are

Em̃,1(α) = βg(ξ) , (8.6.27)

Em,2(α) = c2(P) , (8.6.28)

where α ∈ HJ
Z
(M) and ξ ∈ H1

Zg
(M). The set of solutions of equation (8.6.27) yields

K(M, J) and hence the principal SUJ-bundles over M. The set of solutions of both
Eqs. (8.6.27) and (8.6.28) yields K(P, J) and, therefore, the reductions of P to the
subgroup SUJ . �

This concludes the classification of Howe subbundles of P, that is, Step 2 of our
programme.

Example 8.6.16 Let us discuss some examples of J ∈ K(n), including the two trivial
ones, corresponding to the center and the whole group. For brevity, we shall write J
in the form J = (k1, . . . , kr |m1, . . . ,mr).

http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
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1. J = (1|n). We have SUJ = Zn, the center of SU(n), and hence g = n. Variables
are ξ ∈ H1

Zn
(M) and α = 1 + α1, with α1 ∈ H2

Z
(M). According to (8.6.14) and

(8.6.15), Eqs. (8.6.27) and (8.6.28) read

α1 = βn(ξ) ,
n(n − 1)

2
α2
1 = c2(P) .

Since the first equation yields nα1 = 0, the second one requires c2(P) = 0. It
follows that K(P, J) is nonempty iff P is trivial. In that case, the first equation
implies that K(P, J) is parameterized by ξ . This coincides with what is known
about Zn-reductions of SU(n)-bundles.

2. J = (n|1). We have SUJ = SU(n) and hence g = 1. Accordingly, the variable
is α = 1 + α1 + α2. Equations (8.6.27) and (8.6.28) read

α1 = 0 , α2 = c2(P) .

Thus, as expected, K(P, J) consists of P itself.
3. J = (1, 1|2, 2) ∈ K(4). One can check that SUJ has the connected components

{diag(z, z, z−1, z−1) : z ∈ U(1)} , {diag(z, z,−z−1,−z−1) : z ∈ U(1)} .

It is therefore isomorphic to U(1) × Z2. Variables are ξ ∈ H1
Z2

(M) and αi =
1 + αi,1, i = 1, 2. Equations (8.6.27) and (8.6.28) read

α1,1 + α2,1 = β2(ξ) , α2
1,1 + α2

2,1 + 4α1,1 ∪ α2,1 = c2(P) .

Since products including β2(ξ) vanish, by eliminating α2,1 we obtain

− 2α2
1,1 = c2(P) . (8.6.29)

4. J = (2, 3|1, 1) ∈ K(5). We have SUJ = S(U(2) × U(3)) which is isomorphic
to the symmetry group U(1)×SU(2)×SU(3) of the standard model. In the grand
unified SU(5)-model this is the subgroup to which SU(5) is broken by the heavy
Higgs field. Variables are αi = 1 + αi,1 + αi,2. Equations (8.6.27) and (8.6.28)
read

α1,1 + α2,1 = 0 , α1,2 + α2,2 + α1,1 ∪ α2,1 = c2(P) .

Eliminating α2,1 = −α1,1 and α2,2 = c2(P)−α1,2 +α2
1,1, we see that K(P, J) can

be parameterized by α1 (or α2), that is, by the Chern class of one of the factors
U(2) or U(3). Due to the important role S(U(2)×U(3)) is playing in elementary
particle physics, this has been known for a long time [338]. �

Remark 8.6.17 As an illustration, let us discuss Eq. (8.6.29) explicitly for the base
manifolds M = S4, S2 × S2 and L3

p × S1, where L3
p denotes the 3-dimensional lens

space of order p. Since M is compact and orientable, we have H4
Z
(M) = Z.



680 8 The Gauge Orbit Space

1. M = S4. Since H2
Z
(M) = 0, K(P, J) is nonempty iff c2(P) = 0. In that case, it

consists of the trivial U(1) × Z2-bundle only.
2. For M = S2 × S2, we choose a generator (orientation) γ S

2 of H2
Z
(M) to expand

α1,1 = a γ S
2 ×1 + b 1×γ S

2 , c2(P) = cγ S
2 × γ S

2

with a, b, c ∈ Z. Then, Eq. (8.6.29) becomes

− 4ab = c . (8.6.30)

If c = 0, there are two obvious series of solutions. In particular, K(P, J) is
infinite here. If c = 4l for some l �= 0, then a runs through the positive and
negative divisors of l and b = −l/a. If c is not divisible by 4, then K(P, J) is
empty.

3. M = L3
p × S1. The relevant cohomology groups of Lp

3 are

H1
Z
(L3

p) = 0 , H2
Z
(L3

p) = Zp , H1
Zg

(L3
p) = Hom(Zp, Zg) = Z〈p,g〉 ,

where 〈p, g〉 denotes the greatest common divisor of p and g. Hence, by the
Künneth Theorem for cohomology,

H1
Zg

(M) = Z〈p,g〉 ⊕ Zg , H2
Z
(M) = Zp .

Since H2
Z
(M) is torsion, K(P, J) is nonempty iff c2(P) = 0. In that case, it is

parameterized independently by ξ ∈ Z〈2,p〉 ⊕ Z2 and α1,1 ∈ Zp.

The case of base manifold S2 × S2 illustrates that equation (8.6.28) generally leads
to a Diophantine equation. Here, this equation is bilinear. For bilinear Diophantine
equations, there exists an algorithm to parameterize the set of solutions [596]. The
situation is different, for example, for the basemanifoldM = CP2. Here the equation
obtained from (8.6.28) is quadratic and, therefore, substantially harder to discuss. �

Exercises

8.6.1 Confirm Eqs. (8.6.14) and (8.6.15).

8.6.2 Use Corollary 4.1.4 to verify the relations (8.6.23) and (8.6.24).

8.6.3 Use Corollary 4.1.4 and Eq. (8.6.17) to prove (8.6.26).

8.6.4 AnalyzeEqs. (8.6.27) and (8.6.28) for J = (1, 1|2, 3) ∈ K(5) and J = (2|2) ∈
K(4), cf. Example 8.6.16.

http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
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8.7 Enumeration of Gauge Orbit Types

In this section, we complete the enumeration of gauge orbit types. First, we accom-
plish step 3 of our programme, that is, we determine which Howe subbundles of a
given principal SU(n)-bundle P are holonomy-induced.

Lemma 8.7.1 Let H and H ′ be Howe subgroups of SU(n) such that H ⊂ H ′. If
dimH = dimH ′, then H = H ′.

Proof There exist J, J ′ ∈ K(n) such that H and H ′ are conjugate to SUJ and SUJ ′,
respectively. Consider UJ and UJ ′. Since H ⊂ H ′, we can find D ∈ SU(n) such that
D−1UJD ⊂ UJ ′. By assumption,

dim(UJ ′) = dim(H) + 1 = dim(H ′) + 1 = dim(UJ) .

Since UJ ′ is connected and D−1UJD is closed in UJ ′, equality of dimension implies
D−1UJD = UJ ′. Then, D−1SUJD = SUJ ′ and hence H = H ′. �

Theorem 8.7.2 Any Howe subbundle of a principal SU(n)-bundle is holonomy-
induced.

Proof Let P be a principal SU(n)-bundle and let Q be a Howe subbundle of P with
structure group H. Choose a connected component Q̃ of Q and let H̃ denote the
corresponding structure group. Since H is Howe, C2

SU(n)(H̃) ⊂ C2
SU(n)(H) = H.

Since dim H̃ = dimH, the subgroups C2
SU(n)(H̃) and H have the same dimension.

Then, Lemma 8.7.1 implies C2
SU(n)(H̃) = H and, hence, the assertion. �

One may wonder whether there exist Howe subbundles which are not holonomy-
induced. Let us give an example. Consider the subgroup H = {13, diag(−1,−1, 1)}
of SO(3). One can check that H is Howe. Thus, the reduction Q = M × H of the
trivial bundleM ×SO(3) is a Howe subbundle. Any connected reduction Q̃ ofQ has
the center Z = {13} as its structure group. Since the center is Howe itself, we find
Q̃ · C2

G(Z) = Q̃ �= Q . Thus, Q is not holonomy-induced.

Now, we turn to step 4 of our programme, that is, we determine which of the
isomorphism classes of Howe subbundles get identified under the principal SU(n)-
action on P. Since this action conjugates the structure groups, it suffices to restrict
attention to the reductions to the subgroups SUJ with J ∈ K(n). Define

K(P) =
⊔

J∈K(n)

K(P, J) . (8.7.1)

We shall denote the elements of K(P) by L and write them in the form L = (J;α, ξ),
where J ∈ K(n) and (α, ξ) ∈ K(P, J). By a Howe subbundle of P of type
L = (J;α, ξ) we mean a bundle reduction Q of P to the subgroup SUJ with the
characteristic classes c(QL) = α and δJ(QL) = ξ . On the set K(P), we introduce the
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following equivalence relation: (J;α, ξ) ∼ (J ′;α′, ξ ′) iff there exists a permutation
σ such that J ′ = σJ and α′ = σα. Clearly, in that case, the sequences constituting
J and J ′ must have the same length r. Let us furthermore introduce the following
notation. For every combination of elements J, J ′ ∈ K(n), we put

N(J, J ′) := {D ∈ SU(n) : D−1SUJD ⊂ SUJ ′} .

This is a subset of SU(n). Every elementD ∈ N(J, J ′) defines an algebra embedding

hMD : M(J) → M(J ′) , C �→ D−1CD ,

and, by restriction, Lie subgroup embeddings hUD : UJ → UJ ′ and hSD : SUJ →
SUJ ′.

Lemma 8.7.3 Let L,L′ ∈ K(P) and let Q and Q′ be Howe subbundles of P of type L
and L′, respectively. Then, Q′ is vertically isomorphic toΨD(Q) for some D ∈ SU(n)
iff L′ ∼ L.

Proof Let L = (J;α, ξ) and L′ = (J ′;α′, ξ ′). One can check that

ΨD(Q) ∼= Q[hSD] .

Accordingly, by Proposition 3.7.2/1, ifQ has classifying mapping f , then ΨD(Q) has
classifying mapping BhSD ◦ f . Due to λS

J ′ ◦ hSD = λS
J , this implies, in particular,

δJ ′
(
ΨD(Q)

) = δJ(Q) . (8.7.2)

First, assume that Q′ is vertically isomorphic to ΨD(Q) for some D ∈ SU(n).
Then,

c
(
ΨD(Q)

) = α′ , δJ ′
(
ΨD(Q)

) = ξ ′ . (8.7.3)

In view of (8.7.2), the second equation implies ξ ′ = ξ . Moreover, D ∈ N(J, J ′)
and hUD and hSD are isomorphisms. Consequently, there exists a permutation σ such
that hUD maps the σ(i)-th factor of UJ isomorphically onto the i-th factor of UJ ′.
Then, in particular, J ′ = σJ . It remains to show that α′ = σα. For that purpose, we
bring D to a normal form as follows. Given σ , we can find Dσ ∈ N(J, J ′) such that
prUJ

′
i ◦hUDσ

= prUJσ(i) for all i. Then,

prUJ
′

i ◦jJ ′ ◦ hSDσ
= prUJσ(i) ◦jJ . (8.7.4)

Moreover, C = DD−1
σ ∈ N(J, J) and hUC is an automorphism of UJ which leaves

each factor invariant separately. One can check that hUC , and hence h
S
C , is inner. Since

any inner automorphism of SUJ can be generated by an element of the connected
component of the identity, we conclude BhSC = idBSUJ and thus BhSD = BhSDσ

. As a
consequence, BhSDσ

◦ f is a classifying mapping for ΨD(Q). Using this and Corollary

http://dx.doi.org/10.1007/978-94-024-0959-8_3
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4.1.4, from (8.7.4) we derive

c
(
ΨD(Q)

) = σ
(
c(Q)

)
. (8.7.5)

In view of (8.7.3), this implies α′ = σα and hence, finally, L′ ∼ L.
Conversely, assume that ξ ′ = ξ and α′ = σα, J ′ = σJ for some permutation

σ . Then, in particular, there exists D = Dσ ∈ N(J, J ′) satisfying (8.7.4) and hence
(8.7.5). It follows that c

(
ΨD(Q)

) = σα = α′ = c(Q′) . Similarly, (8.7.2) yields
δJ ′
(
ΨD(Q)

) = δJ ′(Q′). As a consequence, Theorem 8.6.12 implies that ΨD(Q) and
Q′ are vertically isomorphic. �

Let K̂(P) denote the set of equivalence classes inK(P). CombiningLemma8.7.3with
Theorem 8.6.14, we finally arrive at the following result. Recall that Red∗(P) denotes
the set of holonomy-induced bundle reductions of P modulo vertical isomorphisms
and conjugacy under the principal action on P.

Theorem 8.7.4 (Classification of holonomy-induced bundle reductions) Let P be
a principal SU(n)-bundle over a manifold M of dimension ≤4. The assignment to
L ∈ K(P) of a bundle reduction Q of P of type L induces a bijection from K̂(P) onto
Red∗(P). �

With Theorem 8.7.4 we have accomplished the enumeration of gauge orbit types. As
a result, these orbit types are in bijective correspondence with the elements of K̂(P).
Let us summarize.

Corollary 8.7.5 (Enumeration of gauge orbit types) For G = SU(n) and dimM =
2, 3, 4, gauge orbit types are in one-to-one correspondence with symbols [(J;α, ξ)],
where

1. J = ((k1, . . . , kr), (m1, . . . ,mr)) is a pair of sequences of positive integers
obeying

r∑

i=1

kimi = n ,

2. α = (α1, . . . , αr) is a sequence of elements αi ∈ H∗
Z
(M) representing admissible

values of the Chern classes of U(ki)-bundles over M,
3. ξ ∈ H1

Zg
(M), where g is the greatest common divisor of (m1, . . . ,mr).

The cohomology elements αi and ξ are subject to the relations

r∑

i=1

mi

g
αi,1 = βg(ξ) , α

m1
1 ∪ . . . ∪ αmr

r = c(P) ,

where βg : H1
Zg

(M) → H2
Z
(M) is the Bockstein homomorphism associated with the

short exact sequence of coefficient groups 0 → Z → Z → Zg → 0 . For any
permutation σ of {1, . . . , r}, the symbols [(J;α, ξ)] and [(σJ; σα, ξ)] have to be
identified. �

http://dx.doi.org/10.1007/978-94-024-0959-8_4
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8.8 Partial Ordering

In this section we are going to characterize the natural partial ordering of gauge orbit
types in terms of the classifying set K̂(P). For the technical details, we refer to [544].

According to Theorem 8.2.8, the partial ordering of gauge orbit types corresponds
to the partial ordering on K̂(P) which is induced from the inclusion relation between
bundle reductions. Thus, we put [L] ≤ [L′] if there exist bundle reductionsQ of type
L and Q′ of type L′ such that ΨD(Q) ⊂ Q′ for some D ∈ SU(n). Let L = (J;α, ξ)

with J = (k,m) = ((k1, . . . , kr), (m1, . . . ,mr)) and L′ = (J ′;α′, ξ ′) with J ′ =
(k′,m′) = ((k′

1, . . . , k
′
r), (m

′
1, . . . ,m

′
r)) be given.

First, we observe that ΨD(Q) ⊂ Q′ implies D ∈ N(J, J ′). Since MJ(C) and
MJ ′(C) are finite-dimensional unitalC∗-algebras, the embedding hMD defined byC �→
D−1CD is characterized by a so-called inclusion matrix Δ. This is an (r′ × r)-matrix
whose entries Δi′i are given by the numbers of basic representations contained in the
representations

Mki(C) −→ MJ(C)
hMD−→ MJ ′(C) → Mk′

i′ (C) ,

where the first arrow is the canonical embedding to the ith factor of MJ(C) and the
third arrow is the natural projection to the i′th factor of MJ ′(C). Since the embedding
hMD is unital,

∑
i Δi′iki = k′

i′ for all i
′. Since conjugation of MJ(C) by D−1 preserves

the total number of basic representations of the factor Mki(C) in Mn(C), we have∑
i′ Δi′im′

i′ = mi for all i. Thus, Δ solves the system of equations

Δk = k′ , m = ΔTm′ . (8.8.1)

Conversely, assume that a solution Δ of (8.8.1) is given. Then, the decompositions
(8.5.2) associated with J and J ′ admit subdecompositions

C
n =

r⊕

i=1

C
ki ⊗

(
r′⊕

i′=1

C
Δi′ i ⊗ C

m′
i′

)

, C
n =

r′⊕

i′=1

(
r⊕

i=1

C
ki ⊗ C

Δi′ i

)

⊗ C
m′

i′ ,

respectively, which differ by a permutation of the factors C
ki ⊗ C

Δi′ i ⊗ C
m′

i′ . From
this permutation, a matrix D ∈ N(J, J ′) with inclusion matrix Δ can be constructed.
It follows that SUJ ⊂ SUJ ′ up to conjugacy iff the system of equations (8.8.1) has
a solution Δ.

Second, we observe that the extension of ΨD(Q) to the structure group SUJ ′ is
vertically isomorphic to Q[hSD]. Hence, ΨD(Q) ⊂ Q′ iff

c
(
Q[hSD]) = α′ , δJ

(
Q[hSD]) = ξ ′ . (8.8.2)

By (8.6.23) and jJ ′ ◦ hSD = hUD ◦ jJ ,

ci
′(
Q[hSD]) = c

(
Q[prUJ′

i′ ◦hUD◦jJ ]) .
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A computation analogous to the proof of formula (8.6.17) then yields

ci
′(
Q[hSD]) = (c1(Q)

)Δi′1 · · · (cr(Q)
)Δi′r .

Thus, using the notation

EΔ(α) :=
(
α

Δ11
1 · · ·αΔ1r

r , . . . , α
Δr′1
1 · · · αΔr′r

r

)
,

which is a generalization of (8.6.13), we obtain

c
(
Q[hSD]) = EΔ

(
c(Q)

)
. (8.8.3)

By (8.6.24) and λS
J ′ ◦ hSD = ρg′ ◦ λS

J , we have

δJ
(
Q[hSD]) = δg′

(
Q[ρg′ ◦λS

D]) .

Here, reductionmod g′ is well defined onZg-valued cohomology, because the second
equation in (8.8.1) implies that g′ divides g. Using that the characteristic class of the
mod g′-reduction of aZg-bundle is given by themod g′-reduction of the characteristic
class of this bundle (Exercise 8.8.3), we obtain

δJ
(
Q[hSD]) = ρg′

(
δJ(Q)

)
. (8.8.4)

From (8.8.2), (8.8.3) and (8.8.4) we conclude that ΨD(Q) ⊂ Q′ iff

EΔ(α) = α′ , (8.8.5)

ρg′(ξ) = ξ ′ . (8.8.6)

Let us introduce the following notation. If (8.8.6) holds, let N(L,L′) be the set of
solutions of the system of equations (8.8.1) and (8.8.5). If (8.8.6) does not hold, let
N(L,L′) = ∅. To summarize, we have shown the following.

Theorem 8.8.1 Let L,L′ ∈ K(P). Then [L] ≤ [L′] if and only if N(L,L′) �= ∅. �

Example 8.8.2 Consider the trivial bundle P = M ×SU(4). Let L = (J;α, ξ),L′ =
(J ′;α′, ξ ′) ∈ K(P) with J = (1, 1|2, 2) and J ′ = (2, 2|1, 1). Then, SUJ ∼= U(1) ×
Z2. The subgroup SUJ ′ can be parameterized by

SUJ ′ =
{(

zA 0
0 z−1B

)
: z ∈ U(1), A,B ∈ SU(2)

}
.

It is therefore isomorphic to
(
U(1) × SU(2) × SU(2)

)
/Z2. To determine N(L,L′),

we first consider the system of equations (8.8.1):
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[
Δ11 Δ12

Δ21 Δ22

] [
1
1

]
=
[
2
2

]
,

[
2
2

]
=
[
Δ11 Δ21

Δ12 Δ22

] [
1
1

]
.

The solutions are

Δa =
(
1 1
1 1

)
, Δb =

(
2 0
0 2

)
, Δc =

(
0 2
2 0

)
.

For α = (α1, α2), they yield

EΔa(α) = (α1α2, α1α2) , EΔb(α) = (α2
1, α

2
2) , EΔc(α) = (α2

2, α
2
1) .

Condition (8.8.6) is trivially satisfied due to g′ = 1. Thus, N(L,L′) �= ∅ precisely
in one of the following cases:

(a) α′
1 = α′

2 = α1α2 , (b) α′
1 = α2

1, α′
2 = α2

2 , (c) α′
1 = α2

2, α′
2 = α2

1 .

�

Remark 8.8.3 Any inclusion matrix Δ can be visualized by a diagram consisting of
a series of upper vertices, labelled by i = 1, . . . , r, and a series of lower vertices,
labelled by i′ = 1, . . . , r′. For each combination of i and i′, the corresponding vertices
are connected by Δi′i edges. For example, the matrices Δa, Δb and Δc in the above
example give rise to the diagrams

Δa:

i

i

1

1 2

2

Δb:

i

i

1

1

2

2

Δ c:

i

i

1

2

2

1

The diagrams assigned in this way to the elements of N(J, J ′) are special cases of
so-called Bratteli diagrams [101]. The latter have, in general, several stages pictur-
ing the subsequent inclusion matrices associated to an ascending sequence of finite
dimensional von-Neumann algebrasA1 ⊂ A2 ⊂ A3 ⊂ · · · . For this reason, we refer
to the diagram associated to Δ ∈ N(J, J ′) as the Bratteli diagram of Δ. We remark
that, due to the first equation in (8.8.1), Δ cannot have a zero row. By the second
equation, it cannot have a zero column either. Accordingly, each vertex of the Bratteli
diagram of Δ is met by at least one edge. �

In what follows, we give a brief survey about the characterization and generation
of direct successors and direct predecessors. Proofs can be found in [544].

Theorem 8.8.4 (Characterization of direct successors and predecessors) Let L =
(J;α, ξ),L′ = (J ′;α′, ξ ′) ∈ K(P). Then, [L′] is a direct successor of [L] if and only
if N(L,L′) contains an element with Bratteli diagram
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1

1

· · ·

· · ·

i1 −1

i1 −1

i1

i1+1

· · ·

· · ·

i0 −1

i0

i0

i1 i2

i0+1

i0+1

· · ·

· · ·

i2 −1

i2 −1

i2

i2+1

· · ·

· · ·

r

r+1

or
1

1

· · ·

· · ·

i1 −1

i1 −1

i1

i0

i1+1

i1

· · ·

· · ·

i0

i0 −1

i0+1

i0+1

· · ·

· · ·

i2 −1

i2 −1

i2 i2+1

i2

· · ·

· · ·

r

r−1

for some i0 and i1 < i2.

To generate direct successors and predecessors, let L = (J;α, ξ) ∈ K(P) with
J = (k,m). Consider the following operations applied to L. We leave it to the reader
to check that all the tuples L′ = (J ′;α′, ξ ′) produced by these operations belong to
K(P) (Exercise 8.8.2).

1. Splitting. Choose i0 such that mi0 �= 1 and decompose mi0 = mi0,1 + mi0,2 with
strictly positive integers mi0,1,mi0,2. Define k

′ and α′ by doubling the entries ki0
and αi0 , respectively, and m′ by replacing the single entry mi0 by the two entries
mi0,1,mi0,2. Then, by construction, the greatest common divisor g′ of m′ divides
g and we can put ξ ′ = ρg′(ξ).

2. Merging. Choose i1 < i2 such that mi1 = mi2 . Define k
′, m′ and α′ by deleting

the i2-th entry and replacing the entry ki1 of k by ki1 + ki2 and the entry αi1 of α

by αi1 ∪ αi2 . Then, g
′ = g and we can put ξ ′ = ξ .

3. Inverse splitting. Choose i1 < i2 such that ki1 = ki2 and αi1 = αi2 . Define
k′, m′ and α′ by deleting the i2-th entry and replacing the entry mi1 of m by
mi1 + mi2 . Then, g divides g′. Choose ξ ′ ∈ H1

Zg′ (M) such that ξ = ρg(ξ
′) and

βg′(ξ ′) = Em̃′,1(α
′).

4. Inverse Merging. Choose i0 such that ki0 �= 1 and decompose ki0 = ki0,1 + ki0,2
with strictly positive integers ki0,1, ki0,2. For l = 1, 2, choose cohomologyelements
αi0,l = 1+αi0,l,1 +· · ·+αi0,l,ki0 ,l with αi0,l,j ∈ H2j

Z
(M) such that αi0,1 ∪ αi0,2 = αi0 .

Define k′ and α′ by replacing the corresponding i0-th entry by the two entries
ki,1, ki,2 and αi,1, αi,2, respectively, and define m′ by doubling the i0-the entry.
Then, g′ = g and we can put ξ ′ = ξ .

Theorem 8.8.5 (Generation of direct successors and predecessors) Let [L] ∈ K̂(P)

and let L be a representative. The direct successors (predecessors) of [L] are obtained
by applying all possible splittings and mergings (inverse splittings and inverse merg-
ings) to L and passing to equivalence classes.
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Remark 8.8.6

1. It may happen that for certain elements of K(P) no splittings or no mergings can
be applied. Among such elements are, for example, those with mi = 1 for all i
(no splitting) and those having pairwise distinct mi (no merging). An analogous
statement is true for inverse splitting and inverse merging.

2. A direct inspection shows that for every L ∈ K(P), the number of splitting or
merging operations which can be applied to L is finite. It follows that an element
of K̂(P) can have atmost finitelymany direct successors and hence atmost finitely
many successors. �

In the remainder of this section, we discuss two examples.

Example 8.8.7 Let P be a principal SU(4)-bundle and consider L = (J;α, ξ) with
J = (1, 1|2, 2). Here, αi = 1 + αi,1, i = 1, 2, and ξ ∈ H1

Z2
(M).

First, there are two splitting operations which can be applied to L. One is given
by i0 = 1 and the decomposition m1 = 2 = 1+ 1. It yields L′

a = (J ′
a;α′

a, ξ
′
a), where

J ′
a = (1, 1, 1|1, 1, 2), α′

a = (α1, α1, α2), and ξ ′
a = 0. The passage from L to L′

a can
be conveniently visualized by a Bratteli diagram whose vertices are labelled by the
respective quantities ki,mi and αi:

L

La

α1
1,2

1,1
α1

1,1
α1

α2
1,2

1,2
α2

ξ

ξa = 0

The other splitting operation is given by i0 = 2 and m2 = 2 = 1 + 1. It yields L′
b

represented by the labelled Bratteli diagram

L

Lb

α1
1,2

1,2
α1

α2
1,2

1,1
α2

1,1
α2

ξ

ξb = 0

The equivalence classes of L′
a and L

′
b coincide iff α1 = α2. In order to see for which

bundles P this can happen, consider the Eqs. (8.6.27) and (8.6.28). The first one
requires α1,1 = α2,1 to be a torsion element. Then, due to α1,2 = α2,2 = 0, the
second one implies c2(P) = 0. Thus, L′

a and L
′
b can be equivalent only if P is trivial.

Next, there is a single merging operation, given by i1 = 1, i2 = 2. It yields L′
represented by



8.8 Partial Ordering 689

L

L

α1

1,2

2,2
α1 ∪α2

α2

1,2
ξ

ξc = ξ

As a result, generically, [L] has three direct successors, represented by L′
a, L

′
b and L

′
c.

Now, we turn to the generation of direct predecessors of [L]. Inverse splittings can
be applied only if α1 = α2. In this case, J ′ = (1|4) and α′ = (α1). Every solution
ξ ∈ H1

Z4
(M) of the system of equations

ξ ′ mod 2 = ξ , β4(ξ
′) = α1,1 , (8.8.7)

complements J ′ and α′ to an element L′ of K(P). The passage from L to L′ can be
summarized in the labelled Bratteli diagram

L

L

α1
1,4

1,2
α1

1,2
α1

ξ

ξ

which has to be read upwards. Since the L′ differ in the class ξ ′, they generate a
separate equivalence class each. Finally, since k1 = k2 = 1, inverse mergings cannot
be applied to L. Thus, in the case α1 = α2, the direct predecessors of the equivalence
class of L are labelled by the solutions of equations (8.8.7), whereas in the case
α1 �= α2 direct predecessors do not exist. Recall that the first case can only occur if
P is trivial. �

Example 8.8.8 Let P be a principal SU(2)-bundle. We shall construct the partially
ordered set K̂(P), starting from its maximal element.

Let L0 denote the unique representative of the maximal element of K̂(P). Since
the latter corresponds to P itself, L0 is given by J0 = (2|1), α0 = c(P) and ξ0 = 0.
Inverse mergings yield the following elements L:

L

L0

α1

1,1

2,1
c(P)

α2

1,1
ξ = 0

ξ0 = 0

Here, αi = 1 + αi,1 such that α1α2 = c(P). Sorting by degree yields the equations
α1,1 + α2,1 = 0 and α1,1α2,1 = c2(P). The first one implies α2,1 = −α1,1 and the
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second one then reads
− α2

1,1 = c2(P) . (8.8.8)

The solutions α1,1 and −α1,1 yield equivalent direct predecessors.6

Next, we determine the direct predecessors of the classes generated by L. Inverse
mergings cannot be applied. Inverse splittings can be applied provided α1 = α2. In
this case, every solution ξ ′ ∈ H1

Z2
(M) of the equation

β2
(
ξ ′) = α1,1 , (8.8.9)

yields an element L′ by

L

L

α1
1,2

1,1
α1

1,1
α1

ξ

ξ = 0

and each of these elements generates a separate equivalence class. Clearly, J ′ = (1|2)
labels the center Z2 of SU(2) and ξ ′ is the natural characteristic class provided
by Theorem 4.8.3 of the corresponding reduction. In particular, L′ does not have
predecessors and we are done.

Let us present the Hasse diagram of the partially ordered set K̂(P) for the base
manifoldsM = S4, S2 × S2 and L3

2p × S1. In a Hasse diagram, vertices stand for the
elements of the partially ordered set and edges indicate the relation ’left vertex ≤
right vertex’. When viewing the elements of K̂(P) as Howe subbundles, the vertex
on the right hand side represents the class corresponding to P itself, whereas the
vertices in the middle and on the left hand side represent reductions of P to the Howe
subgroups U(1) and Z2, respectively. When viewing the elements of K̂(P) as orbit
types, or strata of the gauge orbit space, the vertex on the right hand side represents
the generic stratum, whereas the vertices in the middle and on the left hand side
represent the secondary strata.

1. M = S4. If c2(P) = 0, Eq. (8.8.8) is trivially satisfied by α1,1 = 0. Then,
Eq. (8.8.9) is trivially satisfied by ξ ′ = 0. Since H1

Z2
(M) = 0 and H2

Z
(M) = 0,

there are no further solutions for either one. Thus, in the case where P is trivial,
the Hasse diagram of K̂(P) is

6We note that the Howe subgroup labelled by J = (1, 1|1, 1) is the toral subgroup U(1) of SU(2)
and that α1,1 is just the first Chern class of the corresponding reduction of P. By virtue of this
transliteration, Eq. (8.8.8) is consistent with the literature [338].

http://dx.doi.org/10.1007/978-94-024-0959-8_4
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If P is nontrivial, K̂(P) consists only of the class corresponding to P itself. On the
level of strata, this result means that in the sector of vanishing topological charge
the gauge orbit space decomposes into the generic stratum, a U(1)-stratum, and
an SU(2)-stratum. If, on the other hand, a topological charge is present, then only
the generic stratum survives.

2. M = S2 × S2. Choosing a generator of H2
Z
(M) and expanding α1,1 and c2(P) as

in Remark 8.6.17/2, Eq. (8.8.8) yields

−4ab = c ,

cf. (8.6.30). Since H1
Z2

(M) = 0, only the solution a = b = 0 has a direct

predecessor. Thus, if c2(P) = 0, the Hasse diagram of K̂(P) is

(2,0)

(1,0)

(0,0)

(0,1)

(0,2)

The vertices in the middle are labelled by the corresponding values of (a, b). Note
that passage to equivalence classes requires that solutions (a, b) and (−a,−b)
are identified. If c = 2l, the Hasse diagram is

(1,−l)

(q,−l/q)

(l,−1)

where, according to the identification (a, b) ∼ (−a,−b), q runs through the
positive divisors of l only. Finally, if c is odd, K̂(P)has one element, corresponding
to P itself.

3. M = L3
2p × S1. The relevant cohomology groups of L3

2p are given in Remark
8.6.17/3. Let γ L

1 and γ L
2 be generators of H1

Zg
(L3

2p) and H2
Z
(L3

2p), respectively.

In addition, choose a generator γ S
1 of H1

Z
(S1). Then, H1

Zg
(M) = Z〈2p,g〉 ⊕ Z2p is

generated by γ L
1 × 1 and 1× ρ2p(γ

S
1 ) and H2

Z
(M) = Z2p is generated by γ L

2 . One
can check that γ L

2 can be chosen so that the Bockstein homomorphism βg is given
by

βg
(
γ L
1 × 1

) = 2p

〈2p, g〉 γ L
2 × 1 , βg

(
1 × ρ2p(γ

S
1 )
) = 0 , (8.8.10)

where 〈·, ·〉 denotes the greatest common divisor. We expand

α1,1 = a γ L
2 × 1 , ξ ′ = ξ ′

L γ L
1 × 1 + ξ ′

S 1 × ρg(γ
S
1 ) .
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First, consider Eq. (8.8.8). Since H2
Z2p

(L3
2p) is torsion, we have α2

1 = 0. Hence,
(8.8.8) admits a solution iff c2(P) = 0. In this case, the solutions are given by
a ∈ Z2p. Since when passing to equivalence classes we have to identify a with
−a, the direct predecessors are labelled by a = 0, . . . , p.
Now, consider Eq. (8.8.9). According to (8.8.10), in the present situation it reads
p ξ ′

L = a. Thus, only the elements labelled by a = 0 and a = p have direct
predecessors. These are given by the values ξ ′

L = 0, ξ ′
S = 0, 1 and ξ ′

L = 1,
ξ ′
S = 0, 1, respectively. As a result, if c2(P) = 0, the Hasse diagram of K̂(P) is

(0,0)

(0,1)

(1,0)

(1,1)

0

1

p−1

p

Here the vertices on the left hand side are labelled by (ξ ′
L, ξ

′
S), whereas those in

the middle are labelled by a. If c2(P) �= 0, then K̂(P) is trivial. �

Exercises

8.8.1 Determine the direct successors and the direct predecessors for J = (2|2).
8.8.2 Verify that the tuples L′ obtained by splitting, merging, inverse splitting and
inverse merging belong to K(P).

8.8.3 Let g and g′ be positive integers such that g′ divides g and let Q be a principal
Zg-bundle. Show that δg′

(
Q[ρg′ ]) = ρg′

(
δg(Q)

)
.



Chapter 9
Elements of Quantum Gauge Theory

In this chapter, we discuss some elements of quantum gauge theory with the main
emphasis on those aspects which are related to the structure of the classical gauge
orbit space in one or the other way. In Sects. 9.1 and 9.2, we present the classical
Faddeev–Popov path integral quantization procedure, address the famous Gribov
problem and formulate the latter in the language of differential geometry. In this
formulation, the problem boils down to the study of the obstruction against the
existence of a global section (a global gauge) of the generic stratum of the gauge
orbit space. Following Singer, we prove that for some model classes, there does not
exist any global gauge at all. Next, in Sect. 9.3, we discuss another general aspect
of quantum gauge theories. It turns out that a symmetry of the classical Lagrangian
of a gauge model is not necessarily maintained on quantum level. If this happens,
one speaks of an anomaly. We discuss this phenomenon for models of gauge fields
coupled to fermionic matter. We address Abelian and gauge anomalies in detail and
comment on global anomalies at the end. The discussion is based on the path integral
formulation and heavily uses the Atiyah–Singer Index Theorem.

In the second part of this chapter, we present some of our results on non-
perturbative quantum gauge theory for (finite) lattice models in the Hamiltonian
framework. In Sect. 9.4, we construct the quantum model via canonical quantization
and in Sect. 9.5 we derive the field algebra and the observable algebra of the system.
We show that, for the finite lattice model, these algebras are uniquely defined up to
equivalence. We discuss the Gauß law, indicate how to classify irreducible repre-
sentations of the observable algebra in terms of global colour charge and, finally,
also comment on recent results for the infinite lattice model. In Sect. 9.6, we explain
how to include the nongeneric gauge orbit strata on quantum level. This presen-
tation is based upon the concept of a Hilbert space costratification in the sense of
Huebschmann and uses the generalized Segal–Bargmann transform of Hall. Finally,
in Sect. 9.7, we discuss the costratification for a toy model.

© Springer Science+Business Media Dordrecht 2017
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694 9 Elements of Quantum Gauge Theory

9.1 Path Integral Quantization

In this section, we limit our attention to the principal orbit type τ = τp, which is the
conjugacy class consisting of the subgroup Z̃(G) of constant functions P → Z(G),
where Z(G) denotes the center of G. As already noted, since Z̃(G) is normal in G ,
the smooth locally trivial fibre bundle

πp : C p → M p (9.1.1)

is in fact principal with structure group

G̃ := G /Z̃(G) .

This bundle has been studied intensively [454, 455, 476, 591]. For convenience, we
assume that Z̃(G) is discrete. Thus, LG = LG̃ .

Below, we will describe a procedure for quantizing a gauge theory within the
functional integral approach which was proposed in 1967 by Faddeev and Popov
[188], building on earlier work by Feynman [194, 195] and DeWitt [151]. Basically,
the functional integral obtained in this way1 serves as a tool for perturbation theory,
see e.g. [340]. In this approach, effects which potentiallymay come from the possible
nontriviality of the bundle P over spacetime M where the gauge connections live on
are not taken into account. Thus, we will represent the gauge connections ω by their
local representativesA on M . As before, the local representative of the field strength
will be denoted by F. Moreover, we pass from spacetime to Euclidean space, also
denoted by M , and consider the functional integral there. This step is achieved by
replacing real time t by imaginary time i t .

Thus, the starting point is the Euclidean Yang–Mills action

SYM(A) = 1

2

∫

M
|F|2vg , (9.1.2)

see (6.2.2), together with the naive generating functional2

Z(J ) =
∫

[dA]e−SYM(A)+∫M dxJ (x)·A(x) . (9.1.3)

Here, [dA] := ∏
dA(x) is the formal measure on C p and

∫
M J · A is called the

source term. For the time being, let us drop it.3

The Faddeev–Popov procedure may be written down for the theory on physical
spacetime as well. Anyway, the above functional integral is not defined rigorously.

1Combined with the machinery of renormalization, see [532, 556, 656] and references therein.
2For the time being, we neglect matter fields. They will be included in Sect. 9.3. For convenience,
the Planck constant � is set equal to 1.
3Note that this term is not gauge-invariant.

http://dx.doi.org/10.1007/978-94-024-0959-8_6
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Passing to the Euclidean space is the first step in the constructive programme of
quantum field theory. Before we continue, let us briefly outline the main steps of this
programme.

Remark 9.1.1 (Non-perturbative quantum gauge theory) In the programme of con-
structive quantum field theory, one proceeds as follows.

1. Approximate the underlying classical field theory on a finite lattice in Euclidean
space.

2. Quantize this system via the functional integral approach. This way, one obtains
a rigorously defined finite-dimensional quantum statistical model.4

3. Construct the continuum limit of this theory. This includes both passing to an
infinite lattice (thermodynamical limit) and passing with the lattice spacing to 0
(ultraviolet limit). In particular, this way, one constructs the measure in the func-
tional integral and, consequently, the Euclidean Green’s functions (Schwinger
functions) rigorously.

4. Use Osterwalder–Schrader type arguments [497, 498] to pass to the model on
Minkowski space, the ultimate goal being the construction ofWightman functions
fulfilling the Wightman axioms [275, 605].

For some types of models, this programme has been fully accomplished, see e.g.
[192, 586]. However, for gauge theories on 4-dimensional spacetime this is still an
(extremely hard) open problem.As amatter of fact, it is one of the famousMillennium
problems formulated by the Clay Mathematics Institute, see [160, 347] for details
and references to the main results obtained in this field. In this context, we also refer
to the textbooks [248, 532].

Alternatively, one may try to develop a rigorous approach within the Hamiltonian
framework. Here, one starts with an infinite-dimensional Hamiltonian system with
a symmetry (the gauge symmetry) and one may try to develop a rigorous quantum
theory by possibly extending methods working for finite-dimensional systems to
the infinite-dimensional context. Again, lattice approximation may be helpful as an
intermediate step. In Sect. 9.4, we will explain the finite lattice version of gauge
theory in some detail. Clearly, the above problem does not become simpler by just
passing to the Hamiltonian framework. But, as a matter of fact, different methods of
functional analysis, in particular, spectral theory and operator algebras, play a role
here. In this context, we refer to a series of deep papers by Bach, Fröhlich and Sigal,5

see the review [49] and further references therein.We also refer to [48, 50] for further
developments. �

Now, disregarding the hard problems discussed in the above remark, let us explain
the Faddeev–Popov procedure in some detail. To start with, let us assume that the
principal bundle (9.1.1) is trivial. Obstructions against this property will be discussed

4Combined with appropriate computer methods, like Monte-Carlo simulation, this also serves as a
tool for non-perturbative calculations in elementary particle physics, see [143, 233, 536].
5These authors have studied the theory of non-relativistic electrons bound to static nuclei and
interacting with the quantized radiation field in the Hamiltonian approach on a rigorous level.
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later. In this case, we can choose a global section s : M p → C p, called a gauge.
Clearly, s can be defined by a local gauge fixing condition

f (A) = 0 ,

where f : C p → LG is a smooth mapping whose restriction to

im(s) = {
A ∈ C p : f (A) = 0

}

is of maximal rank.6 Then, by an infinite-dimensional version of the Level Set The-
orem, f determines s uniquely, indeed.

Remark 9.1.2 We have met already a number of gauge fixing conditions in the
previous chapters. In view of the natural splitting (8.3.1), the covariant Lorenz gauge
defined by

f (A) = ∇A∗(A − A) (9.1.4)

is somewhat distinguished. Here, A ∈ C p is referred to as the background gauge
potential. Another gauge popular in the context of functional integrals is the axial
gauge. It is defined by

f (A) = n · A , (9.1.5)

where n ∈ M is a fixed vector. We will further comment on axial-like gauges below.
�

Now, Faddeev and Popov proposed to implement the gauge fixing defined by s in
the functional integral and, thus, to remove the unphysical gauge freedom from the
naive functional integral (9.1.3) as follows. By the assumption on f , the restriction
to im(s) of the derivative of f in the vertical direction,

f ′
[A] : Vs([A]) → LG ,

is an isomorphism for every [A] ∈ M p. Recall from Sect. 6.1 that the distribution
V is spanned by the Killing vector fields of the G -action,

VA = ∇A(LG ) ,

and, thus, Vs([A]) may be identified with LG . Thus, for every [A] ∈ M p, we have
an isomorphism f ′

[A] ◦ ∇s([A]) : LG → LG . Clearly, this is the derivative of the
mapping

Φ[A] : G̃ → LG , Φ[A](u) = f
(
A(u)

)
,

6By Proposition 1.1.6, s uniquely determines an equivariant mapping κ : C → G . Given κ , one can
take f := κ ′. But, clearly, s does not determine f uniquely.

http://dx.doi.org/10.1007/978-94-024-0959-8_8
http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_1


9.1 Path Integral Quantization 697

where A = s([A]) and A(u) is the local gauge transformation of A generated by
u ∈ G , see (6.1.3). That is,

Φ ′
[A] = f ′

[A] ◦ ∇s([A]) . (9.1.6)

Note that for the covariant Lorenz gauge (9.1.4), Φ ′
[A] coincides with the

Faddeev–Popov operator as given by (8.4.8). Therefore, we call Φ ′
[A] the (general-

ized) Faddeev–Popov operator. As a consequence, formally, we now can generalize
the standard formula

1 =
∫

dnx
∣∣det

(
ϕ′)∣∣

�ϕ(x)=0 δ (ϕ(x))

for a bijective smooth mapping ϕ : R
n → R

n to the case under consideration:

1 =
∫

[dρ] ∣∣det (Φ ′
[A]
)∣∣

� f (A)=0
δ
(
Φ[A](ρ)

)
, (9.1.7)

where [dρ] := ∏
dρ(x) is the formal Haar measure on G̃ . We denote

Δ f (A) := ∣∣det
(
Φ ′

[A]
)∣∣

� f (A)=0
(9.1.8)

and call it the Faddeev–Popov determinant. Inserting the identity (9.1.7) into the
generating function (9.1.3) with J = 0 and using the gauge invariance of [dA],
Δ f (A) and SYM(A), we obtain

Z(0) =
∫

[dρ]
∫

[dA]Δ f (A)δ
(
f
(
A
))
e−SYM(A) .

The volume
∫ [dρ] of G is an infinite constant factor which may be dropped. Thus,

also adding the source term again, we finally get

Z(J ) =
∫

[dA]Δ f (A)δ
(
f
(
A
))
e−SYM(A)+∫M dxJ (x)·A(x) . (9.1.9)

This is an integral over the gauge fixing submanifold im(s).

Remark 9.1.3

1. In the covariant Lorenz gauge, using (8.4.26), one can rewrite (9.1.9) as an integral
over the gauge orbit space with the volume form induced from the natural weak
Riemannianmetric onM p.We refer to [46, 349] for further details, see also [234]
for a rigorous study on the lattice.

2. If we choose a system of local coordinates {xi } on M , a basis {ea} in the Lie
algebra of G and a local frame {ξ a} in LG ∼= Wk+1(Ad(P)), then Φ ′

[A] may be
represented by a matrix-valued distribution as follows.7

7We use the notation of functional derivative as common in physics.

http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_8
http://dx.doi.org/10.1007/978-94-024-0959-8_8
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Qa
b(x, y) ≡ (

Φ ′
[A]
)a

b(x, y) =
[
δ f a

(
A(ρ)(x)

)

δξ b(y)

]

�ξ=0 , f (A)=0

,

where ρ = exp(ξ aea). Using (6.1.8), we calculate

δ f a
(
A(ρ)(x)

)

δξ b(y)
=
∫

dz
δ f a

(
A(x)

)

δAc
μ(z)

δ
(
A(ρ)

)c
μ
(z)

δξ b(y)

=
∫

dz
δ f a

(
A(x)

)

δAc
μ(z)

Dc
μbδ(y − z) ,

where Dc
μb = δcb∂μ + ad(Aμ)

c
b. Thus,

Qa
b(x, y) =

[∫
dz

δ f a
(
A(x)

)

δAc
μ(z)

Dc
μbδ(y − z)

]

� f (A)=0

. (9.1.10)

Clearly, this is the local form of (9.1.6). For the gauges given in Remark 9.1.2,
this matrix-valued distribution may be calculated easily. For the Lorenz gauge,
putting for simplicityA = 0, we get

Qa
b(x, y) = (

δab� + ad(Aμ)
a
b∂

μ
)
δ(x − y) , (9.1.11)

whereas for the axial gauge we obtain

Qa
b(x, y) = δabn

μ∂μδ(x − y) . (9.1.12)

�
To make formula (9.1.9) tractable for perturbative calculations, one represents the
Faddeev–Popov determinant in terms of a Berezin integral [66],8

Δ f (A) =
∫

[dc][dc]e
∫
dx dy ca(x)Qa

b(x,y)cb(y) , (9.1.13)

where c and c are Graßmann-valued Lorentz scalars carrying the adjoint representa-
tion of the Lie algebra of G. They are called Faddeev–Popov ghosts and anti-ghosts,
respectively.9 Finally, one usually gets rid of the δ-distribution by averaging over
an arbitrary auxiliary field with a Gaussian weight. This way the δ-distribution gets
replaced by a factor

8Here, we temporarily assume that the determinant is positive. Consequentlywe neglect the absolute
value.
9This naming goes back to Feynman. It is due to the fact that c and c do not contribute to the spectrum
of observables of the quantum theory. In the language of perturbation theory, these quantities cannot
occur in external lines of Feynman diagrams.

http://dx.doi.org/10.1007/978-94-024-0959-8_6
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e− 1
2α

∫
M dx f (A(x))2 ,

where α is the width of the Gaussian weight. As a result, the generating functional
now reads as follows:

Z(J ) =
∫

[dA][dc][dc]e−
(
SYM(A)+Sg f (A,c,c)

)
+∫M dxJ (x) ·A(x)

, (9.1.14)

with the gauge fixing term given by

Sg f (A, c, c) = −
∫

dx dy ca(x)Qa
b(x, y)cb(y) + 1

2α

∫

M
dx f (A(x))2 . (9.1.15)

Now, the Euclidean quantum expectation value of an observable O is defined by

〈O〉 = 1

Z(0)

∫
[dA][dc][dc]O[A] e−

(
SYM(A)+Sg f (A,c,c)

)
. (9.1.16)

Correspondingly, using Z(J ), one defines the Euclidean n-point Green’s functions
(Schwinger functions).

Remark 9.1.4 Clearly, there are now various gauges corresponding to various
choices of α. In particular, the case α = 1 is usually referred to as the Feynman
gauge. The choice α = 0 is called the Landau gauge. Note that in this case the width
of the Gaussian weight vanishes and so we are actually back to the Lorenz gauge
d∗A = 0.10 �

By the above gauge fixing procedure, the local gauge symmetry has been broken.
However, a new symmetry occurs. To exhibit it, we further rewrite the functional
integral (9.1.14) as

Z(J ) =
∫

[dA][dB][dc][dc] e−
(
SYM(A)+S̃g f (A,B,c,c)

)
+∫M dxJ (x) ·A(x)

, (9.1.17)

where B is a bosonic scalar field in the adjoint representation, called the
Nakanishi–Lautrup field, and

S̃g f (A, B, c, c) = −
∫

dx dy ca(x)Qa
b(x, y)c

b(y) −
∫

M
dx
(
B(x) · f (A(x)) + α

2
B(x)2

)
.

10Some authors, however, reserve the term Lorenz gauge for the more general condition d∗A = B,
where B is an arbitrary scalar field in the adjoint representation.
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The functional integral (9.1.14) is reobtained by integrating out the B-field. Con-
sider the following transformation of φ = (A, B, c, c) :

δλA
a
μ = λDa

μbc
b , δλB

a = 0 , δλc
a = −λBa , δλc

a = −1

2
λ f abdc

bcd ,

where λ is a constant parameter which anti-commutes with the ghost fields (and with
all fermionic matter fields of the theory) and f abd are the structure constants of the
Lie algebra of G. For any functional F of φ, one defines the Slavnov variation sF
by

δλF(φ) := λ
(
sF(φ)

)
.

By definition, s is an odd derivation. One can prove that it is nilpotent and, using this
fact, one shows that the effective action SYM + S̃g f is s-invariant.11 The symmetry
obtained this way was found independently by Becchi, Rouet and Stora [62] and by
Tyutin [635] and it is, therefore, referred to as the BRST symmetry. It constitutes the
basic technical tool both for the proof of the renormalizability and of the unitarity
of Yang–Mills theory in the perturbative approach. For these topics we refer to the
standard literature, see [656].

9.2 The Gribov Problem

Unfortunately, in general, the procedure explained in the previous section does not
work globally. That is, there are obstructions against the existence of a global gauge
section s : M p → C p. This observation was first made by Gribov [258] in 1978 in
the context of the Lorenz gauge d∗A = B, see Remark 9.1.4. He showed that a
gauge orbit can intersect a Lorenz gauge section more than once.12 To understand
the geometry of this phenomenon, we proceed in two steps:

(a) We reformulate the arguments of Gribov in the geometric language.
(b) Following Singer [591], we show that, in general, there does not exist any global

gauge fixing at all.

To discuss point (a), we denote

Sω := {ω + α : α ∈ Hω} (9.2.1)

11For a detailed proof of these facts we refer to Volume II of [656].
12As a matter of fact, he also mentioned the possibility that some orbits may not intersect a chosen
gauge at all, but he seemingly was not aware of any example. This can happen, indeed, e.g. in the
axial gauge with periodic boundary conditions, see [684].
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for any ω ∈ C p. We keep on assuming that the metric g on spacetime M has
Euclidean signature, but nowwe additionally assume thatM is compact. Below, stan-
dard examples will be M = S4 or S3 which may be viewed as being obtained from
Euclidean space via a one-point compactification.13

Proposition 9.2.1 (Singer) Let ω0 ∈ C p. Then, for every line ω0 + tα ∈ Sω0 , there
exists a vector τ ∈ Hω0 which is tangent to the orbit at ω0 + t0α for some t0 ∈ R.

Proof The tangent space to the orbit at ω0 + tα is spanned by elements of the form
∇ω0+tαξ = (∇ω0 + tCα

)
ξ with ξ ∈ LG andCα given byCαξ = [α, ξ ]. Thus, a vector

τ ∈ Hω0 is tangent to the orbit at ω0 + tα iff there exists ξ ∈ LG such that

τ = (∇ω0 + tCα

)
ξ . (9.2.2)

Together with ∇ω0∗τ = 0, this implies

(∇ω0∗∇ω0 + t∇ω0∗ ◦ Cα

)
ξ = 0 .

Now, since g is positive definite, ∇ω0∗∇ω0 is a self-adjoint positive operator. More-
over, since the symbol of the self-adjoint operator∇ω0∗ ◦ Cα is not non-negative, this
operator is not non-negative. Thus, there exists a smallest finite value t0 ∈ R such
that the operator

Pω0(t0) := ∇ω0∗∇ω0 + t0∇ω0∗ ◦ Cα

has a nontrivial kernel. Any element ξ belonging to that kernel yields via (9.2.2) an
element τ which is tangent to the orbit at ω0 + t0α. �

Remark 9.2.2 (Gribov ambiguity) The connection ω0 + t0α is said to be on the
Grivov horizon around ω0 in the direction α. At every point of this horizon, there
exists a vector from Hω0 which is tangent to the orbit through that point. Moreover,
the operator Pω0(t0) coincides with the Faddeev–Popov operator Δω0ω, where ω =
ω0 + t0α. Thus, extended to theGrivovhorizon, theFaddeev–Popovoperator has zero
modes and, consequently, the Faddeev–Popov determinant vanishes on the horizon.
This means that this determinant can switch sign and, thus, the Faddeev–Popov
procedure fails. In the language of geodesics, the exponential mapping around ω0

becomes singular at the horizon. �

Now, let us turn to point (b). In [591], Singer has shown that for some spacetime
manifolds the bundle (9.1.1) is nontrivial and thus there does not exist any global
gaugefixing at all. The idea of the proof goes as follows. First, show that the homotopy

13Which may be implied by the requirement of considering finite energy field configurations only,
cf. Chap.6. More generally speaking, passing to a compact manifold may be viewed as the intro-
duction of an infrared cutoff needed as an intermediate step for a non-perturbative understanding of
Yang–Mills theory. In this spirit, as already mentioned by Gribov himself, the Gribov problem is
likely to be related to non-perturbative problems like the quark confinement problem.

http://dx.doi.org/10.1007/978-94-024-0959-8_6
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groups of the principal stratumC p vanish.Assume that the bundle (9.1.1)were trivial.
Then,

C p ∼= M p × G̃ .

Since πi (C p) = 0, we could conclude that the homotopy groups πi (G̃ ) vanish for
i ≥ 1. Since in many cases this is not true, it follows that in these cases (9.1.1) is
nontrivial. Below, we present Singer’s arguments in some detail.

Proposition 9.2.3 The homotopy groups of the principal stratum C p vanish.

Proof Let ω ∈ B := C \C p. Then, by Remark 8.8.6/2, the orbit type τ of ω has
finitely many successors τ1, . . . , τr = p with respect to the partial ordering.14 By the
Tubular Neighbourhood Theorem and formula (8.3.10), there exists a neighbourhood
U of ω such that U ⊂ C ≥τ . It follows that

U \B = U \ (C ≤τ1 ∪ · · · ∪ C ≤τr
)
.

The subsets C ≤τi are affine subspaces. Since they have infinite codimension in C ,
there exists an infinite dimensional affine subspace which is orthogonal to all C ≤τi .
By a standard deformation argument, it follows that π j (U \B) = 0 for all j . Now,
let f : ∂Δl+1 → C p be a continuous mapping representing an element of πl(C p).
Since C is affine, f can be extended to a continuous mapping f̃ : Δl+1 → C . By
the Simplicial Approximation Theorem, there exists a subdivision of Δl+1 and a
homotopic mapping g̃ : Δl+1 → C such that g̃ maps each subsimplex to either C p

or to someU . Since π j (U \B) = 0 for all theseU , by induction on the dimension
of the skeleta of the subdivision, we can deform g̃ homotopically in such a way that it
takes values in C p. The deformed mapping induces a homotopy from f to a constant
mapping ∂Δl+1 → C p. �

From now on, we limit our attention to G = SU(n). For some chosen point m ∈
M , consider the pointed gauge group15

Gm := {u ∈ G : u(m) = 1} .

Lemma 9.2.4 For M = Sr , the pointed gauge group Gm is weakly homotopy equiv-
alent to the space of continuous mappings (Sr ,m) → (SU(n),1) endowed with the
compact-open topology.16 Moreover, for all j ,

π j (Gm) ∼= π j+r (SU(n)) . (9.2.3)

14See Sect. 8.8.
15Here, we view u ∈ G as a section of the associated bundle P ×G G, cf. Remark 6.1.2.
16See Sect. 3.1.

http://dx.doi.org/10.1007/978-94-024-0959-8_8
http://dx.doi.org/10.1007/978-94-024-0959-8_8
http://dx.doi.org/10.1007/978-94-024-0959-8_8
http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_3
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Proof Let m = e0 be the north pole of Sr and let Sr+ and Sr− denote the upper and
the lower hemisphere, respectively. Elements u of Gm correspond to pairs of Wk+1-
mappings u± : Sr± → SU(n) fulfilling

u+(e0) = 1 , u−(x) = ρ(x) · u+(x) · ρ(x)−1 (9.2.4)

for all x on the equator Sr−1, where ρ denotes the transition mapping of a chosen
pair of local trivializations. Consider the homomorphism

ϕ : Gm → Wk+1
(
(Sr+, e0), (SU(n),1)

)
, ϕ(u) := u+ .

Its kernel is ker(ϕ) = {u ∈ Gm : u+ = 1}. By (9.2.4), the assignment u �→ u− de-
fines a mapping

ker(ϕ) → Wk+1
(
(Sr−,S

r−1), (SU(n),1)
)
, (9.2.5)

which clearly is an isomorphism. Since the group Wk+1
(
(Sr+, e0), (SU(n),1)

)
is

contractible, the natural inclusionmapping ker(ϕ) → Gm is a weak homotopy equiv-
alence. Composing this with the isomorphism (9.2.5) and identifying

Wk+1
(
(Sr−,S

r−1), (SU(n),1)
) ∼= Wk+1

(
(Sr , e0), (SU(n),1)

)
,

we obtain a weak homotopy equivalence

Gm ∼ Wk+1
(
(Sr , e0), (SU(n),1)

)
.

Finally, using the Smoothing Homotopy Theorem, one can check that the natural in-
clusion mapping Wk+1

(
(Sr , e0), (SU(n),1)

) → C
(
(Sr , e0), (SU(n),1)

)
is a weak

homotopy equivalence, too. This yields the first assertion. The second assertion fol-
lows by iterated application of Theorem 3.1.5/2. �

Remark 9.2.5 The first assertion of Lemma 9.2.4 carries over to arbitrary compact
manifolds of dimension r ≤ 4. Indeed, for r < 4, P is trivial, which means that
Gm = Wk+1

(
(M,m), (SU(n),1)

)
. For r = 4, SU(n)-bundles P are classified by the

second Chern class c2(P). Hence, one may apply the argument for S4 to all elements
of a set of generators of H 4

Z
(M). �

The following propositions are simple generalizations of Theorem 3 in [591].

Proposition 9.2.6 Let M = Sr with r ≥ 2 and assume n > r/2. Then, π1(G̃ ) = 0.

Proof The exact homotopy sequences of the principal bundles Zn → G → G̃ and
Gm → G → SU(n) are given by

· · · −→ πk(Zn) −→ πk(G ) −→ πk(G̃ ) −→ πk−1(Zn) −→ · · · (9.2.6)

· · · −→ πk(Gm) −→ πk(G ) −→ πk
(
SU(n)

) −→ πk−1(Gm) −→ · · · (9.2.7)

http://dx.doi.org/10.1007/978-94-024-0959-8_3
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First, consider the piece

π1(G̃ ) −→ π0(Zn) = Zn −→ π0(G ) (9.2.8)

of (9.2.6). Since π0(SU(n)) = π1(SU(n)) = 0, exactness of (9.2.7) and Lemma
9.2.4 imply that for M = Sr we have

π0(G ) = π0(Gm) = πr (SU(n)) .

For n > r/2 and r ≥ 2, πr (SU(n)) = 0 or Z, see e.g. [104], Example VII.8.5. In the
first case, exactness of (9.2.8) implies thatπ1(G̃ ) = 0. Since the only homomorphism
Zn → Z is the trivial one, π1(G̃ ) = 0 must hold in the second case, too. �

Proposition 9.2.6 covers the cases S2 and S3 for any n and S4 for n > 2. For S4 and
n = 2, we need another argument.

Proposition 9.2.7 Let M = S4 and n = 2. Then, π3(G̃ ) = 0.

Proof Consider the piece

π3(G ) −→ π3
(
SU(2)

) = Z −→ π2(Gm)

of (9.2.7). By exactness of (9.2.6), π3(G ) = π3(G̃ ) and by Lemma 9.2.4,

π2(Gm) = π6(SU(2)) = Z12 .

Since there is no injective homomorphism Z → Z12, we conclude that π3(G̃ ) = 0.
�

Remark 9.2.8

1. By Propositions 9.2.6 and 9.2.7, the Gribov problem occurs on S2, S3 and S4 for
every unitary group SU(n).

2. Using general results on the structure of the mapping spaceC(M,G) for M being
a product of spheres, Killingback [376] has shown that the Gribov ambiguity is
also present in SU(n)-gauge theory on the 4-torus and in SU(2)-gauge theory on
S2 × S2. �

We emphasize once again that the whole discussion above is limited to the principal
stratum.

Finally, we comment on attempts to overcome the Gribov ambiguity.

(a) One approach consists in trying to reformulate the functional integral explicitly
in terms of local gauge invariant quantities, see e.g. [366, 372] and references
therein. In the process of constructing local gauge invariants, topologically non-
trivial configurations show up in a natural way. Typically, they are of magnetic
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monopole or magnetic vortex type, leading to a hydrodynamical picture of mat-
ter.17 There were many speculations on the usefulness of such a formulation for
the proof of quark confinement, see the papers ofMandelstam [421] and ’t Hooft
[624–626]. According to these authors, a non-Abelian gauge model with matter
fields may exhibit various phases:

• a Georgi–Glashow phase containing photons, charged particles and magnetic
monopoles,

• a superconductivity phase containingmagnetic monopoles which are confined
by magnetic vortices.

In [540], these phases have been analyzed for a model with gauge group SU(3).
Together with the classical paper ofMontonen and Olive [457], the above papers
of ’t Hooft and Mandelstam may be viewed as precursors of modern charge-
monopole duality, see also the discussion and the references at the beginning of
Sect. 7.6. Finally, we also refer to the papers of Asorey and collaborators, see
[24, 25] and further references therein, which are close in spirit.

(b) Another approach, already suggested by Gribov in his classical paper [258],
was developed by Zwanziger [696–699]. Consider the covariant Lorenz gauge
(9.1.4) and define the Gribov region18

Ω =
{
A ∈ C p : ∇A∗(A − A) = 0 , Φ ′

[A] > 0
}
. (9.2.9)

Equivalently, Ω may be viewed as the set of relative minima of the family of
Morse functionals μA defined by

μA(ρ) = ‖A(ρ) − A‖2 .

Indeed,

[
δμA

δρ

]

�ρ=1

= −2∇A∗(A − A) ,

[
δ2μA

δρ2

]

�ρ=1

= −2∇A∗∇A ,

showing that theHessian ofμ coincideswith the Faddeev–Popov operator. Using
this, it was shown that every gauge orbit intersects with the Gribov region.
Moreover, it was proven that Ω is a convex set bounded in every direction.
Unfortunately,Ω still containsGribov copies [581]. To improve the situation, one
passes to the subset Ω̂ ⊂ Ω , called the fundamental modular domain, consisting

17For electrodynamics interacting with matter fields, such a hydrodynamical description was found
already in the nineteen fifties, see the classical paper of Takabayashi [607]. We also refer to [367,
370, 371] and further references therein.
18One can consider different gauges. In particular, an axial-like gauge on the torus has been analyzed
in detail, see [401]. In this case, the fundamental modular domain was found to be an orbifold,
obtained by factorizing the Gribov region with respect to an infinite discrete group.

http://dx.doi.org/10.1007/978-94-024-0959-8_7
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of the absolute minima of the Morse functionals μA. That is, on every gauge
orbit one selects the gauge configuration closest to the origin,

Ω̂ =
{
A ∈ C p : ∇A∗(A − A) = 0 , μA(ρ) ≥ μA(1) for all ρ ∈ G

}
.

(9.2.10)
Again, Ω̂ is convex and bounded in every direction and all gauge orbits intersect
with Ω̂ . Moreover, the interior of Ω̂ contains at most one representative of each
gauge orbit. However, on the boundary ∂Ω̂ Gribov copies still can and do occur
[640, 641]. The general idea now consists in restricting the functional integral to
Ω̂ and arguing that the contributions from the boundary should be neglectable.
In this context, a lot of work has been done including case studies, numerical
simulations and, in particular, calculations within the lattice approximation. For
further reading we refer to the review [642].

9.3 Anomalies

In this section, we will meet another peculiar property of gauge theories. It turns out
that a symmetry of the classical Lagrangian is not necessarilymaintained on quantum
level. If this happens, one speaks of an anomaly. We discuss this issue for models of
gauge fields coupled to fermionic matter. As before, we assume that spacetime M is
a compact four-dimensional manifold with Euclidean signature. Since we are going
to deal with spin structures, we assume moreover that the first two Stiefel-Whitney
classes of M vanish. As explained in Sect. 7.1, fermionic matter fields are classically
described in terms of sections of the canonical spinor bundle S (M) twisted with a
vector bundle E carrying a representation of the gauge group G and, possibly, some
further flavour-type representation. In Chap. 7, we have seen a number of relevant
examples of that type.

To pass to quantum theory, we use the concept of the functional integral as
explained in the first section. In this approach, fermions are represented by anti-
commuting Graßmann-valued variables ψ and ψ taking values in sections of E .
As already mentioned in the first section, the functional integration for Graßmann-
valued fields has been developed by Berezin [66, 67]. Using this concept, the (naive)
functional integral of a theory of gauge fields interacting with fermionic matter fields
reads

Z(0) =
∫

[dA][dψ][dψ]e−SYM(A)−Smat (ψ,ψ,A) , (9.3.1)

where SYM(A) is given by (6.2.2). As before, we keep on representing the gauge
connections ω by their local representativesA, that is, we assume that the principal
gauge bundle P is trivial.19 If we assume that the matter fields are massless, the
matter field action is of the form

19We will comment on the nontrivial bundle case on the way.

http://dx.doi.org/10.1007/978-94-024-0959-8_7
http://dx.doi.org/10.1007/978-94-024-0959-8_7
http://dx.doi.org/10.1007/978-94-024-0959-8_6
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Smat (ψ,ψ,A) =
∫

M
dx〈ψ(x),D/Aψ(x)〉 , (9.3.2)

see (7.1.9), where D/A is the Dirac operator of the twisted Dirac bundle E =
S (M) ⊗ E . Beware that, while the canonical Hermitean scalar product for fermions
on Minkowski space is given by (5.3.55), for the Euclidean signature we have

〈ψ, φ〉 = ψ†φ .

We keep on using the notation ψ , but here ψ = ψ†. Carrying out the fermionic
integration in (9.3.1) in the sense of Berezin yields a fermionic determinant. The
latter turns out to be the crucial object for the study of the question whether an
anomaly occurs with respect to a given classical symmetry. Below, we discuss two
types of anomalies in some detail: Abelian20 anomalies and gauge anomalies. Finally,
we add some remarks on global anomalies. For an exhaustive treatment of the subject,
including also gravitational anomalies, we refer to [74, 530]. We stress that anomlies
may also be discussed within the Hamiltonian approach, see [114, 187, 189, 448].

(a) Abelian Anomalies

We use the approach developed by Fujikawa [224–226] and combine it with the
Index Theorem. Consider the Dirac operator D/A of a twisted Dirac bundle E =
S (M) ⊗ E , locally given by

D/Aψ = i
∑

μ

γ μ∇μψ , ∇μψ = (
∂μ + Γμ + Aμ

)
ψ , (9.3.3)

with Γμ representing the spin connection. For the Euclidean signature, the following
choice of γ -matrices is convenient:

γ 0 :=
[
0 1
1 0

]
, γ k :=

[
0 −iσk
iσk 0

]
, k = 2, 3, 4 , (9.3.4)

cf. (5.1.28). Then, the chirality operator is given by

γ 5 = −γ 0γ 1γ 2γ 3 =
[
1 0
0 −1

]
. (9.3.5)

Now, consider the chiral transformations

ψ �→ eiαγ
5
ψ , ψ �→ ψeiαγ

5
, α ∈ R . (9.3.6)

Since γ μγ 5 + γ 5γ μ = 0, they leave the fermionic action invariant. For local chiral
transformations with functions x → α(x), the fermionic action transforms as (Exer-
cise 9.3.1)

20Also referred to as axial anomalies or as Adler–Bell–Jackiw anomalies [10, 65].

http://dx.doi.org/10.1007/978-94-024-0959-8_7
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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Smat (ψ,ψ,A) → Smat (ψ,ψ,A) +
∫

M
dx α(x)∂μ j5μ(x) , (9.3.7)

where
j5μ(x) = ψ(x)γ μγ 5ψ(x) (9.3.8)

is referred to as the axial current. Thus, the chiral transformations constitute a classical
symmetry with the Noether current j5μ.

Now, let us study the behaviour of the fermionic functional integral

∫
[dψ][dψ]e−Smat (ψ,ψ,A) = det(D/A) (9.3.9)

under chiral transformations.21 To find the transformation of the measure, we first
perform a formal calculation and then we introduce a gauge invariant regularization
making the calculation meaningful. By Propositions 5.7.4 and 5.7.11, D/A is a self-
adjoint elliptic operator admitting a complete orthonormal basisψ1, ψ2, . . . of L2(E )

consisting of eigenvectors, that is, D/Aψn = λnψn . Moreover, the eigenspaces are all
finite-dimensional and limn→∞ |λn| = ∞. Thus, we can expand

ψ =
∑

aiψi , ψ =
∑

biψ
†
i .

The coefficients are Graßmann variables fulfilling

[ai , a j ]+ = 0 , [bi , b j ]+ = 0 , [ai , b j ]+ = 0 .

By the orthonormality of the basis {ψi },

[dψ][dψ] =
∏

k

dakdbk ,
∫

M
dx〈ψ(x),D/Aψ(x)〉 =

∑

k

λkbkak .

Thus, the fermionic functional integral (9.3.9) takes the form

det(D/A) =
∫ ∏

k

dakdbke
−∑

k λkbkak =
∏

k

λk , (9.3.10)

justifying the notation in (9.3.9). Now, consider an infinitesimal local chiral transfor-
mation (ψ,ψ) → (ψ ′, ψ ′

) inducedby a functionx → α(x). Then, the corresponding
transformation of the coefficients ak and bk reads (Exercise 9.3.2)

21By Appendix F, det(D/A)must be viewed as a section of the determinant bundle Det(D/A) over the
gauge orbit space, as will be explained later. However, it turns out that, for the study of the Abelian
anomaly, it is enough to consider det(D/A) for a fixed background field A.

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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ak → a′
k =

∑

j

Ck ja j , bk → b
′
k =

∑

j

C jkb j ,

where

Ckj = δk j + i
∫

M
dx α(x)ψ†

k (x)γ
5ψ j (x) , (9.3.11)

and, according to the Berezin calculus,

∏

k

da′
k = (

det(C)
)−1∏

k

dak ,
∏

k

db
′
k = (

det(C)
)−1∏

k

dbk . (9.3.12)

Next, using det(C) = exp
(
tr(lnC)

)
and expanding the logarithm up to first order,

we obtain ∏

k

da′
kdb

′
k =

∏

k

dakdbk e
−2i

∫
M dxα(x)A(x) , (9.3.13)

where
A(x) =

∑

k

ψ
†
k (x)γ

5ψk(x) . (9.3.14)

This shows that the measure is not invariant under chiral transformations.
Clearly, A is not well defined. Following Fujikawa, we regularize it by damping

the contributions coming from the large eigenvalues of D/A,

A(x) → AΛ(x) =
∑

k

ψ
†
k (x)γ

5e− D/ 2
A

Λ2 ψk(x) . (9.3.15)

Clearly, in the end, one has to take the limit Λ → ∞. Now, consider

∫

M
dxAΛ(x) =

∑

k

∫

M
dxψ

†
k (x)γ

5e− D/ 2A
Λ2 ψk(x) . (9.3.16)

Since D/A anti-commutes with γ 5, the spinor field γ 5ψk is an eigenvector with eigen-
value −λk . Thus, by the orthogonality of the basis {ψk}, all contributions in (9.3.16)
coming from non-vanishing eigenvalues cancel and we obtain a reduction to the sum
over zero-modes. Next, since [γ 5,D/A] = 2γ 5D/A, restricted to the eigenspace of zero
modes, γ 5 and D/A commute. Thus, this space decomposes into subspaces with fixed
chirality,

γ 5ψ
(0)
k,± = ±ψ

(0)
k,± .

This yields
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∫

M
dxAΛ(x) =

∑

k

∫

M
dxψ

(0)†
k,+ (x)ψ(0)

k,+(x) −
∑

k

∫

M
dxψ

(0)†
k,− (x)ψ(0)

k,−(x) .

(9.3.17)
Since the eigenfunctions are normalized, the right hand side coincides with the differ-
ence of the numbers of zero modes with positive and negative chirality, respectively,
that is,22 ∫

M
dxA(x) = ind(D/A) , (9.3.18)

with ind(D/A) given by (5.8.16). Here,

D/ +
A = D/A

1

2

(
1 + γ 5) , D/ −

A = D/A

1

2

(
1 − γ 5) .

Now, by the Atiyah–Singer Index Theorem 5.8.14,

∫

M
dxA(x) =

∫

M
Â(M) ∧ ch(E |S ) , (9.3.19)

where Â(M) is the Â-genus form of M and ch(E |S ) is the relative Chern character
form of E . Here, ch(E |S ) = ch(E). Moreover, by (9.3.15),

A = tr

(
γ 5e− D/ 2A

Λ2

)
.

Thus, by the heat kernel analysis in the proof of Theorem 5.8.14 leading to the Local
Index Theorem,23 viewing A as a differential form, we obtain

A = Â(M) ∧ ch(E) . (9.3.20)

In particular, for M = S4, we have Â(M) = 1 and the axial anomaly is given by the
second Chern class of E . Thus, for G = SU(n), we obtain

A = 1

8π2
tr(F ∧ F) = 1

32π2
εμνκλ tr(FμνFκλ) vS4 .

Now, let us calculate the Euclidean vacuum expectation value of ∂μ j5μ, treatingA as
a classical background field:

22Note that in the course of this calculation, the regularization term is automatically gone.
23Cf. Remark 5.8.15.

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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〈∂μ j5μ(x)〉 = 1

Z(0)

∫
[dψ][dψ] (∂μ j5μ(x)

)
e−Smat (ψ,ψ,A)

= 1

Z(0)

δ

δα(x) �α=0

∫
[dψ][dψ]e− ∫

M dy
(
ψ D/A ψ−α∂μ j5μ

)
.

By (9.3.7) and (9.3.13), a chiral transformation of ψ and ψ in this integral yields

〈∂μ j5μ(x)〉 = 1

Z(0)

δ

δα(x) �α=0

∫
[dψ][dψ]e− ∫

M dy
(
ψ D/A ψ+2iαA

)
,

that is, 〈∂μ j5μ(x)〉 = −2i A(x). For M = S4 and G = SU(n), we obtain

〈∂μ j5μ〉 = − i

16π2
εμνκλ tr(FμνFκλ) . (9.3.21)

This is the classical result of Adler, Bell and Jackiw [10, 65],24

Remark 9.3.1

1. The above result does not depend on the concrete choice of the regularization as
given by (9.3.15). The factor e−Λ−1 D/ 2

A may be replaced by f
(
Λ−1 D/ 2

A

)
, where

f is any smooth function decreasing rapidly at infinity. It is easy to see that this
choice yields the same anomaly [74, 224].

2. In perturbation theory, the above anomaly is found by a one-loop calculation
(axial-vector triangle diagram). It turns out that radiative corrections do not pro-
vide additional contributions to the anomaly. They merely result in a renormal-
ization of fields and charges. This deep result is due to Adler and Bardeen [11]
who carried out the analysis for spinor electrodynamics and for a σ -model. Later,
this result has been generalized to arbitrary gauge theories with fermionic matter
fields by various authors using various techniques, see e.g. [412, 429, 687]. So, it
is the Adler–Bardeen Theorem which guarantees that the above functional inte-
gral calculation, with the gauge potential treated as a classical background field,
yields the correct anomaly. �

(b) Gauge Anomalies

Now, we consider invariance under local gauge transformations. In the same spirit
as before, if local gauge invariance cannot be maintained on quantum level, then we
speak of a gauge anomaly. A gauge anomalous theory should be discarded. We refer
to the classical papers [54, 85, 263, 603, 693, 695].

Locally, gauge transformations are given by

A �→ A(ρ) = ρ−1Aρ + ρ−1dρ , ψ �→ ψ(ρ) = ρ−1ψ ,

24When passing to Minkowski space, the −i in the formula below must be replaced by 1, for the
convention ε0123 = 1.
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cf. (6.1.3) and (7.1.8). Let D/A : E → E be the Dirac operator of a twisted Dirac bun-
dle E = S (M) ⊗ E . We have to study the behaviour of the fermionic determinant
of D/A under local gauge transformations. To start with, we note that

D/A(ρ) = ρ−1D/Aρ .

This implies that D/A(ρ) and D/A have identical spectra and that, in particular,

ker
(
D/A(ρ)

) = ρ
(
ker(D/A)

)
.

That is, the index of D/A viewed as an element of K (C )-theory, see Appendix E, is
equivariant under the action of G on C . Thus, it descends to an element of K (M )

where M = C /G is the gauge orbit space. As in the previous section, we limit
our attention to the principal stratum M p. By Appendix F, the Quillen determinant
det(D/A) must be viewed as a section of the determinant bundle Det(D/A) over M p.
If this bundle is trivial, then det(D/A) can be globally represented by a C-valued
function and, then, no anomaly can occur.

First, consider the fermionic action Smat (ψ,ψ,A) = ∫
M dx〈ψ,D/Aψ〉. In the

physics literature, this case is referred to as the vector coupling. By Theorem 5.7.17,
D/A is a Fredholm operator with index zero, that is, the index bundle of D/A is
zero-dimensional. Thus, by Appendix F, the determinant bundle of D/A is also zero-
dimensional and, consequently, no anomaly can occur.

In the remainder, let us consider the casewhereE has a naturalZ2-grading induced
by the chirality operator γ 5. Accordingly, the Dirac operator decomposes into its
chirality components,

D/A = D/ +
A + D/ −

A .

In physical models such as the standard model,25 we have parity violating fermionic
actions,

Smat (ψ,ψ,A) =
∫

M
dx 〈ψ,D/ +

Aψ〉 ,

where D/ +
A : Γ ∞(S +(M) ⊗ E) → Γ ∞(S −(M) ⊗ E). Locally, D/ +

A is given by

D/ +
A = i

∑

μ

γ μ
(
∂μ + Γμ + Aμ

)1
2

(
1 + γ 5) .

The corresponding axial current is given by

jμa = iψ γμσ(ta)
1

2

(
1 + γ 5

)
ψ , (9.3.22)

25See Sect. 7.7.

http://dx.doi.org/10.1007/978-94-024-0959-8_6
http://dx.doi.org/10.1007/978-94-024-0959-8_7
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_7
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where σ is a representation of G and {ta} is a basis of the Lie algebra of G. On
classical level we have the conservation law

∇μ j
μ = 0 .

In the sequel, for simplicity, we suppress the chirality index and write D/A instead of
D/ +
A. We proceed along the lines of Atiyah and Singer [41]:

1. We show that the determinant of D/A gives rise to an element [μ] of the first de
Rham cohomology group of G̃ . This element will be identified with the gauge
anomaly. We prove that [μ] is the transgression of the first Chern class c1 of the
determinant line bundle.

2. Using the Atiyah–Singer Family Index Theorem, we express c1 in terms of the
characteristic classes of a universal principal bundle over M × M p and calculate
its transgression explicitly via secondary cohomology classes.

To accomplish point 1, choose a reference connection A0 such that D/A0
has index

zero and consider the operator

PA := D/ †
A0
D/A : Γ ∞(S +(M) ⊗ E) → Γ ∞(S +(M) ⊗ E) ,

for any A ∈ C p.

Remark 9.3.2 Assume M = S4 and G = SU(n). Then, by Theorem 4.8.8, principal
G-bundles P over M are classified by their second Chern class. But, by the Atiyah–
Singer Index Theorem, vanishing of the index of D/A0

implies vanishing of the second
Chern class. We conclude that, in this case, the above assumption implies that P is
trivial. �

Since ind
(
D/A0

) = 0, by the deformation invariance of the index, we can pass to a
gauge potential A0 fulfilling ker

(
D/A0

) = 0 without violating the condition that the
index be zero. But, then, also the kernel of D/ †

A0
is empty. Thus, the determinant line

bundle of the family {PA} may be identified with Det
(
D/A

)
. Under this identifica-

tion, det(PA) gets identified with the Quillen determinant det(D/A). Thus, instead of
studying the determinant of the family {D/A}, we can study the section det(PA) of
the determinant bundle of {D/A}.26 Note that, for every A ∈ C , the operator PA is
elliptic with symbol ξ �→ |ξ |2. Thus, PA can only have a finite number of zero and
negative eigenvalues, that is, we are in the situation described in Appendix D, see
formula (D.4), and we can apply ζ -function regularization for det(PA).27 This way,
we obtain a section28

26In the language of physics, the above transformation results in a constant factor in front of the
functional integral, see [430] for further details.
27As mentioned in Appendix D, this regularization procedure may be extended to the case where
zero eigenvalues occur.
28Note that PA does not transform equivariantly under gauge transformations. Thus, the regularized
determinant will not be gauge invariant, that is, it does not descend to a function on M p.

http://dx.doi.org/10.1007/978-94-024-0959-8_4
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Φ : M p → Det(D/A) , Φ([A]) := detζ (PA) . (9.3.23)

On connected components where the index of D/A is nonzero, this section vanishes.
Let Ĉ be the open subbundle of C whereΦ([A]) = 0. For anyA ∈ Ĉ , consider the
function

fA : G̃ → C , fA(ρ) := detζ (PA(ρ) ) . (9.3.24)

By construction, it is smooth and nowhere vanishing. Thus, denoting the exterior
differential on G̃ by δ̂, for any A ∈ Ĉ ,

μA := 1

2π i

δ̂ fA
fA

(9.3.25)

is a closed 1-form on G̃ and, therefore, it defines an element [μA] ∈ H 1
dR(G̃ ). This

quantity is referred to as the gauge anomaly.
Now, as an immediate consequence of the exact homotopy sequence of the prin-

cipal G̃ -bundle C p → M p and Proposition 9.2.3, we have πi (M p) ∼= πi−1(G̃ ). In
particular,

π1(G̃ ) ∼= π2(M
p) , (9.3.26)

where the isomorphism is given by the connecting homomorphism of this sequence.
Explicitly, this isomorphism is realized as follows: any 2-sphere Σ in M p may be
viewed as being obtained from projecting a disc D in C p whose boundary ∂D lies
completely in the gauge orbit of some reference point A. On the other hand, via
A the boundary ∂D defines a loop γ in G̃ . The assignment Σ �→ γ descends to a
mapping π2(M p) → π1(G̃ ) yielding the above isomorphism. Next, since Σ\π(γ )

is diffeomorphic to the interior of D, for the first Chern class of the determinant line
bundle we obtain ∫

Σ

c1 =
∫

Σ\π(γ )

c1 =
∫

D
π∗c1 . (9.3.27)

Since C p is weakly contractible, the 2-form π∗c1 on C p is exact, that is, there exists
a 1-form β1 such that π∗c1 = dβ1. Thus, by Stokes’ Theorem,

∫

D
π∗c1 =

∫

D
dβ1 =

∫

γ

β1 . (9.3.28)

The restriction of β1 to the orbit through A is a closed 1-form t (c1) on G̃ which is
referred to as the transgression of c1.

The following proof is along the lines of [430].

Proposition 9.3.3 The anomaly form μA is cohomologous to t (c1).

Proof As above, let γ be a loop in the fibre throughA. By the isomorphism (9.3.26),
there exists a disc D with ∂D = γ . Let Σ be the corresponding 2-sphere in M p
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obtained by projecting D. Consider any loop γ̃ on Σ . Then, π−1(γ̃ ) is a loop in D
homotopic to γ . Thus, the winding number of the S1-valued function | f[A]|−1 f[A]
on γ coincides with the winding number of the S1-valued function |Φ[A]|−1Φ[A] on
γ̃ . On the other hand, by standard arguments, for any loop γ in G̃ ,

deg
(| f[A]|−1 f[A]

) =
∫

γ

μA , deg
(|Φ[A]|−1Φ[A]

) =
∫

Σ

c1 .

We conclude ∫

γ

μA =
∫

Σ

c1 . (9.3.29)

Combining (9.3.29) with (9.3.27) and (9.3.28), we obtain

∫

γ

μA =
∫

γ

t (c1) , (9.3.30)

for any loop γ in the fibre over [A]. This shows that the 1-formμA is cohomologous
to t (c1). �

Remark 9.3.4 As announced in [41], one can give an analytic proof of Proposition
9.3.3 aswell. For that purpose, view the restriction of the index bundle to any 2-sphere
Σ ⊂ M p as being associated with the corresponding restriction of the principal G̃ -
bundleC p → M p, take the connection induced from the natural connection Z given
by (8.4.16) and calculate c1 via its curvature. Formally, this quantity is given by

δ tr
(
D/ −1
A δA

)

and, thus, it transgresses to tr
(
D/ −1
A δA

)
. It is easy to see that the latter quantity

coincides withμA. This heuristics can bemade precise via ζ -function regularization,
see Sect. 4 in [593]. Note that the proof of Proposition 9.3.3 presented here has the
advantage of holding for any regularization. �

From now on, let us limit our attention to the case M = S4 and G = SU(n) with
n > 2. Then, by Remark 9.3.2, the principal SU(n)-bundle P is trivial. Using (9.2.3),
together with π1(SU(n)) = 0 = π2(SU(n)), from the exact sequence (9.2.7) we read
off

π1(G ) ∼= π5(SU(n)) = Z . (9.3.31)

By Proposition 9.2.3 and by the fact that π4(SU(n)) = 0 for n > 2, we also have

π1(M
p) ∼= π0(G̃ ) = 0 . (9.3.32)

Moreover, since π0(M p) = 0 for any fixed isomorphism class of principal bundles
P , the Hurewicz Theorem implies

http://dx.doi.org/10.1007/978-94-024-0959-8_8
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H 1
Z
(G̃ ) ∼= π1(G̃ ) , H 2

Z
(M p) ∼= π2(M

p) . (9.3.33)

By exactness of (9.2.6), formula (9.3.31) implies π1(G̃ ) = Z. Now, by the first equa-
tion in (9.3.33), in the case under consideration, a nontrivial anomalywill occur unless
[μA] vanishes identically for some reasons. By (9.3.26), the second isomorphism in
(9.3.33) implies that, in the case under consideration, the transgression yields an
isomorphism

H 2
Z
(M p) ∼= H 1

Z
(G̃ ) . (9.3.34)

By Proposition 9.3.3, this isomorphism identifies the first Chern class of the deter-
minant line bundle with the anomaly.

Following Atiyah and Singer [41], we further proceed as follows. Consider the
action of G̃ on P × C p, given by

(p,A) �→ (ϑρ(p),A
(ρ)) ,

where p → ϑρ(p) denotes the vertical automorphism of P defined by ρ ∈ G̃ . Since
this action is free, it yields a principal G̃ -bundle P × C p over

P = (P × C p)/G̃ .

Since the action of G on P × C p induced from the right principal action on P
commutes with the action of G̃ , it descends to a free action onP and, thus, it defines
a principal G-bundle

P → M × M p .

We endow P × C p with a natural metric as follows. For (p,A) ∈ P × C p, via
a standard Kaluza–Klein construction, the metrics on M and G together with the
connection A yield a metric on Tp P which we combine with the natural L2-metric
on TAC p to the product metric at (p,A). By construction, the latter is G × G̃ -
invariant. Thus, it descends to a G-invariant metric on P . Taking the orthogonal
complement of the canonical vertical distribution on P with respect to this metric,
we obtain a connection τ on P . Analyzing this orthogonality condition, one easily
finds (Exercise 9.3.3)

τ[(p,A)] = [Ap + ZA] , [(p,A)] ∈ P , (9.3.35)

with Z given by (8.4.16).

Remark 9.3.5 The pair (P, τ ) is universal in the following sense [41]: assume Q is a
principal G-bundle over M × X , with X compact and Q�M×x

∼= P for every x ∈ X ,
endowed with a fibre connection τ Q on Q�M×x for every x , which is continuous
with respect to x . Then, there exists a morphism Φ : Q → P inducing τ Q from τ .
Conversely, any mapping ϕ : X → M p provides a fibre connection by pulling back
(P, τ ) via id×ϕ : M × X → M × M p. �

http://dx.doi.org/10.1007/978-94-024-0959-8_8
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First, let us calculate the curvature of τ . Recall that in the case under consideration
P is trivial.29 Thus, we can view A as a 1-form on M = S4 and, consequently,
τ is represented by a g-valued 1-form on M × M p. Consequently, we represent
its curvature by a g-valued 2-form Ω on M × M p. Clearly, Ω is given by its form
componentsΩ(2,0),Ω(1,1) andΩ(0,2), where the first index refers toM and the second
one to M p. For convenience, in the lemma below, we represent Ω by a 2-form on
M × C p. Since P is trivial, we can identify tangent vectors at C p with elements of
Ω1(M) ⊗ g.

Lemma 9.3.6 The curvature Ω ∈ Ω2(M × C p) ⊗ g of τ is given by

Ω
(2,0)
(m,A) = Fm , (9.3.36)

Ω
(1,1)
(m,A)((X, 0), (0, α)) = −αm(X) , (9.3.37)

Ω
(0,2)
(m,A)((0, α), (0, β)) = −2

(
GAC

∗
αβ
)
m
, (9.3.38)

where X ∈ TmM, α, β ∈ TAC p = Ω1(M) ⊗ g fulfilling D∗
Aα = 0, F is the curva-

ture of A and Cα is given by (8.4.27).

Proof Equation (9.3.36) is obvious. To prove (9.3.37), extend X ∈ TmM to a vector
field X ∈ X(M) and α to a Z -horizontal vector field (also denoted by α) on C p,
that is, D∗

Ã
α = 0 for all Ã in C p. Then, by the Structure Equation, there is only one

non-vanishing term,

Ω
(1,1)
(m,A)((X, 0), (0, α)) = −(0, α)(m,A)

(
τ(X, 0)

)
.

To calculate the right hand side, we represent (0, α) by the Z -horizontal curve s �→
A + sα through A and calculate

τ(m,A+sα)(X, 0) = (A + sα)m(X) .

Thus,

(0, α)(m,A)

(
τ(X, 0)

) = d

ds �0
τ(m,A+sα)(X, 0) = αm(X) .

This yields (9.3.37). To prove (9.3.38), extend α, β ∈ Ω1(M) ⊗ g to Z -horizontal
vector fields on C p. Then, using the Structure Equation and (8.4.32), we obtain

Ω
(0,2)
(m,A)((0, α), (0, β)) = −τ(m,A)

([(0, α), (0, β)])

= −(GAd
∗
A

([α, β]))
m

= −2
(
GAC

∗
αβ
)
m .

�

29The case of a nontrivial bundle P can also be dealt with, see [41].

http://dx.doi.org/10.1007/978-94-024-0959-8_8
http://dx.doi.org/10.1007/978-94-024-0959-8_8
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Clearly, Ω given by Lemma 9.3.6 descends to a 2-form on M × M p, which we
denote by the same letter. Next we apply the Atiyah–Singer Family Index Theorem
to the fibration

M × M p → M p .

For M = S4 and G = SU(n), formula (5.8.68) takes the form

ch(Ind(D/A)) =
∫

S4
ch(E) , (9.3.39)

where E = P ×G C
n with SU(n) acting in the basic representation. In particular,

this yields an explicit formula for the first Chern class c1 of the determinant line
bundle in terms of the Chern classes ki of P:

c1 =
∫

S4
k3(Ω)(4,2) = − i

24π3

∫

S4
tr
(
Ω3

(4,2)

)
, (9.3.40)

where the double index refers to taking the form degree 4 on M and 2 onM p. Using
Lemma 9.3.6, one obtains an explicit formula for c1. Here, we are only interested in
the transgression [μA] of c1. To calculate [μA] explicitly, we use standard secondary
cohomology class techniques, see [130]. Since the following observations hold for
all Chern classes of P , let us consider the general case. Denote

d2 j :=
∫

S4
k j+2(Ω)(4,2 j) .

Lift the closed 2 j-forms d2 j from M p to C p. Since C p is weakly contractible, the
lifted forms are exact. That is, there exist (2 j − 1)-forms β2 j−1 on C p such that

π∗d2 j = δβ2 j−1 ,

with δ denoting the differential onC p.Moreover, by transgression as explained above,
the restriction t2 j−1 of β2 j−1 to the orbit through a chosen reference connection A

is a closed (2 j − 1)-form on G̃ . Applying the technique of secondary characteristic
classes, one can calculate β2 j−1 and t2 j−1 in terms of differential forms, up to exact
forms. In detail, the lift of k j+n(Ω) from M × M p toP coincides with the exterior
differential of the secondary characteristic class30 α2 j+3 and, according to formula
(3.1) in [130], this quantity is given by

α2 j+3(τ ) = ( j + 2)
∫ 1

0
dt k j+2(τ,Ωt , . . . ,Ωt ) , (9.3.41)

where

30Often referred to as the Chern–Simons form.

http://dx.doi.org/10.1007/978-94-024-0959-8_5
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Ωt = tΩ + 1

2
(t2 − t)[τ, τ ] . (9.3.42)

Let α̃2 j+3(τ ) be the lift of α2 j+3(τ ) to P × C p. Embedding M ⊂ P via a global
section and integrating, we obtain a (2 j − 1)-form on C p,

β̃2 j−1 :=
∫

S4
α̃2 j+3(τ ) .

Let t̃2 j−1 be its restriction to the orbit through A. By construction,

dβ̃2 j−1 = d2 j .

Moreover, t̃1 is a transgression of c1 and, thus, it represents the anomaly [μA]. Thus,
it remains to calculate the restriction of

∫

S4
α̃5(τ )

to the fibre through A. For that purpose, we need the restrictions τ̂ and Ω̂t of τ

and Ωt , respectively, to a chosen fibre. First, since the restriction to the fibres of a
connection form on a principal bundle may be identified with the Maurer–Cartan
form on the structure group, the restriction of τ to the fibre through A is given by

τ̂ = A + η , (9.3.43)

where η is the Maurer–Cartan form on G̃ . The latter is a 1-form on G̃ with values in
the Lie algebra LG̃ . Since P is trivial, it may be identified with a 1-form on G̃ with
values in Ω0(M, g). Next, by Lemma 9.3.6, we have Ω̂ = F and, thus,

Ω̂t = tF + 1

2
(t2 − t)[A + η,A + η] . (9.3.44)

Proposition 9.3.7 The gauge anomaly [μA] can be represented by the following
1-form on G̃ :

μA = − i

24π3

∫

S4
tr

{
ηd
(
A ∧ dA + 1

2
A ∧ A ∧ A

)}
. (9.3.45)

Proof In the computation below, we omit the symbol of the wedge product. Wemust
calculate the (4, 1)-component of the restriction of the 5-form λ5(τ ) = tr(τΩ2

t ) to
the chosen fibre. In analogy to (9.3.42), denote

Ft = tF + 1

2
(t2 − t)[A,A] .
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Using (9.3.43) and (9.3.44), together with the Bianchi identity, we obtain

λ̂4,1(A + η) = tr(ηF2
t + (t2 − t)(A[A, η]Ft + AFt [A, η]))

= tr(ηF2
t + 2(t2 − t)A[A, η]Ft

)

= tr(ηF2
t + 2(t2 − t)

([A,A]ηFt + Aη[A,Ft ]
))

= tr
{
η
(
F2

t + 2(t − 1)
(
t[A,A]Ft − A[tA,Ft ]

))}

= tr

{
η
[
F2

t + 2(t − 1)
(( d

dt
Ft − dA

)
Ft + AdFt

)]}

= tr

{
η
[
F2

t + 2(1 − t)d(AFt ) + (t − 1)
d

dt
F2

t

]}
.

Since F0 = 0 and
d

dt

(
(t − 1)F2

t

) = F2
t + (t − 1)

d

dt
F2

t ,

we obtain ∫ 1

0
dt λ̂4,1(A + η) = 2

∫ 1

0
dt tr

(
η(1 − t)d(AFt )

)
.

Thus, by (9.3.40) and (9.3.41), we obtain the following transgression of c1:

t̃1 = − 6i

24π3

∫

S4

∫ 1

0
dt tr

(
η(1 − t)d(AFt )

)

= − 6i

24π3

∫

S4
tr

{
ηd
(
A

∫ 1

0
dt (1 − t)

(
tdA + 1

2
t2[A,A])

)}

= − i

24π3

∫

S4
tr

{
ηd
(
AdA + 1

2
A3

)}
.

�

Remark 9.3.8

1. Recall that the Maurer–Cartan form fulfils η(ξ∗) = ξ for any ξ ∈ LG . Thus, in
local coordinates {xμ} on M and with respect to a basis {ta} of g, we obtain

μa = − i

24π3
εμνρσ

∫

S4
d4x∂μ tr

{
ta
(
Aν∂ρAσ + 1

2
AνAρAσ

}
. (9.3.46)

The first term is obviously a contraction with the totally symmetric tensor

Dabc = tr
(
ta(tbtc + tctb)

)
.

Using

A ∧ A ∧ A = 1

4

(
A ∧ [A,A] + [A,A] ∧ A

)
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one can check that the second term is a contraction with Dabc as well. Thus, unless
Dabc vanishes identically, there is a nontrivial gauge anomaly. If Dabc = 0, then
one speaks of a safe theory. Note that, for any unitary representation of G, the
coefficients Dabc are imaginary. Thus, for all real or pseudo-real representations,
these coefficients vanish and, consequently, no anomaly occurs for Lie algebras
having only representations of that type. This happens for so(2n + 1), so(4n)with
n ≥ 2, sp(n) for n ≥ 3, G2, F4, E7 and E8. In particular, this is true for su(2) ∼=
so(3). Moreover, there are some Lie algebras for which the coefficients Dabc

vanish even though they admit representations which are neither real nor pseudo-
real. This happens for so(4n + 2) (except for so(2) ∼= u(1) and so(6) ∼= su(4))
and for E6. As a result, anomalies are only possible if G contains SU(n)-factors
with n ≥ 3 or U(1)-factors. Fortunately, for the case of the standard model where
we have G = SU(3) × SU(2) × U(1) the coefficients Dabc vanish, see Sect. 22.4
in Volume II of [656] for a detailed proof. Thus, the standard model is safe.

2. There is a calculus developed byWess, Zumino, Stora and others [603, 664, 693,
695], which on the one hand led to a geometric understanding of BRST transfor-
mations and on the other hand turned out to be useful in anomaly calculations.
Its rigorous mathematical meaning has been clarified by Kastler and Stora [359,
360], see also [85, 166, 165, 167]. Here, we only describe the basic structure
and refer to the above papers for details. Let Ω∗(P, g) be the vector space of
Ad(G)-equivariant g-valued forms on P . Consider

Ω p,a := Ωa(G̃ ,Ω p(P, g)) ∼= Ω p(P, g) ⊗ ΩaG̃ ,

and define
Ω∗∗ :=

⊕

p,a

Ω p,a .

Let d and δ̂ be the differentials of Ω∗(P, g) and Ω∗G̃ , respectively. Then,

δ̂2 = d2 = 0 , dδ̂ − δ̂d = 0 ,

that is, (Ω∗∗, d, δ̂) is a double complex. We have an associated total complex
(Ω∗,Δ) defined as follows. Take

Ω∗ :=
⊕

n

Ωn , Ωn :=
⊕

p+a=n

Ω p,a ,

with n called the total grading. For U ∈ Ω p,a , define

sU := (−1)p δ̂U , Δ := d + s . (9.3.47)

Then,
Δ2 = ds + sd = 0 ,
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and, clearly, both d and s are nilpotent. Moreover, endow (Ω∗,Δ) with the fol-
lowing exterior product:

[α ⊗ ρ, β ⊗ σ ] := (−1)aq [α, β] ⊗ (ρ ∧ σ) ,

where α ⊗ ρ ∈ Ω p,a , β ⊗ σ ∈ Ωq,b and [α, β] denotes the standard exterior
product on Ω∗(P, g) defined by the commutator. Then, (Ω∗,Δ, [·, ·]) becomes
a graded differential Lie algebra. In this formalism, the infinitesimal gauge trans-
formation (6.1.20) takes the form

sω = −(dη + [ω, η]) , (9.3.48)

and the Maurer–Cartan equation for the Maurer–Cartan form η reads

sη = −1

2
[η, η] . (9.3.49)

Here, clearly, ω ∈ Ω1,0 and η ∈ Ω0,1. If one interprets s as the BRST operator,
then these equations coincide with the BRST relations. Thus, the above structure
provides a differential geometric setting for the BRST formalism.31

Note that, by the definition of the anomaly,

s μA = 0 .

This property is referred to as the Wess–Zumino consistency condition. Wess,
Zumino and Stora noticed that this condition can be used to calculate the anomaly,
up to the correct coefficient, via a system of descent equations. This way, the
calculation of the anomaly becomes related to a problem in local cohomology.
In more detail, if we denote

ω := A + η , F := Δω + 1

2
[ω,ω] ,

then, by (9.3.48) and (9.3.49), F = F. Then, by analogous arguments as in the
proof of Proposition 9.3.7,

ΔQ2n−1(ω) = P(F) , (9.3.50)

where P is a symmetric invariant polynomial of SU(n) and the Q2n−1 are de-
fined by the right hand side of (9.3.41) with j = n − 2. Now, expanding the
Chern–Simons forms Q in powers of η and decomposing (9.3.50) in the above
double complex yields the following system, referred to as the system of descent

31The question how to accommodate the anti-ghost fields in such a geometric setting is an old
problem, see e.g. [86] for a discussion. In this paper, the anti-ghosts are introduced via a certain
gauge group doubling procedure based upon the fibre product bundle construction.

http://dx.doi.org/10.1007/978-94-024-0959-8_6
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equations,

P(F) − dQ0,2n−1 = 0

sQ0,2n−1 + dQ1,2n−2 = 0

sQ1,2n−2 + dQ2,2n−3 = 0

. . .

sQ2n−2,1 + dQ2n−1,0 = 0

sQ2n−1,0 = 0 .

Note that, up to a normalization factor, the first equation expresses dQ0,2n−1 in
terms of the Abelian anomaly in 2n dimensions. Solving the above system for the
chain of Chern–Simons forms yields the gauge anomaly in 2n − 2 dimensions
(up to the correct normalization). It is obtained by integrating the term Q1,2n−2

over M . It is in this sense that some authors say the Abelian anomaly implies the
gauge anomaly. For the solution theory of the system of descent equations we
refer to [165] and further references therein.

3. Since the anomaly (9.3.45) satisfies the Wess–Zumino consistency condition, it
is sometimes referred to as the consistent anomaly. The corresponding current
obtained as the variation of the vacuum functional does not transform covariantly
under gauge transformations. However, by adding a local polynomial in the gauge
potentials, one can construct a covariant current and, then, the corresponding
anomaly transforms covariantly. One finds

μ̃A = − i

8π2

∫

S4
tr
(
ηF2

)
. (9.3.51)

From the point of view of perturbation theory, the consistent and the covariant
anomaly correspond to two different regularization procedures. In the first case,
gauge invariance is lost in the regularization, in the second one it is maintained.
In particular, the Fujikawa method explained above may be applied here as well.
Within this approach, it is natural to use a gauge invariant regularization of the
Jacobian corresponding to the transformation of the path integral measure. Thus,
via this method one finds the covariant form (9.3.51) of the gauge anomaly. We
refer to Chaps. 5 and 10 in [74] for a detailed discussion. �

(c) Global Anomalies:

The following example was analyzed by Witten [674]. Consider the case M = S4

andG = SU(2). Then, combining (9.2.3) with the exact homotopy sequence (9.2.7),
we obtain

π0(G ) = π0(Gm) = π4(SU(2)) = Z2 .

This means that G is not connected, that is, there are global gauge transformations
which cannot be continuously deformed to the unit element ofG . As before, consider
a single left-handed fermion doublet coupled to an SU(2)-gauge field. Let det(D/A)
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be the corresponding fermionic determinant. Then, since such a doublet may be
viewed as being composed of two left-handed doublets,32 the fermionic determinant

of one left-handed doublet is given by
(
det(D/A)

) 1
2 up to the sign. The latter must

be chosen by hand. Then, the determinant is invariant under infinitesimal gauge
transformations. But, as was shown byWitten, it is odd under gauge transformations
which cannot be continuously deformed to the unit element. That is, if ρ is such a
transformation, then

(
det(D/A)

) 1
2 = − (

det(D/A(ρ) )
) 1

2 . (9.3.52)

This implies that the path integral of this theory is ill-defined.
Let us outline Witten’s proof of Eq. (9.3.52). Recall that the Dirac operator D/A

has a discrete spectrum consisting of real eigenvalues and to every eigenvalue λ there
corresponds an eigenvalue−λ. To have a non-vanishing determinant, we assume that
there are no zero modes. Otherwise, (9.3.52) is trivially true.Wemay choose the sign

of
(
det(D/A)

) 1
2 e.g. by taking the product of positive eigenvalues. Now, consider the

following continuous path in C :

t �→ A(t) := (1 − t)A + tA(ρ) , t ∈ [0, 1] .

It clearly interpolates between A and A(ρ). Consider the flow of the eigenvalues of
D/A(t) as t varies from 0 to 1. Clearly, the spectra for t = 0 and t = 1 are the same,
but the individual eigenvalues may rearrange on the way. It turns out that the Atiyah–
Singer Index Theorem implies such a rearrangement. The simplest one is given by a
single pair of eigenvalues (λ(t),−λ(t)) which cross at zero and change places as t
runs from 0 to 1. Thus, in this simple case (9.3.52) follows. It is also a consequence
of the Index Theorem that the number of positive eigenvalues which can become
negative is always odd. This yields (9.3.52) in the general case.

We briefly explain the idea of the proof of the above statements. Let D/ (5)
A be the

Dirac operator on the 5-dimensional manifold S4 × R or, rather, on the conformal
compactification M = S5. Let ψ be a doublet of fermions on M carrying the ten-
sor product representation of the spinor representation of O(5) and the fundamental
representation of SU(2). Explicitly, view ψ as a two-component column vector of
quaternions, let the spin group Sp(2) act by multiplication from the left and let
Sp(1) ∼= SU(2) act by diagonal multiplication from the right. This is a real repre-
sentation and, thus,33 D/ (5)

A is a self-adjoint operator on M with a discrete spectrum
consisting of real eigenvalues which are either zero or come in pairs (λ,−λ). As t
changes from 0 to 1, the number of zero-modes can only change whenever such a
pair moves to or away from zero. Thus, the number of zero modes of D/ (5)

A mod 2
is a topological invariant called the mod 2 index of D/ (5)

A . There is a corresponding

32Since the 1
2 -representation of SU(2) is pseudo-real, a left-handed doublet can be mapped to a

right-handed one. Note that the argument is still formal as long as one does not regularize the
determinant.
33Keep in mind our conventions, see Definition 5.5.12.

http://dx.doi.org/10.1007/978-94-024-0959-8_5
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mod 2 Index Theorem, see Part IV of [40]. Applying this theorem to the case of an
instanton-like SU(2)-gauge potential varying adiabatically fromA toA(ρ) along the
above defined path, one obtains that the number of zero-modes is equal to 1 mod 2.
Combining this with the study of the eigenvalue flow of D/ (5)

A , see [38], one obtains
the above statement.

The above arguments immediately extend to the case of n copies ofWeyl fermions.
If n is even, there is no problem, but, if n is odd, we have an anomaly. Moreover, the
above anomaly clearly extends to any symplectic group Sp(n), because π4(Sp(n)) =
Z2 for any n. On the other hand, π4(SU(n)) = 0 for n > 2 and π4(O(n)) = 0 for
n > 5, that is, for these cases no global anomaly occurs. For an extension to massive
fermions we refer to [45], for a generalization to higher SU(2) representations see
[53]. We also refer to [379] for a slightly different proof circumventing a debatable
argument in the proof of Witten and to [184] for a proof based on homotopy theory.
Nowadays, there exist various studies including other groups and theories in higher
dimensions, see e.g. [690] and further references therein.

Exercises

9.3.1 Confirm the transformation law (9.3.7).

9.3.2 Prove formula (9.3.11).

9.3.3 Prove formula (9.3.35).

9.4 Hamiltonian Quantum Gauge Theory on the Lattice

In the final sections, we use some basic tools from functional analysis for which we
refer to the classical textbooks, see [82, 102, 354, 507, 529]. Our main objective is
to show how to implement the classical gauge orbit type stratification on quantum
level. For the time being, we are able to do this in the Hamiltonian approach only.
For putting the discussion below into a broader perspective, the reader may wish to
recall Remark 9.1.1. We proceed as follows:

(a) We formulate quantum gauge field theory on a finite lattice within the Hamil-
tonian approach. In particular, we construct the field algebra and define the
observable algebra as the algebra of gauge-invariant operators factorized with
respect to the ideal generated by the Gauß law. Next, we comment on the classifi-
cation of irreducible representations of the observable algebra in terms of global
colour charge. Finally, we comment on recent results concerning the extension
to an infinite lattice.

(b) We present the concept of a costratified Hilbert space as proposed by
Huebschmann and explain how it can be used to encode the classical stratifi-
cation of the gauge orbit space on quantum level. For this purpose, we use the
Hilbert space representation of the observable algebra constructed in Sect. 9.5.
We illustrate the construction of the costratification for the case of a toy model.
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In the subsequent two sections, we accomplish point (a). So, we consider a model of
gauge theory with gauge group G in the Hamiltonian framework on a finite regular
cubic lattice Λ in a chosen equal-time hypersurface R

3 of spacetime M . For com-
pleteness, we also include fermionic matter fields although they will not be relevant
for the discussion of the gauge orbit strata. For basic notions and results concerning
lattice gauge theories, we refer to the classical papers [385, 386, 672] as well as to
the textbooks [143, 233, 458, 536, 579, 580] and further references therein.

We use the standard notation common in lattice models. For k = 0, 1, 2, 3, we
consider the setΛk of k-dimensional elementswith a chosenorientation. In increasing
order of k, such elements are called sites, links, plaquettes and cubes. In more detail:

1. Λ0 := {x = a(n1, n2, n3) ∈ R
3 : ni ∈ Z , a ∈ R+} ∩ X , where X is an open

connected set in R
3 and a is the lattice spacing.

2. Λ1 is a subset of the set Λ̃1 of all oriented links between nearest neighbours,34

Λ1 ⊂ Λ̃1 := {� = (x, y) ∈ Λ0 × Λ0 : y = x ± a ei for some i} ,

with the property that for each pair of nearest neighbours x and y it contains
either (x, y) or (y, x) but not both. Thus, the pair (Λ0,Λ1) is a directed graph.
We assume that it is connected.

3. Λ2 is a subset of the set of all oriented plaquettes,

Λ2 ⊂ {p = (�1, �2, �3, �4) ∈ (
Λ̃1
)4 : pr2 �i = pr1 �i+1 , pr2 �4 = pr1 �1} ,

for i = 1, 2, 3. Here, prk : Λ0 × Λ0 → Λ0 is the projection onto the k-th com-
ponent.

4. Finally, oriented elementary cubes c ∈ Λ3 are defined in an analogous way.

It is easy to see that a change of the chosen orientations induces an isomorphism of
the field and observable algebras to be constructed below and leaves the Hamiltonian
of the system invariant, cf. [369].

Now, given a classical gauge field model with compact gauge group G and a
matter field of type (μ, σ ) taking values in the finite-dimensional Hilbert space
F = Fs ⊗ Fi , its lattice approximation is obtained by restricting the matter field ψ

to Λ0 and by approximating the gauge potentialA by its parallel transporters along
the elements of Λ1, that is, the lattice approximation of the classical configuration
(A, ψ) is given by the following pair of mappings

ψ : Λ0 → F , �̂A : Λ1 → G . (9.4.1)

Thus, the classical lattice configuration space is given by FΛ × CΛ, where

FΛ :=
∏

x∈Λ0

F , CΛ :=
∏

�∈Λ1

G . (9.4.2)

34Here, {ei } is the standard basis of R
3.
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Note that the phase space of the gauge configuration space CΛ is

PΛ :=
∏

�∈Λ1

T∗G ∼=
∏

�∈Λ1

(G × g∗) . (9.4.3)

Remark 9.4.1 Since, on the lattice, continuity of the underlying space R
3 is lost,

any parallel transporter on a link can be continuously deformed to the trivial one.
Thus, one can naively conclude that the possible nontrivial topological character of
a gauge field configuration is lost on the lattice. However, one can show [413] that
non-Abelian gauge fields with a sufficiently small action density carry a topological
charge which, in the continuum limit, reproduces the instanton number.We also refer
to [512] for a similar study in the context of a simplicial lattice. There, it is shown
that for sufficiently small action densities one can construct a principal bundle which
may be trivialized over the 4-dimensional dual cells of the lattice. Topologically
nontrivial configurations of monopole type may be dealt with as well, see [365]. �

Next, one defines local lattice gauge transformations by restricting G to Λ0, that
is, a lattice gauge transformation is given by a mapping ρ : Λ0 → G and, thus, the
lattice approximation of G is given by

GΛ :=
∏

x∈Λ0

G = GΛ0
. (9.4.4)

By, (7.1.8) and (1.8.6), GΛ acts onFΛ × CΛ via

(ψx , �̂A) �→ (σ (ρ(x))ψx , ρ(x�) �̂A ρ(y�)
−1) , (9.4.5)

for any x ∈ Λ0 and � = (x�, y�) ∈ Λ1. This is the classical kinematicalmodelwe start
with. In our presentation, we limit our attention to fermionic matter fields only. For
G = SU(3), Fs = C

4 carrying the bispinor representation and Fi = C
3 carrying the

fundamental representation σ of SU(3), we obtain the classical lattice approximation
of QCD.

We construct the quantum model along the lines of [271, 368, 369]. Let us start
with the fermionicmatter field.We equipFΛ with the natural pointwise inner product
〈ψ, φ〉 := ∑

x∈Λ0

〈ψ(x), φ(x)〉F , and define the quantum matter field algebra as the

CAR-algebra
FΛ := CAR

(
FΛ

)
. (9.4.6)

That is, to every classical matter fieldψ ∈ FΛ we associate a fermionic field a(ψ) ∈
FΛ, and these quantum fields satisfy the CAR-relations,

[a(ψ), a(χ)∗]+ = 〈ψ, χ〉1 , [a(ψ), a(χ)]+ = 0 ,

for any ψ, χ ∈ FΛ. Since Λ0 is finite, FΛ is a full matrix algebra, hence up to
unitary equivalence it has only one irreducible representationwhichwewill denote by

http://dx.doi.org/10.1007/978-94-024-0959-8_7
http://dx.doi.org/10.1007/978-94-024-0959-8_1
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(H f
Λ, π f). Clearly, a natural choice is provided by the fermionic Fock representation

of Jordan and Wigner [351].
In physics textbook notation, the matter field generator at x is given by

Ψα(x) = a(fα · δx ) ,

where {fα} is an orthonormal basis of (F, 〈·, ·〉) and δx : Λ0 → R is the characteristic
function of {x}. For a model with Dirac fermions, the spacetime component of F
is Fs = C

4, standing for the bispinor degrees of freedom, and the internal part Fi
is a tensor product of some C

k , carrying a representation σ of G, with some vector
space describing flavour degrees of freedom. Neglecting the latter, the matter field
generator at x ∈ Λ0 is given by

Ψμi (x) = a((εμ ⊗ ei ) · δx ) , (9.4.7)

where {εμ} and {ei } are orthonormal bases in C
4 and C

k , respectively. We note that
FΛ is generated as a C*-algebra by the set

{Ψμi (x) | μ = 1, . . . , 4, i = 1, . . . , k, x ∈ Λ0}.

Next, to quantize the classical gauge connections, we generalize the Schrödinger
representation for a particle on the real line acting on the Hilbert space L2(R) as
follows: for any ϕ ∈ L2(G), we define the bounded operators

(Ugϕ)(h) := ϕ(g−1h) ,
(
T f ϕ)(h) := f (h)ϕ(h) , (9.4.8)

where g, h ∈ G and f ∈ L∞(G). Here,U is the left regular unitary representation of
G and T is the natural representation of L∞(G) given by left multiplication. Clearly,
T andU represent the position andmomentum operator analogues, respectively. The
pair π0 := (U, T ) will be referred to as the generalized Schrödinger representation.
Below, itwill be interpreted in the language ofC∗-algebras.Note thatπ0 is irreducible
in the sense that the commutant ofUG ∪ TL∞(G) consists of the scalars. Also note that
there is a natural ground state unit vector ϕ0 ∈ L2(G) given by the constant function
ϕ0(h) = 1 for all h ∈ G.35 Then,Ugϕ0 = ϕ0, and, by irreducibility, ϕ0 is cyclic with
respect to the *-algebra generated by UG ∪ TL∞(G). By construction, π0 fulfils the
intertwining relation

Ug ◦ T f ◦U ∗
g = Tλg( f ) , (9.4.9)

where
λ : G → Aut(C(G)) , λg( f )(h) := f (g−1h) , (9.4.10)

for any g, h ∈ G. This relation implies generalized commutation relations as follows.
By (9.4.3), identifiying g∗ ∼= g, the classical canonically conjugate momenta, also

35Assuming that the Haar measure of G is normalized.
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referred to as the colour electric fields, are given by elements of g. For X ∈ g, we
define the associated momentum operator by

PX : C∞(G) → C∞(G) , PXϕ := i
d

dt �0
U (et X )ϕ . (9.4.11)

Then, for any f, ϕ ∈ C∞(G) and X ∈ g,

[
PX , T f

]
ϕ = i

d

dt �0
U (et X )T f U (e−t X )ϕ = i

d

dt �0
Tλexp(t X)( f )ϕ .

Denoting the right invariant vector field on G by X R , we obtain

[
PX , T f

] = iTX R( f ) . (9.4.12)

For G = R, this yields the standard Heisenberg commutation relations. Since PX =
dU (X), we obtain a representation of the Lie algebra g on L2(G) which obviously
fulfils PXϕ0 = 0.

Remark 9.4.2 (Generators) As above, let σ be a faithful representation of G on C
k ,

e.g. the fundamental representation of SU(3) onC
3 for QCD. Choose an orthonormal

basis {ei }, i = 1, . . . k, of C
k and define the collection of functions σi j ∈ C(G) by

σi j (g) := 〈ei , σ (g)e j 〉 . (9.4.13)

Since the σi j are matrix elements of elements of G in the representation σ , they fulfil
obvious relations reflecting the structure of G, see [368, 369] for details. Moreover,
by (9.4.10),

λg(σi j )(h) =
∑

m

〈ei , σ (g−1)em〉σmj (h) . (9.4.14)

Since σ is faithful, the algebra generated by the functions σi j with respect to point-
wise multiplication separates the points in G, hence by the Weierstrass Theorem,
it is a dense subalgebra of C(G). Thus, the C*-algebra generated by the operators
{Tσi j | i, j = 1, . . . , k} is TC(G), that is, the algebra of multiplication operators by
continuous functions on G.

Next, choose an orthonormal basis {ta} of g and consider the corresponding basis
{σ ′

im(ta)} in End(Ck). Then, the operators Ea := Pta span all of Pg and, thus, the
unitary group they generate is all of UG ⊂ M(C∗(G)), where M(C∗(G)) denotes
the multiplier algebra of C∗(G). From Example 3 in Sect 3 of [679] and [475], we
also see that they generate C∗(G) in the sense of Woronowicz. Associated with the
generators Ea , we have the following set of End(Ck)-valued generators:

Ei j :=
∑

a

σ ′
i j (ta)Ea . (9.4.15)
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In terms of the above generators, the generalized commutation relations (9.4.12) read
(Exercise 9.4.1) [

Pta , Tσi j

] = i
∑

m

Tσ ′
im (ta)σmj . (9.4.16)

Clearly, these relations may also be expressed in terms of the Ei j , see [369]. �

Now, the bosonic Hilbert space of the full system is defined by

H b
Λ := L2(CΛ) ∼=

⊗

�∈Λ1

L2(G) . (9.4.17)

Clearly, π0 = (U, T ) induces a representation on HΛ denoted by πb := (Û , T̂ ). In
detail, for every � ∈ Λ1, we define

T̂ (�)
f := 1 ⊗ · · · ⊗ 1 ⊗ T (�)

f ⊗ 1 · · · ⊗ 1 , (9.4.18)

and
Û (�)

g := 1 ⊗ · · · ⊗ 1 ⊗U (�)
g ⊗ 1 · · · ⊗ 1 , (9.4.19)

where T (�)
f andU (�)

g are the multiplication and translation operators acting on the �th

tensor product factor of H b
Λ , respectively. Then, by Remark 9.4.2,

{T̂ (�)

σi j (�)
: � ∈ Λ1, i, j = 1, . . . , k}

and
{Êa(�) : � ∈ Λ1, a = 1, . . . , dim g}

generate the representation πb. To summarize, we denote the total Hilbert space of
the system by

HΛ := H f
Λ ⊗ H b

Λ (9.4.20)

and endow it with the tensor product representation

π := π f ⊗ πb . (9.4.21)

Next, we show how to implement the local gauge transformation (9.4.5) on quan-
tum level. For the fermionic part we define

αf : GΛ → Aut
(
FΛ

)
, αf

ρ(a(ψ)) := a(σ (ρ)ψ) . (9.4.22)

As already noted, π f is equivalent to the fermionic Fock representation. Thus, it is
covariant with respect to αf , that is, there is a (continuous) unitary representation
V f : GΛ → U (H f

Λ) such that
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π f(αf
ρ(F)) = V f

ρ ◦ π f(F) ◦ V f
ρ−1 , (9.4.23)

for any F ∈ FΛ. To implement the action GΛ on the bosonic part, for any link
� = (x�, y�) ∈ Λ1, we define the unitary representation V (�) : GΛ → U (L2(G)) by

(V (�)
ρ ϕ)(h) := ϕ(ρ(x�)

−1 h ρ(y�)) . (9.4.24)

Then, by definition, ρ → V (�)
ρ is a homomorphism fulfilling V (�)

ρ ϕ0 = ϕ0. Using this
unitary representation, we define the local gauge transformations of the quantum
observables from UG ∪ TL∞(G) by

T f �→ V (�)
ρ ◦ T f ◦ (V (�)

ρ

)−1 = TV (�)
ρ f , (9.4.25)

where f ∈ L∞(G) ⊂ L2(G), and

Ug �→ V (�)
ρ ◦Ug ◦ (V (�)

ρ

)−1 = Uρ(x�)g ρ(x�)−1 , (9.4.26)

for any g ∈ G. Moreover, since every operator V (�)
ρ preserves the space C∞(G),

(9.4.26) implies
V (�)
ρ ◦ PX ◦ (V (�)

ρ

)−1 = PAd(ρ(x�))X , (9.4.27)

for any X ∈ g. To summarize, for the full system, we have the following unitary
representation of GΛ on HΛ:

V := V f ⊗ V b , V b :=
⊗

�∈Λ1

V (�) . (9.4.28)

Remark 9.4.3 (Gauge transformations of generators) First, from (9.4.22)we readoff
the gauge transformation law for the fermionic generators Ψμi (x) given by (9.4.7)36:

(
V f
ρΨ

)
i (x) =

∑

j

σ
(
ρ(x)−1

)
i j Ψ j (x) . (9.4.29)

Next, by (9.4.24) and (9.4.25), the transformation law for the gauge generators σi j (�)
given by (9.4.13) reads as follows:

(
V (�)
ρ σi j (�)

)
(g) =

∑

n,m

σ
(
ρ(x�)

−1
)
in σnm(�)(g) σ

(
ρ(y�)

)
mj . (9.4.30)

The transformation law for the quantum gauge momentum operators is obtained by
setting X = ta , a = 1, . . . , dim g, in (9.4.27). �

36Since gauge transformations do not act on the bispinor degrees of freedom, we may suppress the
index μ.
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Exercise

9.4.1 Confirm formula (9.4.16).

9.5 Field Algebra and Observable Algebra

In this section, we construct the field algebra and the observable algebra of the model
presented in the previous section. For functional analytic basics used below we refer
to [82, 102, 507].

Note that the fermionic field algebra FΛ has already been identified as the C∗-
algebra of canonical anti-commutation relations. Thus, it remains to construct a C∗-
algebra for the bosonic part. By (9.4.9), the generalized Schrödinger representation
π0 = (U, T ) is a covariant representation of the C∗-dynamical system (C(G),G, λ)

with λ : G → Aut
(
C(G)

)
defined by (9.4.10). Associated with this C∗-dynamical

system, there is a natural crossed product C∗-algebra37 C(G) �λ G. Its representa-
tions are exactly the covariant representations of the C∗-dynamical system defined
by λ. It is well known that C(G) �λ G is isomorphic to the algebra of compact
operators on L2(G),

C(G) �λ G ∼= K
(
L2(G)

)
, (9.5.1)

see [531] and Theorem II.10.4.3 in [82]. In fact,

π0
(
C(G) �λ G

) = K
(
L2(G)

)
.

Since K
(
L2(G)

)
has a unique irreducible representation up to unitary equivalence,

it follows that π0 is the unique irreducible covariant representation of (C(G),G, λ)

(up to equivalence).Moreover, as ϕ0 is cyclic forK
(
L2(G)

)
,π0 is unitarily equivalent

to the GNS-representation of the vector state ω0 given by ω0(A) := (ϕ0, π0(A)ϕ0)

for A ∈ C(G) �λ G.

Remark 9.5.1

1. For the convenience of the reader, let us give the definition of C(G) �λ G. Take
L1(G,C(G)), defined as the ∗-algebra of C(G)-valued L1-functions on G, en-
dowed with multiplication given by the twisted convolution

(z × w)(g′) :=
∫

G
z(g)λg(w(g−1g′))dg ,

with the involution induced from the ∗-structure of C(G),

z∗(g) = λg(z(g
−1)∗) ,

37Also referred to as the generalized Weyl algebra.
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and with the standard L1-norm. Consider all its non-degenerate Hilbert space
representations. Then, C(G) �λ G is defined as the completion of the algebra
L1(G,C(G)) in the sup-norm taken over all these representations. This way we
obtain a C∗-algebra without unit. This algebra can be viewed as a skew tensor
product of C(G) with the group algebra C∗(G) in the following sense: For each
u ∈ C(G) and f ∈ L1(G) denote by u ⊗ f the element of L1(G,C(G)) given
by (u ⊗ f )(g) := u f (g) . Then, the linear span of such elements is dense in
L1(G,C(G)) . It is easily seen that

f → 1 ⊗ f (9.5.2)

is an isomorphism onto its image, which allows for identifying C∗(G) with the
corresponding subalgebra:

C∗(G) ⊂ C(G) �λ G . (9.5.3)

As already noted,C∗(G) is aC∗-algebra generated by unbounded elements in the
sense of Woronowicz. Consequently, C(G) �λ G is of this type, too. It is gener-
ated by elements (X, f ) fulfilling the canonical commutation relations (9.4.12).
We stress that both the (unbounded) generators X and the (bounded) generators f
do not belong to the algebra, but are only affiliated in theC∗-sense.Moreover, note
that–contrary to (9.5.2)–the mapping u → u ⊗ 1 does not preserve the algebraic
structure of C(G) and, whence, cannot be used to imbed C(G) into C(G) �λ G.
Hence, C(G) is not a subalgebra of C(G) �λ G, but belongs to its multiplier
algebra M(C(G) �λ G). Note that, clearly, the operatorsUg are not compact but
belong to the multiplier algebra as well. This is not a problem, because a state or
representation on C(G) �λ G has a unique extension to its multiplier algebra, so
will be fully determined on these elements. If one chose C∗(UG ∪ TL∞(G)) as the
field algebra instead of C(G) �λ G, then this would contain many inappropriate
representations, e.g. covariant representations for λ : G → Aut

(
C(G)

)
where

the implementing unitaries are discontinuous with respect to G.
2. The algebraic counterpart ofC(G) �λ G is the following crossed product of Hopf

algebras38:
C∞(G) �λ U(g) ,

see [368] for details. Here, U(g) denotes the enveloping algebra of g. �

We combine the above building blocks into the field algebra

AΛ := FΛ ⊗ BΛ (9.5.4)

with the bosonic part defined by

38This is an example of a Heisenberg double of Hopf algebras, c.f. [358].
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BΛ :=
⊗

�∈Λ1

(
C(G) �λ G

)
. (9.5.5)

This algebra is well defined as Λ1 is finite, and the cross-norms are unique as all
algebras involved are nuclear. Moreover, using (9.5.1), we obtain

BΛ
∼=
⊗

�∈Λ1

K(L2(G)) . (9.5.6)

Since FΛ is a full matrix algebra, AΛ is simple and, thus,

AΛ
∼= K(L ) , (9.5.7)

where L is some generic infinite-dimensional separable Hilbert space. This shows
that, for a finite lattice, there will be only one irreducible representation, up to unitary
equivalence.39 Moreover, since AΛ is simple, all representations are faithful. This
implies the following.

Proposition 9.5.2 The field algebra AΛ is faithfully and irreducibly represented by(
HΛ, π

)
, that is,

π(AΛ) = K
(
HΛ

)
. (9.5.8)

Note that π
(
AΛ

)
contains in its multiplier algebra the operators T̂ (�)

σi j (�)
and Û (�)

g for

all � ∈ Λ1.
Finally, we define the (product) action of the gauge group GΛ onAΛ = FΛ ⊗ BΛ,

α : GΛ → Aut
(
AΛ

)
, α := αf ⊗ αb . (9.5.9)

Recall that the action αf : GΛ → Aut
(
FΛ

)
has already been defined, see (9.4.22). To

define the action αb : GΛ → Aut
(
BΛ

)
, recall that in the representation π it is given

by ρ → Ad(Vρ), cf. (9.4.25) and (9.4.26). This action clearly preserves π
(
AΛ

) =
K(HΛ) and, since ρ → Vρ is strongly operator continuous, it defines a strongly
continuous action α of GΛ on π

(
AΛ

)
and, thus, on AΛ, By construction, (π, V ) is a

covariant representation for the C*-dynamical system given by α. As GΛ is locally
compact,we can construct the crossed productAΛ �α GΛwhose representation space
is built from all covariant representations of α : GΛ → Aut

(
AΛ

)
.

Let us describe the action αb in detail. First, consider one building block
C(G) �λ G of BΛ corresponding to a link (x, y) ∈ Λ1. In view of (9.4.25) and
(9.4.26) we define

τ : GΛ → Aut(C(G)) , (τρu)(g) := u(ρ(x)−1gρ(y)) ,

39This may be viewed as a generalization of the classical von Neumann uniqueness theorem for
irreducible representations of the canonical commutation relations on R.
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and
β : GΛ → Aut(L1(G)) , (βρ f )(g) := f (ρ(x)−1gρ(x)) .

By point 1 of Remark 9.5.1, C(G) �λ G is the closure of the space spanned by
L1(G) · C(G). Thus, the pair (τ, β) induces a representation on C(G) �λ G by

θρ( f · u) := βρ( f ) · τρ(u) . (9.5.10)

Now, αb is defined as the tensor product representation of the representations θ(�)

over all � ∈ Λ1, with every θ(�) defined by (9.5.10).
Given the action α, we can derive the lattice counterpart of the local Gauß law.

In abstract terms, a Gauß law generator is, by definition, a nonzero element in the
range of the derived action

dα : gΛ → Der
(
A∞

Λ

)
,

where gΛ is the Lie algebra ofGΛ andA∞
Λ denotes the subalgebra of smooth elements

with respect to the action. By (9.5.9),

dα(v) = dαf(v) ⊗ 1 + 1 ⊗ dαb(v) ,

for any v ∈ gΛ. To calculate dα explicitly, note that gΛ is spanned by elements of
the form v = X · δx for X ∈ g and x ∈ Λ0. Using this, we calculate

dαf(X · δx )(a(ψ)) = d

dt �0
a(exp(t X · δx )ψ) = a(δx · Xψ) . (9.5.11)

Next, by (9.5.10), dθ(v) = dβ(v) + dτ(v). For u ∈ C∞(G), we calculate

dτ(X · δx )(u)(g) = d

dt �0
u
(
e−t X g

) = −(X Ru
)
(g) , (9.5.12)

where X R is the right invariant vector field on G generated by X ∈ g. Correspond-
ingly, for f ∈ L1(G) ∩ C∞(G), we obtain

dβ(X · δx )( f )(g) = d

dt �0
f
(
e−t X get X

) = (−R′
g X + L ′

g X) f . (9.5.13)

Now, note that αb(X · δx ) affects only those links which contain x , that is, the nearest
neighbours (x, y±

k ) := (x, x ± aek), with k = 1, 2, 3, of x ,

dαb(X · δx ) =
∑

(x,y±
k )

dθ(x,y±
k )(X · δx ) .

To summarize, we have
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dα(X · δx ) = dαf(X · δx ) ⊗ 1 + 1 ⊗
∑

(x,y±
k )

(
dτ (x,y±

k ) + dβ(x,y±
k )
)
(X · δx ) ,

(9.5.14)
with dαb, dτ (x,y±

k ) and dβ(x,y±
k ) given by (9.5.11), (9.5.12) and (9.5.13), respectively.

Correspondingly, we have a local Gauß law at every lattice point x ∈ Λ0 given by

dα(X · δx ) = 0 , (9.5.15)

for every X ∈ g.

Remark 9.5.3 (Local Gauß Law) Recall that, in the representation (HΛ, π), the
gauge group GΛ acts via the unitary representation V given by (9.4.28). Using the
description of the field algebra in terms of generators provided by (9.4.7) and Remark
9.4.2, in the representation V the local Gauß law reads as follows (Exercise 9.5.1):

∑

(x,y±
k )

Ei j (x, y
±
k ) = qi j (x) . (9.5.16)

Here, qi j is the local matter charge density. For G = SU(3), it reads

qi j (x) = Ψ ∗
i (x)Ψ j (x) − 1

3
δi jΨ

∗
l (x)Ψl(x) . (9.5.17)

�

Now, we can define the observable algebra of the system.40

Definition 9.5.4 (Observable algebra) The observable algebra of the lattice gauge
theory is defined by

OΛ := AGΛ/{IΛ ∩ AGΛ} ,

where AGΛ ⊂ AΛ is the subalgebra of GΛ-invariant elements of AΛ and IΛ ⊂ AΛ is
the ideal41 generated by gΛ.

Recall that, under the representation π , the field algebra AΛ gets identified with
the algebra K(HΛ) of compact operators on HΛ, cf. Proposition 9.5.2. Under this
identification, we have a unitary representation V of GΛ on HΛ and the subalgebra
AGΛ can be viewed as the commutant (GΛ)

′ of this representation in K(HΛ).
Consider the closed subspace H GΛ ⊂ HΛ consisting of GΛ-invariant vectors,

H GΛ := {Φ ∈ HΛ | Vρ(Φ) = Φ for all ρ ∈ GΛ} . (9.5.18)

40In [271], we have shown that the definition below coincides with the algebra obtained by the
T -procedure of Grundling and Hurst, see [268, 269, 270].
41LetCbe the ideal inAΛ generated by the local Gauß laws (9.5.16). Then,IΛ is the ideal generated
by C in C∗(AGΛ ∪ C), see [271] for further details.
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Theorem 9.5.5 The observable algebraOΛ is isomorphic to the algebra of compact
operators onH GΛ ,

OΛ
∼= K

(
H GΛ

)
. (9.5.19)

Proof Consider the direct sum decomposition

HΛ = H GΛ ⊕ (
H GΛ

)⊥
, (9.5.20)

with
(
H GΛ

)⊥ denoting the orthogonal complement ofH GΛ . SinceH GΛ is invariant
under GΛ, by unitarity of V , the complement

(
H GΛ

)⊥ is invariant, too. Hence, with
respect to the decomposition (9.5.20), any element of GΛ has the block-diagonal

form

[
1 0
0 B

]
with some unitary operator B on

(
H GΛ

)⊥
. First, we show

(GΛ)
′ =

{[
C 0
0 D

]
∈ K(HΛ) : [B, D] = 0 for all

[
1 0
0 B

]
∈ GΛ

}
. (9.5.21)

Indeed, an operator

[
C E
F D

]
belongs to (GΛ)

′ iff for any
[
1 0
0 B

]
∈ GΛ it satisfies

E = EB , BF = F , BD = DB . (9.5.22)

This implies that for every φ ∈ H GΛ we have Fφ = BFφ and hence Fφ ∈ H GΛ .
On the other hand, Fφ ∈ (

H GΛ
)⊥, because F maps H GΛ to

(
H GΛ

)⊥. It follows
that Fφ = 0 and hence F = 0. By analogy, E = 0. This proves (9.5.21).

Now, we decompose

[
C 0
0 D

]
=
[
C 0
0 0

]
+
[
0 0
0 D

]
.

Since the restriction of a compact operator to a closed subspace is compact, we have

C ∈ K(H GΛ). Moreover,

[
0 0
0 D

]
∈ IΛ . This yields the direct sum decomposition

(GΛ)
′ = K

(
H GΛ

)⊕ (
IΛ ∩ (GΛ)

′)

and hence the assertion. �
We close this section by three remarks. For details we refer to [271, 272, 368,

369]. In sharp contrast to the Abelian case,42 the local Gauß laws (9.5.16) are neither
built from gauge invariant operators nor are they linear.43 Thus, the question arises

42See [373–375]. In these papers, the observable algebra for Lattice QED and Lattice Scalar QED
is analyzed in detail.
43The apparent linearity with respect to the colour electric fields Ei j on the left hand side is due to
the fact that, in this formula, every Ei j is ‘parallelly transported’ to the point x . If we would like to
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whether one can extract from Eq. (9.5.16) a gauge invariant and linear relation for
each lattice point. These relations could then be summed up over all lattice points to
produce a gauge invariant global Gauß law. This problem was solved in [368].

Remark 9.5.6 (Global colour charge) For concreteness, we limit our attention to the
case of QCD, that is, G = SU(3). Recall that, for every � ∈ Λ1, the colour electric
fields Ei j (�) generate a unitary representation of G. Using the CAR-relations for the
fermionic generatorsΨi (x), one easily shows (Exercise 9.5.2) that, for every x ∈ Λ0,
the local charge density operators qi j (x) generate a unitary representation of G, too.
By construction,

[Ei j (�), Ekl(�
′)] = 0 , [qi j (x), qkl(x ′)] = 0 ,

for � = �′ and x = x ′. Thus, let {Fa} be a collection of commuting unitary repre-
sentations of G on a Hilbert space H and let {fa} be the corresponding collection
of derived representations of the Lie algebra g. If f1 and f2 belong to that collection,
then so does f1 + f2. Such a collection of operators is an operator domain in the
sense of Woronowicz, see [678]. We define an operator function on this domain, that
is, a mapping f → ϕ(f) satisfying ϕ(U fU−1) = Uϕ(f)U−1 for any isometry U , as
follows: for a given representation f, consider the corresponding representation F
of G. Its restriction to the center Z of G acts as a multiple of the identity on each
irreducible subspace Hα of F ,

F(z)�Hα
= χα

F (z) · 1Hα
, z ∈ Z .

Obviously, χα
F is a character on Z and, therefore, (χα

F (z))
3 = 1. We identify the

group of characters on Z = {ζ · 13 | ζ 3 = 1, ζ ∈ C} with the additive group Z3
∼=

{−1, 0, 1} by assigning to any character χα
F a number k(α) ∈ {−1, 0, 1} fulfilling

χα
F (ζ · 13) = ζ k(α) .

We define
f �→ ϕ(f) :=

∑

α

ϕα(f)1Hα
, (9.5.23)

with ϕα(f) given by
ζ ϕα(f) = χα

F ( ζ · 13) . (9.5.24)

Since χα
F are characters, we have

ϕ(f1 + f2) = ϕ(f1) + ϕ(f2) . (9.5.25)

Now, using the equivalence of each irreducible representation α of G with highest
weight (m(α), n(α)) with the tensor representation in the space T

m(α)
n(α)(C

3) of

assign them to, say, the middle of the link they live on we would have to apply the parallel transport
operator. This would produce the lattice approximation of the covariant divergence on that link.
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m(α)-contravariant,n(α)-covariant, completely symmetric and traceless tensors over
C

3, we get
χα
F (z) = ζ ϕα(f) = ζ m(α)−n(α) ,

for z = ζ · 13 ∈ Z . Thus, we have

ϕα(f) = (m(α) − n(α)) mod 3 , (9.5.26)

for every irreducible highest weight representation (m(α), n(α)). In [368] we have
given an explicit construction of ϕ(f) in terms of the Casimir operators of f.

Applying ϕ to the local Gauß law (9.5.16) and using the additivity property
(9.5.25), we obtain a gauge invariant equation for operators with eigenvalues in
Z3: ∑

(x,y±
k )

ϕ
(
E(x, y±

k )
) = ϕ(q(x)) , (9.5.27)

valid at every lattice site x . Moreover, it is easy to check that

ϕ(E(x, y)) + ϕ(E(y, x)) = 0 , (9.5.28)

for every link (x, y). The quantity on the right hand side of (9.5.27) is the (gauge
invariant) local colour charge density carried by the quark field. By definition, the
sum of local colour charges over all lattice sites is referred to as the global colour
charge44 carried by the matter field:

tΛ :=
∑

x∈Λ0

ϕ(q(x)) . (9.5.29)

Now, let us extend the picture by assigning to each point of the boundary ∂Λ of Λ
exactly one external link and let us assume that gluons and colour electric fields may
live on these links. Let us take the sum of equations (9.5.27) over all lattice sites x ∈
Λ0. Then, by (9.5.28), all terms on the left hand side cancel, except for contributions
coming from the boundary. Thus, the global Gauß law takes the following form:

Φ∂Λ = tΛ , (9.5.30)

where
Φ∂Λ =

∑

x∈∂Λ0

ϕ(E(x,∞))

44Or, triality.
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is the global Z3-valued boundary flux of the colour electric field. In [369] we have
proved that the inequivalent irreducible representations of the observable algebra45

are labelled by the global colour charge. We also refer to [348] for an alternative
proof. �

Remark 9.5.7 (Dynamics) Disregarding the fermion doubling problem,46 the dy-
namics of the lattice system is governed by the Kogut–Susskind Hamiltonian, see
[385, 386],

H = κ2

2a

∑

�∈Λ1

Ei j (�)E ji (�) − 1

κ2a

∑

p∈Λ2

(W (p) + W (p))

− i

2a

∑

�∈Λ1

Ψμi (x�)
(
γ · n�

)
μν

σi j (�)Ψν j (y�) + h.c.

+ m
∑

x∈Λ0

Ψμi (x)Ψμi (x) . (9.5.31)

Here, W (p) denotes the Wilson loop operator associated with the plaquette p =
(�1, �2, �3, �4) ∈ Λ2,

W (p)(g1, . . . g4) := σi1i2(�1)(g1)σi2i3(�2)(g2)σi3i4(�3)(g3)σi4i1(�4)(g4) ,

γ denotes the End(C4)-valued space vector (γ 1, γ 2, γ 3) and n� denotes the unit
vector pointing from x� to y�. Moreover, h.c. means taking the Hermitean conjugate
andΨμi = Ψ

†
νiγ

0
νμ. The constants κ andm denote the gauge coupling constant and the

fermionmass, respectively. The coefficients in H are determined by the requirements
that, in the naive continuum limit, H tends to the continuumHamiltonian and that the
commutation relations tend to the standard commutation relations of the continuum
theory. Clearly, H is a gauge-invariant (unbounded) operator acting on H GΛ . By
Stone’s Theorem, this operator generates a one-parameter group of time evolution
onH GΛ . �

Remark 9.5.8 (Towards the thermodynamical limit) In [271, 272], some steps were
made towards an understanding of Hamiltonian gauge theory on an infinite lattice.
The starting point is a natural generalization of the representation (HΛ, π) con-
structed above to the infinite lattice. This representation is defined as the tensor

45That is, the observable algebraOΛ extended in an appropriateway in order to include the boundary
data.
46The naive Hamiltonian given by (9.5.31) leads to the well known fermion doubling problem, that
is, the lattice fermion propagator has 16 poles (in four dimensions). Starting with an improvement
proposed by Wilson [673], various concepts to cure this problem have been developed, see the
textbook literature cited above. In [488] it was shown that the doubling problem can only be
avoided by giving up one of a number of plausible requirements, including chiral invariance in the
zero mass case, see [216] for a rigorous proof. This observation led to an intensive study of the
lattice approximation of the Dirac operator. We refer to [414–416] and the textbooks [233, 536].
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product of a fermionic and a bosonic part, where the fermionic part is a Fock repre-
sentation of the CAR-algebra of the full lattice. The bosonic part is an infinite tensor
product of the generalized Schrödinger representations (in the sense of von Neu-
mann) for the individual links with respect to a natural reference vector, and a fixed
enumeration of the links. On that Hilbert space, all the local field algebras, that is, the
field algebras associated with finite sublattices, are naturally represented. Then, on
a suitable C∗-algebra (containing all the local algebras) acting on that Hilbert space,
the existence of a one-parameter group generated by the (infinite lattice version of)
the Hamiltonian (9.5.31) is proven. This one-parameter group is the pointwise norm
limit of the local time evolutions with respect to a sequence of finite sublattices,
exhausting the full lattice. Moreover, the existence of regular gauge invariant ground
states is shown but, for the time being, there is no uniqueness proof. �

Exercises

9.5.1 Prove formula (9.5.16).

9.5.2 Using the CAR-relations for the fermionic generators, show that the local
charge density operators qi j (x) generate a unitary representation of G, for every
x ∈ Λ0.

9.5.3 Check that the lattice Hamiltonian given by (9.5.31) is gauge invariant.

9.6 Including the Nongeneric Strata

In this section, we limit our attention to pure gauge theory on a finite lattice. In this
situation, the classical configuration space is CΛ = GΛ1

, acted upon by the group
of local gauge transformations GΛ = GΛ0

via (9.4.5). Correspondingly, the classical
phase space is given by the associated Hamiltonian Lie group action. According to
Corollary 10.1.21 of Part I, the latter is given by the following data:

1. the symplectic manifold T∗CΛ,
2. the action of GΛ by the induced point transformations,
3. the natural momentum mapping JΛ : T∗CΛ → LGΛ defined by evaluating the

elements of T∗CΛ on the Killing vector fields of the action of GΛ on CΛ.

Since the Killing vector fields correspond to’unphysical’ directions in CΛ, they
should not be recognized by ’physical’ momenta. Hence, the latter should be an-
nihilated byJΛ. This condition corresponds to the local Gauß law in the continuum
theory. As a consequence, the classical reduced phase space of the model is obtained
by symplectic reduction at zero level,47

PΛ = J −1
Λ (0)

/
GΛ . (9.6.1)

47Cf. Sect. 10.5 of Part I.
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This is a stratified symplectic space, where the strata are given by the orbit type
components, that is, the connected components of the orbit type subsets.

It is convenient to carry out the reduction (9.6.1) in two stages: first with respect
to the pointed gauge group

Gx0 = {g ∈ G : g(x0) = 1}

for somechosen site x0 ∈ Λ0, and thenwith respect to the residual action ofGΛ/Gx0
∼=

G. The first stage is obtained by zero level reduction of the Hamiltonian Lie group
action associated with the action of Gx0 on CΛ. Since the latter action is free and
since 0 is a regular value ofJΛ, we are in the realm of regular zero level reduction.
Consequently, the symplectic quotient is given by the cotangent bundle of the quotient
manifold CΛ/Gx0 . Thus, the second stage boils down to zero level reduction of the
Hamiltonian Lie group action associated with the residual action of GΛ/Gx0

∼= G on
CΛ/Gx0 . Since the first stage of the reduction is regular, it is at the second stage where
a stratification may arise. Consequently, for studying the quantum significance of the
stratification, it suffices to restrict attention to that stage.

Let us give a more convenient description of the quotient manifold CΛ/Gx0 in
terms of a tree gauge. For that purpose, choose a maximal lattice tree T , that is, a
simply connected subset T ⊂ Λ1 such that every site belongs to some link in T .
One can check the following (Exercise 9.6.1).

1. For every site x there exists a unique path inT from x to the site x0 chosen in the
definition of Gx0 . Given a lattice gauge potential {�̂A}, one can use these unique
paths to construct a gauge transformation ρ such that

�̂
(ρ)

A = 1 for all � ∈ T . (9.6.2)

2. Two lattice gauge potentials satisfying (9.6.2) are conjugate under GΛ iff they
differ by a constant gauge transformation. In particular, no two such elements are
conjugate under Gx0 .

Via a numbering �1, . . . , �N of the links inΛ1\T , every element (g1, . . . , gN ) ∈ GN

defines a mapping Λ1 → G by assigning the members gi to the corresponding off-
tree links �i and 1 to all links in T . This way, we obtain an embedding GN → CΛ

whose image coincides with the subset defined by (9.6.2). Thus, by composing
this embedding with the natural projection to classes CΛ → CΛ/Gx0 , we obtain a
diffeomorphismGN ∼= CΛ/Gx0 which is equivariantwith respect to the action ofG on
GN by diagonal inner automorphisms on GN and the residual action of GΛ/Gx0

∼= G
on CΛ/Gx0 .

As a result, the second stage of the reduction (9.6.1) is equivalent to zero level
symplectic reduction of the Hamiltonian Lie group action associated with the action
of G on GN by diagonal inner automorphisms,

ψg(g1, . . . , gN ) = (gg1g
−1, . . . , ggN g

−1) .
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Let us write down the corresponding data explicitly under the identification T∗GN ∼=(
T∗G

)N ∼= (
G × g∗)N . The symplectic form ω is componentwise given by formula

I/(8.3.8). According to Example I/10.1.25, the induced action of G reads

Ψg(g1, . . . , gN , ξ1, . . . , ξN ) = (gg1g
−1, . . . , ggN g

−1,Ad∗(g)ξ1, . . . ,Ad∗(g)ξN ) ,

and the momentum mapping is given by

J (g1, . . . , gN , ξ1, . . . , ξN ) =
N∑

i=1

ξi − Ad∗(gi )ξi . (9.6.3)

As noted before, the corresponding reduced phase space

P = J −1(0)/G

is a stratified symplectic space with the strata given by the orbit type components
of P . Thus, denoting the set of orbit type components by T, we have a disjoint
decomposition

P =
⋃

τ∈T
Pτ (9.6.4)

satisfying the frontier condition, that is, for all τ, τ ′ ∈ T,

Pτ ∩ Pτ ′ = ∅ implies Pτ ⊂ Pτ ′ .

The partial ordering of orbit types defined in Sect. 8.2 extends to a partial ordering
of T in an obvious way. Since the closures of distinct connected components of an
orbit type subset do not intersect,

Pτ ⊂ Pτ ′ iff τ ≤ τ ′ . (9.6.5)

Clearly, the orbit types appearing inP form a subset of the set of orbit types of the
lifted action Ψ on T∗GN . By [509], the latter coincides with the set of orbit types of
the original action on the base space GN . Thus, it is enough to know the orbit types
of the latter. As an illustration, let us give an example [124].

Example 9.6.1 (Orbit types of the diagonal action of G on GN for G = SU(3)) Let
Z denote the center of G. For N = 1, the action has three orbit types. Let g ∈ G.

1. If g has three distinct eigenvalues, Gg
∼= U(1)2 and g lies in the generic stratum.

2. If g has two distinct eigenvalues, Gg
∼= U(2).

3. If g has a single eigenvalue, it belongs to Z and Gg = SU(3).

For N ≥ 2, the action has five orbit types. Let g := (g1, . . . , gN ) ∈ GN .

http://dx.doi.org/10.1007/978-94-024-0959-8_8
http://dx.doi.org/10.1007/978-94-024-0959-8_8
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1. If the gi have no common eigenspace, Gg = Z and g lies in the generic stratum.
2. If the gi have exactly one common 1-dimensional eigenspace, Gg

∼= U(1).
3. If the gi have three common 1-dimensional eigenspaces, Gg

∼= U(1) × U(1).
4. If the gi have a 2-dimensional common eigenspace, Gg

∼= U(2).
5. Otherwise, all gi belong to Z and Gg = SU(3). �

There are two strategies for implementing the stratified structure on quantum level.

1. Quantization after reduction: perform the singular symplectic reduction at zero
level and develop a quantum theory on the stratified space so obtained.

2. Reduction after quantization: start with the quantum theory as described in the
previous section and develop a reduction procedure on quantum level.

A closer look at (9.6.3) shows that it is hard to perform the reduction to the zero
level set on the classical level explicitly. For the study of toy models, including the
investigation of the topological structure of the lattice gauge orbit space, we refer to
[125, 202].

Below, we will follow the second strategy. To implement the stratified structure
on quantum level, we will use the concept of costratified Hilbert space developed by
Huebschmann [325, 326]. We start with the Hilbert space representation H GΛ of
the observable algebra constructed in Sect. 9.4, cf. formula (9.5.18). Let

HN = L2(G)⊗N = L2(GN )

and
H := H G

N = {ϕ ∈ HN : ψ∗
gϕ = ϕ for all g ∈ G} .

We have a natural isomorphism H GΛ ∼= H . Thus, we may take H as the Hilbert
space of the quantum system.

Definition 9.6.2 A costratification of H associated with the stratification (9.6.4)
is an assignment of a closed subspace Hτ ⊂ H to every τ ∈ T such that τ ≤ τ ′
impliesHτ ⊂ Hτ ′ .

Our definition is adapted to the model under consideration. For the general concept,
see [325]. Now, the idea is thatHτ should consist of wave functions localized atPτ .
To make this precise, we must relate the elements ofH to functions onP . This will
be accomplished in two steps. First, we use the Segal–Bargmann transformation for
compact Lie groups developed by Hall [278] to obtain an isomorphism of H with
the Hilbert space

H C := HL2
(
(GC)

N
)G

of G-invariant holomorphic functions which are square integrable with respect to a
certain measure given below. Here, GC is the complexification of G. The benefit of
this will be that the elements ofH C are true functions on (GC)

N and not just classes
[282]. In a second step, we will relate these elements to functions onP .
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By the tensor product structure of theHilbert spaces involved, for the discussion of
the Segal–Bargmann transformationwemay restrict attention to one copyofG. Letρt
be the heat kernel of theLaplace operator48 onGwith respect to a chosenAd-invariant
inner product on g. Since ρt is invariant under inner automorphisms, according to
the Peter–Weyl Theorem, it can be expanded with respect to the characters χπ of the
irreducible representations π of G. The expansion coefficients are given by

ρt (g) =
∑

π∈Ĝ
dim Vπ e−ζπ t/2 χπ(g) , g ∈ G , (9.6.6)

where ζπ is the eigenvalue of the second Casimir operator of the representation
π [600, p. 38]. Since every irreducible representation of G extends uniquely to a
holomorphic representation of GC, the characters χπ may be analytically continued.
Thus, replacing each χπ in (9.6.6) by its analytic continuation, we obtain a candidate
for the analytic continuation of ρt . It can be shown that the corresponding series is
convergent and holomorphic, indeed. Let us denote the analytic continuation of ρt
so obtained by the same symbol. Now, the Segal–Bargmann transformation of G is
defined by

Ct : L2(G) → Hol(GC) , Ct (ϕ)(g) :=
∫

G
ρt (g

′−1g)ϕ(g′)dg′ , (9.6.7)

where dg′ denotes the Haar measure on G and Hol(GC) is the space of holomorphic
functions on GC. For the proof of the following theorem, see [278].

Theorem 9.6.3 (Hall) For every t > 0, there exists a measure νt on GC such that
Ct is a unitary mapping from L2(G, dg) onto HL2(GC, νt ). This measure is given
by

νt (g) =
∫

G
μt (g

′g)dg′ , (9.6.8)

where μt is the heat kernel of the Laplace operator on GC.49 �

Next, recall that wemay identify T∗G withG × g∗ and, using the inner product, with
G × g. The lattermaybe identifiedwithGC via the polar decomposition isomorphism

Φ : G × g → GC Φ(g,Y ) := g eiY . (9.6.9)

According to [279], under this mapping, the measure νt takes the form

νt (g) = (π t)− dim(G)/2e−|δ|2 te− 1
t |Y |2η(Y ) dg dY , (9.6.10)

48That is, the second Casimir operator.
49Here, the Lie algebra gC of GC is viewed as a real Lie algebra endowed with the natural inner
product obtained by identifying the real vector space gC with the orthogonal direct sum g⊕ g.
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where η is the Ad(G)-invariant function on GC given by

η(geiY ) :=
√√√√det

(
sin

(
ad(Y )

)

ad(Y )

)

(9.6.11)

and δ denotes half the sumof positive roots of g. The Segal–Bargmann transformation
takes a very simple explicit form when applied to representative functions. Recall
that a representative function on G is a linear combination of functions of the form

G → C , g �→ 〈ξ, π(g)v〉 ,

where π is some irreducible representation of G on a complex vector space V and
v ∈ V , ξ ∈ V ∗. The characters χπ are examples of that type with the additional
property of being G-invariant. Since every irreducible complex representation of
G extends uniquely to a holomorphic representation of GC, every representative
function ϕ has an analytic continuation ϕC to GC.

Proposition 9.6.4 (Huebschmann) Let ϕ be a representative function on G associ-
ated with the irreducible representation of highest weight λ. Then,

Ct (ϕ) = ϕC

√
ct,λ

, ct,λ = (tπ)dim(G)/2et |λ+δ|2 .

Proof See Theorem 6.5 in [327]. �

In terms of the highest weight λ, the eigenvalue ζπ of the second Casimir operator
of the irreducible representation π is given by

ζπ ≡ ζλ = |δ|2 − |λ + δ|2 , (9.6.12)

see for example [294, Sect. V.1].

Remark 9.6.5 (Kähler Structure) Let J : TGC → TGC be the natural complex struc-
ture on the manifold GC defined by multiplication with the imaginary unit i. Under
the identification of the Lie algebra of GC with g ⊕ g, it is given by

J(A, B) = (−B, A) , A, B ∈ g .

Via the isomorphism Φ, we can transport J to a complex structure on T∗G,

JT
∗G := (Φ∗)−1 ◦ J ◦ Φ∗ .

One easily calculates (Exercise 9.6.2)
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Φ∗(g,Y ) =
(

cos(ad(Y )) 1−cos(ad(Y ))

ad(Y )

− sin(ad(Y )) sin(ad(Y ))

ad(Y )

)

(9.6.13)

and, thus,

JT
∗G(g,Y ) = 1

sin(ad(Y ))

(
1 − cos(ad(Y )) 2 cos(ad(Y ))−1

ad(Y )

ad(Y ) cos(ad(Y )) − 1

)
. (9.6.14)

Combining this with the natural symplectic structure ω on T∗G, cf. Example 8.3.4 in
Part I, we obtain a Kähler structure on T∗G. Using (9.6.13), one can check (Exercise
9.6.2) that the canonical 1-form θ of T∗G reads

θ = Im
(
∂κ
)
, κ(g,Y ) = |Y |2 , (9.6.15)

where ∂ is the Dolbeault operator of the complex structure JT
∗G ,

∂κ = (dκ)(0,1) = Φ∗
((

(Φ−1)∗dκ
)(0,1))

.

Thus, κ is a potential of the Kähler structure. It can be shown that the Hilbert space
HL2(GC, νt ) may also be obtained via half-form Kähler quantization with respect
to this Kähler structure [281]. �

Remark 9.6.6 (Holomorphic Peter–Weyl Theorem) In [327], Huebschmann has
proved a Peter–Weyl Theorem for the Hilbert space HL2(GC). He has called this
the Holomorphic Peter–Weyl Theorem. Combining it with the ordinary Peter–Weyl
Theorem for L2(G) and computing the norms of the analytic continuations of repre-
sentative functions, one finds that the assignment ϕ �→ ϕC/

√
ct,λ uniquely extends

to a unitary isomorphism L2(G) → HL2(GC). In view of Proposition 9.6.4, this
provides an alternative proof of Theorem 9.6.3. Conversely, the Holomorphic Peter–
Weyl Theorem is a consequence of Theorem 9.6.3 and Proposition 9.6.4. �

By applying the Segal–Bargmann transformation to every copy of G, we obtain a
unitary isomorphism

Ct : HN → HL2
(
(GC)

N
)
.

Using bi-invariance of the Haar measure on G and the fact that the irreducible char-
acters χπ are invariant under inner automorphisms of G, one can check that Ct is
equivariant with respect to the actions of G on HN and HL2

(
(GC)

N
)
induced by

diagonal conjugation onGN and (GC)
N , respectively. Hence,Ct restricts to a unitary

isomorphism of the subspaces of invariants, denoted by the same letter,

Ct : H → H C .

As a result, via the isomorphisms Ct , wave functions are represented by holomor-
phic functions on (GC)

N ∼= T∗GN . As already noted, the elements of H C are true



748 9 Elements of Quantum Gauge Theory

functions on (GC)
N and not just classes. This completes the first step in the process

of relating the elements of H with functions on P .
In the second step, we must now clarify how to interpret elements of H C as

functions on P . In the case N = 1, we observe that J (g,Y ) = 0 implies that,
up to conjugacy, (g,Y )may be chosen from T × t, where T ⊂ G is a maximal toral
subgroup and t ⊂ g the corresponding Lie subalgebra. Hence,

P ∼= (T × t)W ∼= TC/W ,

whereW = NG(T )/T is theWeyl group. On the other hand, restriction to TC defines
a unitary isomorphism

H C = HL2(GC)
G ∼= HL2(TC)

W

with the measure on T being obtained from (9.6.10) by integration over the con-
jugation orbits in GC, thus yielding an analogue of Weyl’s integration formula for
HL2(GC)

G .
In the case N > 1, the argument is more involved. First, we construct a quotient

of GN
C
on which the elements ofH C define functions. Consider the action of GC on

(GC)
N by diagonal conjugation. For a ∈ GN

C
, let GC · a denote the corresponding

orbit. Since GC is not compact, GC · a need not be closed. If a holomorphic func-
tion on (GC)

N is invariant under the action of G by diagonal conjugation, then it is
invariant under the action of GC by diagonal conjugation, i.e. it is constant on the
orbitGC · a for every a ∈ (GC)

N . Being continuous, it is then constant on the closure
GC · a. As a consequence, it takes the same value on two orbits whenever their clo-
sures intersect. This motivates the following definition. Two elements a,b ∈ (GC)

N

are orbit closure equivalent if there exist c1, . . . , cr ∈ (GC)
N such that

GC · a ∩ GC · c1 = ∅ , GC · c1 ∩ GC · c2 = ∅ , . . . , GC · cr ∩ GC · b = ∅ .

Clearly, orbit closure equivalence defines an equivalence relation on (GC)
N . Let

(GC)
N�GC denote the topological quotient.50 By construction, the elements ofH C

descend to continuous functions on (GC)
N�GC.

Second, following [291], we recall how the orbit closure quotient (GC)
N�GC is

related to the reduced phase spaceP . Via the polar decomposition isomorphismΦ,
we can view the momentum mapping as a mapping

J : (GC)
N → g∗

and we can viewP as the quotient ofJ −1(0) ⊂ (GC)
N by the action ofG. SinceG

is compact, GC is linear algebraic. Then, (GC)
N is an affine variety in some complex

vector space V , the action of G on (GC)
N by diagonal conjugation is the restriction

50The notation is motivated by the fact that the quotient provides a categorical quotient of (GC)
N

by GC in the sense of geometric invariant theory [461].
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of a representation ofG on V to (GC)
N and themomentummapping is the restriction

to (GC)
N of the mapping

J̃ : V → g∗ , J̃ (v)(A) := 1

2i
〈v, Av〉 ,

where 〈 · , · 〉 is an appropriate G-invariant scalar product on V and A acts on v by
the induced representation of the Lie algebra. In this situation, the level setJ −1(0)
has the following properties [361].

1. For all a ∈ (GC)
N , one has GC · a ∩ J −1(0) = ∅.

2. For all a ∈ (GC)
N , the orbit GC · a is closed iff (GC · a) ∩ J −1(0) = ∅.

3. For all a ∈ J −1(0), one has (GC · a) ∩ J −1(0) = G · a.
Properties 2 and 3 ensure thatJ −1(0) is what is known in geometric invariant theory
as a Kempf–Ness set. Using properties 1–3, one can prove the following [291].

Theorem 9.6.7 The natural inclusionmappingJ −1(0) → (GC)
N induces a home-

omorphism P → (GC)
N�GC. �

As a consequence, via the homeomorphism of Theorem 9.6.7, the elements of H C

can be interpreted as functions onP . Thus, it makes sense to take the restriction of
such an element to a subset of P .

Definition 9.6.8 Awave function ϕ ∈ H C is said to be localized at the stratumPτ

if it is orthogonal to all wave functions χ which vanish atPτ .

Following this concept of localization, as the closed subspaceH C

τ ⊂ H C consisting
of the wave functions which are localized at the stratumPτ we obtain the orthogonal
complement of the closed subspace

V C

τ := {χ ∈ H C : χ�Pτ
= 0} .

It follows that we have an orthogonal decomposition

H C = H C

τ ⊕ V C

τ .

Finally, the inverse of the isomorphismCt maps the subspacesH C

τ to subspacesHτ

of H G .

Proposition 9.6.9 The assignment of Hτ to τ ∈ T is a costratification of H G.

Proof By (9.6.5), if τ ≤ τ ′, then Pτ ⊂ Pτ ′ . Since holomorphic functions are con-
tinuous, this implies V C

τ ⊃ V C

τ ′ and thus H C

τ ⊂ H C

τ ′ . �

Exercises

9.6.1 Prove the statements 1 and 2 about maximal lattice trees on p. 744.

9.6.2 Prove formulae (9.6.13) and (9.6.15) in Remark 9.6.5.
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Fig. 9.1 The reduced phase
space P for G = SU(2) and
N = 1

−

+

1

9.7 A Toy Model

In this section, we discuss the example G = SU(2) and N = 1 in some detail, cf.
[328]. This corresponds to the toy model of a lattice consisting of one plaquette,
because here every tree contains three of the four links. Alternatively, it may be
viewed as a Hamiltonian SU(2)-gauge theory on a circle after reduction by the
pointed gauge group.

First, we determine the stratification of the reduced phase space

P = J −1(0)/SU(2) .

As already noted, in the case N = 1, the condition J (g,Y ) = 0 implies that up to
conjugacy, g and Y may be chosen from a maximal toral subgroup T ⊂ SU(2) and
the corresponding Lie subalgebra t ⊂ su(2), respectively. Hence, P ∼= (T × t)W ,
where W = NSU(2)(T )/T is the Weyl group of SU(2). If we choose T and t to
consist of the diagonal matrices in SU(2) and su(2), respectively, W acts on T × t
by simultaneous permutation of the entries. The stabilizer of (x,Y ) ∈ T × t is W
in case (x,Y ) = (±1, 0) and trivial otherwise. Hence, there are two orbit types and
three orbit type connected components, given by P+ consisting of (the class of)
(1, 0), P− consisting of (the class of) (−1, 0), and P1 consisting of all the rest.
Clearly, P1 is the principal stratum. Hence, in this simple example, there are only
two secondary strata and these strata consist of isolated points. The stratified space
P is depicted in Fig. 9.1. This space is known as the canoe.

Next, we choose bases in the relevant Hilbert spaces and determine the
Segal–Bargmann transformation. The Schrödinger Hilbert space is H = L2(G)G ,
the subspace of L2(G) consisting of the functions which are invariant under inner
automorphisms. The holomorphic Hilbert space isH C = HL2(GC)

G , the subspace
of HL2(GC) consisting of the functions which are invariant under conjugation by
elements of G. Let χn denote the character of the irreducible representation of G of
spin n/2. Then, the analytic continuation χC

n is the character of the corresponding
representation of GC = SL(2,C). To find explicit formulae, recall that the represen-
tation dπn of spin n/2 of su(2) reads

dπn
(
diag(i,−i)

) = diag(in, i(n − 2), . . . , i(−n + 2),−in) .
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It follows that

πn
(
diag(eix , e−ix )

) = diag
(
einx , ei(n−2)x , . . . , e−i(n−2)x , e−inx

)
.

Hence, the restrictions of χn to T and of χC

n to T × t ∼= TC are given by, respectively,

χn
(
diag(eix )

) = sin
(
(n + 1)x

)

sin(x)
, x ∈ R , (9.7.1)

and
χC

n

(
diag(z, z−1)

) = zn + zn−2 + · · · + z−n , z ∈ C
∗ . (9.7.2)

By the Peter–Weyl Theorem, the χn form an orthonormal basis in H . By Theorem
9.6.3 and Proposition 9.6.4, then the χC

n form an orthogonal basis inH C.
Next, we determine the Segal–Bargmann transform of χn and the eigenvalues of

the Laplacian. Since every invariant scalar product on su(2) is proportional to the
(negative definite) trace form, we have

|Y |2 = − 1

2β2
tr(Y 2) , Y ∈ su(2) ,

for some positive number β.

Lemma 9.7.1 The Segal–Bargmann transformation reads51

C�(χn) = (�π)−3/4e−�β2(n+1)2/2χC

n (9.7.3)

and the eigenvalues of the second Casimir operator of the irreducible representation
with spin n/2 are given by

ζn = −β2n(n + 2) . (9.7.4)

Proof According to Proposition 9.6.4,

C�(χn) = χC

n√
c�,λ

, c�,λ = (�π)n/2e�|λ+δ|2 .

To determine the factors c�,n , recall that the root system of su(2) consists of the two
roots α and −α, given by α

(
Y ) = 2y, where Y = diag(iy,−iy) ∈ t, y ∈ R. Hence,

δ = 1
2α. The highest weight of the irreducible representation of spin n/2 is λn = n

2α.
Relative to the invariant scalar product on t∗ induced by that on t, the two roots α

and −α have norm |α|2 = 4β2. Hence |δ|2 = β2 and |λn + δ|2 = β2(n + 1)2. As a
result,

c�,n = (�π)3/2e�β2(n+1)2 .

51We now write � instead of t .
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The formula for the eigenvalues ζn follows from (9.6.12). �

Now, we are in a position to determine the subspaces H± ⊂ H associated with
the secondary strata P±. By definition, under the Segal–Bargmann transformation
they are mapped to the orthogonal complements of the subspaces V C± of functions
vanishing onP±.

Lemma 9.7.2 The subspaces V C+ and V C− are spanned by, respectively,

χC

n − (n + 1)χC

0 , n = 1, 2, 3, . . . , (9.7.5)

χC

n + (−1)n
n + 1

2
χC

1 , n = 0, 2, 3, . . . . (9.7.6)

Proof Under the identification P = J −1(0)/SU(2) = (T × t)/W = TC/W , the
strataP± correspond to the isolated points ±1 in TC. Hence, V C± ⊂ H C is defined
by the condition ψ(±1) = 0. By (9.7.2), we have

χC

n (±1) = (±1)n(n + 1) .

Hence, all the functions given in (9.7.5) belong to V C+ and all the functions given in
(9.7.6) belong to V C− . Linear independence is obvious. That the system (9.7.5) spans
V C+ follows by observing that, together with χC

0 , it spansH
C. Similarly, the system

(9.7.6) spans V C− , because together with χC

1 , it spans H
C as well. �

To determine H±, we turn back to H and take the orthogonal complement there.
Up to a factor, under the inverse of the Segal–Bargmann transformation, the basis
elements (9.7.5) and (9.7.6) are mapped, respectively, to

e�β2(n+1)2/2χn − (n + 1)e�β2/2χ0 , n = 1, 2, 3, . . . , (9.7.7)

e�β2(n+1)2/2χn − n + 1

2
e2�β2

χ1 , n = 0, 2, 3, . . . . (9.7.8)

Proposition 9.7.3 The subspaces H± have dimension 1. They are spanned by the
normalized vectors

ϕ± := 1

N

∑∞
n=0

(±1)n (n + 1) e−�β2 (n+1)2/2 χn , N 2 =
∞∑

n=1

n2 e−�β2 n2 . (9.7.9)

Proof Clearly, the series on the right hand side converges and its limit is normalized.
Both the vector ϕ+ together with the system (9.7.7) and the vector ϕ− together with
the system (9.7.8) span L2(G)G . Finally, a straightforward computation shows that
ϕ+ is orthogonal to all the vectors in (9.7.7) and ϕ− is orthogonal to all the vectors
in (9.7.8). �



9.7 A Toy Model 753

Remark 9.7.4

1. The transition probability |〈ϕ+, ϕ−〉|2 between the states defined by ϕ+ and ϕ−
has the physical interpretation of a tunneling probability between the strata P+
andP−. It can be expressed in terms of the θ -constant θ3(Q) = ∑∞

k=−∞ Qk2 as

〈ϕ+, ϕ−〉 = − θ ′
3

(− e−�β2)

θ ′
3

(
e−�β2

) .

Figure9.2 shows |〈ϕ+, ϕ−〉|2 as a function of the combined constant �β2. As one
would expect, the tunneling probability vanishes in the semiclassical limit � → 0.

2. According to (9.6.6) and (9.7.4), the heat kernel on G = SU(2) is given by

ρt =
∞∑

n=0

(n + 1)e−tβ2n(n+2)/2χn .

Comparison with (9.7.9) shows that ρ� = e�β2
Nϕ+. More generally, using the

analytic continuation of ρt to GC, for every g ∈ GC, we can define a function
ϕ(t)
g on GC = SL(2,C) by ϕ(t)

g (h) := ρt (gh−1), for any h ∈ GC. Then,

C�(ϕ±) = e−�β2

N
ϕ
(�)
±1 .

According to [278], the functions ϕ(�)
g admit an interpretation as coherent states

onGC. Within the bounds imposed by the uncertainty relation, they are optimally
localized at the phase space point g. Thus, the states spanningH± are optimally
localized at the points forming the corresponding strata.
Expressing the transition probability |〈ϕ+, ϕ−〉|2 in terms of the coherent states
ϕ
(�)
1 and ϕ

(�)
−1 , we obtain the identity

|〈ϕ+, ϕ−〉|2 =
∣∣〈ϕ(�)

1 , ϕ
(�)
−1

〉∣∣2

‖ϕ(�)
1 ‖2 ‖ϕ(�)

−1‖2 .

The quantity on the right hand side is referred to as the overlap of the coherent
states ϕ(�)

1 and ϕ
(�)
−1 . It was studied for arbitrary pairs of group elements in more

general situations in a series of papers by Thiemann and collaborators [619]. �

Next, we discuss the eigenvalue problem of the Hamiltonian (9.5.31) for the lattice
at hand and determine the transition probabilities between the energy eigenstates
and the states ψ± associated with the strata. If for simplicity we put a = 1, the
Hamiltonian reads

H = −�
2κ2

2
Δ − 2

κ2
χ1 , (9.7.10)
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Fig. 9.2 Tunneling
probability |〈ϕ+, ϕ−〉|2 as a
function of �β2

1
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where Δ is the Laplacian on SU(2) and κ denotes the coupling constant. A core is
given by the subspace C∞(G)G .

For κ → ∞, that is, in the strong coupling limit, the eigenvalue problem reduces
to that of the Laplacian. Hence, in this case, according to (9.7.4), H has the non-
degenerate eigenvalues

En = �
2κ2β2

2
n(n + 2)

corresponding to the eigenvectors χn . To discuss the eigenvalue problem for finite κ ,
we pass from L2(G)G to L2[0, π ] using the unitary isomorphism (Exercise 9.7.1)

ψ �→ ψ̃ :=
√

2

π
sin(x) ψ

(
diag(eix , e−ix )

)
. (9.7.11)

According to (9.7.1), the characters are mapped to the functions

χ̃n(x) =
√

2

π
sin

(
(n + 1)x

)
.

The subspace {ψ̃ : ψ ∈ C∞(G)G} ⊂ L2[0, π ] is a core for the transformed
Hamiltonian H̃ and on this core, H̃ is given by (Exercise 9.7.2)

H̃ = −�
2κ2β2

2

(
d2

dx2
+ 1

)
− 4

κ2
cos(x) . (9.7.12)

One can check that H̃ is still symmetric on the larger subspace

{ψ̃ ∈ L2[0, π ] : ψ̃(0) = ψ̃(π) = 0} , (9.7.13)

so we may take the latter as a core (Exercise 9.7.3).
Now, consider the stationary Schrödinger equation H̃ ψ̃ = Eψ̃ . Dividing by the

factor −�
2κ2β2/2 and substituting y = (x − π)/2, we obtain the Mathieu equation

f ′′(y) + (a − 2q cos(2y)) f (y) = 0 (9.7.14)
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with the parameters

a = 8E

�2κ2β2
+ 4 , q = 16

�2β2κ4
, (9.7.15)

and with f being a Whitney smooth function on the interval [−π/2, 0] satisfying
the boundary conditions

f (−π/2) = f (0) = 0 . (9.7.16)

For the theory of the Mathieu equation and its solutions, the Mathieu functions,
we refer to [22, 436, 440].52 All we need here is that for certain characteristic val-
ues of the parameter a, depending analytically on q and usually being denoted by
b2n+2(q), n = 0, 1, 2, . . . , solutions satisfying (9.7.16) exist. Given a = b2n+2(q),
the corresponding solution is unique up to a complex factor and can be chosen to be
real-valued. It is usually denoted by se2n+2(y; q), where ‘se’ stands for ‘sine elliptic’.
For given q ≥ 0, define functions χ̃ (q)

n ∈ L2[0, π ] by

χ̃ (q)
n (x) = (−1)n+1

√
2/π se2n+2

(
(x − π)/2; q) , n = 0, 1, 2, . . . .

Since se2n+2(y; 0) = sin((2n + 2)y), the factor (−1)n+1 ensures that χ(0)
n = χn . Us-

ing the results of Sects. 20.2 and 20.5 in [4], we obtain the following.

Proposition 9.7.5 The functions χ̃ (q)
n , n = 0, 1, 2, . . . , form an orthonormal eigen-

basis of H̃ with the non-degenerate eigenvalues En = �
2κ2β2

2

(
b2n+2(q)

4 − 1
)
. �

Finally, we discuss the transition probabilities

P±
n := ∣∣〈χ(q)

n |ϕ±
〉∣∣2

between the energy eigenstatesχ(q)
n and the statesϕ± spanningH±. Using the Fourier

decomposition of se2n+2, we obtain

〈
χ(q)
n |ϕ±

〉 = (−1)n

N

∞∑

k=0

(∓1)k (k + 1) e−�β2(k+1)2/2 B2n+2
2k+2 (q) ,

where B2n+2
2k+2 (q) are the Fourier coefficients, see [4, Sect. 20.2].

The transition probabilities P±
n depend on the parameters �, β2 and κ only via

the combinations �β2 and q = 16/(�2β2κ4). For illustration, they are displayed for
n = 0, . . . , 5 in Fig. 9.3 as functions of q for two specific values of �β2, thus treating
�
2β2κ4 and �β2 as independent parameters.53

We observe that the transition probability P+
0 between ϕ+ and the ground state

χ
(q)
0 has a dominant peak moving to smaller values of κ as �β2 decreases. In other

52Mathieu functions have already appeared in Example 9.8.9 of Part 1. Note that the Mathieu
equation also arises as the Schrödinger equation of the quantum planar pendulum, yet with different
boundary conditions [137], see also [13, 52, 519]. For a discussion of the relation between our system
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P+
n for h̄β 2 = 1

2 P−
n for h̄β 2 = 1

2

P+
n for h̄β 2 = 1

32 P−
n for h̄β 2 = 1

32

Fig. 9.3 Expectation values P±
n for n = 0 (continuous line), 1 (long dash), 2 (short dash), 3 (long-

short dash), 4 (dotted line) and 5 (long-short-short dash), plotted over log(q/16) = −2 log(�βκ2)

words, for a certain value of the coupling constant, depending on �β2, the state
ϕ+ spanning H+ is very close to the ground state. The two states do not coincide
completely though, because the Fourier coefficients of ϕ+, given by (9.7.9), do not
satisfy the recurrence relations for B2n+2

2k+2 (q), given in [4, Sect. 20.2], for none of the
values of q. This observation should be compared with an earlier result of Emmrich
and Römer [185]. These authors considered Schrödinger quantum mechanics on a
double cone and showed that the vacuum state concentrates around the singularity.
Thus, the nongeneric strata seemingly carry information about the spectral measure
of the Hamiltonian of a gauge theory.

Remark 9.7.6

1. One can derive explicit approximate formulae for P±
n in the strong and weak

coupling limit, cf. [328].
2. Let us discuss the extension problemwhich arises by quantization on the principal

stratum, see also [542] for further details.While naive quantization after reduction
on all of T∗G fails, because of the presence of singularities in P , it can be
carried out on the part of T∗G where regular cotangent bundle reduction applies,
that is, on the submanifold made up by the cotangent bundle of the unreduced
principal stratum G\{±1}. For this submanifold, symplectic reduction leads to
the cotangent bundle of the quotient manifold. In the parameterization of the
quotient of G by inner automorphisms by the closed interval [0, π ], this quotient
manifold corresponds to the open interval ]0, π [. Since the parameterization is an

and the quantum planar pendulum, both on classical and quantum level, we refer to Remarks 2.2,
5.2 and 5.4 in [328].
53The plots were generated by numerical integration using the Mathematica function MathieuS.
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isometry when scaled via β, canonical quantization of the kinetic energy yields
the symmetric operator

− �
2κ2β2

2

d2

dx2
(9.7.17)

on the Hilbert space L2[0, π ] having as domain the compactly supported smooth
functions on the open interval ]0, π [. To arrive at a quantum theory of the entire
system, one has to determine the self-adjoint extensions of the operator (9.7.17).
This is the problem studied in [185] where the classical configuration space is a
double cone. When the classical configuration space arises by reduction, as in the
system under consideration, the extension problem can be solved by reduction
after quantization, because this determines the kinetic energy operator uniquely.
This was already observed in [680] in the context of quantization by Rieffel
induction. Indeed, in our situation, up to the shift by a constant which can be
obtained by the metaplectic correction, the first term in (9.7.12) defined on the
core (9.7.13) is a self-adjoint extension of (9.7.17). In fact, this is the Friedrichs
extension. �

Exercises

9.7.1 Use Weyl’s Integration Formula to prove that (9.7.11) defines a unitary iso-
morphism.

9.7.2 Derive formula (9.7.12). Hint. Apply both sides of (9.7.12) to χ̃n and use
(9.7.4). Alternatively, one may use the formula for the radial part of the Laplacian
on a compact group [294, Sect. II.3.4].

9.7.3 Show that (9.7.13) defines a core for H̃ .



Appendix A
Field Restriction and Field Extension

Consider right K-vector spaces with K = R,C or H. We use the obvious subfield
embeddings R ⊂ C and R ⊂ H as well as the embedding

C → H , x + iy �→ x1 + yi .

First,we discuss field restriction. For a K-vector space V and a subfield L ⊂ K,
we let VL denote the L-vector space obtained from V by field restriction, that is, by
restricting multiplication by scalars to the subfield L. The same notation will be used
for vector bundles. One has

dim(VL) = dim(V) dimL(K)

and a similar relation between the ranks in the case of vector bundles. Note that in
the case K = H and L = C, scalars keep multiplying from the right. That is, scalar
multiplication by z ∈ C of an element vq, where v ∈ V and q ∈ H, yields vqz.

Clearly, Cn
R

∼= R
2n and H

n
R

∼= R
4n as real vector spaces, and H

n
C

∼= C
2n as

complex vector spaces. Throughout the book, the following concrete isomorphisms
are used: R2n → C

n
R
given by

(x1, . . . , x2n) �→ (x1 + x2i, . . . , x2n−1 + x2ni) , (A.1)

R
4n → H

n
R
given by sending (x1, . . . , x4n) to

(x1 + x2i + x3j + x4k , . . . , x4n−3 + x4n−2i + x4n−1j + x4nk) , (A.2)

C
2n → H

n
C
given by

(z1, . . . , z2n) �→ (
z1 + jz2, . . . , z2n−1 + jz2n

)
. (A.3)
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We point out that by further field restriction to R, the isomorphism (A.3) yields
a real vector space isomorphism C

2n
R

→ H
n
R
. Composition of the latter with the

isomorphismR
4n → C

2n
R
given by (A.1) yields the isomorphismR

4n → H
n
R
given by

sending (x1, . . . , x4n) to

(x1 + x2i + x3j − x4k , . . . , x4n−3 + x4n−2i + x4n−1j − x4nk) . (A.4)

In particular, this isomorphism does not coincide with the one defined by (A.2). The
isomorphisms (A.1)–(A.3) induce subalgebra embeddings

Mn(C) → M2n(R) , Mn(H) → M4n(R) , Mn(H) → M2n(C) . (A.5)

The latter are obtained by replacing the entries by blocks according to, respectively,

Aij + Biji �→
[
Aij −Bij

Bij Aij

]
(A.6)

Aij + Biji + Cijj + Dijk �→

⎡

⎢⎢
⎣

Aij −Bij −Cij −Dij

Bij Aij −Dij Cij

Cij Dij Aij −Bij

Dij −Cij Bij Aij

⎤

⎥⎥
⎦ (A.7)

Zij + jWij �→
[
Zij −Wij

Wij Zij

]
, (A.8)

where Aij,Bij,Cij,Dij ∈ R and Zij,Wij ∈ C, and where Zij denotes the complex con-
jugate number. These subalgebra embeddings restrict to Lie subgroup embeddings

GL(n,C) → GL(2n,R) , GL(n,H) → GL(4n,R) , GL(n,H) → GL(2n,C) .

Since GL(n,C) and GL(n,H) are connected, their images are contained in the iden-
tity component of GL(2n,R) and GL(4n,R), respectively.

Next, we discuss field restriction of scalar products and Hermitean fibre metrics.
If h is a scalar product on a complex or a quaternionic vector space V , then

hR(v,w) := Re
(
h(v,w)

)
, v,w ∈ V , (A.9)

defines a scalar product on the realification VR. Similarly, if h is a scalar product on
a quaternionic vector space V , then

hC(v,w) := Co
(
h(v,w)

)
, v,w ∈ V , (A.10)

defines a scalar product on the complexification VC. Here,

Co(x1 + x2i + x3j + x4k) := x1 + ix2 , x1, . . . , x4 ∈ R ,
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is the complex part of a quaternion. One can check that the isomorphism R
2n ∼= C

n
R

defined by (A.1) is isometric with respect to the standard scalar product on R2n and
the scalar product hR on C

n
R
obtained from the standard scalar product h on C

n. An
analogous statement holds for the isomorphisms R4n ∼= H

n
R
defined by (A.2) and

C
2n ∼= H

n
C
defined by (A.3). It follows that the corresponding subalgebra embeddings

(A.5) restrict, respectively, to Lie subgroup embeddings

jU,O
n : U(n) → O(2n) , jSp,On : Sp(n) → O(4n) , jSp,Un : Sp(n) → U(2n) . (A.11)

Now, consider vector bundles. Clearly, if h is a Hermitean fibre metric on a complex
or quaternionic vector bundleE, then (A.9) defines fibrewise a Euclidean structure hR
on the realificationER. If h is aHermitean fibremetric on a quaternionic vector bundle
E, then (A.10) defines fibrewise a Hermitean fibre metric hC on the complexification
EC.

Lemma A.1 Let (K,L) = (C,R), (H,R) or (H,C) and let E be aK-vector bundle
of rank n over a topological space B endowed with a fibre metric h.

1. For b ∈ B, if u = (u1, . . . , un) is an h-orthonormal frame in the fibre Eb, then

ũ =

⎧
⎪⎨

⎪⎩

(u1, iu1, . . . , un, iun) (K,L) = (C,R)

(u1, u1i, u1j, u1k, . . . , un, uni, unj, unk) (K,L) = (H,R)

(u1, u1j, . . . , un, unj) (K,L) = (H,C)

is an hL-orthonormal frame in the fibre (EL)b.
2. The mapping

O(E) → O(EL) , u �→ ũ ,

is a vertical morphism of principal bundles with Lie group homomorphism given
by (A.11).

Proof Point 1 is proved by direct inspection. Point 2 follows from the equation

(u · a)̃ = ũ · j(a)

for all a ∈ U(n) in case K = C or a ∈ Sp(n) in case K = H. Here, j denotes the
corresponding embedding in (A.11). �

Now, we turn to the discussion of field extension. Let (L,K) = (R,C), (R,H) or
(C,H) and let V be an L-vector space. Since L is a subfield of K, we can view K

as a vector space over L with scalars acting by multiplication from the left. Since, in
addition, L is commutative, we can form the tensor product of L-vector spaces

VK := V ⊗L K .
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For every k′ ∈ K, the mapping V × K → VK defined by (v, k) �→ v ⊗ (kk′) is
L-bilinear and hence induces an L-linear endomorphism of VK which maps v⊗ k to
v ⊗ (kk′). Thus, letting k′ run through K, we obtain a mapping

VK × K → VK , (v ⊗ k, k′) �→ v ⊗ (kk′) .

This mapping, taken as the multiplication by scalars on VK, combines with the ad-
ditive structure of VK to a K-linear structure on VK, thus turning VK into a K-vector
space. This vector space is called the complexification of V in case (L,K) = (R,C)

and the quaternionification of V in case (L,K) = (R,H) or (C,H). Multiplication
by scalars will be written in the form

(v ⊗ k)k′ := v ⊗ (kk′) , k, k′ ∈ K .

Clearly, if {ei} is a basis in V , then {ei ⊗ 1} is a basis in VK. Therefore, VK has the
same dimension as V . Since (vl) ⊗ 1 = v⊗ l = (v⊗ 1)l for all l ∈ L and v ∈ V , the
mapping

V → VK , v �→ v ⊗ 1 ,

isL-linear and embeds V into VK as a linear subspace overL. In the case V = L
n, the

vector space VK may be identified with K
n via the natural isomorphism L

n
K

→ K
n

defined by (l1, . . . , ln) ⊗ k �→ (l1k, . . . , lnk).
The concept of field extension carries over to vector bundles as follows. Given

an L-vector bundle E over a topological space B, by viewing K as above as a left
L-vector space, we can take the tensor product of L-vector bundles

EK := E ⊗L (B × K)

and endow each fibre Eb ⊗L K with the K-linear structure of (Eb)K. Then, for every
local frame e1, . . . , en in E, the local sections e1 ⊗ 1, . . . , en ⊗ 1 of EK form a local
frame in EK. Hence, EK is a locally trivial K-vector bundle and it has the same
rank as E. It is called the complexification of E in case (L,K) = (R,C) and the
quaternionification ofE in case (L,K) = (R,H) or (C,H). The following statements
have their origin in corresponding statements about vector spaces.

(a) The mapping E → EK defined by e �→ e ⊗ 1 is an L-linear vector bundle
morphism and embeds E into EK as a vertical subbundle over L.

(b) Given two complex vector bundles E and E′ over B and B′, respectively, and an
L-vector bundle morphism F : E → E′, there exists a unique K-vector bundle
morphism FK : EK → E′

K
such that FK(e ⊗ k) = F(e) ⊗ k for all e ∈ E and

k ∈ K. This morphism is referred to as the K-linear extension of F. It projects
to the same mapping B → B′ as F.

(c) Given a real vector bundle E, the mappings
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E ⊕ E → (EC)R , (v,w) �→ v ⊗ 1 + w ⊗ i ,

E⊕4 → (EH)R , (v1, v2, v3, v4) �→ v1 ⊗ 1 + v2 ⊗ i + v3 ⊗ j + v4 ⊗ k ,

are vertical isomorphisms of real vector bundles. Given a complex vector bundle
E, the mapping

E ⊕ E → (EH)C , (v,w) �→ v ⊗ 1 + w ⊗ j ,

is a vertical isomorphism of complex vector bundles. Here, E denotes the com-
plex conjugate vector bundle, cf. Sect. 4.4.

(d) Given a real vector bundle E, the mapping

EC → EC , e ⊗ z �→ e ⊗ z (A.12)

is a vertical isomorphism of complex vector bundles.

Finally, we discuss field extension of scalar products and Hermitean fibre metrics.
We use the fact that for every scalar product h on an L-vector space V , there exists
a unique scalar product hK on VK such that

hK(v ⊗ k, v′ ⊗ k′) = k†h(v, v′)k′ for all v, v′ ∈ V , k, k′ ∈ K .

Accordingly, given a Hermitean fibre metric h on a K-vector bundle E over a topo-
logical space B, there exists a unique Hermitean fibre metric hK on EK such that

hK(e ⊗ k, e′ ⊗ k′) = k†h(e, e′)k′ for all e, e′ ∈ Eb , b ∈ B , k, k′ ∈ K . (A.13)

Let us observe the following. It is clear that the L-linear subspace embedding V →
VK given by v �→ v ⊗ 1 is isometric with respect to h and hK. In the case V = L

n

with h being the standard scalar product on L
n, one can check that hK corresponds

to the standard scalar product on K
n under the natural isomorphism L

n
K

∼= K
n. It

follows that theL-subalgebra embeddingMn(L) → Mn(K) induced by the inclusion
relation L ⊂ K restricts to a Lie subgroup embedding of the corresponding isometry
group. Thus, we obtain Lie subgroup embeddings

jO,U
n : O(n) → U(n) , jO,Sp

n : O(n) → Sp(n) , jU,Sp
n : U(n) → Sp(n) . (A.14)

We have the following analogue of Lemma A.1.

Lemma A.2 Let (L,K) = (R,C), (R,H) or (C,H) and let E be a L-vector bundle
over a topological space B endowed with a fibre metric h.

1. If u = (u1, . . . , un) is an h-orthonormal frame in the fibre Eb, then

ũ = (u1 ⊗ 1, . . . , un ⊗ 1)

http://dx.doi.org/10.1007/978-94-024-0959-8_4
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is an hK-orthonormal frame in the fibre (EK)b.
2. The mapping

O(E) → O(EK) , u �→ ũ ,

is a vertical morphism of principal bundles with Lie group homomorphism given
by (A.14).

Proof Point 1 is obvious from (A.13). Point 2 is due to the fact that for every a ∈
Mn(L) which is an isometry of the standard scalar product on L

n, one has

(
uia

i
j

)⊗ 1 = (ui ⊗ aij) = (ui ⊗ 1)aij = (ui ⊗ 1)
(
jL,K

n (a)
)
i
j .

�



Appendix B
The Conformal Group of the 4-Sphere

Consider the embedded submanifold S4 ⊂ R
5 endowed with the standard metric

g0 obtained by restricting the Euclidean metric 〈·, ·〉 on R
5. In standard coordinates

z0, . . . , z4 of R5 corresponding to the canonical basis {e0, . . . , e4} it is given by
‖z‖2 = 1. First, we show that the stereographic projection mappings yield a confor-
mal identification of S4 withH∪{∞}, whereH ∼= R

4 is endowed with the Euclidean
metric. That is, (S4, g0) is locally conformally flat.

First, recall from Example 1.1.22 that S4 is diffeomorphic to the quaternionic
projective space HP1. Under the natural vector space isomorphism H ∼= R

4, this
diffeomorphism is given by

HP1 → S4 ⊂ R × H ∼= R
5 , [(q1,q2)] �→ z = (‖q1‖2 − ‖q2‖2, 2q2q1) . (B.1)

Under this mapping, [(1, 0)] is sent to e0 (north pole), [(0, 1)] is sent to −e0 (south
pole) and the stereographic projection mappings1 take the following form2:

ϕn,s : Un,s = S4 \ {±e0} → H ∼= R
4 , ϕn(z) := q1q−1

2 , ϕs(z) := q2q−1
1 . (B.2)

Indeed, using ‖q1‖2 + ‖q2‖2 = 1, from (B.1) we read off

(0,q2q−1
1 ) =

(
0,

2q2q1

1 + (‖q1‖2 − ‖q2‖2)
)

= z − z0e0
1 + z0

= ϕs(z) .

Similarly, (
0,q1q−1

2

)
�→ z − z0e0

1 − z0
= ϕn(z) .

1Cf. Example I/1.1.9.
2Here, n refers to the upper sign and s refers to the lower sign.
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Lemma B.1 The stereographic projection mappings ϕn,s from S4 to the Euclidean
space R

4 are conformal. If we choose the orientation of R4 ⊂ R
5 defined by +e0

and the orientation of S4 ⊂ R
5 defined by the radial vector field pointing outwards,

then ϕs is orientation preserving, whereas ϕn is orientation reversing.

Proof Let X,Y ∈ TzS4 ⊂ R
5, that is, 〈X, z〉 = 0 = 〈Y, z〉. Then,

ϕ′
n,s(X) = (1 ∓ z0)X − X0(e0 ∓ z)

(1 ∓ z0)2
,

and thus

〈ϕ′
n,s(X), ϕ′

n,s(Y)〉 = 〈(1 ∓ z0)X − X0(e0 ∓ z), (1 ∓ z0)Y − Y0(e0 ∓ z)〉
(1 ∓ z0)4

= 〈X,Y〉
(1 ∓ z0)2

.

Since 1 ∓ z0 = 2
1+‖ϕn,s(z)‖2 and gz(X,Y) = 〈X,Y〉, we obtain

gz(X,Y) = 4

(1 + ‖ϕn,s(z)‖2)2 〈ϕ′
n,s(X), ϕ′

n,s(Y)〉 .

The second statement is a consequence of the following identity (Exercise B.1) for
the canonical volume forms on R

4 and S4, respectively, corresponding to the above
defined orientations:

ϕ∗
n,s (vR4) = ∓ 1

(1 ∓ z0)4
(vS4)�Un,s

. (B.3)

�

We conclude that (Us, ϕs) and (Un, ϕn) constitute an oriented atlas of S4 consist-
ing of conformal local charts. One may choose one of the stereographic projection
mappings, say ϕs, and extend it to a diffeomorphism

ϕ : S4 ∼= HP1 → H ∪ {∞} (B.4)

by sending the southpole −e0 to {∞}. This yields a conformal identification.
Under this identification, the proper (that is, orientation preserving) conformal

group of S4 is given by

C0(S
4, [g0]) = SL(2,H)/{±1} . (B.5)
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Its universal covering group is C̃0(S4, [g0]) = SL(2,H) . Here, SL(2,H) denotes
the group of (2 × 2)-matrices with quaternionic entries and determinant equal to 1.
We present the algebraic part of the proof of this fact. First, let us recall the definition
of the determinant: the representation of H on C

2 given by

1 �→
[
1 0
0 1

]
, i �→

[
i 0
0 −i

]
, j �→

[
0 −1
1 0

]
, k �→

[
0 −i
−i 0

]
,

naturally lifts to an injective homomorphism of algebras,

τn : Mn(H) → M2n(C) .

One defines
detH(g) := det(τn(g)) , g ∈ GL(n,H) . (B.6)

Then, one easily checks the following (Exercise B.2):

detH(g) ≥ 0 , detH(gh) = detH(g)detH(h) . (B.7)

In particular, for n = 2 one has3

detH(g) = det(ad − aca−1b) , (B.8)

where g =
[
a b
c d

]
, a,b, c,d ∈ H. Now, consider the natural left action of SL(2,H)

on H2,

SL(2,H) × H
2 → H

2 , (k, (q1,q2)) �→ (aq1 + bq2, cq1 + dq2) ,

where k =
[
a b
c d

]
∈ SL(2,H). Clearly, this action projects onto a left transitive

action of SL(2,H) on HP1 ∼= H ∪ {∞},

Ψ : SL(2,H) × HP1 → HP1 , Ψk[(q1,q2)] = [(aq1 + bq2, cq1 + dq2)] .

1. Let q1 �= 0. Then, denoting x = q2q
−1
1 , we obtain

[(aq1 + bq2, cq1 + dq2)] = [(1, (c + dx)(a + bx)−1)] .

2. Let q1 = 0. Under the isomorphism (B.4), this point corresponds to {∞}. For
b �= 0, {∞} is sent to [(1,db−1)] and for b = 0, {∞} is a fixed point.

3A priori, the following formula holds for a �= 0 only. But, if we declare conjugation by zero to be
the identity, then this formula remains true for a = 0 as well.
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To summarize, SL(2,H) acts onHP1 ∼= H∪{∞} via fractional linear transformations
(or Möbius transformations4),

x �→ (c + dx)(a + bx)−1 , (B.9)

with the transformation law for {∞} specified under point 2.5 It is easy to show that
the kernel of this action is {±1} (Exercise B.3). Thus, SL(2,H)/{±1} acts effectively
on HP1. It is also easy to see that its building blocks have the following geometrical
interpretation (Exercise B.4):

1. x �→ dxa−1 with a �= 0 �= d: SO(4)-rotations and dilations,
2. x �→ x + c: translations,
3. x �→ x−1: proper inversions.

Lemma B.2 The Möbius transformations (B.9) are conformal.

Proof Since the stereographic projection mappings ϕs,n are conformal, it is enough
to show that the mapping (B.9) is conformal with respect to the metric induced by
the quaternionic norm. For x, y ∈ H and b �= 0, we calculate6

‖(c + dy)(a + by)−1 − (c + dx)(a + bx)−1‖
= ‖[(c + dy) − db−1(a + by)

]
(a + by)−1

− [(c + dx) − db−1(a + bx)
]
(a + bx)−1‖

= ‖c − db−1a‖‖(a + by)−1 − (a + bx)−1‖
= ‖c − db−1a‖‖(a + by) − (a + bx)‖

‖a + by‖‖a + bx‖
= ‖y − x‖‖

‖a + by‖‖a + bx‖ .

For b = 0, the calculation is trivial. �

To finish the proof of (B.5) it now remains to show that all conformal transformations
of S4 are given by (B.9). This fact is proven in the literature under various regularity
conditions on the mapping, see e.g. Sect. 15 in [168]. In this complete version, the
above statement is usually referred to as the Liouville Theorem.

4Cf. [517, 518, 670] for an exhaustive discussion.
5The latter also follows from (B.9) by rewriting (c + dx)(a + bx)−1 = (cx−1 + d)(ax−1 + b)−1

and taking the limit x → ∞.
6The trick in the calculation below is taken from [670].
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Exercises

B.1 Prove formula (B.3).

B.2 Prove the formulae (B.7) and (B.8).

B.3 Show that the kernel of the fractional linear transformation (B.9) is {±1}.
B.4 Verify the geometrical meaning of the building blocks of the action (B.9) given
prior to Lemma B.2.



Appendix C
Simple Lie Algebras. Root Diagrams

We introduce the basic notions of root theory of simple Lie algebras in a rather
operational spirit. For a presentation of the theory, we refer to [170], [329].

Let L be a complex simple Lie algebra. By definition, a Cartan subalgebra of L is
a maximal Abelian subalgebra. Given a Cartan subalgebra L0, we may decompose
L into the common eigenspaces of the endomorphisms ad(B) with B ∈ L0. The
common eigenspaces are labelled by the eigenvalue functionalsα assigning toB ∈ L0

the corresponding eigenvalue α(B). The nonzero eigenvalue functionals are referred
to as the roots ofL relative toL0. They form the root systemW ⊂ L∗

0. Given α ∈ W ,
the corresponding common eigenspace Lα has dimension one. It is called the root
subspace of α and its elements are called the root vectors of α. As a result, we obtain
a direct sum decomposition into vector subspaces

L = L0 ⊕α∈W Lα , (C.1)

where
[B, eα] = α(B)eα (C.2)

for all eα ∈ Lα and B ∈ L0.
The restriction to L0 of the Killing form is negative definite. Thus, we may use

a negative multiple of it to define a scalar product 〈·, ·〉 on L0. The latter induces,
in turn, a scalar product 〈·, ·〉∗ on L∗

0. We normalize these scalar products by the
requirement

〈α, α〉∗ = 2

for the longest root α. Via the isomorphismL0
∼= L∗

0 defined by 〈·, ·〉, to every α ∈ W
there corresponds an element hα ∈ L0, called the Cartan element of α. By definition,
〈hα,B〉 = α(B) for all B ∈ L0.

Let � = rank(L). A subsystem Π = {α1, . . . , α�} ⊂ W is called a system of
simple roots if it is a basis in L∗

0 and if for all α ∈ W one has α = ±∑i niαi with
non-negative integers ni. According to the sign, one speaks of positive and negative
roots relative to Π . One can show that systems of simple roots exist. Given such
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a system, one may choose root vectors eαi ∈ Lαi and fαi ∈ L−αi , i = 1, . . . , �, so
that the relations

[hαi ,hαj ] = 0 , [hαi , eαj ] = Aij eαi , [hαi , fαj ] = −Aij fαi , (C.3)

[eαi , fαj ] = −δij hαi , 〈eαi , fαj 〉 = −δij

hold for all i, j. The matrix

Aij := 2〈αi, αj〉∗/〈αi, αi〉∗ (C.4)

is called the Cartan matrix. Every positive root can be written as a sum α = αi1 +
. . . + αin in such a way that every partial sum is a root. Then,

ad(eαin
) ◦ · · · ◦ ad(eαi2

)eαi1
∈ Lα .

An analogous statement holds for the negative roots. Thus, the vectors hαi , eαi and
fαi generate L. In addition, one may choose root vectors eα ∈ Lα for the remaining
roots such that for any α, β ∈ W one has

[eα, eβ] =
{
0 α + β /∈ W ,

Nα,β eα+β α + β ∈ W

with

N2
α,β = 1

2
(rβ,α + 1)qβ,α〈β, β〉∗ , (C.5)

where qβ,α and rβ,α are the largest non-negative integers such that

α − rβ,αβ, . . . , α + qβ,αβ ∈ W .

The Cartan matrix may be represented by a diagram, known as the Dynkin diagram,
as follows. As a matter of fact, the simple roots αi can have at most two different
lengths. In the Dynkin diagram, they are represented by circles, where the circle is
filled in case αi is short and unfilled in case it is long. The circles representing αi

and αj are connected by AijAji edges (no summation). FigureC.1 shows the Dynkin
diagrams for the classical complex simple Lie algebras. Given the Dynkin diagram,
one can reconstruct the Cartanmatrix and from the Cartanmatrix one can reconstruct
L up to isomorphy.

A semisimple Lie subalgebra L′ of L is called regular if there exists a Cartan
subalgebra L0 of L such that L′ is invariant under ad(B) for all B ∈ L0. In this case,
there exists a subspace L′

0 ⊂ L0 and a subset W ′ ⊂ W such that

L′ = L′
0

⊕

α′∈W ′
Lα′ .
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A = sl( +1,C):
α1 α2 α −1 α

B = so(2 +1,C):
α1 α2 α −1 α

C = sp( C):
α1 α2 α −1 α

D = so(2 C):
α1 α2 α −2 α -1

α

Fig. C.1 Dynkin diagrams of the classical complex simple Lie algebras

A

α1 α2 α3 α −2 α −1 α

B

α1 α2 α3 α −2 α −1 α

ι

β −1

β −2

β3

β2

β1

Fig. C.2 Root diagrams of the simple Lie algebras A� = sl(� + 1,C) and B� = so(2� + 1,C)

In Sect. 7.9, we consider the restriction of the adjoint representation of a complex
semisimple Lie algebra L to a regular subalgebra L′ ⊂ L and decompose it into
irreducible components. For that purpose, it is convenient to exploit a natural ordering
in the set of positive roots. This allows for extending theDynkin diagram to a diagram
of the positive roots. The latter can be represented in the form of a triangle whose
upper side coincides with the Dynkin diagram, see [643] for further details. Since
we need the root diagrams for the series A� and B� only, we limit our attention to
these series, see Fig.C.2.

In the root diagram of A�, the circle at the intersection of the lines starting from
αi and αj, i ≤ j, corresponds to the root α(i, j) = αi + . . . + αj. In the normalization
chosen above,

〈αi, αj〉∗ =

⎧
⎪⎨

⎪⎩

2 i = j ,

−1 |i − j| = 1 ,

0 |i − j| ≥ 2 .

Using this, one can easily calculate the scalar products between all α(i, j), see [643].
In the root diagram of B�, the roots contained in the triangle defined by (α1, α�, ι)

have the same form as the roots in the A�-lattice. In the triangle (α�, β1, ι), the circle

http://dx.doi.org/10.1007/978-94-024-0959-8_7
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at the intersection of the lines starting from βi and βj, i ≤ j, corresponds to the root

β(i, j) = αi + . . . + αj + 2(αj+1 + . . . + αn) , βi = αi + 2(αi+1 + . . . αn) .

As an example, let us consider the decomposition of the restriction of the adjoint
representation of A� to the regular subalgebra A2 ⊂ A�. This is used in Sect. 7.9. By
virtue of (C.3)–(C.5), we obtain the decomposition

A� = A2 ⊕ c ⊕
�−2⊕

i=1

(
pi ⊕ p̄i

)
, (C.6)

where c is the centralizer ofA2 inA� andwhere pi and p̄i carry the basic representation
of A2. For the calculation of the centralizer, one can use a theorem of Dynkin [170]
which states that the centralizer of a regular semisimple subalgebra h of a semisimple
Lie algebra g is the direct sum of a regular semisimple subalgebra g̃ and a regular
Abelian subalgebra g0, fulfilling

rank(g) − rank(h) − rank(g̃) = dim g0 , [g̃, g0] = 0 . (C.7)

In our case, this implies

c = A�−3 ⊕ g0 , dim g0 = 1 . (C.8)

In the basis consisting of the Cartan elements hαi , one obtains g0 = CB̃, where

B̃ = 2(� − 2)

� + 1

⎛

⎝hα1 + 2hα2 + 3hα3 + 3

� − 2

�∑

j=4

(� + 1 − j)hαj

⎞

⎠ .

Up to a multiplicative constant, this form of B̃ follows from the definition of the
centralizer and from the second relation in (C.8). The constant is fixed by the re-
quirement 〈B̃,hα3〉 = 2. It is easy to see that then 〈B̃, hαi 〉 = 0 for all i �= 3. In the
root diagram of A� in Fig.C.2, the subalgebra A2 corresponds to the small triangle
on the left which is made up by the roots α1, α2 ad α1 + α2 and the subalgebra
A�−3 corresponds to the large triangle on the right which is generated by the roots
α4, . . . , α�. The remaining part of the diagram is a rectangle which can be divided
into � − 2 lines containing three circles each. The root vectors of the roots in these
lines span the subspaces pi and the root vectors of the corresponding negative roots
span the subspaces pi.

Finally, we stress that the graphicalmethod presented here givesmore information
than the mere tables of subalgebras. We do not only get the types and multiplicities
of irreducible representations for the restriction of the adjoint representation to a
subalgebra but also their explicit realization on the root vectors. This information is
needed for calculating the scalar field potentials in Sect. 7.9.

http://dx.doi.org/10.1007/978-94-024-0959-8_7
http://dx.doi.org/10.1007/978-94-024-0959-8_7


Appendix D
ζ -Function Regularization

Let P be a symmetric positive operator on R
n and let p be the associated quadratic

form,
p(x) := 〈x,Px〉 , x ∈ R

n ,

where 〈·, ·〉 is the Euclidean scalar product. Recall the Gaussian integral

∫

Rn

dx exp
(− πp(x)

) = (det(P))−
1
2 .

In various branches ofmathematics andphysics, onewishes to generalize this formula
to the case of operators on infinite-dimensional Hilbert spaces. For that purpose, a
regularization method for the determinant is needed. Below, we explain the simplest
and most convenient one.

Let P be a symmetric, positive operator with a discrete spectrum on the infinite-
dimensional Hilbert space H . Then, the ζ -function associated with P is defined
as

ζP(z) =
∞∑

k=1

λ−z
k , (D.1)

where λk are the nonzero eigenvalues of P. Clearly, a priori, this formula makes only
sense for values of z for which the above series converges. For other values, ζ(z)
is defined by analytic continuation, see [581] for details. If ζ(z) can be analytically
continued to z = 0, then ζ ′

P(0) is well defined and we can put

detζ (P) := exp
(− ζ ′

P(0)
)
. (D.2)

This is motivated by the formal calculation

ζ ′
P(z) = −

∞∑

k=1

ln(λk) λ−z
k , (D.3)
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and, thus, ζ ′
P(0) = −∑∞

k=1 ln(λk). This also shows that (D.2) reduces to the ordinary
definition of the determinant in the finite-dimensional case.

One important class of operators for which the above regularization works is the
class of elliptic operators of order r on an n-dimensional compact manifold. Then,
the series (D.1) converges for Re(z) > n

r and ζ(z) may be analytically continued to
a meromorphic function of z having no singularity at the origin.

The above result generalizes to the case when P is not necessarily positive, but
is invertible and has a positive definite symbol. Then, all but a finite number of
eigenvalues λ1, . . . , λl lie in some cone about the positive axis and, for k > l, the
quantities λ−z

k = exp(−z ln λk) are well defined using the cut along the negative real
axis, see [575]. Then, one defines

detζ (P) := λ1 . . . λl exp
(−
∑

k>l

λ−z
k

)
. (D.4)

If P has zero modes, then, roughly speaking, one has to restrict the domain of de-
finition of P to the space orthogonal to the kernel of P, see Chap. X of [480] for
details.



Appendix E
K-Theory and Index Bundles

K-theory is a (generalized) cohomology theory for vector bundles defined as follows,
see [29, 288, 335]. Let X be a compact topological space7 and let V(X) be the set of
isomorphism classes of complex vector bundles over X. Clearly, the set V(X) is an
Abelian semigroupwith respect to the operation of taking the direct sum. It has a zero
element given by the zero-dimensional bundle. Let F(X) be the free Abelian group
generated by V(X) and let E(X) be the subgroup of F(X) generated by elements of
the form

V + W − (V ⊕ W) . (E.1)

Then, we define the K-group (or Grothendieck group) of X by

K(X) := F(X)/E(X) . (E.2)

By construction,K(X) is an Abelian group and the elements ofK(X) are equivalence
classes8 fulfilling [V ] + [W ] = [V ⊕ W ]. Clearly, any element ξ ∈ K(X) may be
represented as a linear combination with integer coefficients and, thus,

ξ =
p1∑

i=1

ni[Ui] −
p2∑

i=1

mi[Vi] , ni > 0 , mi > 0 .

Then, using (E.1), we obtain

ξ =
[ p1⊕

i=1

U⊕ni
i

]
−
[ p2⊕

i=1

V⊕mi
i

]
≡ [W1] − [W2] ,

7More generally, X can be locally compact, see [29].
8Some authors call them virtual bundles.
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showing that any element of K(X) may be represented as the difference of two
elements represented by vector bundles. Using the fact that X is compact, one of the
two bundles W1 and W2 may be assumed to be trivial. Indeed, it can be shown that
under this assumption, there exists a bundle W3 such that W2 ⊕ W3 is trivial. This
implies

[W1 ⊕ W3] − [W2 ⊕ W3] = [W1] − [W2] .

Next, we note that two bundles V1 and V2 define the same element in K(X) iff there
exists a trivial bundle N such that

V1 ⊕ N = V2 ⊕ N . (E.3)

This condition is referred to as stable equivalence of the vector bundles V1 and
V2. Clearly, if (E.3) holds, then (E.1) implies [V1] + [N] = [V2] + [N] and, thus
[V1] = [V2]. The proof of the converse statement is a simple exercise which we leave
to the reader.

Finally, we endow K(X) with a natural ring structure:

[V ] · [W ] := [V ⊗ W ] . (E.4)

It is easy to show that for homotopy equivalent spaces X and Y the rings K(X) and
K(Y) are isomorphic.

Recall from Sect. 4.7 that the Chern character ch(V) of a vector bundle V has the
following properties:

ch(V ⊕ W) = ch(V) + ch(W) , ch(V ⊗ W) = ch(V) · ch(W) .

Thus, it extends uniquely to a homomorphism of rings:

ch : K(X) → H∗
Q
(X) , ch([V ]) := ch(V) . (E.5)

Now, consider the following setting relevant for the study of families of Fredholm
operators. We formulate it in the context of Dirac operators as needed in the Family
Index Theorem.

1. Let π : M → Y be a fibre bundle endowed with a fibre metric on the canonical
vertical distribution VM and a connection, that is, a splitting of TM into VM and
a complementary horizontal distribution.

2. Let E = {Ey} be a family of Dirac bundles over My := π−1(y), y ∈ Y .

Let V andW be complex vector bundles over Y and denote Vy := V�My ,Wy := W�My .
Let P = {Py} be a family of Fredholm operators over Y , that is, for every y ∈ Y ,

Py : L2(Vy) → L2(Wy)

http://dx.doi.org/10.1007/978-94-024-0959-8_4
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is a Fredholm operator. If the subspaces ker(Py) and coker(Py) have constant dimen-
sion and thus combine to vector bundles over Y , the index bundle of P is the element
of K(Y) defined by

Ind(P) := [ker(P)] − [coker(P)] . (E.6)

In the general case, where the dimensions of ker(Py) and coker(Py) may jump, the
index bundle is defined as follows. Let y0 ∈ Y . Then,

dim ker(Py0) ≥ dim ker(Py) ,

for y sufficiently close to y0. That is, dim ker is semi-continuous. The same is true for
dim coker. In fact, one can prove that their difference remains constant. The basic
idea for proving this is the following.9 Let P : H → H be a family of Fredholm
operators, let e0, e1, . . . be an orthonormal basis ofH and letHn ⊂ H be the subspace
spanned by the vectors {ei} with i ≥ n. Let p(n) be the orthogonal projector10 onto
the Hilbert subspace Hn. Define

P(n) := p(n) ◦ P .

Using the compactness of Y , one can prove that there exists a (sufficiently large)
number n such that im

(
P(n)
) = Hn, for all y, y′ ∈ Y , and

dim ker
(
P(n)
y

) = dim ker
(
P(n)
y′
)
.

Thus, one can define
Ind(P) := Ind

(
P(n)
)
. (E.7)

Finally, one proves that this quantity is independent of n and of the choice of the basis.
This construction extends to Fredholm operators acting between different Hilbert
spaces. As in the case of the index of a single operator, one proves that Ind(P) is a
homotopy invariant.

9See [29] or [83] for a pedagogical presentation.
10This is a self-adjoint Fredholm operator. Thus, it has index 0.



Appendix F
Determinant Line Bundles

There is a huge literature on this subject starting from the classical paper by Quillen
[525], see [72, 79, 80, 210, 211, 593] and further references therein.

To start with, let V and W be finite-dimensional complex vector spaces with
dim V = dimW = n and let P : V → W be a homomorphism. Consider the
complex lines

Det(V) :=∧nV , Det(W) :=∧nW .

The determinant line of P is defined by

Det(P) := Det(V∗) ⊗ Det(W) , (F.1)

and the Quillen determinant det(P) ∈ Det(P) is defined as

det(P) := e∗
1 ∧ . . . ∧ e∗

n ⊗ (
∧nP)(e1 ∧ . . . ∧ en) , (F.2)

where {ek} is any basis in V and {e∗
k} is its dual. For V = W , the determinant defined

by (F.2) coincides with the classical determinant of the endomorphism P ∈ End(V),
because in this case we have a natural isomorphism

Det(V∗) ⊗ Det(V) → C (F.3)

induced by the canonical pairing Det(V∗) × Det(V) → C. The latter implies the
identity

(
∧nP)(e1 ∧ . . . ∧ en) = det(P) e1 ∧ . . . ∧ en .

The canonical isomorphism (F.3) also implies the canonical isomorphism

Det(P ◦ Q) ∼= Det(P) ⊗ Det(Q) , (F.4)

for P ∈ Hom(V ,W) and Q ∈ Hom(U,V). Clearly, det(P) vanishes if P has a
nontrivial kernel and is nonzero otherwise. Using the exact sequence

© Springer Science+Business Media Dordrecht 2017
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0 → ker(P) → V
P→ W → coker(P) → 0

and the above multiplicative property, we obtain a natural isomorphism

Det(V∗) ⊗ Det(W) ∼= (Det ker(P))∗ ⊗ (Det coker(P)) . (F.5)

Next, consider a parameter space Y , vector bundles V and W over Y and a vertical
vector bundle morphism P : V → W . The latter gives rise to a family of homomor-
phisms

Py : Vy → Wy

varying smoothly with y ∈ B. Then, the above construction yields the complex line
Det(Py) := Det(V∗

y ) ⊗ Det(Wy) for every y ∈ B, that is, we obtain a complex line
bundle

π : Det(P) → Y , (F.6)

which will be referred to as the determinant line bundle of P. Correspondingly,
the determinants det(Py) combine to a section det(P) in Det(P). In view of (F.5),
it is tempting to generalize the above constructions to Fredholm operators acting
between infinite-dimensional Hilbert spaces, cf. Definition 5.7.8. In that case, the
fibres of Det(P) are defined by the right hand side of (F.5).11 Clearly, in general,
the dimensions of ker(P) and coker(P) may jump, so that one has to show that
these fibres piece together to form a smooth vector bundle. This is done in terms of
K-theory over Y , see Appendix E. Let ξ ∈ K(Y). One defines

Det(ξ) := (DetV)∗ ⊗ (DetW) ,

where [V ] − [W ] is any representative of ξ . It is easy to show that the line bundle
Det(ξ) is independent of the choice of the representative in K(Y). Thus, by (F.5), for
a family P of Fredholm operators the corresponding element of K(Y) is the index
bundle

Ind(P) = [ker(P)] − [coker(P)] ,

and one defines
Det(P) := Det(Ind(P)) . (F.7)

That is, the determinant bundle of P is the top exterior power of the index bundle. It
can be shown, see Proposition 3.42 in [83] for a detailed proof, that the set

⋃

y∈Y

(
Det ker(Py)

)∗ ⊗ (Det ker(P∗
y )
)

11The left hand side of (F.5) no longer makes sense.

http://dx.doi.org/10.1007/978-94-024-0959-8_5
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can be taken as a standard representative of the isomorphism class Det(P). This
shows, in particular, that the definition (F.7) boils down to (F.6) in the finite-
dimensional case. Generalizing the results of Quillen [525]12 it has been shown
by Bismut and Freed [79] that, for families of twisted Dirac operators, there is a
canonical section det(P) of Det(P) over components of Y where P has index zero.
Over the connected components where the index is nonzero, det(P) = 0 by defini-
tion. The section det(P) is referred to as the Quillen determinant of the family P. If
Det(P) is trivial, then there exists a non-vanishing section σ : Y → Det(P) and we
may represent det(P) by an ordinary C-valued function detC(P) on Y via

detC(P)(y) := det(Py)

σ (y)
.

For a global section σ to exist, the first Chern class c1(Det(P)) ∈ H2
Z
(Y) must

vanish. This cohomology class can be calculated using the Atiyah-Singer Family
Index Theorem, see Remark 5.8.16. In general, Det(P) is nontrivial leading e.g. to
anomalies in gauge theories, see Sect. 9.3.

Moreover, generalizing results of Quillen, Bismut and Freed proved that Det(P)

carries a natural metric and a connection. Clearly, the curvature of the latter may
be used to explicitly calculate the first Chern class of Det(P). We describe these
structures in some detail13: let π : M → Y be a fibration of manifolds endowed with
the structure described in Remark 5.8.16 and let E = S ⊗E be a vector bundle over
M also endowed with the structure described there. Then, we have a family of Dirac
operators {Dy} over Y which, according to the grading of E , splits into two families
D±

y : H±
y → H∓

y , where H
±
y are appropriate Hilbert spaces of sections of E ±

y . The
spaces H±

y fit together to form a continuous Hilbert bundle H → Y . The square of
D is, pointwise on Y , given by

D2 =
[
D−D+ 0

0 D+D−

]

and, by Theorem 5.7.17, D2 is a family of Fredholm operators with index zero.
Moreover, D2 is non-negative and, by Proposition 5.7.11, it has a discrete spectrum.
The same is true for D−D+ and D+D−, respectively. Now, take P = D+ and consider
its determinant bundle Det(D+), which is defined by (F.7).

First, we give a more explicit description of Det(D+). This substantiates the
remark after definition (F.7) for the case under consideration. Let a be a positive real
number and let Ua ⊂ Y be the subset on which a is not an eigenvalue of D−D+.14
Let H±

a be the sum of eigenspaces corresponding to eigenvalues less than a. Clearly,
the vector spaces H±

a are finite-dimensional and, by elliptic regularity, they consist
of smooth fields. Since the spectrum of D−D+ is discrete, the sets Ua form an open

12Quillen considered the case of Cauchy-Riemann operators over a Riemann surface.
13Our presentation is along the lines of Freed [211].
14For simplicity of notation, we omit the index y.

http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_9
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
http://dx.doi.org/10.1007/978-94-024-0959-8_5
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cover of Y . Moreover, it can be shown, see e.g. Sect. 9.2 in [72], that the spaces H±
a

fit together to smooth finite-dimensional vector bundles of locally constant rank over
Ua. Thus, we can define a line bundle L a → Ua by

L a := Det
(
H+

a

)∗ ⊗ Det
(
H−

a

)
.

By the isomorphism (F.5), its fibres may be viewed as

L a
y

∼= Det ker(D+
y )∗ ⊗ Det ker(D−

y ) .

Clearly, for b > a, we have a decomposition H±
b = H±

a ⊕ H±
(a,b) over the open set

Ua ∩ Ub. This impliesL b ∼= L a ⊗ L (a,b), where

L (a,b) = Det
(
H+

(a,b)

)∗ ⊗ Det
(
H−

(a,b)

)
.

The isomorphism D+
(a,b) := (D+)

�H+
(a,b)

: H+
(a,b) → H−

(a,b) induces an isomorphism

det
(
D+

(a,b)

) : Det
(
H+

(a,b)

)→ Det
(
H−

(a,b)

)

and, thus, a nonzero section of L (a,b). Using this isomorphism, we can define a
family of canonical smooth isomorphisms

L a → L b = L a ⊗ L (a,b) , s �→ s ⊗ det
(
D+

(a,b)

)
(F.8)

overUa∩Ub. These canbeused to patch the bundlesL a together to forma line bundle
L → Y . This is the determinant line bundle for the case under consideration,L =
Det(D+). Correspondingly, the Quillen determinant det(D+) is obtained as follows.
Over connected components where the index of D+ vanishes, one has dim

(
H+

a

) =
dim
(
H−

a

)
. There, every L a has a canonical section

det
(
D+

a

) : Det(H+
a

)→ Det
(
H−

a

)
,

where D+
a denotes the restriction of D+ to H+

a . By the multiplicativity property of
determinants, det

(
D+

a

)
is identified with det

(
D+

b

)
via the isomorphism (F.8). Putting

det(D+) = 0 over components where the index is different from zero, we obtain a
global section det(D+) of Det(D+) which is called the Quillen determinant.

Next, we construct the Quillen metric on L . For any a > 0, the L2-metric on
H± induces fibre metrics on the subbundles H±

a . Thus, by linear algebra, we obtain
a fibre metric ga on L a. By (F.8), for b > a, we have

gb = ga ‖ D+
(a,b) ‖2= ga

∏

a<λi<b

λi .
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Now, by the properties of D−D+, we can apply the ζ -function regularization to its
determinant, see Appendix D. By (D.2) and (D.3),

detζ
(
(D−D+)�λ>a

) = detζ
(
(D−D+)�λ>b

) ∏

a<λi<b

λi .

Thus, if we put
ĝa := ga · detζ

(
(D−D+)�λ>a

)
, (F.9)

then ĝa and ĝb coincide onUa∩Ub. Thus, the fibre metrics ĝa patch together to yield
a fibre metric ĝ which is referred to as the Quillen metric.

Finally, we outline the construction of the connection, see [72, 79] or [211] for
details. The connection ∇ on E introduced at the beginning clearly induces con-
nections on the smooth bundles H±

a → Ua which are unitary with respect to the
restricted fibre metrics. Again, by linear algebra, we have induced connections ∇a

on L a which are unitary with respect to ga. For b > a, via the isomorphism (F.8),
we have

∇bσ = ∇aσ ⊗ det
(
D+

(a,b)

)+ σ ⊗ ∇
(
det
(
D+

(a,b)

))
,

for any section σ over Ua ∩ Ub. By a standard calculation [211],

∇
(
det
(
D+

(a,b)

)) = tr
((

(D+)−1∇D+)
�a<λ<b

)
det
(
D+

(a,b)

)
.

This implies

∇b = ∇a + tr
((

(D+)−1∇D+)
�a<λ<b

)
.

Now, one proceeds as in the case of the metric, defining

∇̂a := ∇a + trζ
((

(D+)−1∇D+)
�λ>a

)
, (F.10)

where trζ
((

(D+)−1∇D+)
�λ>a

)
is the ζ -function regularization of the trace [211].

By an obvious additivity property of the regularized traces, ∇̂a and ∇̂b agree on
Ua ∩Ub. Thus, these connections patch together to a unitary connection ∇L onL .



Appendix G
Eilenberg–MacLane Spaces

Let A be an Abelian group and let n be a positive integer. A pathwise connected CW-
complex X is called an Eilenberg–MacLane space of typeK(A, n) iff πn(X) = A and
πi(X) = 0 for i �= n. Eilenberg–MacLane spaces exist for any choice of A and n and
are unique up to homotopy equivalence.15 The simplest example of an Eilenberg–
MacLane space is the 1-sphere S1, which is of type K(Z, 1). Note that Eilenberg–
MacLane spaces are, apart from very special examples, infinite dimensional.

Assume A to be commutative also in the case n = 1. Due to the Universal Coeffi-
cient Theorem, Hom (Hn(K(A, n)),A) is isomorphic to a subgroup of Hn

A(K(A, n)).
Due to the Hurewicz Theorem, Hn(K(A, n)) ∼= πn(K(A, n)) = A. It follows that
Hn

A(K(A, n)) contains elements which correspond to isomorphisms

Hn(K(A, n)) → A .

Such elements are called characteristic. If γ ∈ Hn
A(K(A, n)) is characteristic, then

for any CW-complex X, the mapping

[X,K(A, n)] → Hn
A(X) , f �→ f ∗γ , (G.1)

is a bijection [104, Sect. VII.12]. In this sense, Eilenberg–MacLane spaces provide
a link between homotopy and cohomology.

Let us construct models for the Eilenberg–MacLane spaces K(Z, 2) andK(Zg, 1)
and derive the integer-valued cohomology of these spaces. Consider the natural free
action of U(1) on the sphere S∞ which is induced from the natural action of U(1) on
S2n−1 ⊂ C

n. The orbit space of this action is the infinite complex projective space
CP∞. Moreover, by viewing Zg as a subgroup of U(1), this action gives rise to a
natural free action of Zg on S∞. The orbit space of the latter is the infinite lens space
L∞
g . Thus, one has the principal bundles

15In case n = 1, an Eilenberg–MacLane space exists for any group.
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S∞ U(1)−−→ CP∞ , S∞ Zg−→ L∞
g . (G.2)

Due to πi(S∞) = 0, for every i, the corresponding exact homotopy sequences yield

πi(CP∞) = πi−1(U(1)) =
{
Z i = 2 ,

0 i �= 2 ,

πi(L∞
g ) = πi−1(Zg) =

{
Zg i = 1 ,

0 i > 1 .

As a consequence, CP∞ is a model of K(Z, 2) and L∞
g is a model of K(Zg, 1). In

particular,

Hi
Z
(K(Z, 2)) = Hi

Z
(CP∞) =

{
Z i even,

0 i odd,
(G.3)

see [104, Chap. VI, Proposition 10.2], and

Hi
Z
(K(Zg, 1)) = Hi

Z
(L∞

g ) =

⎧
⎪⎨

⎪⎩

Z i = 0 ,

Zg i �= 0, even

0 i �= 0, odd,

(G.4)

see [665, Sect. II.7.7].We notice that the vanishing of all homotopy groups of S∞ also
implies that the principal bundles (G.2) are universal for U(1) and Zg, respectively.
Hence, CP∞ and L∞

g are models of BU(1) and BZg, respectively. This is used in the
proofs of Theorems 4.8.1 and 4.8.3.

http://dx.doi.org/10.1007/978-94-024-0959-8_4
http://dx.doi.org/10.1007/978-94-024-0959-8_4
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Bockstein homomorphism, 280, 674
Bogomolnyi bound, 581
Bogomolnyi equation, 582
Bogomolnyi-Prasad-Sommerfield model,
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Hilbert space, 731
matter, 546

Boundary flux, 741
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BRST operator, 724
BRST relations, 724
BRST symmetry, 702
Bundle

adjoint, 40
Pontryagin classes, 296, 335

associated, 15
atlas, 5
Clifford, 401
Clifford module, 402

Hermitean, 405
Riemannian, 405
twisted, 409

determinant line, 600, 784, 786
Dirac, 406

graded, 433
evolution (of a connection), 640
fibre, 2
frame, 8
holomorphic tangent or cotangent, 160
holonomy, 65
Hopf

complex, 10
quaternionic, 12

index, 781
instanton, 502
n-universal principal, 217

n-universal vector, 240
numerable, 230
of affine frames, 98
of complex linear frames, 113
of conformal frames, 118
of connections, 251
of orthonormal frames, 9
of symplectic frames, 9
of unitary frames, 9, 119
principal, 1
projective twistor, 498
reduction, 4
section jet, 248
spinor, 402

projective, 403
Stiefel, 12

characteristic classes, 279
homotopy groups, 221
infinite, 227

universal principal, 217
universal vector, 240

C
Canoe, 752
Canonical

anti-automorphism of Clifford algebra,
356

bilinear form on the spinor module, 385
connection

invariant, 88
on a holomorphic Hermitean vector

bundle, 162
on the Hopf bundle, 36
on the Stiefel bundle, 34

decomposition of a symmetric Lie alge-
bra, 143

grading of the spinor module, 436
R
n-valued form, 95

symmetric Lie algebra, 143
Cartan element, 773
Cartan matrix, 774
Cartan subalgebra, 773
Čech cohomology, 7
Character

Chern, 342
relative Chern, 447

Characteristic class, 258
secondary, 720
universal, 259

Characteristic element, 789
Characteristic mapping, 196
Charge
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colour, 739, 741
electric, 571, 606, 613, 616, 632
magnetic, 554, 571
topological, 555, 562, 691, 728

Charge density, 571, 738, 740, 741
Chern character, 342

relative, 447
Chern classes, 271, 273

of an almost complex manifold, 308
of a tensor product, 293
of complex projective space, 309
of the conjugate vector bundle, 298
of the dual vector bundle, 295

Chern connection, 162
Chern genus, 338
Chern index, 272, 326

of the complex Hopf bundle, 311
Chern roots, 289, 291
Chern-Simons form, 720
Chirality, 378, 709, 711
Chiral transformation, 709
Christoffel symbols, 104
Class

characteristic, 258
of the Stiefel bundle, 279
secondary, 720
universal, 259

Chern, see Chern classes
Euler, 263

of an oriented manifold, 308
Pontryagin, see Pontryagin classes
Stiefel–Whitney, see Stiefel–Whitney
classes

Thom, 263
Classical lattice gauge theory, 728
Classification

of Howe subbundles, 679
of Howe subgroups, 667
of smooth principal bundles, 238
of topological principal bundles, 229
of vector bundles, 239

Classifying mapping
of a Lie group homomorphism, 240
of a principal bundle, 217
of a vector bundle, 240

Classifying space, 217
Clifford algebra, 354

canonical anti-automorphism, 356
of Minkowski space, 364
parity automorphism, 356
(pseudo-)orthogonal, 359
representation, 377

Clifford bundle, 401

Clifford connection, 406
Clifford group, 365

special, 367
Clifford mapping, 402
Clifford module, 377

unitary, 387
Clifford module bundle, 402

Hermitean, 405
Riemannian, 405
twisted, 409

Clifford multiplication, 382
Coderivative, 177, 463
Coherent state, 755
Cohomogeneity, 541
Cohomology

Čech, 7
Dolbeault, 116
of an elliptic complex, 427
of BO(n), 276, 282
of BSO(n), 278, 282
of BSp(n), 275
of BSU(n), 273
of BSUJ , 674–676
of BU(n), 269

Cohomology cross product, 284
Colour electric and magnetic component,

552
Colour electric field, 730
Colour group, 613
Compact-open topology, 192
Compact type (symmetric Lie algebra), 144
Compatible connection

on a holomorphic vector bundle, 161
on a (pseudo-)Riemannian or Hermitean
vector bundle, 158

with a bundle reduction, 58
with a fibre metric, 59
with an almost complex structure, see al-
most complex connection

with an almost Hermitean structure, see
unitary connection

with an H-structure, 109
with a (pseudo-)Riemannian metric, see
metric connection

Complete linear connection, 103
Complex

de Rham, 428
twisted, 458

Dolbeault, 432, 460
elliptic, 426
Seiberg-Witten, 595
signature, 429

twisted, 459
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spin, 431
Yang-Mills, 509

Complex ADHM data, 501
Complex frame bundle, 113
Complex Hopf bundle, 10
Complexification, 764
Complex line, 498
Complex spin group, 372
Complex structure, 112
Complex type (representation), 389
Concatenation

of curves, 61
of homotopies, 191
pointwise, 194

Condition
frontier, 651, 745
initial, of a lifting problem, 200
quantization, 562, 572, 573, 579
Wess-Zumino, 724

Conformal
equivalence, 118
frame bundle, 118
group, 118

of S4, 767
structure, 117

Conformally flat, 118
Connection, 25

affine, 98
almost complex, 124
anti-self-dual, 473
canonical, see canonical connection
Chern, 162
Clifford, 406
compatible, see compatible connection
existence, 27
extension, 32
fibre, 718
flat, 40
gauge, 547
image of, 31
induced

by a bundle morphism, 33
on an associated bundle, 26
on a submanifold, 532

invariant, 76
under rotations, 89
under translations, 91

irreducible, 58
Levi-Civita, 123
linear, 94
locally symmetric, 129
metric, 121
n-universal, 244

on a vector bundle, 47
principal, 25
pullback of, 33
push forward of, 31
reducible, 58
self-dual, 473
spacetime, 547
spin, 398
tautological, 252
tensor product of, 49
torsion-free, 110
transport of, 31
unitary, 125
Yang-Mills, 473

non-minimal, 538
stable or weakly stable, 531

Connection form
on an associated vector bundle, 29
on a principal bundle, 27

Connection mapping, 29
Consistent anomaly, 725
Construction

ADHM, 489
Horrocks, 502
Milnor, 230

Costratified Hilbert space, 746
Coupling

minimal, 547
vector, 713
Yukawa, 609, 615

Covariant anomaly, 725
Covariant coderivative, 177, 463
Covariant derivative, 37

along a mapping, 52
on an associated bundle, 45

Covariant Lorenz gauge, 698
Covering Homotopy Theorem, 216
Critical orbit (symmetry breaking), 570
Crossed product C∗-algebra, 734
CSDR scheme, 617
Cube (lattice), 727
Current

axial, 709, 714
magnetic, 577
Noether, 709
Yang-Mills-Higgs, 551

Curvature
Riemann, 131, 661
scalar, 133
sectional, 139, 663
twisting, 412

Curvature endomorphism form, 50
Curvature form, 40
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Curvature mapping, 99
Riemann, 131

Curvature tensor, 99
Curve

horizontal, 60
lift, 60

CW-complex, 196
CW-homotopy type, 212
CW-structure, 196

D
De Rham complex, 428

twisted, 458
De Rham isomorphism, 318
De Rham Splitting Theorem, 135

global version, 137
Defect (symmetry breaking), 566
Descent equations, 724
Determinant

Faddeev-Popov, 699
fermionic, 708, 725
Quillen, 713, 783–786

Determinant line, 783
Determinant line bundle, 600, 784, 786
Diagram

Bratteli, 687
Dynkin, 774
root, 775

Differential form
harmonic, 166
of type σ , 21
with values in a vector bundle, 21

Differential operator, 416
Dimensional reduction, 617

Georgi-Glashow model, 629
Weinberg-Salam model, 632

Dirac bundle, 406
graded, 433

Dirac-Laplace operator, 406
Dirac monopole, 571
Dirac operator, 406

graded, 437
twisted, 409
Weitzenboeck Formula, 410

Dirac quantization condition, 572
Directed system, 199
Direct limit, 199
Direct product

of connections, 34
of principal bundles, 3

Distribution
horizontal, 25

vertical, 25, 468
Divergence, 169
Dolbeault cohomology, 116
Dolbeault complex, 432, 460
Dolbeault operator, 161, 749
Donaldson Theorem, 524, 528
Dual spinor module, 385
Dynkin diagram, 774

E
Effective symmetric Lie algebra, 143
Eilenberg-MacLane space, 789
Einstein manifold, 134
Electric charge, 571, 606, 613, 616, 632
Electron, 605
Electron neutrino, 605
Electroweak interaction, 567
Elementary symmetric polynomial, 289
Elliptic

complex, 426
differential operator, 417
regularity, 423

Equation
Bogomolnyi, 582
descent, 724
Euler-Lagrange, 471
heat, 437
Mathieu, 756
monopole, 591
Seiberg-Witten, 591

perturbed, 598
Structure Equation

for a linear connection, 96
for a principal connection, 41

Yang-Mills, 473
Yang-Mills-Higgs, 551

Equivalence
conformal, 118
G-homotopy, 217
orbit closure, 750
stable, 288, 780

Euler characteristic, 429, 455
Euler class, 263

of an oriented manifold, 308
Euler form, 455
Euler-Lagrange equation, 471
Euler number, 512, 537
Even unimodular symmetric bilinear form,

526
Evolution bundle, 640
Exotic smooth structures on R

4, 529
Exponential mapping, 103
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Extension
of a connection, 32
of a princpal bundle, 56

Extension problem, 758

F
Faddeev-Popov

determinant, 699
ghosts and anti-ghosts, 700
operator, 655
procedure, 697

Family Index Theorem, 451
Fermion doubling problem, 741
Fermionic

action, 708
determinant, 708, 725
families, 605
field algebra, 729
Hilbert space, 729
matter, 546, 708

Feynman gauge, 701
Fibration

Hurewicz, 201
path-loop, 208
Serre, 201

Fibre bundle, 2
Fibre connection, 718
Fibre metric, 9
Fibre product

of bundles, 5
of connections, 33

Field
colour electric, 730
Higgs, 549
matter, 547
Nakanishi-Lautrup, 701
quark, 613, 741
static, 552

Field algebra, 735
bosonic, 735
fermionic, 729
local, 742

Final topology, 196
Finite energy solution, 483
Five Lemma, 350
Flat connection, 40
Flavour, 546, 729
Flux, 576

boundary, 741
Form

anti-self-dual, 186
canonical Rn-valued, 95

Chern-Simons, 720
connection

on an associated vector bundle, 29
on a principal bundle, 27

curvature, 40
curvature endomorphism, 50
Euler, 455
harmonic, 166
horizontal, 21
intersection, 430, 526
Maurer-Cartan, 29
of type σ , 21
self-dual, 186
soldering, 95
torsion, 96
with values in a vector bundle, 21

Formula
Lichnerowicz, 412
McKean-Singer, 438
multilinearization, 313
O’Neill, 661
polarization, 312
Weitzenboeck, 173

for the Dirac operator, 410
generalized, 180

Whitney Sum, 287
for the Pontryagin classes, 306

Fractional linear transformation, 770
Frame

holonomic, 106
synchronous, 69

Frame bundle, 8
affine, 98
complex, 113
conformal, 118
orthonormal, 9
symplectic, 9
unitary, 9, 119

Fredholm operator, 420
Freedman Theorem, 527
Free module, 261
Frontier condition, 651, 745
Fujikawa method, 709
Fundamental modular domain, 707

G
Gauge

axial, 698
covariant Lorenz, 698
Feynman, 701
Landau, 701
non-singular, 578
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radial, 559
singular, 579
temporal, 553
tree, 744

Gauge anomaly, 713
Gauge boson, 613
Gauge connection, 547
Gauge orbit space, 467, 638
Gauge potential, 462
Gauge principal bundle, 546
Gauge theory, 461
Gauge transformation, 462

infinitesimal, 468
Gauge type, 547
Gaussian integral, 777
Gauß–Bonnet Theorem, 458
Gauß law, 736, 737, 739, 741, 743
Generalized

Hodge-Laplace operator, 463
Schrödinger representation, 730
Weitzenboeck Formula, 180
Weyl algebra, 734

Genus
Â, 341
arithmetic, 432
L, 340
of a vector bundle, 336
Todd, 339

Geodesic, 102, 663
Geodesically complete, 103, 664
Geometrical units, 462
Georgi-Glashow model, 567, 629

Bogomolnyi bound, 582
Georgi-Glashow phase, 706
Getzler rescaling, 446
G-homotopy equivalent, 217
Global

anomaly, 725
colour charge, 739, 741
de Rham Splitting Theorem, 137
parallelism, 98
trivialization, 2

G-morphism, 4
Good perturbation (Seiberg-Witten theory),

598
Graded Dirac bundle, 433
Graded Dirac operator, 437
Gradient type (vector field), 532
Grand unification, 616, 625
Green’s operator, 426, 655
Gribov

ambiguity, 703
copies, 707

horizon, 703
problem, 703, 706
region, 707

Group
Berger, 130
Clifford, 365
colour, 613
complex spin, 372
conformal, 118
holonomy, 62

restricted, 62
homotopy, 191
K , 779
of local gauge transformations, 464
of units, 365
pin, 368
pointed gauge, 704, 743
relative homotopy, 191
special Clifford, 367
spin, 368

of Minkowski space, 369
Spinc, 372
transvection, 150
Weyl, 319

Gysin sequence, 263

H
Harmonic

differential form, 166
spinor, 415

Heat kernel, 437, 747
approximate, 440
asymptotics, 442

Hermitean
Clifford module bundle, 405
structure, 118
vector bundle, 9

Hessian of the Yang-Mills functional, 531
Higgs

boson, 613
field, 549
mechanism, 563, 566, 608
potential, 550
vacuum, 563

Hilbert
basis, 570
mapping, 570

Hirzebruch Signature Theorem, 459
Hodge Decomposition Theorem, 167, 425
Hodge-Laplace operator, 166

generalized, 463
Hodge star operator, 164
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Holomorphic
cotangent bundle, 160
tangent bundle, 160
vector bundle, 159

Holomorphic Peter-Weyl Theorem, 749
Holonomic frame, 106
Holonomy

bundle, 65
group, 62
principle, 70

Holonomy-induced subbundle, 641, 682
Holonomy-invariant, 70
Homomorphism

Bockstein, 280, 674
boundary, 203
multilinearization, 313
polarization, 312
Weil, 316, 331

Homotopy
fibre, 212
group, 191
lifting problem, 201
lifting property, 201
sequence

of a fibration, 205
of a pair, 204

Hopf bundle, 10, 12
canonical connection, 36

Horizontal
component of a tangent vector, 25
curve, 60
differential form, 21
distribution, 25
standard vector field, 95
subspace, 25

Horrocks construction, 502
Howe dual pair, 640
Howe subbundle, 641, 682

classification, 679
of type L, 682

Howe subgroup, 640
classification, 667

H-structure, 109
Hurewicz fibration, 201
Hyperbolic

monopole, 585
space form, 157

Hypercharge, 606

I
Image of a connection under a bundle mor-

phism, 31

Index
Chern, 272, 326

of the complex Hopf bundle, 311
of a Dirac bundle, 451
of a family of Fredholm operators, 781
of a Fredholm operator, 420
of an elliptic complex, 427
of a simple Lie subalgebra, 627
of a Yang-Mills connection, 531
of the Seiberg-Witten complex, 595
of the Yang-Mills complex, 512
Poincaré-Hopf, 577
Pontryagin, 282, 330

of the quaternionic Hopf bundle, 311
symplectic Pontryagin, 276, 330

Index bundle, 781
Induced connection, 33

on a submanifold, 532
Infinite

complex projective space, 228, 789
Graßmannian, 226
join, 232
lens space, 228, 789
Stiefel bundle, 227

Infinitesimal gauge transformation, 468
Initial condition of a lifting problem, 200
Instanton

BPST, 482
multi, 496

Instanton bundle, 502
Instanton moduli space, 508, 514, 518, 524

over S4, 517
Instanton number, 486
Integrability

of a conformal structure, 118
of an almost complex structure, 113–117
of an almost symplectic structure, 121
of an H-structure, 109
of a pseudo-Riemannian structure, 117

Integral Stiefel–Whitney classes, 281
Intermediate vector boson, 565, 611
Intersection form, 430, 526
Intrinsic torsion, 111
Invariant connection, 76
Inverse merging operation, 688
Inverse splitting operation, 688
Irreducible

connection, 58
Riemannian manifold, 137
solution of the Seiberg-Witten equations,
597

symmetric Lie algebra, 143
Isotropic subspace, 383
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J
Join, 230

infinite, 232

K
Kähler manifold, 121
Kaluza-Klein theory, 617, 659
Kempf-Ness set, 750
K-group, 779
Killing vector field, 24
Kobayashi-Maskawa matrix, 615
Kogut-Susskind Hamiltonian, 741
Koszul calculus, 45
K-theory, 779

L
Landau gauge, 701
Lattice approximation, 728
Lattice gauge theory

classical, 728
quantum, 729

Lattice Hamiltonian, 741
Left-handed Weyl spinor, 382
Lens space, 223

infinite, 228, 789
Leptons, 605
Leray–Hirsch Theorem, 261
Levi-Civita connection, 123
L-genus, 340
Lichnerowicz Formula, 412
Lift

of a curve, 60
of a group action, 76
of a mapping, 200

Lifting problem, 200
Lifting property, 201
Linear connection, 94
Link (lattice), 727
Local

field algebra, 742
gauge potential, 462
gauge transformation, 462
representative of a connection, 29
section, 3
trivialization

of a general fibre bundle, 2
of an associated bundle, 15
of a principal bundle, 2

Local Index Theorem, 451
Localization at a stratum, 746, 751
Locally reducible Riemannian manifold,

137

Locally symmetric
connection, 129
manifold, 130

Local Slice Theorem, 646
Loop space, 194

M
Magnetic

charge, 554, 571, 577
charge density, 571
current, 577
monopole, 554, 566, 571, 591, 617, 706

Majorana spinor, 391
Manifold

(almost) complex, 112
(almost) Hermitean, 118
(almost) symplectic, 121
Einstein, 134
Kähler, 121
Riemannian or pseudo-Riemannian, 117

locally symmetric, 130
self-dual or anti-self-dual, 188

smoothable, 529
spin, 395
Spinc, 400

Mapping
characteristic, of a CW-structure, 196
classifying, see classifying mapping
Clifford, 402
curvature, 99
exponential, 103
quantization, 359
Riemann curvature, 131
symbol, 359
torsion, 99

Mapping cylinder, 349
Mass term, 566, 611
Mathieu equation, 756
Matrix

Cartan, 774
Kobayashi-Maskawa, 615

Matter field, 547
Matter field generator, 729
Maurer-Cartan form, 29
McKean-Singer Formula, 438
Merging operation, 688
Metric

fibre, 9
Quillen, 787
Riemannian or pseudo-Riemannian, 117

on the gauge orbit strata, 658
on the space of connections, 644
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Metric connection, 121
Milnor construction, 230
Minkowski space

Clifford algebra, 364
Hermitean form on the bispinor space,
393

Seiberg-Witten equations, 591
spin group, 369
spinor module, 386

Möbius transformation, 770
Model

Bogomolnyi-Prasad-Sommerfield, 581
Georgi-Glashow, 567, 629
Seiberg-Witten, 588
standard, 605, 616
Weinberg-Salam, 612, 632

Module
Clifford, 377
dual spinor, 385
spinor, 378

Moduli space
of instantons, 508, 514, 518, 524
of monopole solutions, 585
of the Seiberg-Witten equations, 593

Momentum mapping (lattice gauge theory),
743, 744

Monad, 505
Monopole, 554, 566, 571, 591, 617, 706

BPS, 584
hyperbolic, 585
multi, 584
’t Hooft-Polyakov, 580

Monopole equations, 591
Monopole moduli space, 585, 593
Morphism of principal bundles, 3
Multi instanton, 496
Multilinearization, 313
Multi monopole, 584

N
Nakanishi-Lautrup field, 701
n-classifying space, 217
n-equivalence, 347
Newlander–Nirenberg Theorem, 114
Nijenhuis tensor, 114
Noether current, 709
Non-compact type (symmetric Lie algebra),

144
Non-minimal Yang-Mills connections, 538
Non-singular gauge, 578
Normal coordinates, 107, 664
Nullity of a Yang-Mills connection, 531

Number
Euler, 512, 537
instanton, 486

Numerable fibre bundle, 230
n-universal

connection, 244
principal bundle, 217
vector bundle, 240

O
Observable algebra, 738
Odd unimodular symmetric bilinear form,

526
O’Neill Formula, 661
Operator

Bochner–Laplace, 171
BRST, 724
differential, 416
Dirac, 406

graded, 437
twisted, 409

Dirac-Laplace, 406
Dolbeault, 161, 749
elliptic, 417
Faddeev–Popov, 655
Fredholm, 420
Green’s, 426, 655
heat, 437
Hodge-Laplace, 166

generalized, 463
Hodge star, 164
smoothing, 437
Weitzenboeck curvature, 172, 410
Wilson loop, 742

Opposite algebra, 356
Orbit closure equivalence, 750
Orbit type, 639, 684

direct successors and predecessors, 687,
688

partial ordering, 686
Orientable vector bundle, 55
Orthogonal symmetric Lie algebra, 143
Orthonormal frame bundle, 9
Overlap of coherent states, 755

P
Pair

pointed, 191
Riemannian symmetric, 152
topological, 191

Pair homotopy, 191
Pair mapping, 191
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Parallel transport
on a principal bundle, 61
on an associated vector bundle, 68

Parallel with respect to a connection, 39
Parity automorphism of a Clifford algebra,

356
Path-loop fibration, 208
Path space, 207
Penrose twistor transformation, 498
Perturbed Seiberg-Witten equations, 598
Pfaffian, 328
Physical representation of gauge potentials,

462
Pin group, 368
Pin representation, 381
Plaquette (lattice), 727
Poincaré-Hopf index, 577
Pointed

CW-complex, 196
gauge group, 704, 743
homotopy, 191
pair, 191
topological space, 191

Pointwise concatenation, 194
Polar decomposition, 747
Polarization homomorphism, 312
Polarization of a quadratic space, 384
Polynomial function, 312
Pontryagin classes, 280

of a manifold, 308
of an almost quaternionic manifold, 308
of quaternionic projective space, 309
symplectic, 275
torsion, 305
Whitney Sum Formula, 306

Pontryagin genus, 338
Pontryagin index, 282, 330

of the quaternionic Hopf bundle, 311
symplectic, 276

Pontryagin roots, 289, 291
Postnikov tower, 347, 670
Prasad-Sommerfield limit, 582
Principal

bundle, 1
classification, 229, 238

connection, 25
orbit type, 651
stratum, 569, 651
symbol, 416

Principle
holonomy, 70
of local gauge invariance, 604
of minimal coupling, 547

splitting
for principal bundles, 291
for vector bundles, 292

Problem
extension, 758
fermion doubling, 741
Gribov, 703, 706
homotopy lifting, 201
lifting, 200

Product
cohomology cross, 284
fibre

of bundles, 5
of connections, 33

of symmetric multilinear forms, 312
Projection of a bundle morphism, 4
Projective

spinor bundle, 403
twistor bundle, 498

Proton decay, 617
Pseudo-orthogonal Clifford algebra, 359
Pseudo-Riemannian

manifold, 117
vector bundle, 9

Pullback
of a bundle, 4
of a connection, 33
of a fibration, 209

Push forward of a connection, 31

Q
Quadratic space, 354
Quantization condition, 562, 572, 573, 579
Quantization mapping, 359
Quantum

chromodynamics, 615
lattice gauge theory, 729
matter field algebra, 729

Quark confinement, 616
Quark field, 613, 741
Quarks, 605
Quaternionic ADHM data, 497
Quaternionic Hopf bundle, 12
Quaternionic line, 498
Quaternionic type (representation), 389
Quaternionification, 764
Quillen determinant, 713, 783–786
Quillen metric, 787

R
Radial gauge, 559
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Realification of a complex or a quaternionic
vector bundle, 268

Real line, 500
Real structure on a complex vector space,

498
Real type (representation), 389
Reduced

gauge potential, 566
phase space, 743, 745
space of Riemann curvatures, 134

Reducible
connection, 58
Riemannian manifold, 137
solution of the Seiberg-Witten equations,
597

Reduction
dimensional, 617
of a connection, 58
of a principal bundle, 4

Reflection in a quadratic space, 366
Regular

Lie subalgebra, 774
stratification, 652

Regularization, 777
Relative

Chern character, 447
homotopy group, 191

Rellich Lemma, 419
Representation

generalized Schrödinger, 730
of a Clifford algebra, 377
pin and spin, 381
self-dual, 389
spinor, 378
twisted adjoint, 365

Representative function, 225, 747
Representative of a connection, 29
Residual gauge group, 554
Resolvable point, 529
Restricted holonomy group, 62
Ricci tensor, 133
Riemann

curvature, 131, 661
curvature mapping, 131

Riemannian
Clifford module bundle, 405
globally symmetric space, 149
manifold, 117

local reducibility, 137
metric, 117

on the gauge orbit strata, 658
on the space of connections, 644

symmetric pair, 152

vector bundle, 9
Riemann-Roch Theorem, 460
Right-handed Weyl spinor, 382
Rohlin Theorem, 459
Roll up (elliptic complex), 428
Root diagram, 775
Root system, 773
Rotationally invariant connection, 89
Rough Laplacian, 171

S
S4

conformal group, 767
Howe subbundles, 680
instanton moduli space, 517
orbit types, 691
spin structure, 396

Safe model, 722
Scalar curvature, 133
Secondary characteristic class, 720
Section, 3

along a mapping, 51
Sectional curvature, 139, 663
Section jet bundle, 248
Segal-Bargmann transformation, 747
Seiberg-Witten

complex, 595
equations, 591

perturbed, 598
functional, 589
invariants, 602
model, 588
moduli space, 593

Self-dual
connection, 473
differential form, 186
representation, 389
Riemannian manifold, 188
two-fold, 537

Sequence
Gysin, 263
homotopy

of a fibration, 205
of a pair, 204

Serre fibration, 201
Signature complex, 429

twisted, 459
Signature of a manifold, 430
Simple

CW-complex, 348
action, 76
roots, 773
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Sine elliptic, 757
Singer-Thorpe Theorem, 187
Singular gauge, 579
Site (lattice), 727
Skeleton (CW-structure), 196
Slice, 646
Smoothable, 529
Smoothing operator, 437
Sobolev Lemma, 419
Sobolev space, 418
Soldering form, 95
Source projection, 248
Space

bispinor, 382
classifying, 217
costratified Hilbert, 746
Eilenberg-MacLane, 789
gauge orbit, 638
lens, 223

infinite, 228, 789
loop, 194
n-classifying, 217
of complex spinors, 378
of constant curvature, 140
of curvature mappings, 128
of gauge orbits, 467
of Lagrangian subspaces, 156
of Riemann curvature mappings, 132
of special Lagrangian subspaces, 156
path, 207
pointed topological, 191
quadratic, 354
reduced phase, 743, 745
Riemannian globally symmetric, 149
Sobolev, 418

Spacetime connection, 547
Spacetime principal bundle, 546
Spacetime type, 547
Special Clifford group, 367
Spin

complex, 431
connection, 398
field, 368
group, 368

complex, 372
of Minkowski space, 369

manifold, 395
representation, 381
structure, 394

on a projective space, 396
on S4, 396

Spinc-group, 372
Spinc-manifold, 400

Spinc-structure, 398
Spinor, 378

harmonic, 415
Majorana, 391

Spinor bundle, 402
Spinor module, 378

of Minkowski space, 386
Spinor representation, 378
Splitting operation, 688
Splitting Principle

for principal bundles, 291
for vector bundles, 292

Stabilizer, 466
Stabilizer Theorem, 466
Stable equivalence, 288, 780
Stable Yang-Mills connection, 531
Standard model, 605, 616

Lagrangian, 614
Static field, 552
Stiefel bundle, 12

canonical connection, 34
characteristic classes, 279
homotopy groups, 221
infinite, 227

Stiefel–Whitney classes, 277, 278
integral, 281
of a manifold, 308
of real projective space, 309

Stiefel–Whitney roots, 289, 291
Strata, 569, 643, 648–651, 684, 743

localization, 746, 751
tunneling, 754

Stratification Theorem, 652
Strong topology on a mapping space, 235
Structure

(almost) complex, i.e., GL(n,C), 112
(almost) Hermitean, i.e., U(n), 118
(almost) symplectic, i.e., Sp(n,R), 121
conformal, i.e., CO(n), 117
CW, 196
H , 109
(pseudo-)Riemannian, i.e., O(k, l), 117
real, on a complex vector space, 498
spin, 394
Spinc, 398
symplectic, on a complex vector space,
498

Structure Equation
for a linear connection, 96
for a principal connection, 41

Structure mapping of a representation, 389
Subbundle, 4

embedded, 4
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holonomy-induced, 641, 682
Howe, 641, 679, 682

Subcomplex, 196
Super-commutator, 435
Supertrace, 434, 435
Symbol

Christoffel, 104
mapping, 359
principal, 416

Symmetric
Berger algebra, 130
Berger group, 130
Lie algebra, 143

Symmetry
BRST, 702
weak hypercharge, 606

Symmetry breaking, 563, 568
Symplectic

frame bundle, 9
Pontryagin classes, 275
Pontryagin index, 276, 330
structure, 121

on a complex vector space, 498
Symplectomorphism, 121
Synchronous frame, 69

T
Target projection, 248
Tautological connection, 252
Temporal gauge, 553
Tensor

curvature, 99
Nijenhuis, 114
Ricci, 133
torsion, 99

Tensor product connection, 49
Theorem

Ambrose–Singer, 66
Approximation, 647
Atiyah-Bott, 561
Atiyah–Singer Index, 447
Berger, 137
Bourguignon-Lawson, 535
Covering Homotopy, 216
de Rham Splitting, 135

Global, 137
Donaldson, 524, 528
Family Index, 451
Gauß–Bonnet, 458
Hirzebruch Signature, 459
Hodge Decomposition, 167, 425
Holomorphic Peter-Weyl, 749

Leray–Hirsch, 261
Local Index, 451
Local Slice, 646
Newlander–Nirenberg, 114
of Huebsch and Hurewicz, 203
of Wu, Hirzebruch and Hopf, 400
Riemann-Roch, 460
Rohlin, 459
Singer-Thorpe, 187
Stabilizer, 466
Stratification, 652
Thom Isomorphism, 262
Tubular Neighbourhood, 645
Wang, 87

Thermodynamical limit, 697, 742
Thom class, 263
Thom Isomorphism Theorem, 262
’t Hooft electromagnetic field strength, 575
’t Hooft multi instanton solution, 496
’t Hooft-Polyakov monopole, 580
Todd genus, 339
Topological

charge, 555, 562, 691, 728
index, 451
pair, 191
principal bundle, 190
sector, 554

Topology
compact-open, 192
final, 196
strong, on a mapping space, 235

Torsion form, 96
Torsion-free

H-structure, 111
connection, 110

Torsion, intrinsic, 111
Torsion mapping, 99
Torsion Pontryagin classes, 305
Torsion tensor, 99
Total Chern class, 271, 273

of an almost complex manifold, 308
Total Pontryagin class, 280

of a manifold, 308
Total Stiefel–Whitney class, 277, 278

of a manifold, 308
Total symplectic Pontryagin class, 275

of an almost quaternionic manifold, 308
Transformation

chiral, 709
fractional linear, 770
infinitesimal gauge, 468
local gauge, 462
Möbius, 770
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Penrose twistor, 498
Segal-Bargmann, 747

Transgression, 716
Transition mapping, 5
Translationally invariant connection, 91
Transport

of a connection, 31
parallel

on an associated vector bundle, 68
on a principal bundle, 61

Transvection, 150
Tree gauge, 744
Triality, 741
Trivialization

of a general fibre bundle, 2
of a principal bundle, 2
of an associated bundle, 15

Trivial principal bundle, 2
Tubular Neighbourhood Theorem, 645
Tunneling between strata, 754
Twisted

adjoint representation, 365
Clifford module bundle, 409
de Rham complex, 458
Dirac operator, 409
signature complex, 459

Twisting curvature, 412
Twistor, 498
Two-fold self-dual, 537
Type

compact or non-compact, 144
CW-homotopy, 212
gauge, 547
of a Howe subbundle, 682
of an orbit, 639
of a representation, 389
of a symmetric space, 152
of a unimodular symmetric bilinear form,
526

spacetime, 547
Typical fibre, 2

U
Ultraviolet limit, 697
Unique Continuation Theorem, 597
Unitary

Clifford module, 387
connection, 125
frame bundle, 9, 119

Universal
characteristic class, 259
Chern classes, 271, 273

Pontryagin classes, 280
principal bundle, 217
property of Clifford algebra, 354
Stiefel–Whitney classes, 277, 278

integral, 281
symplectic Pontryagin classes, 275
vector bundle, 240

V
Vector boson, 565, 611
Vector bundle

classification, 239
Hermitean, 9
holomorphic, 159
Riemannian or pseudo-Riemannian, 9

Vector coupling, 713
Vector field

horizontal or vertical, 25
Killing, 24
of gradient type, 532

Vertical
bundle morphism, 4
component of a tangent vector, 25
distribution, 25, 468
subspace, 25

W
Wang Theorem, 87
Weak hypercharge symmetry, 606
Weakly stable Yang-Mills connection, 531
Weil homomorphism, 316, 331
Weinberg angle, 610, 613, 632
Weinberg-Salam model, 612, 632
Weitzenboeck curvature operator, 172, 410
Weitzenboeck Formula, 173

for the Dirac operator, 410
generalized, 180

Wess-Zumino consistency condition, 724
Weyl group, 319
Weyl spinor, 382
Whitney Sum Formula, 287

for the Pontryagin classes, 306
Wilson loop operator, 742

Y
Yang-Mills action, 471, 696

Hessian, 531
Yang-Mills complex, 509

index, 512
Yang-Mills connection, 473

index and nullity, 531
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non-minimal, 538
stable or weakly stable, 531

Yang-Mills equation, 473
Yang-Mills-Higgs

action, 549
reduced, 566

current, 551

energy functional, 552
equation, 551

Yukawa coupling, 609, 615

Z
ζ -function, 777
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